JP3560152B2 - Manufacturing method of self-formed optical waveguide - Google Patents
Manufacturing method of self-formed optical waveguide Download PDFInfo
- Publication number
- JP3560152B2 JP3560152B2 JP2000402883A JP2000402883A JP3560152B2 JP 3560152 B2 JP3560152 B2 JP 3560152B2 JP 2000402883 A JP2000402883 A JP 2000402883A JP 2000402883 A JP2000402883 A JP 2000402883A JP 3560152 B2 JP3560152 B2 JP 3560152B2
- Authority
- JP
- Japan
- Prior art keywords
- self
- optical waveguide
- region
- end point
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光通信における安価で低損失な光インタ−コネクション、光分波器あるいは合波器に適用可能な自己形成光導波路の製造方法に関する。
【0002】
【従来の技術】
近年、光ファイバ通信において、光ファイバと光電変換素子(半導体レーザー、発光ダイオード、フォトダイオード、アバランシェフォトダイオード)を効率良く結合するために光導波路デバイスを利用してハイブリッド集積を行う光インターコネクション技術が注目されている。例えば特開平2000−275457号公報記載のハイブリッド型導波路モジュールがある。これは光ファイバと光電変換素子とを光学的に結合するための光導波路回路が施された部材と、複数の光電変換素子と、光ファイバを基台上で高精度にハイブリッド集積する方式である。
【0003】
一方、本願発明者らにより、特開平2000−347043号公報記載の自己形成光導波路が開発されている。これは、光硬化性樹脂に微小径の光束を照射することで屈折率の高い硬化樹脂部が順次形成され、それがそのまま光導波路として使用できるものである。
【0004】
図8に上記公報記載の光導波路の製造方法の概略を示す。光ファイバ91、2つの異なる重合型により光重合する光硬化性樹脂921、922の混合液(光硬化性液状樹脂組成物)92、透明容器93を用意し、図8の(a)のように、樹脂A921及び樹脂B922を混合して混合液92を調製し、透明容器93に充填する。次に光ファイバ91の先端面912を混合液92に浸し、一定波長の光を光ファイバ91に供給する。すると、図8の(b)のように、光ファイバ91の先端面912から略円錐台状の硬化した樹脂9211が形成され、その後径が一定の略円柱状となって硬化部分9211が成長する(図8の(c))。硬化部分9211が所望の長さになったところで該波長の光の供給を止め、透明容器93の全周からより低波長の光(図で94)を照射し、透明容器93に残っていた混合液92を全て硬化させる(図8の(d))。
【0005】
硬化部分9211の屈折率は樹脂Aの硬化後屈折率に等しく、硬化部分923の屈折率は樹脂A、樹脂Bの各々の硬化後屈折率の中間に位置する。混合溶液92のうち樹脂Aのみ硬化させて屈折率の高い略円柱状の部分の長いコアを形成し、樹脂A、樹脂Bをどちらも硬化させて屈折率の低いクラッドを形成することにより、光導波路を形成することができる。
【0006】
【発明が解決しようとする課題】
しかし、特開平2000−275457号公報記載のハイブリッド型導波路モジュールでは、サブミクロン単位での位置合わせが必要であり、軸合わせの自由度が高く、困難を極めていた。特に部品点数が多くなると、予め形状の固定されたもの同士の接続であると軸ずれが積算されてしまう上に、形状誤差のある部品があるとモジュール全体に影響を及ぼし、歩留まり低下を引き起こす。また、これらはモジュール1個ずつアライメントを行わなければならず、組み立てコストも非常に大きなものとなっていた。
【0007】
また、本願発明者らによる特開平2000−347043号公報記載のものでは、光導波路は自己形成されるものの、配置された光学部品の精度が自己形成される光導波路の位置を決めることとなり、配置された光学部品の精度が悪ければ、光導波路が所望の位置に形成されず、例えば配置された光電変換素子に光導波路が到達しない可能性があった。即ち図9の(a)に示すように、光ファイバ91の先端が微妙に角度がずれると光電変換素子95(所望の終点領域)に光導波路9211が到達しない。また、図9の(b)に示すように、ハーフミラー961、962、反射ミラー963を配設して分岐点及び屈曲点を設けようとしても、これらのミラー961、962、963のアライメントが正確ででないと、光電変換素子95a、95b、95c(所望の終点領域)に光導波路9211a、9211b、9211cが到達しない。
【0008】
本発明は上記の課題を解決するために成されたものであり、その目的は、自己形成光導波路の製造において、光導波路が形成される方向が所望の方向からずれた場合でも所望の終点領域に光導波路が形成されるようにすることである。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の手段によれば、光硬化性樹脂中に微小径の光束を照射し硬化させることで屈折率の上昇した硬化樹脂部を連続形成する際、微小径の光束が硬化樹脂部に閉じ込められることにより光束の通過方向に略一定径とした硬化樹脂部を有する自己形成光導波路の製造方法において、該自己形成光導波路が、予め設計された終点領域に到達するよう、予め設計された形成領域から外れた場合に微小径の光束が全反射により屈折するよう低屈折率構造物を予め設計された形成領域を囲んで配設することを特徴とする。
【0010】
また、請求項2に記載の手段によれば、請求項1に記載の自己形成光導波路の製造方法において、終点領域が円状の領域であり、低屈折率構造物が円状の領域を上面とする円錐台の側面の内壁を形成することを特徴とする。
【0011】
また、請求項3に記載の手段によれば、請求項2に記載の自己形成光導波路の製造方法において、終点領域を半径aの円状とし、該半径aの円の中心から終点領域に垂直に距離bの位置からは少なくとも自己形成光導波路が直進するよう設計されているものとし、円錐台の高さをL、略一定径の硬化樹脂部の屈折率をn1、低屈折率構造部の屈折率をnmとしたときに、円錐台の側壁の傾斜角θmが次の式を充たすことを特徴とする。
【数6】
【0012】
また、請求項4に記載の手段によれば、請求項1に記載の自己形成光導波路の製造方法において、低屈折率構造物が、長軸を回転軸とした回転楕円体面の一部を形成し、終点領域が、回転楕円体の回転軸を長軸とする楕円断面の一方の焦点を含み、他の焦点が、その位置からは少なくとも自己形成光導波路が直進するよう設計されていることを特徴とする。
【0013】
また、請求項5に記載の手段によれば、請求項4に記載の自己形成光導波路の製造方法において、空間に座標軸を取り、終点領域が点(0,b/2,0)を中心とするy軸に垂直な半径aの円盤状とし、点(0,−b/2,0)の位置からは少なくとも自己形成光導波路が直進するよう設計されているものとし、略一定径の硬化樹脂部の屈折率をn1、低屈折率構造物の屈折率をnmとしたときに、前記回転楕円体面が、y軸を長軸とする次の楕円
【数7】
をy軸を回転軸として回転させたものであり、且つ低屈折率構造物の上記楕円上の点で次の式が成立することを特徴とする。
【数8】
【0014】
また、請求項6に記載の手段によれば、光硬化性樹脂中に微小径の光束を照射し硬化させることで屈折率の上昇した硬化樹脂部を連続形成する際、微小径の光束が硬化樹脂部に閉じ込められることにより光束の通過方向に略一定径とした硬化樹脂部を有する自己形成光導波路の製造方法において、該自己形成光導波路が、予め設計された終点領域に到達するよう、予め設計された形成領域から外れた場合に微小径の光束が反射により屈折するよう例えば金属膜などによる反射構造物を予め設計された形成領域を囲んで配設することを特徴とする。
【0015】
また、請求項7に記載の手段によれば、請求項6に記載の自己形成光導波路の製造方法において、終点領域が円状の領域であり、反射構造物が円状の領域を上面とする円錐台の側面の内壁を形成することを特徴とする。
【0016】
また、請求項8に記載の手段によれば、請求項7に記載の自己形成光導波路の製造方法において、終点領域aを半径aの円状とし、該半径aの円の中心から終点領域に垂直に距離bの位置からは少なくとも自己形成光導波路が直進するよう設計されているものとし、円錐台の高さをLとしたときに、円錐台の側壁の傾斜角θmが次の式を充たすことを特徴とする。
【数9】
【0017】
また、請求項9に記載の手段によれば、請求項6に記載の自己形成光導波路の製造方法において、反射構造物が、長軸を回転軸とした回転楕円体面の一部を形成し、終点領域が、回転楕円体の回転軸を長軸とする楕円断面の一方の焦点を含み、他の焦点が、その位置からは少なくとも自己形成光導波路が直進するよう設計されていることを特徴とする。
【0018】
また、請求項10に記載の手段によれば、請求項9に記載の自己形成光導波路の製造方法において、空間に座標軸を取り、終点領域が点(0,b/2,0)を中心とするy軸に垂直な半径aの円盤状とし、点(0,−b/2,0)の位置からは少なくとも前記自己形成光導波路が直進するよう設計されているものとし、前記回転楕円体面が、y軸を長軸とする次の楕円
【数10】
をy軸を回転軸として回転させたものであることを特徴とする。
【0019】
【作用及び発明の効果】
本発明者らの特開平2000−347043号公報記載の技術は、自己形成導波路が光の進行方向に沿って自動的に成長していくものである。このとき、光の進行方向が予め設計された終点領域に向かっていなくても、光の反射を利用してその進行方向を終点領域に向かうよう修正する構造物を、予め設計された自己形成導波路の形成領域を囲んで配設することで、進行方向を該終点領域に変更させることができる。このとき、構造物が光導波路の屈折率より低いか、又はいかなる角度からも反射するよう鏡面を形成すれば目的が達成される(請求項1、請求項6)。そのような構造物は、終点領域を上面とする円錐台状にすると容易である(請求項2、請求項7)。
【0020】
また、その位置からは少なくとも自己形成導波路が直進するよう設計された点、即ちその位置からは設計上、反射、収束又は分散することのない点と、終点領域の中心とを2焦点とする楕円を、長軸を軸として回転させた回転楕円体面を用いれば、前者の点(第1の焦点)から進む光は回転楕円体面で反射し後者の点(第2の焦点)に向かうので、理想的な構造物とすることができる(請求項4、請求項9)。
【0021】
以下、実施例の欄にて、請求項3、請求項5、請求項8及び請求項10の条件を有する構造体の作用効果を示す。
【0022】
【発明の実施の形態】
図1の(a)は本願を適用した光モジュールの構成を示す断面図である。尚、斜線を施していない部分も空隙ではない。Sで示した部分が本願発明に係る構造体であり、拡大図を図1の(b)に示す。屈折率nmの透明容器3に構造体Sを設け、ハーフミラー61、62、反射ミラー63を設けて特開平2000−347043号公報記載のように光ファイバ1から光照射で混合樹脂溶液から光伝送路211を形成し、分岐211a、211b、及び211cを形成する。この際、分岐211a、211b、及び211cが所望の光電変換素子5a、5b、5cに到達するよう、各々計3箇所に構造体Sを設けておく。
【0023】
図2の(a)のように、予め設計された方角(2本の点線の領域)からずれて光導波路WG(硬化樹脂部)が成長しても、図2の(b)のように、構造体部分で反射されれば、その後の光導波路WG(硬化樹脂部)が成長する方向は図2の(c)の通り、予め設計された方角側(2本の点線の領域)に修正されることとなる。構造体部分で反射されるためには、例えば金属膜を形成してミラーとする他、構造体の構成材料の屈折率nmを光導波路WGの屈折率n1より小さくし、且つ入射角度が全反射条件を充たすよう壁面の傾斜を構成すれば良い。
【0024】
〔第1の構造体例(請求項3)〕
構造体の構成材料の屈折率nmを光導波路WGの屈折率n1より小さくし、且つ入射角度が全反射条件を充たすよう壁面の傾斜を構成する場合として、終点領域が半径aの円状で、その中心O’から円に垂直に距離bの点Oから光が入射するよう設計されており、構造体が終点領域を上面とする円錐台の側面を壁面とする場合を考える(図3)。円錐台の高さをLm、設計された入射光方向と壁面の成す角をθmとする。
【0025】
今、円錐台底面の周上の点Pに、点Oから光が入射することを考える。OO’とOPとの成す角をθ1とすると、円錐台壁面とOPの成す角はθ1+θmである。点Pの線分OO’との距離を2通りに表してこれらを等しいとおくと、次のとおりである。
【数11】
【0026】
一方、OPを通る光が屈折率n1の光導波路を通った場合、屈折率nmの構造体の点Pで全反射するための条件は、次のとおりである。
【数12】
【0027】
これらから次の式が成立する。
【数13】
【0028】
これを解くと、次の不等式となる。
【数14】
【0029】
側壁の傾斜角θmは、次の式を充たすことで、全反射条件を充たす。
【数15】
【0030】
円錐台底面の周上の点P以外の円錐台側壁の点に点Oから入射した場合、その入射角が点Pにおける入射角より小さいことは明らかである。よって、上記数15が成立することで、円錐台側壁の任意の点において、全反射条件を満たす(請求項3)。
【0031】
図4に、数15の左辺(θmの最大値)を、屈折率比nm/n1とともにシミュレーションした図を示す。尚、a=0.15mm、Lm=1mm、b=4mmとした。このシミュレーションでは屈折率比nm/n1が0.96で、円錐台側壁の傾斜角は10度以下とする必要がある。また、図5に、a=0.15mm、b=4mmとし、屈折率比nm/n1を0.93、0.95、0.97と変化させて、Lmと数15の左辺(θmの最大値)との関係を示す。
【0032】
〔第2の構造体例(請求項8)〕
第1の構造体で、円錐台の側壁に金属で反射膜を形成した場合は、次のような条件を設けることができる。即ち、1回だけ反射することで半径aの終点領域に達するよう条件設定する。
【0033】
やはり図3において、点Oから入射した光が円錐台の底面の円周上の点Pに到達し、反射して終点領域の外周上の点Qに到達したとする。円錐台底面の周上の点P以外の円錐台側壁の点に点Oから入射した場合、反射角は小さくなるので、2度目の反射を起こすことなく終点領域内に到達することは容易に理解できる。
【0034】
このような条件を充たすためには、次の関係が成立すれば良い。
【数16】
【0035】
数11を用いてこれを展開すると、次のとおりとなる。
【数17】
【0036】
数17は1実解を有する。これが正ならば(3L>2bならば実解は負)、その解がθmの最大値である。実際θmの最大値は次のように求められるので、a=0.15mm、b=4mmとし、Lmと数17の解(θmの最大値)との関係を図6示す(請求項8)。
【数18】
【0037】
〔第3の構造体例(請求項10)〕
点O(光の発射点)と点O’(終点領域の中心)を焦点とする楕円を、長軸を中心として回転させた回転楕円体面を有する構造体で、壁面に金属膜を有するものは、点Oからの光を悉く点O’に向け反射する(図7参照)。2つの焦点点O(光の発射点)と点O’(終点領域の中心)を直交座標(0,−b/2,0)と(0,b/2,0)とし、点(a,b/2,0)を通る楕円(図7参照)は次の式で示される。
【数19】
【0038】
数19を充たす楕円をy軸で回転させた回転楕円面は、一方の焦点(0,−b/2,0)から回転楕円面に入射する光を反射して他方の焦点(0,b/2,0)(終点領域の中心)に導く(請求項10)。
【0039】
〔第4の構造体例(請求項5)〕
第3の構造体の回転楕円体面を有し、第1の構造体のように金属膜を有しない屈折率による全反射条件を求める。数19の楕円上の座標X(x,y,0)における接線の角度(x軸の正方向基準、反時計回り)は次のとおりである(図7参照)。
【数20】
【0040】
また、ベクトルOXのx軸の正方向と成す角度は次のとおりである。
【数21】
【0041】
これらから、接線とベクトルOXの成す角(反時計回り)が、スネルの法則を充たすようにするためには次のとおりである(請求項5)。
【数22】
【0042】
以上の実施例では、簡単のため一点からの光路を以て本願発明の構造体を説明したが、本願の自己形成光導波路は一定の径を有しているので、それに応じ、設計すれば良い。即ち、一定の領域からの光束に対し、終点領域に達するよう構造体を設計することは何ら困難なことではない。光の照射点Oは、光ファイバ先端面或いはミラーの設計点等、そこから自己形成光導波路が障害無しに光電変換素子等を配置した終点領域に達する着目点とすればよい。
【0043】
また、上記実施例では円錐台と回転楕円体面を以て本願実施例を説明したが、本願の構造体は任意の多面体状壁面又は任意の曲面から成る壁面にて構成できる。その際、図7からも明らかなように、終点領域から着目点に向かって構造体が広がるのみでなく、狭まる部分を有する曲面また多面体面でも良く、場合によっては全体又は一部が逆円錐台形状でも本願発明を実施できる。また、反射回数は1回に限られず、複数回でも良い。
【図面の簡単な説明】
【図1】(a)は、本願を適用した光伝送路の構造を示す断面図、(b)は構造体Sの拡大図。
【図2】本願を適用した自己形成光導波路の成長の様子を示す段階図。
【図3】円錐台の側面を壁面とする第1又は第2構造体の設計図。
【図4】第1の構造体例におけるシミュレーションのグラフ図。
【図5】第1の構造体例における別のシミュレーションのグラフ図。
【図6】第2の構造体例におけるシミュレーションのグラフ図。
【図7】回転楕円体面を壁面とする第3又は第4構造体の設計図。
【図8】従来の特開平2000−347043記載の光伝送路の製造方法を示す工程図。
【図9】従来の自己形成導波路が軸ずれを起こした様子を示す断面図。
【符号の説明】
1 光ファイバ
211 光導波路
211a〜c 光導波路の分岐
23 光導波路より屈折率の低いクラッド部分
3 透明容器
5a〜c 光電変換素子
61、62 ハーフミラー
63 反射ミラー
WG 自己形成光導波路
a 円状の終点領域の半径
b 着目点から終点領域中心までの距離
S 構造体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a self-formed optical waveguide applicable to an inexpensive and low-loss optical interconnection, an optical demultiplexer or a multiplexer in optical communication.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in optical fiber communication, an optical interconnection technology that performs hybrid integration using an optical waveguide device to efficiently couple an optical fiber and a photoelectric conversion element (semiconductor laser, light emitting diode, photodiode, avalanche photodiode) has been developed. Attention has been paid. For example, there is a hybrid waveguide module described in JP-A-2000-275457. This is a method in which a member provided with an optical waveguide circuit for optically coupling an optical fiber and a photoelectric conversion element, a plurality of photoelectric conversion elements, and an optical fiber are hybridly integrated on a base with high precision. .
[0003]
On the other hand, the present inventors have developed a self-formed optical waveguide described in Japanese Patent Application Laid-Open No. 2000-347043. By irradiating the photocurable resin with a light beam having a small diameter, a cured resin portion having a high refractive index is sequentially formed and can be used as it is as an optical waveguide.
[0004]
FIG. 8 schematically shows a method of manufacturing the optical waveguide described in the above publication. An
[0005]
The refractive index of the cured
[0006]
[Problems to be solved by the invention]
However, in the hybrid waveguide module described in Japanese Patent Application Laid-Open No. 2000-275457, alignment in sub-micron units is required, the degree of freedom of axis alignment is high, and the difficulty is extremely high. In particular, when the number of components is large, if the shapes of the components are fixed in advance, the misalignment is added up. In addition, if there is a component having a shape error, the entire module is affected and the yield is reduced. In addition, the alignment must be performed for each module one by one, and the assembly cost is very large.
[0007]
Further, in the device described in Japanese Patent Application Laid-Open No. 2000-347043 by the present inventors, although the optical waveguide is self-formed, the precision of the disposed optical component determines the position of the self-formed optical waveguide, and If the precision of the provided optical component is low, the optical waveguide is not formed at a desired position, and for example, the optical waveguide may not reach the arranged photoelectric conversion element. That is, as shown in FIG. 9A, when the tip of the
[0008]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to manufacture a self-formed optical waveguide, and to obtain a desired end point region even when the direction in which the optical waveguide is formed is deviated from a desired direction. Is to form an optical waveguide.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, according to the means of
[0010]
According to a second aspect of the present invention, in the method of manufacturing a self-formed optical waveguide according to the first aspect, the end point region is a circular region, and the low refractive index structure is formed on the circular region on the upper surface. The inner wall of the side surface of the truncated cone is formed.
[0011]
According to a third aspect of the present invention, in the method of manufacturing a self-formed optical waveguide according to the second aspect, the end point region is formed in a circular shape having a radius a, and the center of the circle having the radius a is perpendicular to the end point region. It is assumed that at least the self-formed optical waveguide is designed to travel straight from the position of the distance b, the height of the truncated cone is L, the refractive index of the cured resin portion having a substantially constant diameter is n 1 , the low refractive index structure portion the refractive index of when the n m, the inclination angle theta m frustoconical side walls, characterized in that satisfy the following equation.
(Equation 6)
[0012]
According to a fourth aspect of the present invention, in the method for manufacturing a self-formed optical waveguide according to the first aspect, the low refractive index structure forms a part of a spheroidal surface having a major axis as a rotation axis. Then, the end point region includes one focal point of the elliptical cross section whose major axis is the rotation axis of the spheroid, and the other focal point is designed so that at least the self-formed optical waveguide goes straight from that position. Features.
[0013]
According to a fifth aspect of the present invention, in the method of manufacturing a self-formed optical waveguide according to the fourth aspect, a coordinate axis is set in a space, and the end point region is centered on the point (0, b / 2, 0). And is designed so that at least the self-formed optical waveguide goes straight from the position of the point (0, -b / 2, 0), and is a cured resin having a substantially constant diameter. Assuming that the refractive index of the portion is n 1 and the refractive index of the low refractive index structure is nm , the spheroidal surface has the following ellipse with the y axis as the major axis.
Is rotated about the y axis as a rotation axis, and the following equation is satisfied at the point on the ellipse of the low refractive index structure.
(Equation 8)
[0014]
According to the means of claim 6, when the cured resin portion having the increased refractive index is continuously formed by irradiating the photocurable resin with the light beam having a small diameter and curing the light beam, the light beam having the small diameter is cured. In a method for manufacturing a self-formed optical waveguide having a cured resin portion having a substantially constant diameter in a light beam passing direction by being confined in a resin portion, the self-formed optical waveguide is preliminarily arriving at an end point region designed in advance. A reflective structure such as a metal film is provided so as to surround a previously designed formation region so that a light beam having a small diameter is refracted by reflection when deviating from the designed formation region.
[0015]
According to a seventh aspect of the present invention, in the method for manufacturing a self-formed optical waveguide according to the sixth aspect, the end point region is a circular region, and the reflective structure has a circular region as an upper surface. It is characterized in that an inner wall on the side surface of the truncated cone is formed.
[0016]
According to the means described in claim 8, in the method of manufacturing a self-formed optical waveguide according to claim 7, the end point region a is formed into a circle having a radius a, and the end point region is shifted from the center of the circle having the radius a to the end point region. At least from the position of the distance b, it is assumed that the self-formed optical waveguide is designed to go straight. When the height of the truncated cone is L, the inclination angle θ m of the side wall of the truncated cone is expressed by the following equation. It is characterized by being satisfied.
(Equation 9)
[0017]
According to a ninth aspect of the present invention, in the method of manufacturing a self-formed optical waveguide according to the sixth aspect, the reflecting structure forms a part of a spheroidal surface having a major axis as a rotation axis, The end point region includes one focal point of the elliptical cross section having the major axis as the rotation axis of the spheroid, and the other focal point is designed so that at least the self-formed optical waveguide goes straight from that position. I do.
[0018]
According to a tenth aspect of the present invention, in the method for manufacturing a self-formed optical waveguide according to the ninth aspect, a coordinate axis is set in the space, and the end point region is centered on the point (0, b / 2, 0). It is assumed that at least the self-formed optical waveguide is designed to go straight from the position of the point (0, -b / 2, 0), and the spheroidal surface is , The next ellipse with the y axis as the major axis
Are rotated around the y axis as a rotation axis.
[0019]
[Action and effect of the invention]
The technique described in Japanese Patent Application Laid-Open No. 2000-347043 of the present inventors is such that a self-formed waveguide grows automatically along the traveling direction of light. At this time, even if the traveling direction of the light is not toward the pre-designed end point region, a structure that corrects the traveling direction using the reflection of light so as to be directed to the end point region can be used as a pre-designed self-forming guide. By arranging it around the formation area of the wave path, the traveling direction can be changed to the end point area. At this time, the object is achieved by forming a mirror surface such that the structure is lower than the refractive index of the optical waveguide or reflects the light from any angle (claims 1 and 6). Such a structure can be easily formed in a truncated cone shape with the end point region as the upper surface (claims 2 and 7).
[0020]
Also, at least a point designed so that the self-formed waveguide goes straight from that position, that is, a point that does not reflect, converge or disperse from the position, and a center of the end point region are set as two focal points. If a spheroid obtained by rotating the ellipse about the major axis is used, light traveling from the former point (first focus) is reflected by the spheroid and travels to the latter point (second focus). An ideal structure can be obtained (
[0021]
The effects of the structures having the conditions of
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A is a cross-sectional view illustrating a configuration of an optical module to which the present invention is applied. In addition, the part without hatching is not a void. The portion indicated by S is the structure according to the present invention, and an enlarged view is shown in FIG. The structure S is provided in the
[0023]
Even if the optical waveguide WG (cured resin portion) grows as shown in FIG. 2A from a direction designed in advance (the area indicated by the two dotted lines), as shown in FIG. If the light is reflected by the structure portion, the direction in which the optical waveguide WG (cured resin portion) grows is corrected to a previously designed direction side (a region indicated by two dotted lines) as shown in FIG. The Rukoto. To be reflected in the structure portion, for example, addition to the mirror by forming a metal film, the refractive index n m of the material of the structure is smaller than the refractive index n 1 of the optical waveguide WG, is and incident angle What is necessary is just to configure the inclination of the wall surface so as to satisfy the condition of total reflection.
[0024]
[Example of First Structure (Claim 3)]
The refractive index n m of the material of the structure is smaller than the refractive index n 1 of the optical waveguide WG, and as if the incident angle constitutes a tilt of the wall surface so as to satisfy the total reflection condition, the end point area like a circle of radius a Then, a case is considered in which light is designed to be incident from a point O at a distance b perpendicular to the circle from the center O ′ and the side surface of the truncated cone having the end point region as an upper surface is a wall surface (FIG. 3). ). Of the truncated cone height L m, the angle formed by the designed incident light direction and the wall surface and theta m.
[0025]
Now, consider that light is incident from a point O to a point P on the circumference of the bottom surface of the truncated cone. OO 'and the the angle between OP and theta 1, the angle formed by the frustoconical wall and the OP is θ 1 + θ m. If the distance between the point P and the line segment OO ′ is expressed in two ways and they are equal, the following is obtained.
(Equation 11)
[0026]
On the other hand, when the light passing through the OP has passed through the optical waveguide refractive index n 1, the conditions for total reflection at the point P of the structure of the refractive index n m are as follows.
(Equation 12)
[0027]
From these, the following equation holds.
(Equation 13)
[0028]
Solving this gives the following inequality:
[Equation 14]
[0029]
The inclination angle θ m of the side wall satisfies the condition of total reflection by satisfying the following expression.
(Equation 15)
[0030]
Obviously, when the light enters from the point O to a point on the side of the truncated cone other than the point P on the circumference of the bottom of the truncated cone, the incident angle is smaller than the incident angle at the point P. Therefore, when the
[0031]
4, the
[0032]
[Example of second structure (Claim 8)]
In the first structure, when the reflection film is formed of metal on the side wall of the truncated cone, the following conditions can be provided. That is, the condition is set so that the light is reflected only once to reach the end point area of the radius a.
[0033]
3, it is assumed that the light incident from the point O reaches the point P on the circumference of the bottom surface of the truncated cone, is reflected, and reaches the point Q on the outer circumference of the end point region. It is easy to understand that when a point O is incident on a point on the frustoconical side wall other than the point P on the circumference of the frustum of the truncated cone from the point O, the reflection angle becomes small, and the light reaches the end point region without causing the second reflection. it can.
[0034]
In order to satisfy such a condition, the following relationship may be satisfied.
(Equation 16)
[0035]
When this is expanded using Equation 11, the following is obtained.
[Equation 17]
[0036]
Equation 17 has one real solution. If this is positive (3L> 2b if real solutions are negative), the maximum value of the solution is theta m. Actually, since the maximum value of θ m is obtained as follows, a = 0.15 mm and b = 4 mm, and the relationship between L m and the solution of Equation 17 (the maximum value of θ m ) is shown in FIG. 8).
(Equation 18)
[0037]
[Example of Third Structure (Claim 10)]
A structure having a spheroidal surface obtained by rotating an ellipse having a focus on a point O (a light emitting point) and a point O ′ (the center of an end point region) about a long axis, and having a metal film on a wall surface is , And all the light from point O is reflected toward point O ′ (see FIG. 7). The two focal points O (light emission points) and O ′ (center of the end point area) are defined as rectangular coordinates (0, −b / 2, 0) and (0, b / 2, 0), and the points (a, The ellipse passing through (b / 2,0) (see FIG. 7) is represented by the following equation.
[Equation 19]
[0038]
The spheroid obtained by rotating the ellipse satisfying Expression 19 on the y-axis reflects light incident on the spheroid from one focal point (0, -b / 2, 0) and reflects the light incident on the other focal point (0, b / 2,0) (the center of the end point area) (claim 10).
[0039]
[Example of fourth structure (Claim 5)]
The total reflection condition based on the refractive index having the spheroidal surface of the third structure and not having the metal film as in the first structure is obtained. The angles of the tangents at the coordinates X (x, y, 0) on the ellipse of Expression 19 (positive reference of the x-axis, counterclockwise) are as follows (see FIG. 7).
(Equation 20)
[0040]
The angle formed by the vector OX and the positive direction of the x-axis is as follows.
(Equation 21)
[0041]
From these, the angle (counterclockwise) formed by the tangent and the vector OX is as follows in order to satisfy Snell's law (claim 5).
(Equation 22)
[0042]
In the above embodiments, the structure of the present invention has been described by using an optical path from one point for simplicity. However, the self-formed optical waveguide of the present invention has a constant diameter, so that it may be designed accordingly. That is, it is not difficult at all to design the structure to reach the end point region for the light beam from a certain region. The light irradiation point O may be a point of interest such as a design point of an optical fiber tip surface or a mirror, from which the self-formed optical waveguide reaches an end point region where the photoelectric conversion element and the like are arranged without obstacles.
[0043]
Further, in the above embodiment, the embodiment of the present application has been described using the truncated cone and the spheroidal surface. However, the structure of the present invention can be constituted by an arbitrary polyhedral wall surface or an arbitrary curved wall surface. At this time, as is clear from FIG. 7, the structure may not only expand from the end point region to the point of interest, but may be a curved surface or a polyhedral surface having a narrowing portion. The present invention can be practiced with a shape. Further, the number of reflections is not limited to one, and may be plural.
[Brief description of the drawings]
1A is a cross-sectional view showing a structure of an optical transmission line to which the present invention is applied, and FIG. 1B is an enlarged view of a structure S.
FIG. 2 is a stage diagram showing a state of growth of a self-formed optical waveguide to which the present invention is applied.
FIG. 3 is a design diagram of a first or second structure having a side surface of a truncated cone as a wall surface.
FIG. 4 is a graph of a simulation in the first structural example.
FIG. 5 is a graph of another simulation in the first structure example.
FIG. 6 is a graph of a simulation in the second structural example.
FIG. 7 is a design diagram of a third or fourth structure having a spheroidal surface as a wall surface.
FIG. 8 is a process chart showing a conventional method for manufacturing an optical transmission line described in JP-A-2000-347043.
FIG. 9 is a cross-sectional view showing a state in which a conventional self-formed waveguide has undergone axial misalignment.
[Explanation of symbols]
DESCRIPTION OF
Claims (10)
該自己形成光導波路が、予め設計された終点領域に到達するよう、予め設計された形成領域から外れた場合に前記微小径の光束が全反射により屈折するよう低屈折率構造物を前記予め設計された形成領域を囲んで配設することを特徴とする自己形成光導波路の製造方法。When a cured resin portion having an increased refractive index is continuously formed by irradiating a light beam having a small diameter into the photocurable resin and curing the light beam, the light beam having the small diameter is confined in the cured resin portion so that the light beam passes therethrough. In the method for producing a self-formed optical waveguide having the cured resin portion having a substantially constant diameter in the direction,
The low-refractive-index structure is designed such that the light beam having a small diameter is refracted by total reflection when the self-formed optical waveguide reaches a predesigned end region and deviates from the predesigned formation region. A method for manufacturing a self-formed optical waveguide, wherein the method is provided so as to surround a formed formation region.
該自己形成光導波路が、予め設計された終点領域に到達するよう、予め設計された形成領域から外れた場合に前記微小径の光束が屈折するよう反射構造物を前記予め設計された形成領域を囲んで配設することを特徴とする自己形成光導波路の製造方法。When a cured resin portion having an increased refractive index is continuously formed by irradiating a light beam having a small diameter into the photocurable resin and curing the light beam, the light beam having the small diameter is confined in the cured resin portion so that the light beam passes therethrough. In the method for producing a self-formed optical waveguide having the cured resin portion having a substantially constant diameter in the direction,
The self-forming optical waveguide reaches the pre-designed end point region, and the reflecting structure is formed by changing the pre-designed forming region so that the light beam of the small diameter is refracted when the light beam deviates from the pre-designed forming region. A method for manufacturing a self-formed optical waveguide, wherein the method is to surround and arrange.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000402883A JP3560152B2 (en) | 2000-12-28 | 2000-12-28 | Manufacturing method of self-formed optical waveguide |
DE60130531T DE60130531T2 (en) | 2000-11-30 | 2001-11-27 | Method for producing an optical waveguide |
EP05004123A EP1533635B1 (en) | 2000-11-30 | 2001-11-27 | Optical transmission and reception module |
DE60138576T DE60138576D1 (en) | 2000-11-30 | 2001-11-27 | Optical transmitting and receiving module |
EP01128140A EP1211529B1 (en) | 2000-11-30 | 2001-11-27 | Method for manufacturing optical waveguide |
US09/994,659 US20020114601A1 (en) | 2000-11-30 | 2001-11-28 | Method for manufacturing optical transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000402883A JP3560152B2 (en) | 2000-12-28 | 2000-12-28 | Manufacturing method of self-formed optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002202427A JP2002202427A (en) | 2002-07-19 |
JP3560152B2 true JP3560152B2 (en) | 2004-09-02 |
Family
ID=18867098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000402883A Expired - Fee Related JP3560152B2 (en) | 2000-11-30 | 2000-12-28 | Manufacturing method of self-formed optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3560152B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3938684B2 (en) | 2001-12-11 | 2007-06-27 | 株式会社豊田中央研究所 | Self-forming optical waveguide material composition |
DE102009008358A1 (en) | 2008-02-19 | 2009-09-17 | Toyoda Gosei Co., Ltd., Nishikasugai | Light coupler and manufacturing method for this |
JP5315715B2 (en) * | 2008-02-19 | 2013-10-16 | 豊田合成株式会社 | Optical coupler |
JP2009198608A (en) * | 2008-02-19 | 2009-09-03 | Toyoda Gosei Co Ltd | Light coupler, component parts thereof and manufacturing method thereof |
-
2000
- 2000-12-28 JP JP2000402883A patent/JP3560152B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002202427A (en) | 2002-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7324723B2 (en) | Optical waveguide having specular surface formed by laser beam machining | |
US7218809B2 (en) | Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide | |
US7643719B1 (en) | Superlens and a method for making the same | |
US10830951B2 (en) | Optical circuit and optical device | |
CN1650207A (en) | Beam bending apparatus and method of manufacture | |
CN114424100A (en) | Micro-optical interconnect component and method of making the same | |
CN1246717C (en) | Optical coupling device and its manufacturing method and component part and lens oplical fibre using same | |
Mangal et al. | Monolithic integration of microlenses on the backside of a silicon photonics chip for expanded beam coupling | |
CN114127600B (en) | Periscope optical assembly | |
JP2001305366A (en) | Optical transmission module and optical communication system using the same | |
JP3560152B2 (en) | Manufacturing method of self-formed optical waveguide | |
JP2006330697A5 (en) | ||
CN112162368B (en) | A free-form surface reflective coupling lens | |
US7164824B2 (en) | Waveguide turn for a waveguide circuit | |
JP2896947B2 (en) | Optical fiber end structure and method of manufacturing the same | |
JP2016014842A (en) | Optical waveguide component and manufacturing method thereof | |
CN108333681B (en) | On-chip integrated partial reflector based on partial transmission type angular reflector group | |
JP4095358B2 (en) | Holy waveguide type optical circuit and manufacturing method thereof | |
CN116841133A (en) | Preparation method of photonic lead | |
JP2005134488A (en) | Optic/electric mixed mounting substrate | |
JP4158307B2 (en) | Optical transmission module | |
CN100367056C (en) | Optical sub-module structure with function of inhibiting back reflection stray light | |
JP2005164801A (en) | Optical waveguide film and its manufacturing method | |
CN110320599A (en) | A kind of space optical waveguide preparation method | |
TWI813409B (en) | Photonic integrated circuit structure and method for manufacturing a spot size converter thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040519 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080604 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090604 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090604 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100604 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110604 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110604 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140604 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |