[go: up one dir, main page]

JP3555476B2 - Travel control device for vehicles - Google Patents

Travel control device for vehicles Download PDF

Info

Publication number
JP3555476B2
JP3555476B2 JP00574099A JP574099A JP3555476B2 JP 3555476 B2 JP3555476 B2 JP 3555476B2 JP 00574099 A JP00574099 A JP 00574099A JP 574099 A JP574099 A JP 574099A JP 3555476 B2 JP3555476 B2 JP 3555476B2
Authority
JP
Japan
Prior art keywords
vehicle
priority
collision
traveling
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00574099A
Other languages
Japanese (ja)
Other versions
JP2000207691A (en
Inventor
伸 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP00574099A priority Critical patent/JP3555476B2/en
Priority to US09/475,986 priority patent/US6445308B1/en
Priority to EP04007804A priority patent/EP1435601B1/en
Priority to DE60016815T priority patent/DE60016815T8/en
Priority to DE60019653T priority patent/DE60019653T8/en
Priority to EP00100489A priority patent/EP1020834B1/en
Publication of JP2000207691A publication Critical patent/JP2000207691A/en
Priority to US10/199,039 priority patent/US6861957B2/en
Priority to US10/198,934 priority patent/US6801138B2/en
Application granted granted Critical
Publication of JP3555476B2 publication Critical patent/JP3555476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両用走行制御装置、特に他車と衝突の可能性がある場合の回避動作に関する。
【0002】
【従来の技術】
従来より、車両間通信で他車の走行データを取得し、自車と他車が衝突する可能性がある場合に衝突を回避するために所定の回避動作を実行する装置が知られている。
【0003】
例えば、特開平7−333317号公報には、移動体間で位置情報を送受し、両移動体が所定距離まで接近した場合に警報を与える装置が開示されている。
【0004】
【発明が解決しようとする課題】
一方、単に警報を与えるだけでなく、より積極的に回避操作(最大減速度で減速する等)を行うことが考えれるが、衝突の可能性がある互いの車両がそれぞれ回避操作を行うのが必ずしも妥当でない場合も少なくない。
【0005】
図10には、衝突の可能性がある車両A、Bの位置関係の一例が模式的に示されている。車両Aは優先道路を走行し、車両Bは非優先道路から優先道路に進入しようとする状況である。両車両の位置関係及び走行速度から衝突の可能性があると判定された場合には、従来技術では車両A、車両Bともに自車の運転者に対して警報を与え、さらにブレーキ印加で減速する等の回避動作を行うことになる。 しかしながら、車両Aは優先道路を走行しているため、本来であれば車両Aはそのまま走行し、車両Bだけが回避動作を行うべきであり、車両Bのみならず車両Aも減速等の回避動作を行ってしまうと、車両Bとの衝突は回避できるものの、車両Aの後方を走行している車両Cとの車間距離が急減してしまう(車両Cの運転者は、車両Bを発見しても車両Aは優先道路を走行しているため減速しないとみなして走行する)問題がある。
【0006】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、自車と他車が衝突する可能性がある場合に、より効果的に回避動作を行って衝突を防止、あるいは衝突時の衝撃を緩和できる装置を提供することにある。
【0007】
【課題を解決するための手段】
発明は、自車の走行データ及び車両間通信により得られた他車の走行データに基づいて自車の走行を制御する装置であって、前記自車の走行データ及び他車の走行データに基づいて両車両の衝突の可能性を評価する評価手段と、衝突の可能性がある場合に、自車と他車の優先度を決定する優先度決定手段と、前記優先度に基づいて自車の回避動作を実行する制御手段と、前記優先度決定手段で自車に優先度がないと決定された場合に、前記他車に対して自車が回避動作を実行する旨のデータを送信する送信手段とを有し、前記制御手段は、前記送信手段で送信した後に前記回避動作を実行することを特徴とする。衝突の可能性がある場合でも、一律に自車と他車が回避動作を行うのではなく、自車と他車の優先度に基づいて、より詳しくは優先度の低い車両が回避動作を行うことで、他の車両の走行(あるいは交通の流れ)に影響を与えることを防止しつつ、自車と他車の衝突の効果的に回避することができる。そして、自車と他車のいずれが回避動作を行うべきかを車両間通信で送受することで、効果的に衝突を回避できる。
【0008】
また、発明は、自車の走行データ及び車両間通信により得られた他車の走行データに基づいて自車の走行を制御する装置であって、前記自車の走行データ及び他車の走行データに基づいて両車両の衝突の可能性を評価する評価手段と、衝突の可能性がある場合に、自車と他車の優先度を決定する優先度決定手段と、前記優先度に基づいて自車の回避動作を実行する制御手段とを有し、前記制御手段は、前記優先度決定手段で自車に優先度があると決定され、かつ、前記他車から回避動作を実行する旨のデータを受信した場合に、前記回避動作を非実行とすることを特徴とする。自車に優先度があった場合でも、他車から回避動作を行う旨のデータを受信したうえで回避動作の非実行を決定する(他車から回避動作を行う旨のデータを受信しない限り、自車に優先度があっても回避動作を原則実行する)ことで、確実に衝突を回避することができる。
【0009】
ここで、前記優先度決定手段は、道路法規上の優先関係に基づいて決定できる。自車が例えば優先道路を走行している場合には、自車の回避動作を抑制し、他車に回避動作を主に行わせることで、優先道路を走行している他の車両に影響を与えることなく衝突を回避することができる。
【0010】
また、前記優先度決定手段は、自車と他車の速度に基づいて決定できる。回避動作の難易及び他の交通に与える影響は自車と他車の車速に依存し、自車の方が他車よりも車速が小さい場合には、自車の回避動作を実行する方が容易である。したがって、車速に応じて優先度を決定することで、効果的に衝突を回避できる。
【0011】
また、前記優先度決定手段は、自車が所定の回避動作を実行した場合の自車と前記他車以外の車両との衝突の可能性に基づいて決定できる。他車との衝突を回避した場合でも、さらに他の車両(第3車)との衝突の可能性を増大させたのでは意味がない。そこで、自車が回避動作を行った場合の第3車との衝突の可能性を考慮し、第3車との衝突の可能性がない場合に自車が回避動作を行うことで、交通の円滑な流れを維持しつつ衝突を回避することができる。
【0013】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
【0014】
図1には、本実施形態の構成ブロック図が示されている。自車10と他車A、Bとは車両間通信を行い、互いの走行データを送受する関係にある。
【0015】
自車10には、通信アンテナ12が設けられ、さらにデータ通信部14、電子制御装置ECU16、各種センサ部18、アクチュエータ部20が設けられている。
【0016】
データ通信部14は、自車10の走行データ、具体的には自車の現在の位置や操舵角、車速に基づいて算出された所定時間経過後の予測位置、予測速度、予測加速度を変調した後にアンテナ12を介して他車に送信するとともに、他車から送られてきた走行データを受信し、復調した後にECU16に供給する。データ通信部14の具体的な構成については後述する。
【0017】
ECU16は、具体的にはマイクロコンピュータで構成され、上述した所定時間経過後の自車の予測位置、予測速度、予測加速度を演算するとともに、他車から受信した他車の予測位置、予測速度、予測加速度に基づいて自車と他車の衝突の可能性を評価する。そして、評価の結果、衝突の可能性がある場合には、さらに自車と他車の優先度を決定し、優先度に基づいてアクチュエータ部20に制御信号を供給して自車の回避走行を実行する。回避走行を行うに際しての基本的な原理は、衝突の可能性がある場合に一律に減速等の回避動作を実行するのではなく、自車と他車の優先度を比較して自車の優先度が低い場合には自車の回避動作を行い、自車の優先度が高い場合には回避動作を行わない(あるいは、回避動作を行ったとしてもその操作は限定的(単に警報を鳴らす等)で主要な回避動作は他車に委ねる)ことである。
【0018】
センサ部18は、GPSや操舵角センサ、車速センサを含んで構成され、検出した車両の現在位置や操舵角、車速をECU16に供給する。
【0019】
アクチュエータ部20は、ブレーキアクチュエータやステアリングアクチュエータ、ブザー等から構成され、ECU16からの制御信号に応じてブレーキを印加して減速する、操舵する、あるいはステアリング操作を運転者に促す等の回避動作を行う。
【0020】
図2には、本実施形態の全体処理フローチャートが示されている。まず、ECU16はセンサ部18からの信号を入力する(S101)。具体的には、GPSによる位置データ、操舵角、車速である。これらの他に車載レーダで得られた他車との相対位置やヨーレート、駆動トルク推定値、路面μ推定値、路面カント、勾配推定値、推定車両重量を入力してもよい。これらのデータを入力すると、ECU16は自車の走行データを演算する(S102)。演算するのは、所定時間経過後(数秒後)の自車の予測位置、予測速度、予測加速度である。予測位置を例にとると、ECU16は4輪の車両モデルから逐次シミュレーションを行い、現在〜数秒後の時空上(空間軸と時間軸を有する空間上)での車両4隅の位置座標を演算する。また、GPSの電波受信状況による位置誤差と車両特性のばらつきによる位置誤差を位置座標に加える。誤差を考慮すると、予測位置は確率で表現されることになる(存在確率分布)。
【0021】
次に、算出した走行データを他車に定期的に送信する(S103)。送信の手順としては、まず演算で得られた走行データを時間、位置データ毎に分割する。例えば、
【表1】

Figure 0003555476
等である。そして、時間と位置データを適当な単位でまるめて(最小桁LSBをまるめる)合成し、一連の数列を作成する。作成した数列は所定の暗号化処理により乱数化する。
【0022】
例えば、上記表1の時間1.01における時間と位置は、
1.0,1013,0105,15→101013010515→730184621803869
と変換される。そして、このようにして作成した数列をスペクトラム拡散通信のPN系列、あるいはホッピング周波数のパターンを決める乱数として使用する。
【0023】
なお、現在の自車両の位置座標のみを用いてPN系列、あるいはホッピング周波数を作成することもできる。但し、位置座標の丸め込みの際に異なるLSBに複数車両が存在する可能性があるので、混信を避けるべく車両IDに相当する数列を位置情報の数列に追加してPN系列あるいはホッピング周波数のパターンを決定する。例えば、自車のIDが0323、現在の位置が(1012.0,1411.0,15.0)の場合には、
0323,1012.0,1411.0,15.0→0.231012141115→846120973956829
となる。
【0024】
実際の送信情報は正確な時間、位置情報、その位置での存在確率であり、これらはパルス化してデジタル通信として搬送する。
【0025】
図4には、データ通信部14の送信構成が示されている。スペクトラム拡散通信の例である。1次変調部14aで送信するパルスに比べて十分高い周波数を有する搬送波のチップ時間(波長)を変化させ、変調信号とPN系列発生器14cで発生したPN系列とを乗算器14bで乗算し、バンドパスフィルタ14dを経てアンテナ12から送信する。なお、周波数ホッピング方式の場合は数列に応じて周波数をホップさせて搬送波を作成する。また、送信データには自車の現在の位置や車速を含めてもよい。
【0026】
自車の走行データを他車に送信した後、他車から送信されてきた他車の走行データを受信する(S104)。受信に際しては、まず自車が送信した電波をフィルタあるいは時間的に取り除き、送信時に作成した自車の時間、位置データを丸めたデータに、必要に応じて時空上の近傍のデータを追加して送信時と同様に数列を作成する。例えば、送信時のデータとして時間1.0、位置(1013,0105,15)から合成、暗号化を経て730184621803869が得られる他、時空上の近傍のデータである時間1.0、位置(1014,0105,15)から530144621893867を作成し、また時空上の近傍データである時間1.5、位置(1013,0105,15)から730884621893865を作成する。そして、作成した数列をスペクトラム拡散のPN系列、あるいはホッピング周波数のパターンを決める乱数として使用し、受信する。
【0027】
図5には、データ通信部14の受信構成が示されている。スペクトラム拡散通信の例である。アンテナ12で受信した信号をバンドパスフィルタ14eに通し、受信信号とPN系列発生器14gで発生した数列とを乗算器14fで乗算してPNを解除し、復調器14hで復調する。なお、送信時に車両IDを用いてPN系列を生成した場合には、受信時にも車両IDを用いてPN系列を作成することは言うまでもない。
【0028】
以上のようにして他車の走行データを受信すると(S105でYES)、受信した他車と自車の時空上における衝突(接触)確率及び衝突(接触)した場合の衝撃の大きさを演算する(S106)。
【0029】
図9には、時空上における自車と受信した他車の位置関係の一例が示されている。図において、座標は空間座標X、Yと時間座標tである。自車の時空上における予測位置の軌跡は100、他車の時空上における予測位置の軌跡は200で示されている。それぞれの予測位置には記述したように誤差が含まれており、位置毎に存在確率がある。そして、自車と他車の予測位置の存在確率100%同士が重なり合う場合には、衝突確率は100%であり、存在確率0%〜100%の部分に重なりが存在する場合には、重なり部分の存在確率の積が最大となる値が衝突確率となる。例えば、自車の存在確率60%の部分と他車の存在確率50%の部分が重なるとすると、衝突の確率は60%×50%=30%となる。
【0030】
一方、衝突時の衝撃の大きさは運動エネルギに比例することから、最初に有限の(0でない)衝突確率が生じた位置における自車と他車の相対速度を求め、その絶対値の2乗に所定の定数を乗じた値を衝撃の大きさとする。
【0031】
衝突の確率及び衝撃の大きさを評価した後、ECU16は、図3に示されるように、衝突確率が所定値以上高く、かつ、衝撃も所定値以上大きいか否かを判定する(S107)。衝突確率が高く、かつ、衝撃も大きい場合には、回避操作が必要と判定して所定の最適回避制御演算を実行する(S108)。
【0032】
この最適回避制御演算は、回避操作として減速制御が適当か否か、及び回避の余裕度を演算するもので、図6にその詳細フローチャートが示されている。
【0033】
図6において、まず自車が最大制動力で減速したと仮定した場合の車両運動(予測位置、予測速度、予測加速度)を演算する(S201)。次に、演算して得られた車両運動量を用いて再度他車との衝突確率及び衝突時の衝撃の大きさを評価し、自車が最大制動力で減速したと仮定した場合(他車は減速しないで予測通り走行すると仮定)の衝撃の大きさが最大制動力で減速しない場合の衝撃の大きさ(S106で算出された衝撃の大きさ)よりも低下したか否かを判定する(S202)。衝撃の大きさが低下した場合(衝突しない場合も含む)には、ブレーキ制御が有効であるとしてブレーキ制御許可状態に設定し(例えばブレーキ制御フラグBを1にセットする:S203)、衝撃の大きさが低下しない場合(等しいか、あるいは制動したがゆえに逆に衝撃が大きくなった場合)には、ブレーキ制御は有効でないとしてブレーキ制御を不可状態(フラグBを0にセットする)にする(S204)。そして、回避時の他車との最短距離(自車及び他車の予測位置を誤差を含めて全て存在確率100%とした場合の他車との最短距離)及び自車と他車の相対速度(現在の相対速度)に基づいて回避余裕度を算出する(S205)。回避余裕度は、具体的には
【数1】
回避余裕度=最短距離/相対速度
で算出する。この式は、最短距離が大きい程余裕があり、自車と他車の相対速度が小さい程両者はゆっくり近づくため余裕があるとの事実に基づくものである。なお、ブレーキ制御不可状態の場合にはステアリングを操作して回避することになるので、適当なステアリング操作を行った場合の最短距離で回避余裕度が算出される。
【0034】
再び図3に戻り、以上のようにして最適回避制御演算を行った後、算出された回避余裕度を用いて回避までの余裕があるか否かを判定する(S109)。回避余裕度が所定値以上であって回避余裕がある場合(S109でNO)には、より効果的な回避を行うべく自車と他車の交通優先権をチェックする(S111)。
【0035】
図7には、S111における処理の詳細が示されている。まず、メモリ(図1では図示せず:ナビゲーションシステムの地図データを援用できる)に格納された地図データ及び検出された自車位置、並びに受信した他車位置に基づいて自車及び他車の走行車線、走行道路を特定し、自車と他車の道路法規上の優先関係を検出する(S301)。そして、自車の方が優先か否かを判定し(S302)、自車が優先でなければ他車優先のフラグをセットする(例えばフラグPを1にセットする:S310)。道路法規上自車に優先権がある場合には、次に自車と他車の現在の車速を比較する(S303)。比較の結果、他車の方が速い場合には、他車優先のフラグをセットする(S309)。車速の大きい方に優先権を付与するのは、車速の大きい方に回避操作を行わせるのは一般に困難で交通の流れに与える影響も大きいと考えられるからである。
【0036】
一方、自車の方が他車よりも車速が大きい場合には、次に自車の回避制御により第3車(S107で衝突の可能性ありと判定された他車以外の車両)と衝突する可能性があるか否かを判定する(S306)。この判定は、例えば後続車が存在するか否か、自車の隣接車線を併走している車両が存在するか否かで行うことができ(これらの車両の存在は車両間通信あるいは自車に搭載されたレーダ装置で検知できる)、第3車との衝突の可能性がない場合には他車に優先権を付与し(S308)、第3車との衝突の可能性がある場合には自車優先とする(S307)。なお、「他車優先」の場合には自車が回避動作を実行し、「自車優先」の場合には自車は回避動作を実行しないことになる。
【0037】
再び図3に戻り、交通優先権のチェックが終了すると、自車に優先権がなく(他車に優先権がある)、かつ、アクチュエータ部20の作動に異常がないかを判定する(S112)。自車に優先権がなく、アクチュエータ部も正常に機能する場合には、自車が回避動作を行う必要があるため、次回の車両運動演算時に回避制御の内容を入れて他車に送信する(S113)。これにより、他車は次回の受信時において自車が回避動作を行うべき旨のデータを受信するので、他車は回避動作を実行しないことになる。なお、他車のECU16でも独自に同様の判定を行い、自分に優先権があると判定するが、相手から回避動作を行う旨のデータを受信して始めて回避動作を実行しないことを決定し、自分に優先権があると判定しても、相手から回避動作を行う旨のデータを受信しない場合にはフェイルセーフの観点から回避動作を実行する。そして、他車に対して自車が回避動作を行うべき旨のデータを送信した後、次回の判定処理で回避までの余裕が無くなったと判定された場合に(S109でYES)、自車のECU16は所定の回避制御を実行する(S110)。
【0038】
一方、S109にてYES、すなわち回避余裕がない場合には、直ちに回避制御を実行する(S110)。
【0039】
図8には、S110における処理の詳細が示されている。まず、ブレーキ制御フラグBの値をチェックすることでブレーキ制御が可能か否かを判定する(S401)。ブレーキ制御が可能である場合には、ブレーキアクチュエータを最大制御力で作動させるべくブレーキ圧を増圧して減速する(S402)。これにより、他車との衝突が回避される(あるいは、衝突時の衝撃が抑制される)。また、ブレーキ制御不可状態である場合には、ブレーキアクチュエータ制御を終了しブレーキ圧を減圧する(S403)。そして、ドライバに対してステアリング操作などを指示する(S404)。ステアリングの方向は、S106で得られた衝突の確率及び衝撃を低下させるような方向である。
【0040】
このように、本実施形態では自車と他車との衝突の可能性を評価し、衝突する可能性があっても自車及び他車が共に回避動作を行うのではなく、自車と他車の優先度に応じていずれかの車両が回避動作を行うようにしたので、回避動作に伴って第3車との新たな衝突の可能性が生じることなく、効果的に衝突を回避することができる。
【0041】
なお、本実施形態では自車と他車の優先度を判定し、優先権のない方が回避動作を行う場合を示したが、例えば優先度を割合(自車の優先度40%で他車の優先度60%)で評価し、この割合に応じて回避動作の割合も決定する(自車の減速度は最大減速度の60%、他車の減速度は最大減速度の40%)ことも可能である。すなわち、自車と他車のいずれか一方が回避動作を行うのではなく、優先度に応じて回避動作を両者で負担することも可能である。
【0042】
【発明の効果】
以上説明したように、本発明によれば自車と他車が衝突する可能性がある場合に、交通の流れに与える影響を抑えつつ、衝突を効果的に回避することができる。
【図面の簡単な説明】
【図1】実施形態の構成ブロック図である。
【図2】実施形態の全体処理フローチャート(その1)である。
【図3】実施形態の全体処理フローチャート(その2)である。
【図4】実施形態のデータ通信部の送信構成図である。
【図5】実施形態のデータ通信部の受信構成図である。
【図6】実施形態の最適車両回避制御の詳細フローチャートである。
【図7】実施形態の交通優先権チェックの詳細フローチャートである。
【図8】実施形態の回避制御の詳細フローチャートである。
【図9】実施形態の自車と他車の時空上における予測軌跡説明図である。
【図10】自車と他車の位置関係を示す説明図である。
【符号の説明】
10 車両(自車)、12 アンテナ、14 データ通信部、16 ECU、18 センサ部、20 アクチュエータ部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicular travel control device, and more particularly to an avoidance operation when there is a possibility of collision with another vehicle.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known an apparatus that acquires traveling data of another vehicle through inter-vehicle communication and executes a predetermined avoiding operation in order to avoid a collision when the own vehicle and another vehicle may collide.
[0003]
For example, Japanese Patent Laying-Open No. 7-333317 discloses a device that transmits and receives position information between moving bodies and gives an alarm when both moving bodies approach a predetermined distance.
[0004]
[Problems to be solved by the invention]
On the other hand, it is conceivable that not only a warning is given but also an avoidance operation (eg, deceleration at the maximum deceleration) is performed more positively. In many cases, this is not always appropriate.
[0005]
FIG. 10 schematically shows an example of a positional relationship between vehicles A and B that may have a collision. Vehicle A is traveling on a priority road, and vehicle B is about to enter a priority road from a non-priority road. When it is determined that there is a possibility of a collision based on the positional relationship between the two vehicles and the traveling speed, in the related art, both the vehicle A and the vehicle B give a warning to the driver of the own vehicle, and further decelerate by applying the brake. And so on. However, since the vehicle A is traveling on the priority road, the vehicle A normally travels as it is, and only the vehicle B should perform the avoidance operation. Is performed, the collision with the vehicle B can be avoided, but the inter-vehicle distance with the vehicle C running behind the vehicle A is sharply reduced. However, since the vehicle A is traveling on the priority road, it is assumed that the vehicle A does not decelerate and travels).
[0006]
The present invention has been made in view of the above-described problems of the related art, and has an object to prevent collision by performing an avoiding operation more effectively when there is a possibility that the own vehicle and another vehicle collide. Another object of the present invention is to provide a device capable of reducing the impact at the time of collision.
[0007]
[Means for Solving the Problems]
The present invention is an apparatus for controlling the traveling of the own vehicle based on the traveling data of the own vehicle and the traveling data of the other vehicle obtained by the inter-vehicle communication, wherein the traveling data of the own vehicle and the traveling data of the other vehicle are included. Evaluation means for evaluating the possibility of collision between the two vehicles based on the priority, priority determining means for determining the priority of the own vehicle and another vehicle when there is a possibility of collision, and the own vehicle based on the priority Control means for executing the avoidance operation of the vehicle, and transmitting data indicating that the own vehicle performs the avoidance operation to the other vehicle when the priority determination means determines that the own vehicle has no priority. A transmitting unit, wherein the control unit executes the avoidance operation after transmitting by the transmitting unit . Even if there is a possibility of collision, the vehicle and the other vehicle do not perform the avoidance operation uniformly, but more specifically, the vehicle with the lower priority performs the avoidance operation based on the priority of the own vehicle and the other vehicle. As a result, it is possible to effectively avoid a collision between the own vehicle and another vehicle while preventing the traveling of another vehicle (or the flow of traffic) from being affected. By transmitting and receiving which of the own vehicle and the other vehicle should perform the avoidance operation by inter-vehicle communication, it is possible to effectively avoid the collision.
[0008]
Further, the present invention is an apparatus for controlling traveling of the own vehicle based on traveling data of the own vehicle and traveling data of another vehicle obtained by inter-vehicle communication, wherein the traveling data of the own vehicle and traveling of the other vehicle are controlled. Evaluation means for evaluating the possibility of collision between the two vehicles based on the data, priority determination means for determining the priority of the own vehicle and another vehicle when there is a possibility of collision, and based on the priority Control means for performing an avoiding operation of the own vehicle, wherein the control means determines that the priority of the own vehicle is determined by the priority determining means, and executes the avoiding operation from the other vehicle. When data is received, the avoidance operation is not executed . Even if the own vehicle has a priority, the non-execution of the avoidance operation is determined after receiving the data indicating that the avoidance operation is performed from the other vehicle (unless the data indicating that the avoidance operation is performed is received from the other vehicle, Even if the own vehicle has a priority, the avoidance operation is performed in principle), so that the collision can be reliably avoided.
[0009]
Here, the priority determining means can determine the priority based on a priority relationship in a road regulation. For example, if the own vehicle is traveling on a priority road, the vehicle's avoidance operation is suppressed, and other vehicles are mainly performed in the avoidance operation, thereby affecting other vehicles traveling on the priority road. Collisions can be avoided without giving.
[0010]
Further, the priority determining means can determine the priority based on the speeds of the own vehicle and another vehicle. The difficulty of the avoidance operation and the effect on other traffic depend on the vehicle speed of the own vehicle and the other vehicle. When the own vehicle is slower than the other vehicle, it is easier to perform the avoidance operation of the own vehicle. It is. Therefore, the collision can be effectively avoided by determining the priority according to the vehicle speed.
[0011]
Further, the priority determining means can determine the priority based on a possibility of collision between the own vehicle and a vehicle other than the other vehicle when the own vehicle executes a predetermined avoidance operation. Even if a collision with another vehicle is avoided, it is meaningless if the possibility of collision with another vehicle (third vehicle) is further increased. Therefore, in consideration of the possibility of collision with the third vehicle when the own vehicle performs the avoiding operation, the own vehicle performs the avoiding operation when there is no possibility of the collision with the third vehicle, thereby reducing traffic. A collision can be avoided while maintaining a smooth flow.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a configuration block diagram of the present embodiment. The own vehicle 10 and the other vehicles A and B perform communication between the vehicles and have a relationship of transmitting and receiving each other's traveling data.
[0015]
The vehicle 10 is provided with a communication antenna 12, and further provided with a data communication unit 14, an electronic control unit ECU 16, various sensor units 18, and an actuator unit 20.
[0016]
The data communication unit 14 modulates the traveling data of the own vehicle 10, specifically, the predicted position, the predicted speed, and the predicted acceleration after a lapse of a predetermined time calculated based on the current position, the steering angle, and the vehicle speed of the own vehicle. Later, the data is transmitted to another vehicle via the antenna 12, and the traveling data transmitted from the other vehicle is received, demodulated, and supplied to the ECU 16 after demodulation. The specific configuration of the data communication unit 14 will be described later.
[0017]
The ECU 16 is specifically configured by a microcomputer, calculates the predicted position, the predicted speed, and the predicted acceleration of the own vehicle after the lapse of the above-described predetermined time, and calculates the predicted position, the predicted speed, and the predicted position of the other vehicle received from the other vehicle. The possibility of collision between the own vehicle and another vehicle is evaluated based on the predicted acceleration. If there is a possibility of a collision as a result of the evaluation, the priority of the own vehicle and the other vehicle is further determined, and a control signal is supplied to the actuator unit 20 based on the priority to avoid the own vehicle. Execute. The basic principle of avoidance driving is to not execute the avoidance operation such as deceleration uniformly when there is a possibility of collision, but to compare the priorities of the own vehicle and other vehicles and give priority to the own vehicle. If the degree is low, the evasion operation of the own vehicle is performed, and if the priority of the own vehicle is high, the evasion operation is not performed (or the operation is limited even if the evasion operation is performed; ), The main avoidance action is to leave it to other vehicles.
[0018]
The sensor unit 18 includes a GPS, a steering angle sensor, and a vehicle speed sensor, and supplies the detected current position, steering angle, and vehicle speed of the vehicle to the ECU 16.
[0019]
The actuator unit 20 includes a brake actuator, a steering actuator, a buzzer, and the like, and performs an avoiding operation such as applying a brake in accordance with a control signal from the ECU 16, decelerating, steering, or prompting a driver to perform a steering operation. .
[0020]
FIG. 2 shows an overall processing flowchart of the present embodiment. First, the ECU 16 inputs a signal from the sensor unit 18 (S101). More specifically, the position data, the steering angle, and the vehicle speed by GPS are used. In addition to these, the relative position with respect to another vehicle, the yaw rate, the driving torque estimated value, the road surface μ estimated value, the road surface cant, the gradient estimated value, and the estimated vehicle weight obtained by the on-vehicle radar may be input. When these data are input, the ECU 16 calculates travel data of the own vehicle (S102). What is calculated is the predicted position, predicted speed, and predicted acceleration of the own vehicle after a predetermined time has elapsed (after several seconds). Taking the predicted position as an example, the ECU 16 performs a sequential simulation from the four-wheel vehicle model, and calculates the position coordinates of the four corners of the vehicle in space-time (a space having a space axis and a time axis) several seconds later. . In addition, a position error due to GPS radio wave reception and a position error due to variation in vehicle characteristics are added to the position coordinates. Considering the error, the predicted position is represented by a probability (existence probability distribution).
[0021]
Next, the calculated traveling data is periodically transmitted to another vehicle (S103). As a transmission procedure, first, the travel data obtained by the calculation is divided into time and position data. For example,
[Table 1]
Figure 0003555476
And so on. Then, the time and the position data are rounded in an appropriate unit (rounding the least-significant digit LSB), and a series is formed. The created sequence is randomized by a predetermined encryption process.
[0022]
For example, the time and position at time 1.01 in Table 1 above are:
1.0, 1013, 0105, 15 → 101013010515 → 730184621803869
Is converted to The sequence created in this manner is used as a PN sequence for spread spectrum communication or a random number for determining a hopping frequency pattern.
[0023]
Note that a PN sequence or a hopping frequency can be created using only the current position coordinates of the host vehicle. However, since there is a possibility that a plurality of vehicles exist in different LSBs when the position coordinates are rounded, a sequence corresponding to the vehicle ID is added to the sequence of the position information to avoid interference, and the pattern of the PN sequence or the hopping frequency is changed. decide. For example, when the own vehicle ID is 0323 and the current position is (1012.0, 1411.0, 15.0),
0323, 1012.0, 1411.0, 15.0 → 0.2310121141115 → 8461209739656829
It becomes.
[0024]
The actual transmission information is accurate time, location information, and existence probability at that location, which are pulsed and carried as digital communication.
[0025]
FIG. 4 shows a transmission configuration of the data communication unit 14. It is an example of spread spectrum communication. The chip time (wavelength) of the carrier having a frequency sufficiently higher than the pulse transmitted by the primary modulator 14a is changed, and the modulated signal is multiplied by the PN sequence generated by the PN sequence generator 14c by the multiplier 14b. The signal is transmitted from the antenna 12 via the band pass filter 14d. In the case of the frequency hopping method, a carrier is created by hopping the frequency according to a sequence. The transmission data may include the current position and the vehicle speed of the own vehicle.
[0026]
After transmitting the traveling data of the own vehicle to the other vehicle, the traveling data of the other vehicle transmitted from the other vehicle is received (S104). At the time of reception, first, the radio wave transmitted by the own vehicle is filtered or temporally removed, and the time and position data of the own vehicle created at the time of transmission are rounded, and data near space-time is added as necessary. Create a sequence as in the transmission. For example, as the data at the time of transmission, 7301844621803869 can be obtained from the position (1013, 0105, 15) through synthesis and encryption from the position (1013, 0105, 15). 5301444621893867 is created from 0105,15), and 7308484621893865 is created from the position 1.510, 0105,15, which is the neighborhood data on spacetime. The generated sequence is used as a PN sequence for spread spectrum or a random number for determining a hopping frequency pattern and received.
[0027]
FIG. 5 shows a reception configuration of the data communication unit 14. It is an example of spread spectrum communication. The signal received by the antenna 12 is passed through a band-pass filter 14e, the received signal is multiplied by a sequence generated by a PN sequence generator 14g by a multiplier 14f to release PN, and demodulated by a demodulator 14h. When the PN sequence is generated using the vehicle ID during transmission, it goes without saying that the PN sequence is generated using the vehicle ID also during reception.
[0028]
When the travel data of the other vehicle is received as described above (YES in S105), the collision (contact) probability of the received other vehicle with the own vehicle in space-time and the magnitude of the impact when the collision (contact) is calculated are calculated. (S106).
[0029]
FIG. 9 shows an example of the positional relationship between the own vehicle and the received other vehicle in space-time. In the figure, the coordinates are spatial coordinates X and Y and time coordinate t. The trajectory of the predicted position of the own vehicle in space-time is indicated by 100, and the trajectory of the predicted position of another vehicle in space-time is indicated by 200. Each predicted position includes an error as described, and each position has an existence probability. If the existence probabilities of the predicted positions of the own vehicle and the other vehicle are 100% overlapping with each other, the collision probability is 100%. If the existence probability is 0% to 100%, there is an overlap. The value that maximizes the product of the existence probabilities is the collision probability. For example, assuming that the portion of the existence probability of the own vehicle of 60% and the portion of the existence probability of the other vehicle of 50% overlap, the collision probability is 60% × 50% = 30%.
[0030]
On the other hand, since the magnitude of the impact at the time of the collision is proportional to the kinetic energy, first, the relative speed between the own vehicle and the other vehicle at the position where the finite (non-zero) collision probability occurs is calculated, and the square of the absolute value is calculated. Multiplied by a predetermined constant is defined as the magnitude of the impact.
[0031]
After evaluating the collision probability and the magnitude of the impact, the ECU 16 determines whether the collision probability is higher than a predetermined value and the impact is higher than a predetermined value as shown in FIG. 3 (S107). When the collision probability is high and the impact is large, it is determined that the avoidance operation is necessary, and a predetermined optimal avoidance control calculation is executed (S108).
[0032]
This optimal avoidance control calculation is for calculating whether or not deceleration control is appropriate as the avoidance operation, and calculating the allowance for avoidance, and a detailed flowchart thereof is shown in FIG.
[0033]
In FIG. 6, first, the vehicle motion (predicted position, predicted speed, predicted acceleration) when the own vehicle is assumed to be decelerated with the maximum braking force is calculated (S201). Next, the probability of collision with another vehicle and the magnitude of the impact at the time of collision are evaluated again using the vehicle momentum obtained by the calculation, and it is assumed that the own vehicle is decelerated with the maximum braking force (the other vehicle is It is determined whether or not the magnitude of the shock (assuming that the vehicle travels as predicted without deceleration) is smaller than the magnitude of the impact when the vehicle is not decelerated with the maximum braking force (the magnitude of the impact calculated in S106) (S202). ). If the magnitude of the impact is reduced (including the case where no collision occurs), the brake control is set to be effective (step S203: for example, the brake control flag B is set to 1), and the magnitude of the impact is set. If the vehicle speed does not decrease (equal to or equal to or when the impact increases due to braking), the brake control is determined to be invalid and the brake control is disabled (the flag B is set to 0) (S204). ). Then, the shortest distance to the other vehicle at the time of avoidance (the shortest distance to the other vehicle when the predicted positions of the own vehicle and the other vehicle are all assumed to be 100% including the error) and the relative speed of the own vehicle and the other vehicle The avoidance margin is calculated based on the (current relative speed) (S205). The avoidance margin is specifically expressed as
Avoidance margin = shortest distance / relative speed. This equation is based on the fact that the larger the shortest distance is, the more room there is, and the smaller the relative speed between the own vehicle and the other vehicle is, the more slowly the two vehicles approach each other. In the case where the brake control is not possible, the steering is avoided by operating the steering wheel. Therefore, the avoidance margin is calculated at the shortest distance when an appropriate steering operation is performed.
[0034]
Returning to FIG. 3 again, after performing the optimal avoidance control calculation as described above, it is determined whether or not there is a margin for avoidance using the calculated avoidance margin (S109). If the avoidance margin is equal to or more than the predetermined value and there is an avoidance margin (NO in S109), the traffic priority of the own vehicle and the other vehicle is checked to perform more effective avoidance (S111).
[0035]
FIG. 7 shows the details of the process in S111. First, traveling of the own vehicle and the other vehicle based on the map data stored in the memory (not shown in FIG. 1: map data of the navigation system can be used), the detected own vehicle position, and the received other vehicle position. The lane and the traveling road are specified, and the priority relation between the own vehicle and another vehicle in the road regulation is detected (S301). Then, it is determined whether or not the own vehicle is prioritized (S302). If the own vehicle is not prioritized, a flag for other vehicle priority is set (for example, the flag P is set to 1: S310). If the own vehicle has priority according to the road regulations, the current vehicle speed of the own vehicle is compared with that of another vehicle (S303). If the result of the comparison indicates that the other vehicle is faster, the flag for other vehicle priority is set (S309). The priority is given to the one with the higher vehicle speed because it is generally difficult to cause the person with the higher vehicle speed to perform the avoidance operation, and the influence on the traffic flow is considered to be large.
[0036]
On the other hand, if the own vehicle has a higher vehicle speed than the other vehicle, then the vehicle collides with the third vehicle (a vehicle other than the other vehicle determined to have a possibility of collision in S107) by the avoidance control of the own vehicle. It is determined whether there is a possibility (S306). This determination can be made based on, for example, whether there is a following vehicle or not, and whether there is a vehicle running in a lane adjacent to the own vehicle (the existence of these vehicles is determined by inter-vehicle communication or own vehicle). If the vehicle is not likely to collide with the third vehicle, priority is given to another vehicle (S308), and if there is a possibility of collision with the third vehicle, The priority is given to the own vehicle (S307). In the case of "other vehicle priority", the own vehicle executes the avoidance operation, and in the case of "own vehicle priority", the own vehicle does not execute the avoidance operation.
[0037]
Returning to FIG. 3 again, when the traffic priority check is completed, it is determined whether the vehicle has no priority (other vehicle has priority) and there is no abnormality in the operation of the actuator unit 20 (S112). . If the own vehicle does not have a priority and the actuator unit also functions normally, the own vehicle needs to perform the avoidance operation, so that the content of the avoidance control is included in the next vehicle motion calculation and transmitted to another vehicle ( S113). As a result, the other vehicle receives the data indicating that the own vehicle should perform the avoidance operation at the next reception, so that the other vehicle does not execute the avoidance operation. Note that the ECU 16 of another vehicle independently performs the same determination and determines that the vehicle has the priority. However, it is determined that the avoidance operation is not to be performed only after receiving data indicating that the avoidance operation is performed from the other party. Even if it is determined that the user has the priority, if data for performing the avoidance operation is not received from the other party, the avoidance operation is performed from the viewpoint of fail-safe. Then, after transmitting data indicating that the own vehicle should perform the avoidance operation to the other vehicle, if it is determined in the next determination process that there is no more room for avoidance (YES in S109), the ECU 16 of the own vehicle will be described. Executes a predetermined avoidance control (S110).
[0038]
On the other hand, if YES in S109, that is, if there is no avoidance margin, the avoidance control is immediately executed (S110).
[0039]
FIG. 8 shows the details of the process in S110. First, it is determined whether the brake control is possible by checking the value of the brake control flag B (S401). If the brake control is possible, the brake pressure is increased and decelerated to operate the brake actuator with the maximum control force (S402). Thereby, a collision with another vehicle is avoided (or an impact at the time of a collision is suppressed). If the brake control is not possible, the brake actuator control is terminated and the brake pressure is reduced (S403). Then, the driver is instructed to perform a steering operation or the like (S404). The steering direction is a direction that reduces the collision probability and the impact obtained in S106.
[0040]
As described above, in the present embodiment, the possibility of collision between the own vehicle and another vehicle is evaluated, and even if there is a possibility of collision, both the own vehicle and the other vehicle do not perform an avoidance operation. Since one of the vehicles performs the avoiding operation according to the priority of the vehicle, it is possible to effectively avoid the collision without the possibility of a new collision with the third vehicle due to the avoiding operation. Can be.
[0041]
In the present embodiment, a case is described in which the priorities of the own vehicle and the other vehicle are determined, and a person without a priority performs an avoidance operation. The priority of the vehicle is 60%), and the ratio of the avoidance operation is determined according to this ratio (the deceleration of the own vehicle is 60% of the maximum deceleration, and the deceleration of the other vehicle is 40% of the maximum deceleration). Is also possible. That is, it is possible that both the own vehicle and the other vehicle do not perform the avoidance operation, but perform the avoidance operation according to the priority.
[0042]
【The invention's effect】
As described above, according to the present invention, when there is a possibility that the own vehicle and another vehicle collide, the collision can be effectively avoided while suppressing the influence on the traffic flow.
[Brief description of the drawings]
FIG. 1 is a configuration block diagram of an embodiment.
FIG. 2 is an overall processing flowchart (part 1) of the embodiment;
FIG. 3 is an overall processing flowchart (part 2) of the embodiment.
FIG. 4 is a transmission configuration diagram of a data communication unit of the embodiment.
FIG. 5 is a reception configuration diagram of a data communication unit of the embodiment.
FIG. 6 is a detailed flowchart of optimal vehicle avoidance control according to the embodiment.
FIG. 7 is a detailed flowchart of a traffic priority check of the embodiment.
FIG. 8 is a detailed flowchart of the avoidance control according to the embodiment.
FIG. 9 is an explanatory diagram of predicted trajectories of the own vehicle and other vehicles in space and time according to the embodiment.
FIG. 10 is an explanatory diagram showing a positional relationship between the own vehicle and another vehicle.
[Explanation of symbols]
10 vehicle (own vehicle), 12 antenna, 14 data communication unit, 16 ECU, 18 sensor unit, 20 actuator unit.

Claims (5)

自車の走行データ及び車両間通信により得られた他車の走行データに基づいて自車の走行を制御する装置であって、
前記自車の走行データ及び他車の走行データに基づいて両車両の衝突の可能性を評価する評価手段と、
衝突の可能性がある場合に、自車と他車の優先度を決定する優先度決定手段と、
前記優先度に基づいて自車の回避動作を実行する制御手段と、
前記優先度決定手段で自車に優先度がないと決定された場合に、前記他車に対して自車が回避動作を実行する旨のデータを送信する送信手段と、
を有し、前記制御手段は、前記送信手段で送信した後に前記回避動作を実行することを特徴とする車両用走行制御装置。
A device that controls the traveling of the own vehicle based on the traveling data of the own vehicle and the traveling data of the other vehicle obtained by the inter-vehicle communication,
Evaluation means for evaluating the possibility of collision between the two vehicles based on the traveling data of the own vehicle and the traveling data of the other vehicle,
Priority determining means for determining the priority of the own vehicle and another vehicle when there is a possibility of collision;
Control means for executing the own vehicle's avoidance operation based on the priority,
A transmitting unit that transmits data indicating that the own vehicle performs an avoidance operation to the other vehicle when the priority determining unit determines that the own vehicle has no priority;
And the control unit executes the avoidance operation after transmitting by the transmitting unit.
自車の走行データ及び車両間通信により得られた他車の走行データに基づいて自車の走行を制御する装置であって、
前記自車の走行データ及び他車の走行データに基づいて両車両の衝突の可能性を評価する評価手段と、
衝突の可能性がある場合に、自車と他車の優先度を決定する優先度決定手段と、
前記優先度に基づいて自車の回避動作を実行する制御手段と、
を有し、前記制御手段は、前記優先度決定手段で自車に優先度があると決定され、かつ、前記他車から回避動作を実行する旨のデータを受信した場合に、前記回避動作を非実行とすることを特徴とする車両用走行制御装置。
A device that controls the traveling of the own vehicle based on the traveling data of the own vehicle and the traveling data of the other vehicle obtained by the inter-vehicle communication,
Evaluation means for evaluating the possibility of collision between the two vehicles based on the traveling data of the own vehicle and the traveling data of the other vehicle,
Priority determining means for determining the priority of the own vehicle and another vehicle when there is a possibility of collision;
Control means for executing the own vehicle's avoidance operation based on the priority,
The control means, when the priority determining means determines that the vehicle has a priority, and receives data from the other vehicle to perform the avoidance operation, the control means, A travel control device for a vehicle, which is not executed .
請求項1、2のいずれかに記載の装置において、
前記優先度決定手段は、道路法規上の優先関係に基づいて決定することを特徴とする車両用走行制御装置。
The apparatus according to any one of claims 1 and 2 ,
The vehicle traveling control device according to claim 1, wherein the priority determining means determines the priority based on a priority relationship in a road regulation .
請求項1、2のいずれかに記載の装置において、
前記優先度決定手段は、自車と他車の速度に基づいて決定することを特徴とする車両用走行制御装置。
The apparatus according to any one of claims 1 and 2 ,
The vehicle traveling control device according to claim 1, wherein the priority determining means determines the priority based on the speeds of the own vehicle and another vehicle .
請求項1、2のいずれかに記載の装置において、
前記優先度決定手段は、自車が所定の回避動作を実行した場合の自車と前記他車以外の車両との衝突の可能性に基づいて決定することを特徴とする車両用走行制御装置。
The apparatus according to any one of claims 1 and 2 ,
The vehicle travel control device according to claim 1, wherein the priority determining means determines the priority based on a possibility of collision between the own vehicle and a vehicle other than the other vehicle when the own vehicle executes a predetermined avoidance operation .
JP00574099A 1999-01-12 1999-01-12 Travel control device for vehicles Expired - Fee Related JP3555476B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP00574099A JP3555476B2 (en) 1999-01-12 1999-01-12 Travel control device for vehicles
US09/475,986 US6445308B1 (en) 1999-01-12 1999-12-30 Positional data utilizing inter-vehicle communication method and traveling control apparatus
DE60016815T DE60016815T8 (en) 1999-01-12 2000-01-11 Method and device for transmitting position data between vehicles
DE60019653T DE60019653T8 (en) 1999-01-12 2000-01-11 Device for controlling the driving of a vehicle using data transmission between vehicles
EP04007804A EP1435601B1 (en) 1999-01-12 2000-01-11 Vehicle travelling control apparatus based on inter-vehicle data communication
EP00100489A EP1020834B1 (en) 1999-01-12 2000-01-11 Positional data utilizing inter-vehicle communication method and apparatus
US10/199,039 US6861957B2 (en) 1999-01-12 2002-07-22 Positional data utilizing inter-vehicle communication method and traveling control apparatus
US10/198,934 US6801138B2 (en) 1999-01-12 2002-07-22 Positional data utilizing inter-vehicle communication method and traveling control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00574099A JP3555476B2 (en) 1999-01-12 1999-01-12 Travel control device for vehicles

Publications (2)

Publication Number Publication Date
JP2000207691A JP2000207691A (en) 2000-07-28
JP3555476B2 true JP3555476B2 (en) 2004-08-18

Family

ID=11619509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00574099A Expired - Fee Related JP3555476B2 (en) 1999-01-12 1999-01-12 Travel control device for vehicles

Country Status (1)

Country Link
JP (1) JP3555476B2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US8364136B2 (en) 1999-02-01 2013-01-29 Steven M Hoffberg Mobile system, a method of operating mobile system and a non-transitory computer readable medium for a programmable control of a mobile system
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
JP2002298295A (en) * 2001-03-30 2002-10-11 Nippon Seiki Co Ltd Information display device
JP2002304700A (en) * 2001-04-06 2002-10-18 Honda Motor Co Ltd Moving body alarm system
US7146260B2 (en) 2001-04-24 2006-12-05 Medius, Inc. Method and apparatus for dynamic configuration of multiprocessor system
US10298735B2 (en) 2001-04-24 2019-05-21 Northwater Intellectual Property Fund L.P. 2 Method and apparatus for dynamic configuration of a multiprocessor health data system
US6615137B2 (en) * 2001-06-26 2003-09-02 Medius, Inc. Method and apparatus for transferring information between vehicles
US7178049B2 (en) 2002-04-24 2007-02-13 Medius, Inc. Method for multi-tasking multiple Java virtual machines in a secure environment
JP3689076B2 (en) * 2002-09-05 2005-08-31 株式会社東芝 Automotive electronics
JP2004171269A (en) * 2002-11-20 2004-06-17 Enii Kk Collision-of-movable-body prediction device and collision-of-movable-body prediction method
JP3791490B2 (en) * 2002-12-18 2006-06-28 トヨタ自動車株式会社 Driving assistance system and device
JP3922173B2 (en) * 2002-12-18 2007-05-30 トヨタ自動車株式会社 Driving assistance system and device
JP3801139B2 (en) * 2003-03-04 2006-07-26 トヨタ自動車株式会社 Mobile communication system and vehicle driving assistance device
JP3928571B2 (en) 2003-03-14 2007-06-13 トヨタ自動車株式会社 Vehicle driving assistance device
JP4255772B2 (en) * 2003-04-30 2009-04-15 富士通テン株式会社 Vehicle management apparatus, vehicle management method, and vehicle management program
JP2005352607A (en) * 2004-06-08 2005-12-22 Mazda Motor Corp Warning device for moving body
JP4596309B2 (en) * 2004-06-08 2010-12-08 マツダ株式会社 Alarm system and mobile terminal
US7337650B1 (en) 2004-11-09 2008-03-04 Medius Inc. System and method for aligning sensors on a vehicle
JP2006238035A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Vehicle communication device
JP2006350568A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Vehicle control system
JP4706365B2 (en) * 2005-07-22 2011-06-22 トヨタ自動車株式会社 Vehicle control system
EP1990786B1 (en) 2006-02-28 2021-05-19 Toyota Jidosha Kabushiki Kaisha Object path prediction method and apparatus
JP4353192B2 (en) * 2006-03-02 2009-10-28 トヨタ自動車株式会社 Course setting method, apparatus, program, and automatic driving system
JP4211794B2 (en) * 2006-02-28 2009-01-21 トヨタ自動車株式会社 Interference evaluation method, apparatus, and program
JP4650899B2 (en) * 2006-10-13 2011-03-16 三菱電機株式会社 In-vehicle system providing safety support information
JP4525670B2 (en) 2006-11-20 2010-08-18 トヨタ自動車株式会社 Travel control plan generation system
US7831391B2 (en) * 2007-06-12 2010-11-09 Palo Alto Research Center Incorporated Using segmented cones for fast, conservative assessment of collision risk
US7881868B2 (en) * 2007-06-12 2011-02-01 Palo Alto Research Center Incorporated Dual assessment for early collision warning
JP4900076B2 (en) * 2007-06-18 2012-03-21 トヨタ自動車株式会社 Vehicle travel support device
JP4470978B2 (en) 2007-08-30 2010-06-02 トヨタ自動車株式会社 Receiving apparatus and wireless communication system
JP5172366B2 (en) * 2008-01-22 2013-03-27 アルパイン株式会社 Vehicle driving support device
JP4807385B2 (en) * 2008-08-25 2011-11-02 トヨタ自動車株式会社 Interference evaluation method, apparatus, and program
US9358924B1 (en) 2009-05-08 2016-06-07 Eagle Harbor Holdings, Llc System and method for modeling advanced automotive safety systems
US8417490B1 (en) * 2009-05-11 2013-04-09 Eagle Harbor Holdings, Llc System and method for the configuration of an automotive vehicle with modeled sensors
JP2011134087A (en) * 2009-12-24 2011-07-07 Equos Research Co Ltd Driving assist system
JP5614055B2 (en) * 2010-02-22 2014-10-29 トヨタ自動車株式会社 Driving assistance device
JP5267517B2 (en) * 2010-07-14 2013-08-21 株式会社デンソー Vehicle position estimation apparatus and vehicle position estimation program
US9108582B1 (en) * 2014-02-25 2015-08-18 International Business Machines Corporation System and method for collaborative vehicle crash planning and sequence deployment
US9528838B2 (en) * 2014-12-09 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle detection of and response to intersection priority
JP6465296B2 (en) * 2015-03-24 2019-02-06 株式会社Ihiエアロスペース Collision avoidance control system and method
JP2016194829A (en) * 2015-03-31 2016-11-17 富士通株式会社 Display processing method, determination processing method, display processing program, determination processing program, and processing device
JP6406131B2 (en) * 2015-06-02 2018-10-17 株式会社デンソー Driving assistance device
JP6582885B2 (en) * 2015-10-30 2019-10-02 株式会社デンソー Driving support device, driving support system, roadside device
JP6658292B2 (en) * 2016-05-16 2020-03-04 株式会社デンソー Driving support device
WO2019138498A1 (en) * 2018-01-11 2019-07-18 住友電気工業株式会社 Vehicle-mounted device, adjustment method, and computer program
JP7185408B2 (en) * 2018-03-02 2022-12-07 本田技研工業株式会社 vehicle controller
US11780468B2 (en) * 2018-03-09 2023-10-10 Nissan Motor Co., Ltd. Vehicle-behavior prediction method and vehicle-behavior prediction device
CN110320910B (en) * 2019-07-01 2023-10-10 阿波罗智能技术(北京)有限公司 Vehicle avoidance control method and device, electronic equipment and storage medium
JP7234980B2 (en) * 2020-03-09 2023-03-08 株式会社豊田中央研究所 Control device and control system
CN113071520B (en) 2021-04-16 2024-01-16 阿波罗智联(北京)科技有限公司 Vehicle running control method and device

Also Published As

Publication number Publication date
JP2000207691A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP3555476B2 (en) Travel control device for vehicles
JP3501009B2 (en) Vehicle collision avoidance control device
CN106994968B (en) Automated vehicle control system and method
US6861957B2 (en) Positional data utilizing inter-vehicle communication method and traveling control apparatus
US5978737A (en) Method and apparatus for hazard detection and distraction avoidance for a vehicle
CN106882143B (en) Pedestrian protection system and method based on LTE-V communication
US8977420B2 (en) Vehicle procession control through a traffic intersection
US8537032B2 (en) On-vehicle information processing device, information providing device, and vehicle information processing system
JP6921734B2 (en) Vehicle control systems, vehicle control methods, and programs
WO2004047047A1 (en) Method and system for avoiding traffic collisions
CN104627179A (en) Vehicle running control apparatus and program therefor
EP3893220B1 (en) Apparatus for controlling autonomous driving of a vehicle, system having the same and method thereof
CN112606838A (en) Anti-collision control method and device for lane change of vehicle
US20200324762A1 (en) Transportation vehicle and collision avoidance method
US10131359B2 (en) Communication system for a vehicle
CN115884908A (en) Route confirmation device and route confirmation method
JP5821729B2 (en) Wireless communication system and wireless communication device
WO2020158342A1 (en) Vehicle control device and vehicle control system
CN107792063A (en) Method for controlling a vehicle and equipment
JP3863012B2 (en) Collision avoidance system
KR20140015822A (en) Apparatus for protecting vehicle control error in v2v system and method thereof
Djamel et al. Forecasting Approach in VANET based on vehicle collision alert
WO2022059196A1 (en) Wireless device, wireless control method, control circuit, and storage medium
CN116490799A (en) Radar Interference Mitigation
JP6451291B2 (en) Mobile communication device and computer program

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees