[go: up one dir, main page]

JP3557858B2 - Method for producing aqueous polyurethane resin dispersion - Google Patents

Method for producing aqueous polyurethane resin dispersion Download PDF

Info

Publication number
JP3557858B2
JP3557858B2 JP18080297A JP18080297A JP3557858B2 JP 3557858 B2 JP3557858 B2 JP 3557858B2 JP 18080297 A JP18080297 A JP 18080297A JP 18080297 A JP18080297 A JP 18080297A JP 3557858 B2 JP3557858 B2 JP 3557858B2
Authority
JP
Japan
Prior art keywords
polyurethane resin
urethane prepolymer
dispersion
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18080297A
Other languages
Japanese (ja)
Other versions
JPH1112339A (en
Inventor
信之 高木
正也 稲波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP18080297A priority Critical patent/JP3557858B2/en
Publication of JPH1112339A publication Critical patent/JPH1112339A/en
Application granted granted Critical
Publication of JP3557858B2 publication Critical patent/JP3557858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリウレタン樹脂水分散液の製造方法に関する。本発明で得られる水水分散性ポリウレタン樹脂は、塗料、磁性塗料、印刷インキなどの各種バインダ−、人工皮革、プラスチック、ガラス、金属、木、紙、床、コンクリ−ト、ゴム、織物、不織布等の各種基材のコーティング剤、または人工皮革、プラスチック、ガラス、金属、木、紙、床、コンクリ−ト、ゴム、織物、不織布等の各種材料の接着剤等として利用できる。
【0002】
【従来の技術】
ポリウレタン樹脂は柔軟性に優れ、各種基材への接着性の幅が広いという特徴を有しており各種バインダ−、各種コーティング剤または各種接着剤として多く使われている。従来より、かかるポリウレタン樹脂は、有機溶剤に溶解した溶剤型のものが主流であったが、近年、省資源、環境保護、有機溶剤規制強化といった社会の流れに対応すべく、ポリウレタン樹脂の水性化への動きが活発となり、一部ではポリウレタン樹脂水分散液が実用化されている。
【0003】
現在実用化されているポリウレタン樹脂水分散液は、たとえば、ウレタンプレポリマーをアセトンやメチルエチルケトン等のイソシアネート基に対して不活性な有機溶剤に溶解したものを水に分散させるとともに、鎖伸長させることにより製造されている。しかしながら、アセトンやメチルエチルケトン等の有機溶剤は最終製品中への残留が好ましくないため、製造の最終段階で減圧等により除去されている。そのため、かかる製造方法は溶剤型のポリウレタン樹脂の製造方法に比べて、製造工程の長時間化、低収率、高コストといった問題点を有する。
【0004】
また、有機溶剤を全く使用しないポリウレタン樹脂水分散液の製造方法(特開平4−31439号公報)も提案されている。しかし、かかる製造方法は、従来の反応装置とは全く異なった特殊な反応装置を必要とする上に、安定にポリウレタン樹脂水分散液を得るための条件がかなり制約されるなど、実用上は製造の困難を伴う。
【0005】
【発明が解決しようとする課題】
本発明は、アセトンやメチルエチルケトン等の有機溶剤を使用することなく、しかも容易にポリウレタン樹脂水分散液を製造する方法を提供することを目的とした。
【0006】
【課題を解決するための手段】
本発明者は前記課題を解決すべく鋭意検討を重ねた結果、特定のウレタンプレポリマーに、中和工程、水分散工程および鎖伸長工程を施すにあたり、当該ウレタンプレポリマーを一旦モノアルコール系溶剤により希釈してから水分散工程を行なうことにより前記課題を解決し得ること、さらには特定の反応条件下においては水分散性ポリウレタン樹脂の高分子量化等の任意な分子設計が可能であることを見出し、本発明を完成するに至った。
【0007】
すなわち本発明は、高分子ポリオールを含むジオール化合物およびジイソシアネート化合物からなり、かつカルボキシル基を含有するイソシアネート基末端ウレタンプレポリマーを製造した後、当該ウレタンプレポリマーに、塩基性化合物によるカルボキシル基の中和工程(1)と、順次または同時に行なう水分散工程(2)および鎖伸長工程(3)を、それぞれ施すことによりポリウレタン樹脂水分散液を製造する方法において、前記水分散工程(4)を施す前前記ウレタンプレポリマーを2級または3級のモノアルコール系溶剤により希釈する工程(4)を設け、かつ該希釈工程 (4) の前に更に前記中和工程 (1) を設けることを特徴とするポリウレタン樹脂水分散液の製造方法に関わる。
【0008】
【発明の実施の形態】
本発明においては、まず、高分子ポリオールを含むジオール化合物およびジイソシアネート化合物からなり、かつカルボキシル基を含有するイソシアネート基末端ウレタンプレポリマーを製造をする。
【0009】
高分子ポリオール成分としては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等を開環重合したポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレンエーテルグリコール等のポリエーテルポリオール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、オクタンジオール、1,4−ブチンジオール、ジプロピレングリコール、ビスフェノールA、水添ビスフェノールA等の飽和または不飽和の各種公知の低分子グリコール類とアジピン酸、マレイン酸、フマル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、しゅう酸、マロン酸、グルタル酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸等の二塩基酸またはこれらに対応する酸無水物等を脱水縮合して得られるポリエステルポリオール類;ε−カプロラクトン、β−メチル−δ−バレロラクトン等のラクトン類を開環重合して得られるポリエステルポリオール類;その他ポリカーボネートポリオール類、ポリブタジエングリコール類、等の一般にポリウレタンの製造に用いられる各種公知の高分子ポリオールが例示される。これら高分子ポリオールの中でも、ウレタンプレポリマーの粘度を低くし、水分散工程(2)において分散媒である水に対して速やかに分散させ得るポリエーテルポリオール類が適している。尚、上記低分子グリコール成分の5モル%まではグリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6−ヘキサントリオール、1,2,4−ブタントリオール、ペンタエリスリトール、ソルビトール等の各種ポリオールに置換しうる。
【0010】
前記高分子ポリオールの数平均分子量は、特に制限はされないが、得られるポリウレタン樹脂の皮膜の柔軟性の点からは、通常500程度以上、好ましくは700以上であり、またウレタンプレポリマーの水分散性、得られるポリウレタン樹脂の乾燥性等の点からは、10000程度以下、好ましくは5000以下である。
【0011】
また本発明では、ウレタンプレポリマー中にカルボキシル基を導入するため、通常、ジオール化合物としてカルボキシル基含有ジオールを使用する。カルボキシル基含有ジオールとしては、α,α´−ジメチロールアルカン酸(グリセリン酸、ジメチロールプロピオン酸、ジメチロールブタン酸、2,2−ジメチロールペンタン酸等)、ジオキシマレイン酸、ジオキシフマル酸、酒石酸、2,6−ジオキシ安息香酸、4,4−ビス(ヒドロキシフェニル)吉草酸、4,4−ビス(ヒドロキシフェニル)酪酸等や、これらカルボキシル基含有ジオールを開始剤としてε−カプロラクトン、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類を開環重合して得られるもの等があげられる。かかるカルボキシル基含有ジオールは、通常、前記高分子ポリオールとともに、ウレタンプレポリマーを製造するためのジオール成分として使用されるが、ラクトン類を開環重合して得られるもののように、カルボキシル基含有ジオールそれ自体が高分子ポリオールとして使用できる場合には、当該カルボキシル基含有ジオールのみをジオール化合物として使用することもできる。
【0012】
また、ジイソシアネート化合物としては、芳香族、脂肪族または脂環族の各種公知のジイソシアネート類を使用することができる。たとえば、1,5−ナフチレンジイソシアネート、4,4´−ジフェニルメタンジイソシアネート、4,4´−ジフェニルジメチルメタンジイソシアネート、4,4´−ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレンジイソシアネート、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン−4,4´−ジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m−テトラメチルキシリレンジイソシアネートやダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等がその代表例としてあげられる。
【0013】
カルボキシル基を含有するイソシアネート基末端ウレタンプレポリマーの製造は、前記ジオール化合物とジイソシアネート化合物を、ジオール化合物の水酸基当量よりジイソシアネート化合物のイソシアネート基当量が過剰になるように反応させる。反応は、通常、無溶剤下で行い、反応温度、反応時間、ウレタン化触媒の有無は、反応性に応じて適宜決定すればよい。なお、ジオール化合物中のカルボキシル基含有ジオールの使用量は、特に制限されないが、分散安定性良好なポリウレタン樹脂水分散液を得るにはポリウレタン樹脂の樹脂固形分1g中の酸価が5以上になるように用いるのが好ましく、また得られるポリウレタン樹脂の耐水性の点からは、酸価が100以下となるようにするのが好ましい。
【0014】
次いで、得られたウレタンプレポリマーに、塩基性化合物によるカルボキシル基の中和工程(1)と、順次または同時に行なう水分散工程(2)および鎖伸長工程(3)を、それぞれ施してポリウレタン樹脂水分散液を製造するが、本発明では前記水分散工程(2)を施す前前記ウレタンプレポリマーを2級または3級のモノアルコール系溶剤により希釈する工程(4)を設け、且つ、該希釈工程 (4) の前に更に前記中和工程 (1) を設ける
【0015】
ウレタンプレポリマーに水分散工程(2)を施す前に、希釈工程(4)を設けたのは、無溶剤の状態で著しく高粘度なウレタンプレポリマーを低粘度化させるとともに、モノアルコール系溶剤の親水性を利用して水分散工程(2)における分散媒である水への分散を速やかに行なうためである。また、モノアルコール系溶剤は、アセトンやメチルエチルケトン等の有機溶剤のように得られるポリウレタン樹脂を用いた最終製品から除去する必要がないためである。なお、水分散工程(2)の前に希釈工程(4)を設けなかったり、水分散工程(2)において分散媒として水とモノアルコール系溶剤の混合物を使用したとても、高粘度のウレタンプレポリマーと水とが速やかに均一混合せず、部分的に水とイソシアネート基の反応による高分子量化が起こり、安定なポリウレタン樹脂水分散液を得ることができない。
【0016】
前記希釈工程(4)で使用するモノアルコール系溶剤としては各種のものを使用できるが、水への分散を速やかに行なうには25℃における水に対する溶解度が5重量%以上のものが好ましい。
【0017】
また、2級または3級のモノアルコール系溶剤、ウレタンプレポリマー中の末端イソシアネート基との反応速度が遅いため好ましい。また、2級または3級のモノアルコール系溶剤としては、アルコール性水酸基の他にイソシアネート基に対して反応性を示す活性水素を有しないものが好ましい。このような2級または3級のモノアルコール系溶剤によれば、希釈工程(4)においてウレタンプレポリマー中の末端イソシアネート基の消費が少なく、またプレポリマー同士を連結して高分子量化させることがないので、鎖伸長工程(3)においてポリウレタン樹脂の高分子量化等の任意の分子設計が可能であり、また水分散工程(2)における水への分散を速やかに行なうことができ、安定なポリウレタン樹脂水分散液を得ることができる。
【0018】
以上の条件を満たす2級または3級のモノアルコール系溶剤としては、イソプロピルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、sec−アミルアルコール、ジアセトンアルコール等があげられる。
【0019】
希釈工程(4)で用いるモノアルコール系溶剤は単独または2種類以上を組み合わせて用いることができ、その使用量は特に制限されないが、ウレタンプレポリマーに対して、通常、3重量%程度以上、好ましくは10重量%以上を使用する。また、ウレタンプレポリマーの末端イソシアネート基とアルコール系溶剤の水酸基との反応を抑えるには、ウレタンプレポリマーに対して、30重量%程度以下、好ましくは25重量%程度以下を使用する。また、希釈工程(4)の温度は、特に制限されないが、ウレタンプレポリマー中のイソシアネート基と、アルコール系溶剤のアルコール性水酸基との反応速度を遅くするため50℃以下とするのが好ましい。なお、希釈工程(4)の温度は、通常、常温以上である。
【0020】
このように本発明では、希釈工程(4)を水分散工程(2)を施す前に行うがウレタンプレポリマーを水分散工程(2)で速やかに分散させ、安定なポリウレタン水分散液を得るには、水分散工程(2)を施す前に中和工程(1)を行うのが好ましい。また、中和工程(1)を施した後に希釈工程(4)を施す場合には、ウレタンプレポリマー中のイソシアネート基とアルコール系溶剤のアルコール性水酸基との反応性が遅くなる傾向があり好ましい。
【0021】
中和工程(1)において、ウレタンプレポリマー中のカルボキシル基の中和に用いられる塩基性化合物としては、水酸化カリウム、水酸化ナトリウム等のアルカリ金属類、アンモニアまたははトリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N−アルキルジエタノールアミン、N,N’−ジアルキルモノエタノールアミン等の3級アミン等があげられる。これら塩基性化合物は単独または2種類以上を組み合わせて用いることができる。カルボキシル基の中和には、通常、プレポリマー中に含有するカルボキシル基1当量に対して、0.5〜1.5当量程度の塩基性化合物を用いる(以下、中和率50〜150%と表現する)のが好ましい。中和率が50%より低い場合は得られるポリウレタン樹脂水分散液の分散安定性が十分でなく、150%より高い場合は、水分散時の系の粘度が上昇する傾向がある。なお、中和を行う際の温度は、特に限定されないが、通常は20〜70℃程度である。
【0022】
水分散工程(2)は、特に限定はなく、たとえば、アルコール系溶剤で希釈されたウレタンプレポリマーに水を加えて分散する方法、逆に水中に希釈されたウレタンプレポリマーを加えて分散する方法等を採用できる。
【0023】
また、鎖伸長工程(3)は、鎖伸長剤および必要に応じて用いる鎖長停止剤により行なう。鎖伸長剤としては、例えば、前記ポリエステルジオールの説明の項で列挙した各種公知の低分子グリコール類;エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジシクロヘキシルメタン−4,4´−ジアミンなどのアミン類および水等が挙げられる。その他、2−ヒドロキシエチルエチレンジアミン、2−ヒドロキシエチルプロピレンジアミン、ジ−2−ヒドロキシエチルエチレンジアミン、ジ−2−ヒドロキシエチルプロピレンジアミン、2−ヒドロキシプロピルエチレンジアミン、ジ−2−ヒドロキシプロピルエチレンジアミンなどの分子内に水酸基を有するジアミン類;ダイマー酸のカルボキシル基をアミノ基に転化したダイマージアミン等もその代表例としてあげられる。また、鎖長停止剤としては、例えば、モノブチルアミン、ジブチルアミン等のモノアミン類;モノエタノ−ルアミン、ジエタノールアミン等の水酸基を有するモノアミン類;エタノール、n−ブタノール等の1級のアルコール性水酸基を有するモノアルコ−ル類等があげられる。
【0024】
水分散工程(2)および鎖伸長工程(3)は順次または同時に行なうため、鎖伸長剤および必要に応じて用いる鎖長停止剤は、ウレタンプレポリマーを水分散させる際に用いる水中に予め添加していてもよいし、ウレタンプレポリマーを水分散させた後に添加してもよい。なお、鎖長停止剤については、ウレタンプレポリマーの水分散時や水分散後に添加できる他、中和工程(1)や希釈工程(4)の前後に加えてもよい。
【0025】
かくして得られる水分散性ポリウレタン樹脂の平均分子量は、これを使用する用途により適宜に決定できるが、樹脂の皮膜強度が要求される分野に使用する場合には重量平均分子量を5000以上とするのが好ましい。
【0026】
本発明のポリウレタン樹脂水分散液の固形分濃度および粘度は特には限定されず、使用時の作業性等を考慮して適宜決定されればよい。通常は固形分濃度は15〜60重量%、粘度は10〜100000cps/25℃の範囲に調整するのが実用上好適である。
【0027】
なお、本発明のポリウレタン樹脂水分散液を各種用途に供する際には、公知の方法に従い、例えば、本発明のポリウレタン樹脂水分散液に水、必要に応じて各種顔料等を加えて混合または分散し、さらに必要に応じてブロッキング防止剤、可塑剤などの添加剤を適宜配合することにより上記バインダ−、コーティング剤、接着剤組成物を調製する。
【0028】
【発明の効果】
本発明によれば、非効率的な脱溶剤工程を経ずに、しかも容易にポリウレタン樹脂水分散液を製造できる。また、各工程において特定の条件を設定することにより、ポリウレタン樹脂の高分子量化等の任意な分子設計が可能であり、再現性に優れた製造方法である。また、各工程において特定の条件を設定することにより、安定性に優れたポリウレタン樹脂水分散液が得られる。
【0029】
【実施例】
以下に製造例、実施例および比較例をあげて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、部および%はいずれも重量基準である。
【0030】
実施例1
撹拌機、温度計、冷却管および窒素ガス導入管を備えた反応容器に、ジメチロールブタン酸25.3部、数平均分子量2000のポリテトラメチレンエーテルグリコール334.5部を仕込み、窒素気流下100℃にて1時間かけてジメチロールブタン酸を完全に溶解させた。ついで85℃まで冷却した後、イソホロンジイソシアネート120.2部を仕込み、85℃にて5時間反応を行い、イソシアネート基末端のウレタンプレポリマー480部を得た。このウレタンプレポリマーに50℃にてトリエチルアミン17.3部を加えて中和後(中和率100%)、イソプロピルアルコール84.7部を仕込み、均一なウレタンプレポリマーのイソプロピルアルコール溶液とした。ついで40℃にて水1078部を撹拌下に加え、分散後、イソホロンジアミン23.2部を加え、40℃にて3時間反応させ、ポリウレタン樹脂の水分散液Aを得た。この水分散液Aは、樹脂固形分濃度30%、粘度25cps/25℃、pH8.2であり、乾燥樹脂は樹脂酸価20を有するものであった。
【0031】
実施例2
実施例1と同様の反応容器に、プラクセル205BA(ジメチロールブタン酸のε−カプロラクトン付加物:数平均分子量500;ダイセル化学工業(株)製)128.3部、数平均分子量2000のポリプロピレングリコール221.2部、イソホロンジイソシアネート130.5部を仕込み、窒素気流下で85℃にて5時間反応を行い、イソシアネート基末端のウレタンプレポリマー480部を得た。このウレタンプレポリマーに50℃にてトリエチルアミン25.9部を加え中和した後(中和率100%)、イソプロピルアルコール120.0部を仕込み、均一なプレポリマーのイソプロピルアルコール溶液とした。ついで35℃にて水1147部とイソホロンジアミン18.5部、ジエチレントリアミン1.9部とを混合したものを撹拌下に加え、分散後、35℃にて3時間反応させ、ポリウレタン樹脂の水分散液Bを得た。この水分散液Bは、樹脂固形分濃度28%、粘度380cps/25℃、pH8.3であり、乾燥樹脂は樹脂酸価29を有するものであった。
【0032】
実施例3
実施例1と同様の反応容器に、ジメチロールブタン酸38.0部、数平均分子量3000のポリプロピレングリコール149.1部、数平均分子量2000のポリブチレンアジペート149.1部を仕込み、窒素気流下100℃にて1時間かけジメチロールブタン酸を完全に溶解させた。ついで85℃まで冷却した後、イソホロンジイソシアネート143.8部を仕込み、窒素気流下で85℃にて5時間反応を行い、イソシアネート基末端のウレタンプレポリマー480部を得た。このプレポリマーに50℃にてトリエチルアミン25.9部を加え中和した後(中和率100%)、tert−ブチルアルコール53.3部を仕込み、均一なプレポリマーのtert−ブチルアルコール溶液とした。ついで45℃にて水1106部とイソホロンジアミン21.1部、ジエチレントリアミン3.6部とを混合したものを撹拌下に加え、分散後、45℃にて3時間反応させ、ポリウレタン樹脂の水分散液Cを得た。この水分散液Cは、樹脂固形分濃度30%、粘度110cps/25℃、pH8.0であり、乾燥樹脂は樹脂酸価29を有するものであった。
【0033】
比較例1
実施例3において、トリエチルアミンによる中和後、水分散前にtert−ブチルアルコールによるプレポリマーの希釈を行わずに、tert−ブチルアルコールを水、イソホロンジアミンおよびジエチレントリアミンと混合して添加するように変えた以外は、実施例3と同様の方法で、ポリウレタン樹脂の水分散液の製造を試みたが、水分散時に均一に分散せず、撹拌を止めて静置しておくと、すぐに分離した。
【0034】
比較例2
実施例2において、トリエチルアミンによる中和後、水分散前にイソプロピルアルコールによる希釈を行わずに、40℃にて水1163部を撹拌下に加え、ポリウレタン樹脂の水分散液の製造を試みたが、均一に分散せず、撹拌を止めて静置しておくと、すぐに分離した。
【0035】
上記実施例1〜3で得られたポリウレタン樹脂の水分散液について、以下の項目について評価を行った。上記評価の結果を表1に示す。
【0036】
重量平均分子量:GPCによりポリスチレン換算にて測定した。
【0037】
安定性:ポリウレタン樹脂の水分散液を40℃にて30日間放置した後、状態の変化を以下の基準で評価した。
○:変化なし。
×:分離または沈殿を生じている。
【0038】
【表1】

Figure 0003557858
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aqueous polyurethane resin dispersion. The water-water dispersible polyurethane resin obtained by the present invention includes various binders such as paints, magnetic paints, printing inks, artificial leather, plastic, glass, metal, wood, paper, floor, concrete, rubber, woven fabric and nonwoven fabric. And the like, or as an adhesive for various materials such as artificial leather, plastic, glass, metal, wood, paper, floor, concrete, rubber, woven fabric and non-woven fabric.
[0002]
[Prior art]
Polyurethane resins have excellent flexibility and a wide range of adhesiveness to various substrates, and are widely used as various binders, various coating agents or various adhesives. Conventionally, such polyurethane resins have been mainly of the solvent type dissolved in an organic solvent, but in recent years, in order to respond to social trends such as resource saving, environmental protection, and tightening of regulations on organic solvents, aqueous polyurethane resins have been used. In recent years, aqueous polyurethane resin dispersions have been put to practical use.
[0003]
The aqueous polyurethane resin dispersion currently in practical use is, for example, a solution obtained by dissolving a urethane prepolymer in an organic solvent inert to isocyanate groups such as acetone and methyl ethyl ketone by dispersing in water and elongating the chain. Being manufactured. However, since organic solvents such as acetone and methyl ethyl ketone do not preferably remain in the final product, they are removed by a reduced pressure or the like at the final stage of production. Therefore, such a manufacturing method has problems such as a longer manufacturing process, a lower yield, and a higher cost than a method of manufacturing a solvent-type polyurethane resin.
[0004]
Also, a method of producing an aqueous dispersion of a polyurethane resin without using any organic solvent has been proposed (JP-A-4-31439). However, such a production method requires a special reactor completely different from the conventional reactor, and the conditions for stably obtaining an aqueous polyurethane resin dispersion are considerably restricted. With difficulties.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily producing a polyurethane resin aqueous dispersion without using an organic solvent such as acetone or methyl ethyl ketone.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, when performing a neutralization step, an aqueous dispersion step, and a chain extension step on a specific urethane prepolymer, the urethane prepolymer was once treated with a monoalcohol-based solvent. It has been found that the above problem can be solved by diluting and then performing an aqueous dispersion step, and further, under specific reaction conditions, any molecular design such as increasing the molecular weight of a water-dispersible polyurethane resin is possible. Thus, the present invention has been completed.
[0007]
That is, the present invention provides a isocyanate group-terminated urethane prepolymer comprising a diol compound and a diisocyanate compound containing a polymer polyol and containing a carboxyl group, and then neutralizing the carboxyl group with a basic compound in the urethane prepolymer. In the method for producing a polyurethane resin aqueous dispersion by performing the step (1) and the aqueous dispersion step (2) and the chain extension step (3) performed sequentially or simultaneously, before performing the aqueous dispersion step (4) , and wherein said that the urethane prepolymer is provided a step of diluting the secondary or tertiary mono-alcohol solvent (4), and provided further the neutralization step (1) prior to the dilution step (4) The present invention relates to a method for producing an aqueous polyurethane resin dispersion.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, first, an isocyanate group-terminated urethane prepolymer comprising a diol compound containing a polymer polyol and a diisocyanate compound and containing a carboxyl group is produced.
[0009]
Examples of the polymer polyol component include polyether polyols such as polyethylene glycol, polypropylene glycol, and polyoxytetramethylene ether glycol obtained by ring-opening polymerization of ethylene oxide, propylene oxide, and tetrahydrofuran; ethylene glycol, diethylene glycol, triethylene glycol, 2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol Or unsaturated known low-molecular glycols such as octanediol, 1,4-butynediol, dipropylene glycol, bisphenol A, hydrogenated bisphenol A, and adipic acid Dibasic acids such as maleic acid, fumaric acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, and corresponding acids Polyester polyols obtained by dehydration condensation of anhydrides and the like; polyester polyols obtained by ring-opening polymerization of lactones such as ε-caprolactone and β-methyl-δ-valerolactone; other polycarbonate polyols and polybutadiene glycols And various known polymer polyols generally used in the production of polyurethane. Among these high molecular polyols, polyether polyols that can lower the viscosity of the urethane prepolymer and can be rapidly dispersed in water as a dispersion medium in the aqueous dispersion step (2) are suitable. In addition, up to 5 mol% of the low molecular weight glycol component is used for various polyols such as glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, pentaerythritol and sorbitol. Can be replaced.
[0010]
The number average molecular weight of the high molecular polyol is not particularly limited, but from the viewpoint of the flexibility of the obtained polyurethane resin film, it is usually about 500 or more, preferably 700 or more, and the water dispersibility of the urethane prepolymer is also high. From the viewpoint of the drying property of the obtained polyurethane resin, it is about 10,000 or less, preferably 5000 or less.
[0011]
In the present invention, a carboxyl group-containing diol is usually used as a diol compound in order to introduce a carboxyl group into the urethane prepolymer. Examples of the carboxyl group-containing diol include α, α′-dimethylolalkanoic acid (glyceric acid, dimethylolpropionic acid, dimethylolbutanoic acid, 2,2-dimethylolpentanoic acid, etc.), dioxymaleic acid, dioxyfumaric acid, tartaric acid , 2,6-dioxybenzoic acid, 4,4-bis (hydroxyphenyl) valeric acid, 4,4-bis (hydroxyphenyl) butyric acid, etc., and ε-caprolactone, γ-butyrolactone using these carboxyl group-containing diols as initiators. And lactones such as γ-valerolactone obtained by ring-opening polymerization. Such a carboxyl group-containing diol is usually used as a diol component for producing a urethane prepolymer together with the above-mentioned polymer polyol. However, such a carboxyl group-containing diol as obtained by ring-opening polymerization of a lactone is used. In the case where the diol itself can be used as a polymer polyol, only the carboxyl group-containing diol can be used as the diol compound.
[0012]
As the diisocyanate compound, various known aromatic, aliphatic, or alicyclic diisocyanates can be used. For example, 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3- Phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4- Trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate Carboxyl groups of isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate, m-tetramethylxylylene diisocyanate and dimer acid were converted to isocyanate groups. Dimer isocyanate is a typical example.
[0013]
In the production of the isocyanate group-terminated urethane prepolymer containing a carboxyl group, the diol compound and the diisocyanate compound are reacted so that the isocyanate group equivalent of the diisocyanate compound is greater than the hydroxyl equivalent of the diol compound. The reaction is usually performed in the absence of a solvent, and the reaction temperature, the reaction time, and the presence or absence of the urethanization catalyst may be appropriately determined according to the reactivity. The amount of the carboxyl group-containing diol in the diol compound is not particularly limited, but the acid value in 1 g of the resin solid content of the polyurethane resin is 5 or more in order to obtain an aqueous dispersion of the polyurethane resin having good dispersion stability. It is preferable that the acid value be 100 or less from the viewpoint of water resistance of the obtained polyurethane resin.
[0014]
Next, the obtained urethane prepolymer is subjected to a step (1) of neutralizing a carboxyl group with a basic compound, an aqueous dispersion step (2) and a chain elongation step (3) to be carried out sequentially or simultaneously, respectively, to give a polyurethane resin water. Although the production of dispersions, a step (4) diluting the secondary or tertiary mono-alcohol solvent of the urethane prepolymer before applying said aqueous dispersion step (2) is provided in the present invention, and, the dilution The neutralization step (1) is further provided before the step (4) .
[0015]
The diluting step (4 ) was performed before the water dispersing step (2) was performed on the urethane prepolymer because the urethane prepolymer having a remarkably high viscosity in a solventless state was reduced in viscosity, and the monoalcohol-based solvent was used. This is because the dispersion in water, which is a dispersion medium, in the water dispersion step (2) is rapidly performed by utilizing the hydrophilicity. Further, the monoalcohol-based solvent does not need to be removed from a final product using a polyurethane resin obtained like an organic solvent such as acetone or methyl ethyl ketone. It should be noted that a very high-viscosity urethane prepolymer using no mixture of water and a monoalcohol solvent as a dispersion medium in the aqueous dispersion step (2) without the dilution step (4) before the aqueous dispersion step (2) . And water are not promptly and uniformly mixed, resulting in a partial increase in the molecular weight due to the reaction between water and isocyanate groups, and a stable aqueous polyurethane resin dispersion cannot be obtained.
[0016]
Various solvents can be used as the monoalcohol solvent used in the dilution step (4) , but those having a solubility in water at 25 ° C. of 5% by weight or more are preferable for prompt dispersion in water.
[0017]
Further, a secondary or tertiary monoalcohol solvent is preferable because the reaction rate with the terminal isocyanate group in the urethane prepolymer is low. Further, as the secondary or tertiary monoalcohol-based solvent, those not having an active hydrogen which is reactive to an isocyanate group in addition to an alcoholic hydroxyl group are preferable. According to such a secondary or tertiary monoalcohol solvent, the consumption of terminal isocyanate groups in the urethane prepolymer in the dilution step (4) is small, and the prepolymers can be linked to each other to increase the molecular weight. Therefore, any molecular design such as increasing the molecular weight of the polyurethane resin in the chain elongation step (3) is possible, and the dispersion in water in the water dispersing step (2) can be performed promptly. An aqueous resin dispersion can be obtained.
[0018]
Examples of the secondary or tertiary monoalcohol solvents satisfying the above conditions include isopropyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, sec-amyl alcohol, diacetone alcohol and the like.
[0019]
The monoalcohol-based solvent used in the dilution step (4) can be used alone or in combination of two or more, and the amount of use is not particularly limited, but is usually about 3% by weight or more, preferably about 3% by weight, based on the urethane prepolymer. Uses 10% by weight or more. Further, in order to suppress the reaction between the terminal isocyanate group of the urethane prepolymer and the hydroxyl group of the alcohol solvent, about 30% by weight or less, preferably about 25% by weight or less based on the urethane prepolymer is used. The temperature of the dilution step (4) is not particularly limited, but is preferably 50 ° C. or lower in order to reduce the reaction rate between the isocyanate group in the urethane prepolymer and the alcoholic hydroxyl group of the alcoholic solvent. The temperature of the dilution step (4) is usually equal to or higher than normal temperature.
[0020]
In this way the present invention, is carried out dilution step (4) prior to applying the aqueous dispersion step (2), a urethane prepolymer rapidly dispersed in water dispersion step (2), to obtain a stable aqueous polyurethane dispersion Preferably, the neutralization step (1) is performed before the water dispersion step (2) . When the dilution step (4) is performed after the neutralization step (1) , the reactivity between the isocyanate group in the urethane prepolymer and the alcoholic hydroxyl group of the alcoholic solvent tends to be slow, which is preferable.
[0021]
In the neutralization step (1) , examples of the basic compound used for neutralizing the carboxyl group in the urethane prepolymer include alkali metals such as potassium hydroxide and sodium hydroxide, ammonia or trimethylamine, triethylamine, and triisopropylamine. And tertiary amines such as tributylamine, triethanolamine, N-alkyldiethanolamine, and N, N'-dialkylmonoethanolamine. These basic compounds can be used alone or in combination of two or more. In the neutralization of the carboxyl group, a basic compound is used in an amount of about 0.5 to 1.5 equivalents relative to 1 equivalent of the carboxyl group contained in the prepolymer (hereinafter, the neutralization ratio is 50 to 150%. Is preferred). When the neutralization ratio is lower than 50%, the dispersion stability of the obtained polyurethane resin aqueous dispersion is not sufficient, and when it is higher than 150%, the viscosity of the system at the time of aqueous dispersion tends to increase. The temperature at which the neutralization is performed is not particularly limited, but is usually about 20 to 70 ° C.
[0022]
The aqueous dispersion step (2) is not particularly limited, for example, a method of adding and dispersing water to a urethane prepolymer diluted with an alcohol solvent, or a method of adding and dispersing a urethane prepolymer diluted in water. Etc. can be adopted.
[0023]
In addition, the chain elongation step (3) is carried out with a chain elongation agent and a chain length terminator used as needed. Examples of the chain extender include various known low molecular weight glycols listed in the description of the polyester diol; ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4 Examples include amines such as' -diamine and water. In addition, in a molecule such as 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, and di-2-hydroxypropylethylenediamine. Diamines having a hydroxyl group; dimer diamines obtained by converting a carboxyl group of a dimer acid into an amino group are also typical examples. Examples of the chain terminator include monoamines such as monobutylamine and dibutylamine; monoamines having a hydroxyl group such as monoethanolamine and diethanolamine; monoalcohols having a primary alcoholic hydroxyl group such as ethanol and n-butanol.ル, and the like.
[0024]
Since the water dispersing step (2) and the chain elongation step (3) are performed sequentially or simultaneously, the chain extender and the chain terminator used as necessary are added in advance to the water used for dispersing the urethane prepolymer in water. Or may be added after the urethane prepolymer is dispersed in water. The chain terminator can be added at the time of or after the aqueous dispersion of the urethane prepolymer, or may be added before or after the neutralization step (1) or the dilution step (4) .
[0025]
The average molecular weight of the water-dispersible polyurethane resin thus obtained can be appropriately determined according to the use of the resin. However, when the resin is used in a field where the film strength of the resin is required, the weight average molecular weight should be 5000 or more. preferable.
[0026]
The solid content concentration and viscosity of the aqueous polyurethane resin dispersion of the present invention are not particularly limited, and may be appropriately determined in consideration of workability during use and the like. Usually, it is practically preferable to adjust the solid concentration to 15 to 60% by weight and the viscosity to 10 to 100000 cps / 25 ° C.
[0027]
When the aqueous polyurethane resin dispersion of the present invention is provided for various uses, for example, water, various pigments and the like are added to the aqueous polyurethane resin dispersion of the present invention, and then mixed or dispersed according to a known method. Then, if necessary, additives such as an antiblocking agent and a plasticizer are appropriately blended to prepare the binder, coating agent and adhesive composition.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a polyurethane resin aqueous dispersion can be easily manufactured, without going through an inefficient solvent removal process. Further, by setting specific conditions in each step, an arbitrary molecular design such as increasing the molecular weight of the polyurethane resin is possible, and the production method is excellent in reproducibility. By setting specific conditions in each step, a polyurethane resin aqueous dispersion having excellent stability can be obtained.
[0029]
【Example】
Hereinafter, the present invention will be described specifically with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not limited to these Examples. All parts and percentages are based on weight.
[0030]
Example 1
25.3 parts of dimethylolbutanoic acid and 334.5 parts of polytetramethylene ether glycol having a number average molecular weight of 2,000 were charged into a reaction vessel equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas inlet pipe, and then charged under a nitrogen stream. Dimethylolbutanoic acid was completely dissolved at 1 ° C. for 1 hour. Then, after cooling to 85 ° C, 120.2 parts of isophorone diisocyanate was charged and reacted at 85 ° C for 5 hours to obtain 480 parts of a urethane prepolymer having an isocyanate group end. This urethane prepolymer was neutralized by adding 17.3 parts of triethylamine at 50 ° C. (neutralization ratio: 100%), and then 84.7 parts of isopropyl alcohol was charged to obtain a uniform urethane prepolymer isopropyl alcohol solution. Then, 1078 parts of water was added with stirring at 40 ° C, and after dispersion, 23.2 parts of isophoronediamine was added and reacted at 40 ° C for 3 hours to obtain an aqueous dispersion A of a polyurethane resin. This aqueous dispersion A had a resin solid content of 30%, a viscosity of 25 cps / 25 ° C., and a pH of 8.2, and the dried resin had a resin acid value of 20.
[0031]
Example 2
In a reaction vessel similar to that of Example 1, 128.3 parts of Praxel 205BA (adduct of dimethylolbutanoic acid with ε-caprolactone: number average molecular weight 500; manufactured by Daicel Chemical Industries, Ltd.) and 128.3 parts of polypropylene glycol 221 having a number average molecular weight of 2000 .2 parts and 130.5 parts of isophorone diisocyanate were charged and reacted at 85 ° C. for 5 hours under a nitrogen stream to obtain 480 parts of an isocyanate group-terminated urethane prepolymer. The urethane prepolymer was neutralized by adding 25.9 parts of triethylamine at 50 ° C. (neutralization ratio: 100%), and then 120.0 parts of isopropyl alcohol was charged to obtain a uniform prepolymer isopropyl alcohol solution. Then, a mixture of 1147 parts of water, 18.5 parts of isophoronediamine, and 1.9 parts of diethylenetriamine was added at 35 ° C. with stirring, and after dispersion, the mixture was reacted at 35 ° C. for 3 hours to obtain an aqueous dispersion of a polyurethane resin. B was obtained. The aqueous dispersion B had a resin solid content of 28%, a viscosity of 380 cps / 25 ° C., and a pH of 8.3, and the dried resin had a resin acid value of 29.
[0032]
Example 3
In a reaction vessel similar to that in Example 1, 38.0 parts of dimethylolbutanoic acid, 149.1 parts of polypropylene glycol having a number average molecular weight of 3,000, and 149.1 parts of polybutylene adipate having a number average molecular weight of 2,000 were charged. Dimethylolbutanoic acid was completely dissolved at 1 ° C. for 1 hour. Then, after cooling to 85 ° C., 143.8 parts of isophorone diisocyanate was charged and reacted at 85 ° C. for 5 hours under a nitrogen stream to obtain 480 parts of an isocyanate group-terminated urethane prepolymer. This prepolymer was neutralized by adding 25.9 parts of triethylamine at 50 ° C. (neutralization ratio: 100%), and then 53.3 parts of tert-butyl alcohol was charged to obtain a uniform tert-butyl alcohol solution of the prepolymer. . Then, a mixture of 1106 parts of water, 21.1 parts of isophoronediamine, and 3.6 parts of diethylenetriamine was added at 45 ° C. with stirring, and after dispersion, the mixture was reacted at 45 ° C. for 3 hours to obtain an aqueous dispersion of a polyurethane resin. C was obtained. The aqueous dispersion C had a resin solid content of 30%, a viscosity of 110 cps / 25 ° C., and a pH of 8.0, and the dried resin had a resin acid value of 29.
[0033]
Comparative Example 1
In Example 3, after neutralization with triethylamine, tert-butyl alcohol was mixed with water, isophoronediamine and diethylenetriamine and added without diluting the prepolymer with tert-butyl alcohol before dispersing in water. Except for this, an attempt was made to produce an aqueous dispersion of the polyurethane resin in the same manner as in Example 3, but the dispersion was not uniform during the aqueous dispersion, and immediately separated when the stirring was stopped and allowed to stand.
[0034]
Comparative Example 2
In Example 2, after neutralization with triethylamine, 1163 parts of water was added under stirring at 40 ° C. without dilution with isopropyl alcohol before water dispersion, and an aqueous dispersion of a polyurethane resin was produced. When the stirring was stopped and the mixture was allowed to stand without being uniformly dispersed, the mixture immediately separated.
[0035]
The following items were evaluated for the aqueous dispersions of the polyurethane resins obtained in Examples 1 to 3 above. Table 1 shows the results of the above evaluation.
[0036]
Weight average molecular weight: measured by GPC in terms of polystyrene.
[0037]
Stability: After the aqueous dispersion of the polyurethane resin was allowed to stand at 40 ° C. for 30 days, a change in state was evaluated according to the following criteria.
:: No change.
×: Separation or precipitation has occurred.
[0038]
[Table 1]
Figure 0003557858

Claims (4)

高分子ポリオールを含むジオール化合物およびジイソシアネート化合物からなり、かつカルボキシル基を含有するイソシアネート基末端ウレタンプレポリマーを製造した後、当該ウレタンプレポリマーに、塩基性化合物によるカルボキシル基の中和工程(1)と、順次または同時に行なう水分散工程(2)および鎖伸長工程(3)を、それぞれ施すことによりポリウレタン樹脂水分散液を製造する方法において、前記水分散工程(2)を施す前前記ウレタンプレポリマーを2級または3級のモノアルコール系溶剤により希釈する工程(4)を設け、かつ該希釈工程 (4) の前に更に前記中和工程 (1) を設けることを特徴とするポリウレタン樹脂水分散液の製造方法。After producing an isocyanate group-terminated urethane prepolymer comprising a diol compound and a diisocyanate compound containing a high molecular polyol, and containing a carboxyl group, the urethane prepolymer is subjected to a neutralization step of a carboxyl group with a basic compound (1) . , sequentially or simultaneously performing water dispersion step (2) and chain elongation step (3) a process for preparing the polyurethane resin water dispersion by subjecting each, the urethane prepolymer before applying said aqueous dispersion step (2) Is provided with a step (4) of diluting with a secondary or tertiary monoalcohol solvent, and the neutralization step (1) is further provided before the dilution step (4). Liquid production method. 2級または3級のモノアルコール系溶剤の25℃における水に対する溶解度が5重量%以上である請求項1記載のポリウレタン樹脂水分散液の製造方法。 The method for producing an aqueous polyurethane resin dispersion according to claim 1, wherein the solubility of the secondary or tertiary monoalcohol solvent in water at 25 ° C is 5% by weight or more. 2級または3級のモノアルコール系溶剤の使用量が、ウレタンプレポリマーに対して、3〜30重量%である請求項1または2記載のポリウレタン樹脂水分散液の製造方法。 The method for producing an aqueous polyurethane resin dispersion according to claim 1 or 2 , wherein the amount of the secondary or tertiary monoalcohol solvent used is 3 to 30% by weight based on the urethane prepolymer. 希釈工程(4)の温度が50℃以下である請求項1、2または3記載のポリウレタン樹脂水分散液の製造方法。The process according to claim 1, 2 or 3 polyurethane resin water dispersion according temperature is 50 ° C. the following dilution step (4).
JP18080297A 1997-06-19 1997-06-19 Method for producing aqueous polyurethane resin dispersion Expired - Lifetime JP3557858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18080297A JP3557858B2 (en) 1997-06-19 1997-06-19 Method for producing aqueous polyurethane resin dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18080297A JP3557858B2 (en) 1997-06-19 1997-06-19 Method for producing aqueous polyurethane resin dispersion

Publications (2)

Publication Number Publication Date
JPH1112339A JPH1112339A (en) 1999-01-19
JP3557858B2 true JP3557858B2 (en) 2004-08-25

Family

ID=16089608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18080297A Expired - Lifetime JP3557858B2 (en) 1997-06-19 1997-06-19 Method for producing aqueous polyurethane resin dispersion

Country Status (1)

Country Link
JP (1) JP3557858B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605666B1 (en) * 2000-07-27 2003-08-12 3M Innovative Properties Company Polyurethane film-forming dispersions in alcohol-water system
US6433073B1 (en) * 2000-07-27 2002-08-13 3M Innovative Properties Company Polyurethane dispersion in alcohol-water system
JP2002161120A (en) * 2000-11-27 2002-06-04 Arakawa Chem Ind Co Ltd Method of manufacturing polyurethane resin aqueous dispersion
JP2002241463A (en) * 2001-02-16 2002-08-28 Dainippon Ink & Chem Inc Method for producing aqueous urethane resin
JP4573155B2 (en) * 2003-11-18 2010-11-04 荒川化学工業株式会社 Water-based polyurethane resin, water-based polyurethane resin aqueous dispersion, printing ink binder and printing ink composition
US7342068B2 (en) 2003-11-18 2008-03-11 Air Products And Chemicals, Inc. Aqueous polyurethane dispersion and method for making and using same
JP4665529B2 (en) * 2004-01-27 2011-04-06 寛治 林 Polyurethane resin composition and method for producing the same
JP5234477B2 (en) * 2004-09-24 2013-07-10 荒川化学工業株式会社 Crosslinking method, resin composition and production method thereof, coating agent composition, paint composition, binder for printing ink, adhesive composition, crosslinked product of resin composition, and crosslinking agent
JP2006306943A (en) * 2005-04-27 2006-11-09 Nippon Kasei Chem Co Ltd Method for producing water-based urethane resin
JP2007031661A (en) * 2005-07-29 2007-02-08 Kanji Hayashi Adhesive composition for laminate film
JP5035181B2 (en) * 2008-08-26 2012-09-26 三菱化学株式会社 Resin dispersion composition containing polyolefin resin, primer, coating material containing the same, and laminate thereof
US9617453B2 (en) 2009-12-14 2017-04-11 Air Products And Chemicals, Inc. Solvent free aqueous polyurethane dispersions and methods of making and using the same
EP3141569A1 (en) * 2015-09-08 2017-03-15 Henkel AG & Co. KGaA Cold seal adhesives based on aqueous polyurethane dispersions

Also Published As

Publication number Publication date
JPH1112339A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
EP2271686B1 (en) Aqueous polyurethane solutions
US5004779A (en) Process for the preparation of aqueous, oxidatively drying alkyd resins and their use in or as aqueous lacquers and coating compounds
JP3885531B2 (en) Water-based polyurethane emulsion, water-based adhesive and water-based paint using the same
JP3557858B2 (en) Method for producing aqueous polyurethane resin dispersion
CN106496485A (en) A kind of epoxide modified the moon/non-ionic water polyurethane resin and preparation method thereof
CA2225229A1 (en) Solvent-free, aqueous, anionic polyurethane dispersions and their use as peelable coatings
JP5849945B2 (en) Polyoxyalkylene alcohol and polyurethane resin and coating agent containing the same
JPWO2009060838A1 (en) Polyurethane for printing ink binder, its production method and printing ink
KR20140009337A (en) Waterborne polyurethane resin dispersion and use thereof
JP2013249401A (en) Aqueous polyurethane resin and application thereof
JP2000096001A (en) Water-dilutable binder for soft feel lacquer
JP3301201B2 (en) Easy solvent recovery printing ink composition
JPH11228655A (en) Polyurethane-based emulsion for water-based printing ink and water-based printing ink using the same
JP2007269832A (en) Method of manufacturing polyurethane resin aqueous dispersion
JP2000313735A (en) Preparative method for aqueous dispersion of polyurethane resin
JP2001226444A (en) Method for producing water-based polyurethane resin
JP3489738B2 (en) Method for producing polyurethane resin aqueous dispersion
CN115141346B (en) Detachable waterborne polyurethane dispersion for temporary bonding and preparation method thereof
JP4449038B2 (en) Method for producing aqueous polyurethane composition
JP4826688B2 (en) Method for producing polyurethane resin aqueous dispersion
KR20080034354A (en) Water-resistant polyurethane resin adhesive with improved heat resistance and manufacturing method thereof
JP2002161120A (en) Method of manufacturing polyurethane resin aqueous dispersion
JPH11269243A (en) Preparation process of water dispersion of polyurethane resin
JP4135077B2 (en) Water-based polyurethane resin
JP3521548B2 (en) Aqueous polyurethane production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term