[go: up one dir, main page]

JP3556284B2 - Optical element fixing structure - Google Patents

Optical element fixing structure Download PDF

Info

Publication number
JP3556284B2
JP3556284B2 JP23710894A JP23710894A JP3556284B2 JP 3556284 B2 JP3556284 B2 JP 3556284B2 JP 23710894 A JP23710894 A JP 23710894A JP 23710894 A JP23710894 A JP 23710894A JP 3556284 B2 JP3556284 B2 JP 3556284B2
Authority
JP
Japan
Prior art keywords
rotator
optical
holder
faraday rotator
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23710894A
Other languages
Japanese (ja)
Other versions
JPH08101360A (en
Inventor
友幸 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23710894A priority Critical patent/JP3556284B2/en
Publication of JPH08101360A publication Critical patent/JPH08101360A/en
Application granted granted Critical
Publication of JP3556284B2 publication Critical patent/JP3556284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光ファイバ通信等に用いる光アイソレータや光サーキュレータを構成する光学素子の固定構造に関する。
【0002】
【従来の技術】
レンズ等の光学素子をホルダーに固定する構造として、図5に示すように円筒状のホルダ31の内周に環状の溝31aを形成し、この溝に低融点ガラス33を充填して光学素子32を載置した状態で焼成し、融着接合する構造がある(特開平3−271704号公報参照)。
【0003】
これを利用して、図6に示すように、ファラデー回転子24を低融点ガラス26で固定したファラデー回転子ホルダ21と、旋光子25を低融点ガラス27で固定した旋光子ホルダ22とを溶接点28でYAG溶接により固定した光学素子の固定構造が利用されている。
【0004】
図6に示す光学素子は光アイソレータとして利用されている。つまり、ファラデー回転子24はガーネットからなり、直線偏光の偏光面を45°回転させる作用を持つ。また旋光子25は水晶からなり、その結晶軸に対してθの角度を持つ直線偏光が入射した場合、この直線偏光の偏光面を2θ回転させて通過させる作用を持つため、予めθが22.5°となるように設定しておく。いま、図6中の矢印方向から入射した直線偏光はファラデー回転子24を通過する際に偏光面が45°回転し、次に旋光子25を通過する際に−45°回転して元の偏光方位と一致する。一方、矢印と逆方向に入射した直線偏光は旋光子25を通過する際に偏光面が45°回転し、これがさらにファラデー回転子24を通過して45°回転するために、入射前の偏光方位に対して90°回転した状態となる。
【0005】
このように、光の入射方向によって、出射する光の偏光方向を直交させられるため、図6に示す光学素子の両端に吸収方位を持つ偏光子を配置させれば、一定方向のみの光を通過させ、逆方向は通過させないようにすることができ、光アイソレータとすることができるのである。
【0006】
この光アイソレータを、例えばレーザ光源の直後に接続しておけば、レーザ光源から発振された光が反射して戻ってきてもレーザ光源に入射することがなく、レーザ発振が不安定となることを防止できる。
【0007】
【発明が解決しようとする課題】
しかしながら、図6に示す固定構造において、低融点ガラス27の熱膨張係数は83×10−7/℃、旋光子ホルダ22の熱膨張係数は100×10−7/℃であるのに対し、水晶から成る旋光子25は300℃の熱膨張係数が300×10−7/℃と高温時の熱膨張係数が高く、他部材との熱膨張差が大きいものであった。そのため、低融点ガラス27を用いて焼成、融着した後の冷却時に、旋光子25が大きく収縮して、低融点ガラス27との間に引っ張り残留応力が生じていた。
【0008】
その結果、旋光子25の複屈折率が変化して位相差が生じ、通常の消光比が約50dBであるのに対し、消光比30dB以下と大きく劣化してしまうという問題点があった。そして、消光比が小さくなると、例えば光アイソレータとして用いた場合に、順方向損失特性、逆方向損失特性ともに劣化してしまう等の不都合があった。
【0009】
また、旋光子25は直線偏光の振動方位と光学軸との成す角度により直線偏光を回転させる角度が異なるため、光軸回りの回転調整が必要であるが、ファラデー回転子24はどのような振動方位の直線偏光に対しても所定の角度回転させる作用を持つため、回転調整の必要はない。したがって、ファラデー回転子24と旋光子25は一体化することが可能であるが、図6の構造ではファラデー回転子24と旋光子25を別々に組み立てて最後に接合していたため、作業工程が多いという問題点もあった。
【0010】
本発明は上述の点に鑑みてなされたものであり、旋光子に熱膨張差による引っ張り応力が生じないような固定構造を提供することを目的とする。また、本発明は、ファラデー回転子と旋光子を一体化した固定構造を得ることを目的とする。
【0011】
【課題を解決するための手段】上記問題点に鑑みて本発明はファラデー回転子と旋光子を同軸上に固定した構造において、筒状のファラデー回転子ホルダの内側段部に上記ファラデー回転子を配置するとともに、他の筒状の旋光子ホルダの内側段部に上記旋光子を配置し、上記両方のホルダの内側に筒状のスペーサを挿入して、該スペーサの各端部で上記ファラデー回転子及び/又は旋光子を挟持して保持し、さらに上記ファラデー回転子ホルダの外側に円筒形状の永久磁石を配置し、上記筒状のスペーサは上記永久磁石の内径よりも大きな外径の大径部を有し、上記永久磁石の両端を上記ファラデー回転子ホルダの鍔部と上記筒状のスペーサの大径部で保持したことを特徴とするものである。
【0012】
【実施例】
以下本発明実施例を図によって説明する。
【0013】
図1に示すように、ファラデー回転子ホルダ1は金属製の円筒状体で一方端部の外周に鍔部1aを備え、内周面に第1段部1bと第2段部1cを有している。そして、第1段部1bにファラデー回転子4を保持し、第2段部1cに備えた低融点ガラス6でファラデー回転子4を接合してある。また、ファラデー回転子ホルダ1の内周には円筒状のスペーサ3の一方の端部3aを挿入し、YAG溶接によりファラデー回転子ホルダ1とスペーサ3を接合してある。
【0014】
一方、旋光子ホルダ2は金属製の円筒状体で内周面に段部2aを備え、この段部2aに旋光子5を載置してある。そして、上記スペーサ3の他方の端部3bをこの旋光子ホルダ2の内周に挿入し、スペーサ3の端部3bを旋光子5に押し当てた状態で、スペーサ3と旋光子ホルダ2とを溶接点8でレーザ溶接により接続してある。このとき、旋光子5はスペーサ3と旋光子ホルダ2間に挟持されて保持されることになり、低融点ガラス等を用いて固定されていない。
【0015】
さらに、上記ファラデー回転子ホルダ1の外周に、ファラデー回転子4に磁界を印加するための永久磁石7を装着してあるが、上記鍔部1aを備えてあることにより、永久磁石7が光軸方向にずれることはない。また、永久磁石7として焼結磁石を用いる場合は、外部からの衝撃によって欠けやクラックが生じる事があるため、鍔部1aの外径を永久磁石7の外径よりも大きくすることが望ましい。
【0016】
このような本発明の光学素子の固定構造によれば、ファラデー回転子4と旋光子5を一体化してあるため、製造工程が簡略化できる。また、ファラデー回転子ホルダ1と旋光子ホルダ2のそれぞれの内周面にスペーサ3の両端部を挿入して接合する構造としてあるため、全体の同軸度を高くすることができる。
【0017】
さらに、旋光子5をスペーサ3と旋光子ホルダ2で挟持して保持することにより、低融点ガラスを用いないため旋光子5に熱膨張差による引っ張り応力が生じることはない。
【0018】
なお、上記ファラデー回転子4は、入射した直線偏光の偏光面の角度を回転させる作用を有し、通常ガーネットから成る。また、旋光子5は、結晶軸に対してθの角度を持つ直線偏光が入射した場合、この直線偏光の偏光面を2θ回転させて出射させる作用を持ち、通常水晶等の1/2波長板から成る。
【0019】
次に本発明の光学素子の固定構造の製造方法を説明する。まず、図2(a)に図1とは上下を逆にして示すように、ファラデー回転子ホルダ1の第1段部1bにファラデー回転子4を、第2段部1cに低融点ガラス6のプリフォームを配置した後、焼成してファラデー回転子4を融着接合する。そして、ファラデー回転子ホルダ1の外周に永久磁石7を装着し、さらにファラデー回転子ホルダ1の内周にスペーサ3の端部3aを挿入して、YAG溶接によりスペーサ3と回転子ホルダ1を接合する。
【0020】
次に、図2(b)に示すように、旋光子ホルダ2の内周の段部2aに旋光子5を載置した後、図2(a)に示す組立体におけるスペーサ3の他方の端部3bを旋光子ホルダ2の内周面に挿入する。そして、スペーサ3の端部3bを旋光子5に押し当てて、旋光子5に位置ずれが起きず、かつ応力による複屈折が生じない範囲で加圧した状態で、スペーサ3の側面と旋光子ホルダ2の内周面との間の溶接点8でレーザ溶接により接合すれば良い。
【0021】
また、以上の実施例では、スペーサ3の大径部の外径Aを永久磁石7の内径Bよりも大きくしてあるため、永久磁石7は鍔部1aとスペーサ3で両端を保持することができる。ただし、他の実施例として、スペーサ3の大径部の外径Aを永久磁石7の内径Bよりも小さくすることもできる。この場合は、ファラデー回転子ホルダ1とファラデー回転子4とスペーサ3を接合した後で永久磁石7を装着することができる。
【0022】
さらに、上記実施例ではファラデー回転子ホルダ1とスペーサ3を溶接により接合した例を示したが、スペーサ3の端部3aを長く延ばして、端部3aを低融点ガラス6に接触させ、この低融点ガラス6でファラデー回転子ホルダ1とスペーサ3をも接合するようにしても良い。
【0023】
また、上記実施例ではファラデー回転子4は低融点ガラス6で固定した例を示したが、本発明の参考例を図3に示すように、ファラデー回転子4もファラデー回転子ホルダ1とスペーサ3で挟持して保持することもできる。しかも、図3の例では旋光子ホルダ2の筒部2bを長くして、この筒部2bがファラデー回転子ホルダ1の筒部1dを覆うようにし、両方の筒部2b、1d間の溶接点9でレーザ溶接することにより全体を接合してある。このような構造とすれば、一回の溶接ですべての接合を行うことができ、製造が容易となる。
【0024】
さらに、上記実施例及び参考例では、ファラデー回転子ホルダ1とスペーサ3を別体で形成して接合したものを示したが、予め両者を一体的に形成することもできる。
【0025】
次に、本発明の参考例の固定構造を用いた光アイソレータを図4に示す。特定の振動方位の直線偏光を吸収する偏光子11、12をそれぞれ低融点ガラスで融着接合した偏光子ホルダ13、14の間に、上記本発明の参考例の光学素子の固定構造10を配置し、両端の偏光子11、12の吸収方向が垂直となるように光軸回りに調整した後、各部材をレーザ溶接で接合固定し、ケース15を装着すれば光アイソレータを作製することができる。
【0026】
この光アイソレータは、予めファラデー回転子4と旋光子5を一体化してあるため、製造が容易であり、また旋光子5の消光比が高いため、順方向損失特性、逆方向損失特性を向上させることができる。
【0027】
また、この他に、本発明の光学素子の固定構造は、複数のポート間で光の入出力方向を切り換えるために用いる光サーキュレータにも応用することができる。この光サーキュレータは、図示していないが、本発明の光学素子の固定構造の前後に、ルチルや方解石等の複屈折結晶体を備えて構成される。つまり、複屈折結晶体は、直線偏光の偏光面の角度に応じて屈折率が異なるため、上記ファラデー回転子や旋光子によって直線偏光の偏光面の角度を変化させ、複屈折結晶体によって、光の出射方向を切り換えることができるのである。
【0028】
ここで、図1に示す本発明の固定構造と、比較例として図6に示す従来の固定構造について、旋光子の消光比を測定した。なお、消光比とは、直線偏光が光学素子を通過した時に不必要な成分が加わって楕円偏光となるが、この時の楕円偏光の短軸に対する長軸の比のことであり、消光比が大きいほど特性が優れていることになる。その結果、図7に示すように、比較例では30dB以下の消光比であったのに対し、本発明実施例では35〜50dBと消光比を高くできることがわかった。したがって、本発明の固定構造を光アイソレータに用いれば、順方向の光の損失が小さく、逆方向の光を遮断する効果が極めて高いことがわかる。
【0029】
【発明の効果】
このように本発明によれば、ファラデー回転子と旋光子を同軸上に固定した構造において、筒状のファラデー回転子ホルダの内側段部にファラデー回転子を配置するとともに、他の筒状の旋光子ホルダの内側段部に旋光子を配置し、両方のホルダの内側に筒状のスペーサを挿入して、該スペーサの各端部で上記ファラデー回転子及び/又は旋光子を挟持して保持したことによって、製造時の作業工程を簡略化し、ファラデー回転子と旋光子との同軸度を高くすることができる。
【0030】
また、上記旋光子を旋光子ホルダとスペーサで挟持して保持したことによって、旋光子を低融点ガラスで接合しないために引っ張り応力が生じることがなく、消光比を高くすることができる。その結果、光アイソレータ等に応用した場合に順方向損失を小さくすることができる。
【図面の簡単な説明】
【図1】本発明の光学素子の固定構造を示す断面図である。
【図2】(a)(b)は本発明の光学素子の固定構造の製造工程を示す断面図である。
【図3】は本発明の参考例を示す断面図である。
【図4】本発明の参考例の光学素子の固定構造を用いた光アイソレータを示す断面図である。
【図5】従来の光学素子の固定構造を示す断面図である。
【図6】従来の光学素子の固定構造を示す断面図である。
【図7】本発明実施例及び比較例における旋光子の消光比を示すグラフである。
【符号の説明】
1:ファラデー回転子ホルダ
2:旋光子ホルダ
3:スペーサ
4:ファラデー回転子
5:旋光子
6:低融点ガラス
7:永久磁石
[0001]
[Industrial applications]
The present invention relates to a fixing structure of an optical element constituting an optical isolator or an optical circulator used for optical fiber communication or the like.
[0002]
[Prior art]
As a structure for fixing an optical element such as a lens to a holder, an annular groove 31a is formed on the inner periphery of a cylindrical holder 31 as shown in FIG. There is a structure in which sintering and fusion bonding are performed in a state in which is mounted (see JP-A-3-271704).
[0003]
Utilizing this, as shown in FIG. 6, the Faraday rotator holder 21 in which the Faraday rotator 24 is fixed by the low melting point glass 26 and the rotator holder 22 in which the rotator 25 is fixed by the low melting point glass 27 are welded. At point 28, a fixing structure of the optical element fixed by YAG welding is used.
[0004]
The optical element shown in FIG. 6 is used as an optical isolator. In other words, the Faraday rotator 24 is made of garnet and has the function of rotating the plane of polarization of linearly polarized light by 45 °. The optical rotator 25 is made of quartz, and when linearly polarized light having an angle of θ with respect to the crystal axis is incident, has an action of rotating the plane of polarization of the linearly polarized light by 2θ and passing the same, so that θ is set to 22. It is set to be 5 °. 6 is rotated by 45 ° when passing through the Faraday rotator 24, and then rotated by −45 ° when passing through the optical rotator 25. Match the bearing. On the other hand, the linearly polarized light incident in the direction opposite to the arrow rotates the polarization plane by 45 ° when passing through the optical rotator 25, and further rotates by 45 ° through the Faraday rotator 24. Is rotated 90 ° with respect to.
[0005]
As described above, since the polarization direction of the emitted light can be made orthogonal to the incident direction of the light, if a polarizer having an absorption direction is arranged at both ends of the optical element shown in FIG. In the opposite direction, so that it is not possible to pass in the opposite direction, and an optical isolator can be obtained.
[0006]
If this optical isolator is connected immediately after the laser light source, for example, even if the light emitted from the laser light source is reflected and returned, it does not enter the laser light source and the laser oscillation becomes unstable. Can be prevented.
[0007]
[Problems to be solved by the invention]
However, in the fixing structure shown in FIG. 6, the thermal expansion coefficient of the low-melting glass 27 is 83 × 10 −7 / ° C., and the thermal expansion coefficient of the optical rotator holder 22 is 100 × 10 −7 / ° C. The optical rotator 25 made of has a high coefficient of thermal expansion at a high temperature of 300 × 10 −7 / ° C. at 300 ° C. and a large difference in thermal expansion from other members. For this reason, upon cooling after firing and fusion using the low-melting glass 27, the optical rotator 25 is largely contracted, and tensile residual stress is generated between the optical rotator 25 and the low-melting glass 27.
[0008]
As a result, there is a problem that the birefringence of the optical rotator 25 changes and a phase difference is generated, and the extinction ratio is 30 dB or less, whereas the normal extinction ratio is about 50 dB. When the extinction ratio becomes small, for example, when the extinction ratio is used as an optical isolator, both the forward loss characteristic and the backward loss characteristic are deteriorated.
[0009]
Further, since the rotation of the optical rotator 25 varies depending on the angle between the oscillation direction of the linearly polarized light and the optical axis, it is necessary to adjust the rotation about the optical axis. There is no need to adjust the rotation because it has the function of rotating the azimuth linear polarized light by a predetermined angle. Therefore, the Faraday rotator 24 and the optical rotator 25 can be integrated, but in the structure of FIG. 6, the Faraday rotator 24 and the optical rotator 25 are separately assembled and finally joined, so that many work steps are required. There was also a problem.
[0010]
The present invention has been made in view of the above points, and an object of the present invention is to provide a fixing structure in which a tensile stress due to a difference in thermal expansion does not occur in an optical rotator. Another object of the present invention is to obtain a fixed structure in which a Faraday rotator and an optical rotator are integrated.
[0011]
SUMMARY OF THE INVENTION In view of the above problems, the present invention relates to a structure in which a Faraday rotator and an optical rotator are coaxially fixed, and the Faraday rotator is mounted on an inner step of a cylindrical Faraday rotator holder. While arranging, the above-mentioned optical rotator is arranged in the inner step of the other cylindrical optical rotator holder, and a cylindrical spacer is inserted inside both of the holders, and the Faraday rotation is performed at each end of the spacer. The Faraday rotator holder is further provided with a cylindrical permanent magnet disposed outside the Faraday rotator holder, and the cylindrical spacer has a larger outer diameter than the inner diameter of the permanent magnet. The permanent magnet is characterized in that both ends of the permanent magnet are held by a flange of the Faraday rotator holder and a large diameter portion of the cylindrical spacer.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
As shown in FIG. 1, the Faraday rotator holder 1 is a metal cylindrical body having a flange 1a on the outer periphery of one end and a first step 1b and a second step 1c on the inner peripheral surface. ing. The Faraday rotator 4 is held on the first step 1b, and the Faraday rotator 4 is joined with the low melting point glass 6 provided on the second step 1c. One end 3a of a cylindrical spacer 3 is inserted into the inner periphery of the Faraday rotator holder 1, and the Faraday rotator holder 1 and the spacer 3 are joined by YAG welding.
[0014]
On the other hand, the optical rotator holder 2 is a cylindrical metal body and has a step 2a on the inner peripheral surface, and the optical rotator 5 is mounted on the step 2a. Then, the other end 3b of the spacer 3 is inserted into the inner periphery of the optical rotator holder 2, and the spacer 3 and the optical rotator holder 2 are held together with the end 3b of the spacer 3 pressed against the optical rotator 5. The connection is made by laser welding at a welding point 8. At this time, the optical rotator 5 is sandwiched and held between the spacer 3 and the optical rotator holder 2 and is not fixed using low melting point glass or the like.
[0015]
Further, a permanent magnet 7 for applying a magnetic field to the Faraday rotator 4 is mounted on the outer periphery of the Faraday rotator holder 1, but since the flange 1a is provided, the permanent magnet 7 There is no deviation in the direction. When a sintered magnet is used as the permanent magnet 7, chipping or cracking may occur due to external impact. Therefore, it is desirable that the outer diameter of the flange 1 a be larger than the outer diameter of the permanent magnet 7.
[0016]
According to such an optical element fixing structure of the present invention, since the Faraday rotator 4 and the optical rotator 5 are integrated, the manufacturing process can be simplified. In addition, since both ends of the spacer 3 are inserted into and joined to the inner peripheral surfaces of the Faraday rotator holder 1 and the optical rotator holder 2, the overall coaxiality can be increased.
[0017]
Furthermore, since the optical rotator 5 is sandwiched and held between the spacer 3 and the optical rotator holder 2, no tensile stress is generated in the optical rotator 5 due to a difference in thermal expansion because low melting point glass is not used.
[0018]
The Faraday rotator 4 has the function of rotating the angle of the plane of polarization of the incident linearly polarized light, and is usually made of garnet. The optical rotator 5 has the function of, when linearly polarized light having an angle of θ with respect to the crystal axis is incident, rotating the plane of polarization of the linearly polarized light by 2θ and emitting the light, and is usually a half-wave plate such as quartz. Consists of
[0019]
Next, a method for manufacturing the optical element fixing structure of the present invention will be described. First, as shown in FIG. 2A, the Faraday rotator 4 is provided on the first step 1b of the Faraday rotator holder 1 and the low-melting glass 6 is provided on the second step 1c. After arranging the preform, it is baked and the Faraday rotator 4 is fusion bonded. Then, the permanent magnet 7 is mounted on the outer periphery of the Faraday rotator holder 1, the end 3a of the spacer 3 is inserted into the inner periphery of the Faraday rotator holder 1, and the spacer 3 and the rotor holder 1 are joined by YAG welding. I do.
[0020]
Next, as shown in FIG. 2B, after the optical rotator 5 is placed on the step 2a on the inner periphery of the optical rotator holder 2, the other end of the spacer 3 in the assembly shown in FIG. The part 3 b is inserted into the inner peripheral surface of the optical rotator holder 2. Then, the end portion 3b of the spacer 3 is pressed against the optical rotator 5 and the side surface of the spacer 3 and the optical rotator are pressed in a state where the optical rotator 5 is pressurized within a range where no displacement occurs and no birefringence due to stress occurs. What is necessary is just to join by laser welding at the welding point 8 with the inner peripheral surface of the holder 2.
[0021]
Further, in the above embodiment, since the outer diameter A of the large diameter portion of the spacer 3 is larger than the inner diameter B of the permanent magnet 7, both ends of the permanent magnet 7 can be held by the flange 1a and the spacer 3. it can. However, as another embodiment, the outer diameter A of the large diameter portion of the spacer 3 may be smaller than the inner diameter B of the permanent magnet 7. In this case, the permanent magnet 7 can be mounted after the Faraday rotator holder 1, the Faraday rotator 4, and the spacer 3 are joined.
[0022]
Further, in the above embodiment, the example in which the Faraday rotator holder 1 and the spacer 3 are joined by welding is shown. However, the end 3a of the spacer 3 is extended to make the end 3a contact the low melting point glass 6, The Faraday rotator holder 1 and the spacer 3 may also be joined by the melting point glass 6.
[0023]
In the above embodiment, the example in which the Faraday rotator 4 is fixed by the low-melting glass 6 is shown. However, as shown in FIG. 3, the Faraday rotator 4 also includes the Faraday rotator holder 1 and the spacer 3. It can also be held by holding it. In addition, in the example of FIG. 3, the cylindrical portion 2b of the optical rotator holder 2 is lengthened so that the cylindrical portion 2b covers the cylindrical portion 1d of the Faraday rotator holder 1, and a welding point between the two cylindrical portions 2b and 1d. The whole was joined by laser welding at 9. With such a structure, all joining can be performed by one welding, and the manufacturing becomes easy.
[0024]
Further, in the above embodiment and the reference example, the Faraday rotator holder 1 and the spacer 3 are formed separately and joined to each other, but they may be formed integrally in advance.
[0025]
Next, FIG. 4 shows an optical isolator using the fixing structure of the reference example of the present invention. The optical element fixing structure 10 of the above-described reference example of the present invention is disposed between the polarizer holders 13 and 14 in which the polarizers 11 and 12 that absorb linearly polarized light having a specific vibration direction are fusion-bonded with low-melting glass, respectively. Then, after adjusting around the optical axis such that the absorption directions of the polarizers 11 and 12 at both ends are vertical, each member is joined and fixed by laser welding, and the case 15 is attached, whereby an optical isolator can be manufactured. .
[0026]
This optical isolator is easy to manufacture because the Faraday rotator 4 and the optical rotator 5 are integrated in advance, and improves the forward loss characteristics and the reverse loss characteristics because the extinction ratio of the optical rotator 5 is high. be able to.
[0027]
In addition, the optical element fixing structure of the present invention can also be applied to an optical circulator used for switching the input / output direction of light among a plurality of ports. Although not shown, the optical circulator includes a birefringent crystal such as rutile or calcite before and after the optical element fixing structure of the present invention. In other words, since the birefringent crystal has a different refractive index depending on the angle of the plane of polarization of linearly polarized light, the angle of the plane of polarization of linearly polarized light is changed by the Faraday rotator or optical rotator, and Can be switched.
[0028]
Here, the extinction ratio of the optical rotator was measured for the fixed structure of the present invention shown in FIG. 1 and the conventional fixed structure shown in FIG. 6 as a comparative example. The extinction ratio is the ratio of the major axis to the minor axis of the elliptically polarized light when the linearly polarized light passes through the optical element and becomes an elliptically polarized light when an unnecessary component is added. The larger the value, the better the characteristics. As a result, as shown in FIG. 7, it was found that the extinction ratio could be as high as 35 to 50 dB in the example of the present invention, while the extinction ratio was 30 dB or less in the comparative example. Therefore, when the fixing structure of the present invention is used in an optical isolator, the loss of light in the forward direction is small and the effect of blocking light in the reverse direction is extremely high.
[0029]
【The invention's effect】
As described above, according to the present invention, in a structure in which the Faraday rotator and the optical rotator are coaxially fixed, the Faraday rotator is arranged on the inner step of the cylindrical Faraday rotator holder, and another cylindrical optical rotator is provided. The optical rotator was arranged at the inner step of the child holder, a cylindrical spacer was inserted inside both holders, and the Faraday rotator and / or the optical rotator were held and held at each end of the spacer. This simplifies the manufacturing process and increases the coaxiality between the Faraday rotator and the optical rotator.
[0030]
In addition, since the optical rotator is held between the optical rotator holder and the spacer, no tensile stress is generated because the optical rotator is not bonded with the low melting point glass, and the extinction ratio can be increased. As a result, when applied to an optical isolator or the like, the forward loss can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a fixing structure of an optical element according to the present invention.
FIGS. 2A and 2B are cross-sectional views illustrating a process of manufacturing an optical element fixing structure according to the present invention.
FIG. 3 is a sectional view showing a reference example of the present invention.
FIG. 4 is a cross-sectional view showing an optical isolator using a fixing structure of an optical element according to a reference example of the present invention.
FIG. 5 is a cross-sectional view showing a conventional optical element fixing structure.
FIG. 6 is a sectional view showing a conventional optical element fixing structure.
FIG. 7 is a graph showing extinction ratios of optical rotators in Examples of the present invention and Comparative Examples.
[Explanation of symbols]
1: Faraday rotator holder 2: Rotator holder 3: Spacer 4: Faraday rotator 5: Rotator 6: Low melting glass 7: Permanent magnet

Claims (1)

ファラデー回転子と旋光子を同軸上に固定した構造において、筒状のファラデー回転子ホルダの内側段部に上記ファラデー回転子を配置するとともに、他の筒状の旋光子ホルダの内側段部に上記旋光子を配置し、上記両方のホルダの内側に筒状のスペーサを挿入して、該スペーサの各端部で上記ファラデー回転子及び/又は旋光子を挟持して保持し、さらに上記ファラデー回転子ホルダーの外側に円筒形状の永久磁石を配置し、上記筒状のスペーサは上記永久磁石の内径よりも大きな外径の大径部を有し、上記永久磁石の両端を上記ファラデー回転子ホルダの鍔部と上記筒状のスペーサの大径部で保持したことを特徴とする光学素子の固定構造。In a structure in which the Faraday rotator and the optical rotator are coaxially fixed, the Faraday rotator is arranged on the inner step of the cylindrical Faraday rotator holder, and the above-mentioned is disposed on the inner step of the other cylindrical rotator holder. place the polarization rotator, by inserting the cylindrical spacer inside said both holders at each end of the spacer and held by sandwiching the Faraday rotator and / or the polarization rotator, further said Faraday rotator A cylindrical permanent magnet is arranged outside the holder, the cylindrical spacer has a large-diameter portion having an outer diameter larger than the inner diameter of the permanent magnet, and both ends of the permanent magnet are connected to flanges of the Faraday rotator holder. A fixing structure for an optical element, wherein the optical element is held by a portion and a large diameter portion of the cylindrical spacer .
JP23710894A 1994-09-30 1994-09-30 Optical element fixing structure Expired - Fee Related JP3556284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23710894A JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23710894A JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Publications (2)

Publication Number Publication Date
JPH08101360A JPH08101360A (en) 1996-04-16
JP3556284B2 true JP3556284B2 (en) 2004-08-18

Family

ID=17010538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23710894A Expired - Fee Related JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Country Status (1)

Country Link
JP (1) JP3556284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843407B1 (en) * 2006-10-10 2008-07-04 삼성전기주식회사 Lens barrel of camera module and laser device to assemble it

Also Published As

Publication number Publication date
JPH08101360A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3924104B2 (en) Ferrule connection type optical isolator with optical fiber
JP3556284B2 (en) Optical element fixing structure
EP1150840A1 (en) Method of micro-fabrication
JPH10133146A (en) Capillary type optical isolator
JPS6170516A (en) Semiconductor laser module with optical isolator
WO2017187886A1 (en) Optical isolator
US20020191881A1 (en) Optical isolator
JPH10142558A (en) Optical isolator and its production
JP3739686B2 (en) Embedded optical isolator
JP3588207B2 (en) Holding structure of polygonal optical element made of birefringent crystal
JP3973975B2 (en) Optical isolator
JP3075435B2 (en) Optical isolator
JP3627191B2 (en) Optical fiber-terminal
JP2895871B2 (en) Magneto-optical parts
JPH0432816A (en) Light isolator
JP2001091899A (en) Surface mounting type isolator
JP2551877B2 (en) Fiber I / O type optical components
JP2001013379A (en) Optical module
JPH07151997A (en) Optical isolator
JP2567358Y2 (en) Optical isolator
JPH0493814A (en) Production of optical isolator
JP2750872B2 (en) Multi-stage optical isolator
JPH0743641A (en) Optical isolator equipped with lens
JPH02108016A (en) Optical isolator
JP2001004958A (en) Optical isolator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees