JP3557589B2 - Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus - Google Patents
Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus Download PDFInfo
- Publication number
- JP3557589B2 JP3557589B2 JP2002089394A JP2002089394A JP3557589B2 JP 3557589 B2 JP3557589 B2 JP 3557589B2 JP 2002089394 A JP2002089394 A JP 2002089394A JP 2002089394 A JP2002089394 A JP 2002089394A JP 3557589 B2 JP3557589 B2 JP 3557589B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- tip
- carbon nanotubes
- microscope
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、カーボンナノチューブを探針の先端に付着させた走査型プローブ顕微鏡用探針の製造方法、該作製方法によって作製された探針及びその作製装置に関する。
【0002】
【従来の技術】
周知のように、走査型プローブ顕微鏡は先端の鋭い探針で固体表面をなぞることによって表面の凹凸や導電性など物理的な情報や化学的な情報を検出することをその基本原理としているので、探針の形状や安定性が顕微鏡としての分解能を大きく左右している。従来のこの探針は、タングステンや白金イリジウムなどの金属ワイヤーを機械的に研磨したり、溶液中でのケミカルエッチング法により作製している。しかし、いずれの場合にも、先端の形状が正確に把握できないために精密な物性測定を困難なものにしている。具体的には、先端に探針材料とは異なる物質が吸着することにより分解能が著しく低下したり、形状や元素組成が不明なために例えば原子間力顕微鏡では重要な物性の導出が困難になる。また、物質表面の深い穴などの測定は、従来の探針では不可能であり、よりアスペクト比の高い探針が必要となっていた。
【0003】
このような課題をかかえつつもその有用性に鑑み実用化されていたが、近年ではカーボンナノチューブ(carbon nanotube,CNT)の各技術の応用が検討されるに至り、探針にも採用されるに至っている。一般に知られているようにこのカーボンナノチューブは、円筒形をした炭素原子からなる物質であり、直径(1.5nm〜20nmの範囲で選択可)と長さ(数nm〜500nm〜数μmの範囲で選択可)の比を最大で1000倍以上とることができ、柔軟で剛性(50GPa)が高い性質を有する。また、カーボンナノチューブには円筒面が多層(multi wall carbon nanotube,MWNT)および単層のナノチューブ(single wall carbon nanotube)があり、その電気的特性は多彩な螺旋構造によって金属にも半導体にもなる性質を持っていることが知られている。又、高剛性、弾力性があり強靭で機械的性質も優れていることが知られている。更に、低反応性、高安定で化学的性質も優れている。このような電子的、機械的にめずらしい性質が走査型プローブ顕微鏡用探針として注目され実用化されたのである。すなわち、カーボンナノチューブを探針の先端に付着させることによって、前記した金属ワイヤーの機械的、ケミカル的な方法による作製で得た探針ではなし得なかった精密な高分解能の形状観測や物性測定、物質表面の深い穴の測定などが可能となり信頼性の高いデータが得られる、材料のカーボンナノチューブを精製して使用することにより先端のサイズを均一にできる、先端の原子が単一カーボンであるために電気特性が一定である、金属探針に比べて反応性が低いために不純物の付着がきわめて少なく安定である、機械的強度が高く試料面への衝突により変化することもなく長寿命である、用途に応じてカーボンナノチューブの長さを選択できるなどの種々の長所を得られるに至った。
【0004】
このようなことからカーボンナノチューブを探針先端に形成する方法がいくつか提案されるに至っている。その1つに、光学顕微鏡の下で接着物質を用いて直接に探針先端に付着させたり、この接着物質の代わりに電子顕微鏡の下で雰囲気の炭化水素を原料として付着させて作製する方法がある。又、探針先端に直接CVD法(化学蒸着法、chemical vapor depositionの略)でカーボンナノチューブを成長させて作製する方法がある。
【0005】
【発明が解決しようとする課題】
しかしながら、接着物質及び炭化水素を原料としてカーボンナノチューブを付着させて作製する方法は、真空中で作製しなければならないことに加えて、作製時間が莫大であり、又、大量生産ができないという問題点がある。更に、接着物質がカーボンナノチューブの機械的、電気的特性に悪影響を与える可能性が大きいという問題点がある。又、CVD法を用いる方法では、一度に多数のカーボンナノチューブが形成されるために走査型プローブ顕微鏡による各種物性測定にはそぐわないという問題点がある。
【0006】
【課題を解決するための手段】
この発明は上記事情に鑑みてなされたものであって、請求項1の発明は、カーボンナノチューブを有機溶媒に分散させた溶液の入った容器内において、先端が尖った金属又は半導体からなる探針を先鋭な電極と少しの間隔を開けて対向させ、前記探針と前記電極に電圧を与えることによって、前記探針の先端に前記カーボンナノチューブを付着させて作製することを特徴とする走査型プローブ顕微鏡用探針の作製方法である。
請求項3の発明は、カーボンナノチューブを有機溶媒に分散させた溶液を入れる容器と、この容器内において少しの間隔を開けて対向させた先端が尖った金属又は半導体からなる探針及び先鋭な電極と、前記探針と前記電極に電圧を与える電源とを備えることにより、前記探針の先端に前記カーボンナノチューブを付着させることができることを特徴とする走査型プローブ顕微鏡用探針の作製装置である。
請求項2及び請求項4の発明においては、前記探針の先端に付着するカーボンナノチューブが複数本である。
【0007】
【発明の実施の形態】
この発明の実施形態について図1及び図2を参照しつつ説明するが、まず、走査型プローブ顕微鏡用探針の作製方法において用いる作製装置について説明する。
作製装置1は、カーボンナノチューブを分散させた溶液2が入っている容器3と、この容器3内に設置した電極4と、この電極4に対向して容器3内に設置した探針5と、この探針5と電極4に電気的に接続して、直流、交流又は交流と直流を重畳したいずれかの電圧を与える電源6とからなる。
【0008】
カーボンナノチューブを分散させた溶液2は、カーボンナノチューブ7を有機溶媒に分散した溶液である。有機溶媒としては、ジクロロエタン、トルエン、四塩化炭素などが挙げられる。このような有機溶媒に分散させるカーボンナノチューブ7の量はとくに限定されるものではないが数%程度でよい。カーボンナノチューブ7は、直径が1.5乃至20nm、長さが数nm乃至数μmの範囲の中から使用目的に応じて適宜選択したものを使用する。しかし、これらの範囲に限定されるものではない。
【0009】
電極4は、導電性の材質からなり、その先端がかみそり刃のように先鋭なものが好ましいが、針先のように幅を有しないものであってもよい。図示のように、電極4をかみそり刃に形成して先端の先鋭部分に幅を持たせた場合には、その幅に沿って一度に多数の探針5を配列させて作製することができるので、作業効率が向上するが、1つ又は少数を作製する場合には、針先のように幅を持たさないようにしてもよい。
【0010】
探針5は、あらかじめタングステンや白金イリジウム線の先端を従来の方法を用いて尖らせておいたものを使用できる。原子間力顕微鏡用のカンチレバーをこのタングステン等からなる探針に代替してもよい。この探針5は、その先端が前記電極4の先端との間隔αを1mm前後に保つことができるように、支持装置8によって支持されている。
【0011】
電源6としては、周波数が高周波である交流又は直流あるいは交流と直流を重畳させた電源を用い、探針5と電極4の間に数V乃至数十V以上の電圧をかけることができるものを選択する。電源の種類や電圧の大きさは、有機溶媒に分散させたカーボンナノチューブの長さや直径等を勘案して、適宜最適の種類、大きさを選択することによって効率的に付着することができる。
【0012】
以上の構成からなる作製装置1を使用して走査型プローブ顕微鏡用探針を作製する場合において、電源6を探針5及び電極4に接続すると、図3の写真に示すように、数秒後に探針5の先端に有機溶媒に分散しているカーボンナノチューブ7が付着する。図4は図3の写真を判り易く図解したものである。通常、複数本のカーボンナノチューブ7が複雑に絡み合って探針5の先端に付着するが、その内の最先端に位置するものを探針として利用することになる。複数本が複雑に絡み合って束状になっていることから、単に1本が付着した場合よりもより優れた機械的特徴を有する。しかし、有機溶媒に分散させたカーボンナノチューブの量が少ない、電圧を加える時間が極めて短時間である場合等の特別な条件下においては、必要に応じて1本或いは極少数本を付着させることも可能である。このようにして作製したものは、複数本が付着したものと較べて機械的強度は劣るものの、原材料費が節減できる利点がある。
【0013】
同時に多数のカーボンナノチューブ7付きの探針5を作製する場合には、電極4の長さを長くして、又、支持装置8にも多くの探針5をこの電極4の先端に沿って少しの距離を空けて並べるように、且つ、着脱自在に取り付けできるようにしておけば容易に製作できる。
【0014】
この発明の作製方法や作製装置を使用して作製した走査型プローブ顕微鏡用カーボンナノチューブ付き探針を用いて、走査型トンネル顕微鏡で撮影したSi(111)7×7の清浄表面像を図5に示す。図6は従来の金属探針を用いて撮影した同じ清浄表面像である。この両者を比較すると、本願発明のナノチューブ付き探針を用いた方が、より鮮明な像が得られることが判る。尚、走査型トンネル顕微鏡は、走査型プローブ顕微鏡の一つの種類であり、走査型プローブ顕微鏡の範囲に含まれるものである。
【0015】
【発明の効果】
以上の説明からも明らかなように、この発明の走査型プローブ顕微鏡用探針の作製方法によると、わずか数秒間でしかも多数のカーボンナノチューブ付き探針を同時に作製できる利点がある。又、接着物質を用いないので、カーボンナノチューブの機械的、電気的特性に悪影響を及ぼすことなく作製できる利点がある。更に又、真空中で作製する必要もないので、作製コストや手間が節減できる利点がある。
【0016】
又、走査型プローブ顕微鏡用探針の作製装置は、極めて簡単な構成でありながら、極めて単時間で複数の走査型プローブ顕微鏡用カーボンナノチューブ付き探針を作製することが可能となる。
【0017】
更に、この走査型プローブ顕微鏡用探針の作製方法及び作製装置で作製されたカーボンナノチューブ付き探針は、接着物質や炭化水素を原料として探針にカーボンナノチューブを付着させていないので、カーボンナノチューブの機械的、電気的特性に悪影響を与えることがなくなり、その結果、長寿命化、分解能の向上、物質表面の深い穴の測定可能などの利点を有する。
【0018】
更に又、この走査型プローブ顕微鏡用探針の作製方法によって作製されたカーボンナノチューブ付き探針のカーボンナノチューブが複雑に絡み合って付着している場合には、その中の先端側へ突出した1つを有効に活用でき、付着している根本部分ほどしっかりとしたものになる。その結果、探針に直接に1つだけ接着したものと較べて、先端部分の機械的剛性が高いため、最先端が測定対象物の表面に接触してもカーボンナノチューブが破壊され難いという利点がある。
【図面の簡単な説明】
【図1】走査型プローブ顕微鏡用カーボンナノチューブ付き探針の作製装置の全体説明図
【図2】図1における探針と電極の拡大説明図
【図3】探針にカーボンナノチューブが付着した拡大写真
【図4】図3の解説図
【図5】この発明の作製方法及び作製装置で製作した探針を走査型トンネル顕微鏡に用いて撮影したSi(111)7×7の清浄表面像
【図6】従来の金属製の探針を走査型トンネル顕微鏡に用いて撮影した同じSi(111)7×7の清浄表面像
【符号の説明】
1 作製装置
2 有機溶媒にカーボンナノチューブを分散させた溶液
3 容器
4 電極
5 探針
6 電源
7 カーボンナノチューブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a probe for a scanning probe microscope in which carbon nanotubes are attached to the tip of a probe, a probe manufactured by the manufacturing method, and an apparatus for manufacturing the same.
[0002]
[Prior art]
As is well known, scanning probe microscopes have a fundamental principle of detecting physical and chemical information such as surface irregularities and conductivity by tracing a solid surface with a sharp tip. The shape and stability of the probe greatly affect the resolution as a microscope. This conventional probe is manufactured by mechanically polishing a metal wire such as tungsten or platinum iridium, or by chemical etching in a solution. However , in each case, accurate measurement of physical properties is difficult because the shape of the tip cannot be accurately grasped. Specifically, the derivation of important physical properties becomes difficult with different materials greatly lowered resolution by adsorbs, shape and elemental composition unknown because, for example, an atomic force microscope and the probe material to the tip . Also, measurement of deep holes and the like on the surface of a substance is impossible with a conventional probe, and a probe with a higher aspect ratio has been required.
[0003]
Despite these problems, it has been put into practical use in view of its usefulness. However, in recent years , the application of each technique of carbon nanotubes (CNT) has been studied, and it has been adopted as a probe. Has reached. As is generally known, the carbon nanotube is a substance composed of cylindrical carbon atoms, and has a diameter (selectable in a range of 1.5 nm to 20 nm) and a length (a range of several nm to 500 nm to several μm). in a ratio to be able to take up 1000 times more selectable), flexible and rigid (50GP a) has a high property. In addition, carbon nanotubes include multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (single wall carbon nanotubes), and the electrical properties of the carbon nanotubes are such that they can be made into metals and semiconductors due to their various spiral structures. It is known to have It is also known that they have high rigidity, elasticity, toughness and excellent mechanical properties. Furthermore, it has low reactivity, high stability and excellent chemical properties. Such an electronically and mechanically rare property has attracted attention and has been put to practical use as a probe for a scanning probe microscope. That is, by attaching the carbon nanotubes to the tip of the probe, the mechanical wire of the metal wire described above, precise high-resolution shape observation and physical property measurement that could not be done by the probe obtained by the production by a chemical method, It is possible to measure deep holes on the surface of a substance and obtain highly reliable data.The size of the tip can be made uniform by purifying and using the carbon nanotubes of the material.Since the atom at the tip is single carbon The electrical characteristics are constant, the reactivity is low compared to metal probes, so the adhesion of impurities is extremely small and stable.The mechanical strength is high and the life is long without any change due to collision with the sample surface. Thus, various advantages such as the length of the carbon nanotubes can be selected according to the application are obtained.
[0004]
For this reason, several methods for forming carbon nanotubes at the tip of a probe have been proposed. One of the methods is to attach the probe directly to the tip of the probe using an adhesive under an optical microscope, or to attach a hydrocarbon in the atmosphere as a raw material under an electron microscope in place of the adhesive. is there. There is also a method in which carbon nanotubes are grown directly on the tip of a probe by a CVD method (chemical vapor deposition, abbreviation for chemical vapor deposition).
[0005]
[Problems to be solved by the invention]
However, the method of manufacturing by attaching carbon nanotubes using an adhesive substance and a hydrocarbon as raw materials has a problem that, in addition to having to manufacture in a vacuum, the manufacturing time is enormous and mass production is not possible. There is. Further, there is a problem that the adhesive substance has a great possibility of adversely affecting the mechanical and electrical properties of the carbon nanotube. Further, in the method of using a CVD method, there is a problem that not suitable for various properties measured with a scanning probe microscope in order number of the carbon nanotubes are formed at a time.
[0006]
[Means for Solving the Problems]
The present invention was made in view of the above circumstances, the invention of
The invention according to
In the inventions of
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
About the embodiment of the present invention will be described with reference to FIGS. 1 and 2, but first, preparing apparatus will be described for use in the method for manufacturing a scanning probe microscope tip.
The
[0008]
[0009]
The
[0010]
The tip of the tungsten or platinum iridium wire which has been sharpened in advance by a conventional method can be used as the
[0011]
As the
[0012]
In the case of manufacturing a probe for a scanning probe microscope using the
[0013]
When a large number of
[0014]
FIG. 5 shows a clean surface image of Si (111) 7 × 7 taken by a scanning tunneling microscope using a probe with a carbon nanotube for a scanning probe microscope manufactured using the manufacturing method and the manufacturing apparatus of the present invention. Show. FIG. 6 is the same clean surface image taken using a conventional metal probe. A comparison between the two shows that a clearer image can be obtained by using the probe with a nanotube of the present invention. Note that the scanning tunnel microscope is one type of the scanning probe microscope, and is included in the range of the scanning probe microscope.
[0015]
【The invention's effect】
As is clear from the above description, according to the method for manufacturing a probe for a scanning probe microscope of the present invention, there is an advantage that a large number of probes with carbon nanotubes can be simultaneously manufactured in only a few seconds. Further, since no adhesive substance is used, there is an advantage that the carbon nanotube can be manufactured without adversely affecting the mechanical and electrical properties of the carbon nanotube. Furthermore, since it is not necessary to manufacture the device in a vacuum, there is an advantage that manufacturing cost and labor can be reduced.
[0016]
In addition, the apparatus for manufacturing a probe for a scanning probe microscope can manufacture a plurality of probes with carbon nanotubes for a scanning probe microscope in a very short time while having a very simple configuration.
[0017]
Further, the probe with a carbon nanotube manufactured by the method and apparatus for manufacturing a probe for a scanning probe microscope has no carbon nanotube attached to the probe using an adhesive substance or hydrocarbon as a raw material. The mechanical and electrical properties are not adversely affected, resulting in longer life, improved resolution, and the ability to measure deep holes in material surfaces.
[0018]
Furthermore, if the carbon nanotubes of the probe with carbon nanotubes produced by this method for producing a probe for a scanning probe microscope are intricately intertwined and adhered, one of the tips protruding toward the tip side is attached. It can be used effectively, and the more attached the root, the more firm it becomes. As a result, the mechanical rigidity of the tip is higher than that of a single probe directly bonded to the probe, and the advantage is that carbon nanotubes are not easily destroyed even when the tip contacts the surface of the object to be measured. is there.
[Brief description of the drawings]
FIG. 1 is an overall explanatory view of a manufacturing apparatus of a probe with a carbon nanotube for a scanning probe microscope. FIG. 2 is an enlarged explanatory view of a probe and an electrode in FIG. 1. FIG. 3 is an enlarged photograph in which a carbon nanotube adheres to the probe. 4 is an explanatory view of FIG. 3; FIG. 5 is a clean surface image of Si (111) 7 × 7 taken with a scanning tunnel microscope using a probe manufactured by the manufacturing method and the manufacturing apparatus of the present invention. A clean surface image of the same Si (111) 7 × 7 photographed by using a conventional metal probe with a scanning tunneling microscope.
REFERENCE SIGNS
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002089394A JP3557589B2 (en) | 2002-03-27 | 2002-03-27 | Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002089394A JP3557589B2 (en) | 2002-03-27 | 2002-03-27 | Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003287488A JP2003287488A (en) | 2003-10-10 |
JP3557589B2 true JP3557589B2 (en) | 2004-08-25 |
Family
ID=29234980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002089394A Expired - Fee Related JP3557589B2 (en) | 2002-03-27 | 2002-03-27 | Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3557589B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005069337A1 (en) * | 2004-01-19 | 2005-07-28 | M2N Inc. | Method for massive assembling of carbon nanotubes |
KR100583769B1 (en) * | 2004-03-17 | 2006-05-26 | 한국과학기술원 | Carbon Nanotube Cartridge Manufacturing Equipment |
CN1830753A (en) | 2005-03-10 | 2006-09-13 | 清华大学 | Carbon nanotube assembly method and carbon nanotube device |
CN1840465B (en) | 2005-03-30 | 2010-09-29 | 清华大学 | One-dimensional nanomaterial device fabrication method |
CN100572260C (en) | 2005-03-31 | 2009-12-23 | 清华大学 | The manufacture method of unidimensional nano material device |
US7572300B2 (en) | 2006-03-23 | 2009-08-11 | International Business Machines Corporation | Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth |
WO2009075481A2 (en) * | 2007-12-10 | 2009-06-18 | Seoul National University Industry Foundation | A method for adsorption using solid thin film mask of nano-particle and adsorption matter |
US7917966B2 (en) * | 2008-08-21 | 2011-03-29 | Snu R&Db Foundation | Aligned nanostructures on a tip |
KR101097217B1 (en) | 2008-09-17 | 2011-12-22 | 한국기계연구원 | Micro contact probe for probe card coated with carbon nano tube and febrication method thereof |
GB201710982D0 (en) * | 2017-07-07 | 2017-08-23 | Univ Leuven Kath | Metal nanowires |
-
2002
- 2002-03-27 JP JP2002089394A patent/JP3557589B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003287488A (en) | 2003-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101159074B1 (en) | Conductive carbon nanotube tip, probe of scanning probe microscope comprising the same and manufacturing method of the conductive carbon nanotube tip | |
JP2004325428A (en) | Signal detecting probe having rod-shaped nanostructure adhering thereto, and manufacturing method thereof | |
US20030010910A1 (en) | Continuous fiber of single-wall carbon nanotubes | |
Wang | Characterizing the structure and properties of individual wire‐like nanoentities | |
US7601650B2 (en) | Carbon nanotube device and process for manufacturing same | |
US20100055349A1 (en) | Scanning Probe Assisted localized CNT growth | |
JP3557589B2 (en) | Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus | |
US6452171B1 (en) | Method for sharpening nanotube bundles | |
JP2012047539A (en) | Spm probe and light emitting portion inspection apparatus | |
WO2010146773A1 (en) | Microcontact prober | |
US8168251B2 (en) | Method for producing tapered metallic nanowire tips on atomic force microscope cantilevers | |
JP2007258172A (en) | Electron emitting device using carbon nanotube and method for manufacturing the same | |
Zhai et al. | In situ construction of hierarchical diamond supported on carbon nanowalls/diamond for enhanced electron field emission | |
US6892432B2 (en) | Nanotube cartridge and a method for manufacturing the same | |
JP3536288B2 (en) | Method of manufacturing nanotube probe | |
WO2004102582A1 (en) | Carbon nanotube-based probes, related devices and methods of forming the same | |
Dremov et al. | Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy | |
Collier | Carbon nanotube tips for scanning probe microscopy | |
JP2000227435A (en) | Probe for operating surface signal of electronic device, and manufacture thereof | |
JP3852287B2 (en) | Scanning probe microscope | |
JP2003090788A (en) | Spm cantilever and method of manufacturing the same | |
KR100553028B1 (en) | Probe for signal with rod-shaped nano structure attached to its end and production method thereof | |
JP2005100885A (en) | Field emission electron source and microscope using the same | |
Su et al. | Scanning Probe Microscopies for Characterizations of 2D Materials | |
Hantschel et al. | Diamond Probes Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040108 |
|
A521 | Written amendment |
Effective date: 20040216 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040506 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100528 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130528 |
|
LAPS | Cancellation because of no payment of annual fees |