[go: up one dir, main page]

JP3554861B2 - Thin film thermocouple integrated thermoelectric conversion device - Google Patents

Thin film thermocouple integrated thermoelectric conversion device Download PDF

Info

Publication number
JP3554861B2
JP3554861B2 JP2001138442A JP2001138442A JP3554861B2 JP 3554861 B2 JP3554861 B2 JP 3554861B2 JP 2001138442 A JP2001138442 A JP 2001138442A JP 2001138442 A JP2001138442 A JP 2001138442A JP 3554861 B2 JP3554861 B2 JP 3554861B2
Authority
JP
Japan
Prior art keywords
thin film
thin
substrate
conversion device
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138442A
Other languages
Japanese (ja)
Other versions
JP2002335021A (en
Inventor
晃子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2001138442A priority Critical patent/JP3554861B2/en
Publication of JP2002335021A publication Critical patent/JP2002335021A/en
Application granted granted Critical
Publication of JP3554861B2 publication Critical patent/JP3554861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は熱と電気とを相互に変換することができる熱電変換材料を用いて構成される薄膜熱電対集積型の熱電変換デバイスに関する。
【0002】
【従来の技術】
熱電変換デバイスは電子冷却・加熱器や熱発電器として用いられている。図6Aは熱発電の原理を示したものであり、P型半導体11とN型半導体12とからなる半導体の対(熱電対)の一端を高温体13に接触させ、他端を低温体14に接触させて、図に示したような回路を組むことにより、ゼーベック効果によって電流が流れ、熱起電力が発生するものとなっている。図中、15は接合用金属を示す。なお、高温体13及び低温体14は接合用金属15と絶縁されている。
【0003】
図6Bは従来実用化されている熱電変換デバイスの構成を示したものであり、図6Aに示した熱電対が多数配列された構成となっている。これら熱電対は温度差の方向に平行並列に並んだ構造となっており、電極16により電気的には直列に接続されている。図中、17は絶縁体を示す。
この図6Bに示した熱電変換デバイスでは、熱電対をなすP型半導体11及びN型半導体12は主に焼結等により生成された多結晶バルク材料を切り出すことによって形成され、同一寸法でそれら半導体11,12を多数切り出した後、組み立て、電極形成、固定などの多くの工程を経て熱電変換デバイスが完成するものとなっている。従って、半導体にバルク材料を使用する従来の熱電変換デバイスは多くの異なる工程を必要とするため、その点でコストがかかり、高価となって熱電変換デバイスの普及を妨げる一因となっていた。
【0004】
一方、半導体にバルク材料を使用するのではなく、薄膜材料を使用して熱電変換デバイスを構成することができる。
この場合、膜厚方向に温度勾配を形成して膜の表面及び裏面に吸熱部及び放熱部の各領域を配置する形態と、薄膜面内の方向に温度勾配を形成して薄膜面内に吸熱部及び放熱部の各領域を配置する形態とが考えられる。
前者の形態の場合は図6Bに示した従来のバルク材料を用いる熱電変換デバイスと同様に、平板型構造の両面でそれぞれ吸・放熱する形態の熱電変換デバイスを実現できるが、高温部と低温部の距離が数ミクロン程度以下の距離しかないため、熱損失が生じやすく、熱電変換効率が悪いという問題点がある。
【0005】
これを一部解決するため、特開平6−13664号公報記載の発明では各熱電半導体薄膜の隙間を真空にして熱伝導を下げる工夫がなされている。しかしながら、この方法では熱電半導体薄膜自体を通じての熱損失は防ぎようがないため、高効率の薄膜熱電変換デバイスを得るのは困難となっている。
これに対し、後者の薄膜面内に温度勾配をつける形態の場合は、膜自体への温度差が与えやすく、熱損失が小さく、熱電変換効率のよい熱電変換デバイスが原理上、実現可能であるが、成膜された基板を通じて熱損失が生じる点と、同一面内に高温部と低温部があるため従来のバルク材料による熱電変換デバイスと同様の平板型構造の両面でそれぞれ吸・放熱する形態は実現できず、吸・放熱部に十分な面積をもたせることができないといった問題がある。
【0006】
そこで、薄膜面内に温度勾配を形成しながら、かつ吸・放熱部に十分な面積を持たせることを試みた発明が特開平10−303469号公報に提案されている。しかしながら、この特開平10−303469号公報記載の発明では、プラスチックなどで形成された凸部の表面に熱電半導体薄膜を蒸着する手法が採られており、例えば平坦度や格子定数あるいは表面処理や成膜温度など特殊な基板や成膜条件を用いなければ成膜ができない熱電半導体薄膜材料(例えばエピタキシャル成長させる必要のある半導体超格子)には適用できないという問題がある。
【0007】
さらに具体的には、
・プラスチックの凸部への成膜では高温の成膜は困難
・プラスチックに密着しない(接合しない)膜には応用できない
・上記2点を回避するために、仮りに半導体基板などで凸部を形成して成膜した場合でも、凸部の斜面と頂部・底部で同じ品質の膜が生成できない場合があるといった欠点がある。
【0008】
【発明が解決しようとする課題】
上述したように、半導体にバルク材料を使用する熱電変換デバイスはコストが高いといった問題があり、これに対し、半導体に薄膜材料を使用する熱電変換デバイスは低コスト化が可能であるものの、膜厚方向に温度勾配を形成する形態では熱電変換効率の点で問題があるものとなっていた。
一方、例えば特開平10−303469号公報記載の発明のように薄膜面内の方向に温度勾配を形成すれば、熱電変換効率の点では有利となるものの、この公報記載の発明では吸・放熱部に十分な面積を持たせられるように凸部上に成膜するものとなっており、膜の品質上、問題が生じる虞れがあり、また材料によっては成膜ができないという問題がある。
【0009】
特に、近年、熱電変換材料として高い性能指数を示す可能性が指摘されている、
(1)半導体超格子(Sun,X.etal.,Mat.Res.Soc.Symp.Proc.Vol.545,P369,1999 やVenkatasubramanian,R.etal.,Appl.Phys.Lett.Vol.75,No.8,P1104,1999などに記載)
(2)ナノワイヤ(10μm 厚の薄膜マイカの中にビスマスのナノワイヤを作製する技術がDemske,D.L.etal.,Mat.Res.Soc.Symp.Proc.Vol.545,P209,1999に記載)
(3)ナノ微粒子膜(本出願人が特願2000−267328号にて提案)などの次世代材料の成膜(生成)には適用できないという問題がある。
【0010】
この発明の目的はこれら問題に鑑み、高熱電変換効率・低コストの熱電変換デバイスを提供することにあり、特に上記のような次世代材料でも成膜することができ、かつ平板型構造の両面で吸・放熱する形態の薄膜熱電対集積型熱電変換デバイスを提供することにある。
【0011】
【課題を解決するための手段】
請求項1の発明によれば、基板と、その基板上に配列形成され、P型熱電半導体薄膜とN型熱電半導体薄膜とが一端部において電気的接合層を介し、残部において絶縁層を介して積層されてなる複数の薄膜熱電対と、それら薄膜熱電対の上記一端部と反対の他端部に配置されて複数の薄膜熱電対を電気的に直列に接続する導体と、薄膜熱電対の配列上に位置され、その薄膜熱電対との対向面に突出形成された凸部が上記一端部上において各薄膜熱電対と接触する構造とされた熱伝導体よりなる上板とを具備するものとされる。
【0012】
請求項2の発明では請求項1の発明において、隣接する薄膜熱電対を接続する導体は一端が一方の薄膜熱電対の上に位置され、他端が他方の薄膜熱電対の下に位置されており、その薄膜熱電対の下に位置する導体は基板に埋め込まれて、その上面が基板表面とほぼ面一とされる。
請求項3の発明では請求項2の発明において、各薄膜熱電対の下に位置する導体はその下面の少なくとも一部が基板の裏面側に露出されており、上記裏面と対向して熱伝導体よりなる底板が配置され、その底板の上記裏面との対向面に突出形成された凸部が上記裏面側に露出された導体と接触される。
【0013】
請求項4の発明によれば、基板と、第1の電気的接合部を挟んでP型熱電半導体薄膜とN型熱電半導体薄膜とが平面配置されてなり、基板上に電気的に直列構成をなすように配列形成された複数の薄膜熱電対と、それら各薄膜熱電対間に配置されて複数の薄膜熱電対を電気的に直列に接続する第2の電気的接合部と、薄膜熱電対の配列上に位置され、その薄膜熱電対との対向面に突出形成された凸部が上記第1もしくは第2の電気的接合部のいずれか一方と接触する構造とされた熱伝導体よりなる上板とを具備し、上板の凸部が接触されない方の電気的接合部の各位置と対応して基板に金属が埋め込まれ、その金属は上面が基板の表面とほぼ面一とされ、下面の少なくとも一部が基板の裏面側に露出されており、上記裏面と対向して熱伝導体よりなる底板が配置され、その底板の上記裏面との対向面に突出形成された凸部が上記裏面側に露出された金属と接触される。
【0014】
請求項の発明では請求項3もしくはのいずれかの発明において、上板の周縁部と底板の周縁部とが枠体を介して互いに連結固定される。
【0015】
請求項の発明では請求項の発明において、上板と底板と枠体とによって囲まれた内部空間が真空とされる。
請求項の発明では請求項1乃至のいずれかの発明において、P型熱電半導体薄膜とN型熱電半導体薄膜とが方形形状とされ、かつ同一形状とされ、複数の薄膜熱電対は基板上に縦横に配列される。
【0016】
【発明の実施の形態】
この発明の実施の形態を図面を参照して実施例により説明する。
図1はこの発明の一実施例を示したものであり、この例では熱電変換デバイス21は複数の薄膜熱電対22が形成された基板23が上板24と底板25と枠体26とによって囲まれた内部空間に収容されているものとされる。図2は薄膜熱電対22が形成された基板23を示したものであり、先ず図2を参照して薄膜熱電対22及び基板23の構造について説明する。
【0017】
薄膜熱電対22はP型熱電半導体薄膜27とN型熱電半導体薄膜28とが一端部において電気的接合層29を介し、残部において絶縁層31を介して積層されてなるものとされ、この例ではこれらP型熱電半導体薄膜27及びN型熱電半導体薄膜28は方形形状とされ、かつ同一形状とされている。
薄膜熱電対22は基板23上に縦横に配列されて形成され、この例では縦・横各4個、計16個の薄膜熱電対22が形成されている。
各列の薄膜熱電対22の電気的接合層29は図2Aに示したように一列上に位置するように揃えられており、図において左から数えて奇数列の薄膜熱電対22の電気的接合層29は方形の左辺に、偶数列の薄膜熱電対22の電気的接合層29は方形の右辺に位置されている。
【0018】
薄膜熱電対22の電気的接合層29が形成されている一端部と反対の他端部には導体32が配置され、16個の薄膜熱電対22は導体32によって電気的に直列に接続されている。導体32は図2Aに示したように奇数列の薄膜熱電対22に対しては方形の右辺に、偶数列の薄膜熱電対22に対しては方形の左辺に位置されるものとなる。
隣接する薄膜熱電対22を接続する導体32は図2Bに示したように、一端が一方の薄膜熱電対22の上に位置され、つまりN型熱電半導体薄膜28上に配設され、他端が他方の薄膜熱電対22の下に位置され、つまりP型熱電半導体薄膜27の下に配設されている。
【0019】
各薄膜熱電対22の下に位置する導体32はこの例では基板23に埋め込まれたものとなっており、その上面は基板23の表面とほぼ面一とされている。なお、導体32によって直列接続された16個の薄膜熱電対22の両端からは導体32が基板23の端縁に導出されて一対の端子部32aが形成されており、これら端子部32aにリード線33が例えば半田付けされて接続されるものとなる。
基板23には2つの細長い溝34が裏面側から形成されており、各薄膜熱電対22の下に位置する導体32はこれら溝34を介して、その下面の少なくとも一部が基板23の裏面側に露出されている。
【0020】
上記のような構成を有する薄膜熱電対22はマスクを用いた成膜プロセスによって作製され、予め導体32を埋め込んだ基板23上にP型熱電半導体薄膜27,電気的接合層29,絶縁層31,N型熱電半導体薄膜28及び埋め込まれている導体32からN型熱電半導体薄膜28上に至る導体32を順次成膜することによって作製される。なお、図示はないが、埋め込まれている導体32からN型熱電半導体薄膜28上に至る導体32を成膜する際にP型熱電半導体薄膜27の側面に直接成膜が及ばないように、あらかじめこの側面をも絶縁層31により保護しておく。必要があれば、さらにこの上に保護層を成膜してもよい。なお、基板23に導体32を埋め込むには、例えばイオンミリングで基板表面の対象部分を削った後、導体32を例えば蒸着してこれを得ることが出来る。溝34は基板23に導体32を埋め込んだ後、例えばウエットエッチング等で基板23をくりぬくことによって形成され、この溝34を形成した後、上記成膜プロセスが実行される。
【0021】
基板23は絶縁基板とされ、例えばガラス基板などが用いられる。
薄膜熱電対22は上述したように基板23の平面上に形成され、つまり熱電半導体薄膜27,28を形成する上で最も適した平面基板上に薄膜熱電対22を形成することができるため、熱電半導体薄膜27,28にはいかなる薄膜材料をも用いることができる。例えば薄膜の形態で高い性能指数が期待されるスクッテルダイト系材料や半導体超格子、ナノワイヤ膜、ナノ微粒子膜等の次世代材料を用いることができる。なお、従来のビスマステルル等の熱電変換材料も用いることができる。
【0022】
絶縁層31は例えば酸化シリコン或いは窒化シリコンによって構成され、電気的接合層29及び導体32は例えば金や銅で形成される。なお、電気的接合層29はP型熱電半導体薄膜27の上面に電気的接合層29に見合う分の段部を形成してP型熱電半導体薄膜27自体で構成することもできる。
次に、この薄膜熱電対22が配列形成された基板23に対して組み合わされる上板24及び底板25の配設構造について図1を参照して説明する。
上板24及び底板25はいずれも熱伝導体よりなるものとされ、これら上板24と底板25とによって基板23は挟み込まれる構造とされる。
【0023】
薄膜熱電対22の配列上に位置する上板24は、その薄膜熱電対22との対向面にこの例では3つの細長い凸部35が突出形成されているものとされ、これら凸部35が薄膜熱電対22の電気的接合層29が形成されている一端部上において各薄膜熱電対22と、つまりN型熱電半導体薄膜28と接触する構造とされる。図1B中、二点鎖線は凸部35の平面形状を示す。
一方、基板23の裏面側に配置される底板25には基板23との対向面に2つの細長い凸部36が突出形成されており、これら凸部36が基板23に形成されている溝34にそれぞれ嵌め込まれて溝34底面に露出されている導体32と接触される。なお、基板23と底板25とは図に示したように板面が互いに当接される。
【0024】
上板24と底板25とは共に熱伝導率の良い電気絶縁性の材料によって形成され、材料としては例えばアルミナが使用される。また、薄膜熱電対22や導体32に接触する面に例えばアルミナを表面コーティングして電気絶縁を確保した銅などの金属も好適である。
上板24と底板25とはそれらの周縁部が枠体26を介して互いに連結固定され、薄膜熱電対22が配列形成された基板23がこれら上板24と底板25とに挟持されて薄膜熱電対集積型の熱電変換デバイス21が完成する。
【0025】
なお、上板24及び底板25はそれぞれ熱伝導率が低く、電気絶縁性で弾性のある例えばプラスチック等の材料からなる枠体26に接着して固定する。このように弾性のある材料で固定することにより熱変形などに対して機械的強度の高い熱電変換デバイス21を構成することができる。
また、上板24と底板25と枠体26とを接着固定する際、例えば真空中で接着して内部空間を真空とすることにより熱損失をより小さくすることができる。上記のような構成とされた熱電変換デバイス21によれば、平板型構造の両面で、つまり上板24と底板25で吸・放熱する形態となり、図6Bに示した従来のバルク材料を使用した熱電変換デバイスと同様の構造が実現できる。
【0026】
熱発電器として用いる場合は例えば上板24を通じて薄膜熱電対22の電気的接合部29が位置する一端部に熱を供給することにより熱発電が可能となる。この際、温度差を高く保つためには、底板25を低温に保つようにすればよく、これにより底板25及び基板23に埋め込まれた導体32を通じて薄膜熱電対22の一端部と反対の他端部が低温に保たれる。
この熱電変換デバイス21は熱発電器や電子冷却・加熱器として用いることができ、上板24及び底板25の外面形状は平面に限らず、例えば相手方高温体・低温体あるいは相手方被冷却体・被加熱体の形状に合わせた形状とすることができる。
【0027】
なお、P型熱電半導体薄膜27とN型熱電半導体薄膜28の積層順はこの例と逆であってもよい。
図3は図1に示した構成に対し、基板23を薄くした熱電変換デバイス37の断面構造を示したものである。この例ではあらかじめ数100μm厚の基板表面に導体32を埋め込んだ後、基板表面を例えば研磨により削ることで薄い基板23を得ており、導体32はその全体が基板23の裏面側に露出されている。
この構成によれば、底板25に設けた凸部36が導体32と基板23の表面のごく一部分にのみ接触するため、図1の例と比較して底板25から供給される熱の基板23を通じた損失が抑えられ、熱電変換効率のさらなる向上をはかることができる。
【0028】
図4は上板24の周縁部を枠体26を介して基板23に固定し、つまり底板25のない構成とした熱電変換デバイス38を示したものである。このような構成も使用条件あるいは用途に応じて採用することができる。また、薄膜熱電対22の下に配設する導体32をこの例では基板23に埋め込むものとしているが、例えば基板23上に成膜形成する構成とすることもできる。但し、熱電半導体薄膜27,28の成膜の点では埋め込んで成膜面のより平坦化を図る方が好ましい。図5は薄膜熱電対22を構成するP型熱電半導体薄膜27とN型熱電半導体薄膜28とを積層構造とするのではなく、基板23上にそれらを平面配置して薄膜熱電対22を構成した例を示したものである。
【0029】
この熱電変換デバイス41では方形の同一形状をなすP型熱電半導体薄膜27とN型熱電半導体薄膜28とが第1の電気的接合部42を挟んで配置されて薄膜熱電対22が形成され、それら薄膜熱電対22が電気的に直列構成をなすように基板23上に配列形成されたものとなっている。
薄膜熱電対22はこの例では8個配列されており、各薄膜熱電対22間は第2の電気的接合部43で接続されて8個の薄膜熱電対22が電気的に直列接続されている。
【0030】
熱伝導体よりなる上板24に設けられている凸部35はこの例では第2の電気的接合部43に接触する構造とされている。
一方、上板24の凸部35が接触されない方の第1の電気的接合部42の各位置と対応して基板23に例えば金や銅などの金属44が埋め込まれており、これら金属44と熱伝導体よりなる底板25の凸部36とが接触される。なお、この例では基板23は図3に示した熱電変換デバイス37と同様、その厚さが薄いものとされている。
【0031】
第1の電気的接合部42と第2の電気的接合部43とは共に例えば金や銅などの金属薄膜を成膜することによって形成される。図中、32aは端子部を示す。この図5に示した構造においても、平板型構造の両面で吸・放熱する形態となり、また熱電半導体薄膜27,28を基板23の平面上に成膜することができるものとなっている。但し、薄膜熱電対22の集積度の点では前述した熱電変換デバイス21や37に比し、劣るものとなる。
【0032】
【発明の効果】
以上説明したように、この発明によれば図6Bに示した従来のバルク材料を用いた熱電変換デバイスと同様に、平板型構造の両面で吸・放熱する形態を有し、かつ薄膜材料によって熱電半導体が形成された熱電変換デバイスを得ることができる。
そして、成膜プロセスによって多数の薄膜熱電対を一括して形成することができるため、その点でバルク材料を用いた熱電変換デバイスに比べて、低コスト化を図ることができるものとなっている。
【0033】
なお、熱電半導体薄膜を平面基板上に成膜でき、かつ基板材料も適宜選定できるため、基板の種類や平坦度、成膜時の温度、雰囲気ガス、真空度など特定の生成条件でなければ高い性能指数を有する熱電半導体薄膜が得られないような材料であっても用いることができ、つまりスクッテルダイト系材料や半導体超格子、ナノワイヤ膜、ナノ微粒子膜なども薄膜熱電対の材料として用いることができる。
従って、そのような材料によって薄膜熱電対を形成することにより、極めて高い熱電変換効率を有する熱電変換デバイスが得られるものとなる。
【図面の簡単な説明】
【図1】Aは請求項3の発明の一実施例を示す断面図、Bはその薄膜熱電対が配列形成された基板の平面図。
【図2】図1における薄膜熱電対が配列形成された基板の詳細を説明するための図、Aは平面図、BはそのDD断面図、CはそのEE断面図。
【図3】請求項3の発明の他の実施例を示す断面図。
【図4】請求項1の発明の一実施例を示す断面図。
【図5】Aは請求項の発明の一実施例を示す断面図、Bはその薄膜熱電対が配列形成された基板の平面図。
【図6】Aは熱発電の原理を示す模式図、Bは従来のバルク材料を用いた熱電変換デバイスの模式図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin-film thermocouple-integrated thermoelectric conversion device constituted by using a thermoelectric conversion material capable of mutually converting heat and electricity.
[0002]
[Prior art]
Thermoelectric conversion devices are used as electronic coolers / heaters and thermoelectric generators. FIG. 6A shows the principle of thermoelectric power generation. One end of a semiconductor pair (thermocouple) including a P-type semiconductor 11 and an N-type semiconductor 12 is brought into contact with a high-temperature body 13 and the other end is brought into a low-temperature body 14. By contacting and forming a circuit as shown in the figure, a current flows by the Seebeck effect, and a thermoelectromotive force is generated. In the drawing, reference numeral 15 denotes a joining metal. The high temperature body 13 and the low temperature body 14 are insulated from the joining metal 15.
[0003]
FIG. 6B shows a configuration of a thermoelectric conversion device that has been conventionally put into practical use, and has a configuration in which a large number of thermocouples shown in FIG. 6A are arranged. These thermocouples are arranged in parallel and parallel in the direction of the temperature difference, and are electrically connected in series by the electrodes 16. In the figure, reference numeral 17 denotes an insulator.
In the thermoelectric conversion device shown in FIG. 6B, the P-type semiconductor 11 and the N-type semiconductor 12 forming the thermocouple are formed by cutting out a polycrystalline bulk material mainly generated by sintering or the like, and have the same dimensions. After a large number of pieces 11 and 12 are cut out, the thermoelectric conversion device is completed through many steps such as assembly, electrode formation, and fixing. Therefore, a conventional thermoelectric conversion device using a bulk material for a semiconductor requires many different steps, and therefore costs are high in that respect, which is expensive and has been a factor preventing the spread of thermoelectric conversion devices.
[0004]
On the other hand, a thermoelectric conversion device can be configured by using a thin film material instead of using a bulk material for a semiconductor.
In this case, a temperature gradient is formed in the film thickness direction to arrange each region of the heat absorbing portion and the heat radiating portion on the front and back surfaces of the film, and a temperature gradient is formed in a direction in the thin film surface to absorb heat in the thin film surface. It is conceivable that each region of the unit and the heat radiating unit is arranged.
In the case of the former form, similar to the conventional thermoelectric conversion device using a bulk material shown in FIG. 6B, a thermoelectric conversion device of a form that absorbs and radiates heat on both sides of a flat plate structure can be realized. Has a problem that heat loss is apt to occur and thermoelectric conversion efficiency is poor.
[0005]
In order to partially solve this problem, in the invention described in Japanese Patent Application Laid-Open No. Hei 6-13664, a device is devised to reduce the heat conduction by evacuating the gap between the thermoelectric semiconductor thin films. However, this method cannot prevent heat loss through the thermoelectric semiconductor thin film itself, so that it is difficult to obtain a highly efficient thin film thermoelectric conversion device.
On the other hand, in the latter case of providing a temperature gradient in the thin film plane, a temperature difference can easily be given to the film itself, the heat loss is small, and a thermoelectric conversion device with good thermoelectric conversion efficiency can be realized in principle. However, there is a point where heat loss occurs through the substrate on which the film is formed, and since there is a high-temperature part and a low-temperature part in the same plane, heat is absorbed and radiated on both sides of a flat plate structure similar to a conventional thermoelectric conversion device using bulk material Cannot be realized, and there is a problem that a sufficient area cannot be provided for the absorption / radiation section.
[0006]
Japanese Patent Application Laid-Open No. Hei 10-303469 has proposed an invention in which a temperature gradient is formed in the plane of a thin film, and an attempt is made to provide a sufficient area for the heat absorbing / dissipating portion. However, in the invention described in JP-A-10-303469, a technique of depositing a thermoelectric semiconductor thin film on the surface of a protrusion formed of plastic or the like is employed. There is a problem that the method cannot be applied to a thermoelectric semiconductor thin film material (for example, a semiconductor superlattice that needs to be epitaxially grown) that cannot be formed unless a special substrate such as a film temperature or a film forming condition is used.
[0007]
More specifically,
・ It is difficult to form a film at high temperature when film is formed on a convex part of plastic ・ It cannot be applied to a film which does not adhere to (is not bonded to) plastic ・ In order to avoid the above two points, a convex part is formed on a semiconductor substrate etc. However, there is a disadvantage that a film of the same quality may not be formed on the slope of the convex portion and on the top and bottom even when the film is formed.
[0008]
[Problems to be solved by the invention]
As described above, there is a problem that a thermoelectric device using a bulk material for a semiconductor is expensive, while a thermoelectric device using a thin film material for a semiconductor can reduce the cost, but the film thickness can be reduced. Forming the temperature gradient in the direction has a problem in terms of thermoelectric conversion efficiency.
On the other hand, if a temperature gradient is formed in a direction in the plane of the thin film as in the invention described in Japanese Patent Application Laid-Open No. 10-303469, it is advantageous in terms of thermoelectric conversion efficiency. In this case, the film is formed on the convex portion so as to have a sufficient area, and there is a possibility that a problem may occur in the quality of the film, and there is a problem that the film cannot be formed depending on the material.
[0009]
In particular, in recent years, the possibility of showing a high figure of merit as a thermoelectric conversion material has been pointed out,
(1) Semiconductor superlattices (Sun, X. et al., Mat. Res. Soc. Symp. Proc. Vol. 545, P369, 1999, and Venkatasubramanian, R. et al., Appl. Phys. Lett. Vol. 75, No. .8, P1104, 1999 etc.)
(2) Nanowires (Techniques for producing bismuth nanowires in 10 μm thick thin film mica are described in Demske, DL et al., Mat. Res. Soc. Symp. Proc. Vol. 545, P209, 1999)
(3) There is a problem that it cannot be applied to film formation (generation) of next-generation materials such as a nanoparticle film (proposed by the present applicant in Japanese Patent Application No. 2000-267328).
[0010]
In view of these problems, an object of the present invention is to provide a thermoelectric conversion device with high thermoelectric conversion efficiency and low cost. An object of the present invention is to provide a thin-film thermocouple integrated thermoelectric conversion device that absorbs and radiates heat.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, the substrate and the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film, which are arranged and formed on the substrate, are provided at one end via an electrical bonding layer and at the other end via an insulating layer. A plurality of stacked thin film thermocouples, a conductor disposed at the other end of the thin film thermocouple opposite to the one end and electrically connecting the plurality of thin film thermocouples in series, and an arrangement of the thin film thermocouples And an upper plate made of a heat conductor having a structure in which a projection formed on the surface facing the thin-film thermocouple is in contact with each thin-film thermocouple on the one end. Is done.
[0012]
According to a second aspect of the present invention, in the first aspect, the conductor connecting the adjacent thin-film thermocouples has one end located above one thin-film thermocouple and the other end located below the other thin-film thermocouple. The conductor located under the thin-film thermocouple is embedded in the substrate, and its upper surface is substantially flush with the substrate surface.
According to a third aspect of the present invention, in the second aspect of the present invention, at least a part of the lower surface of the conductor located under each thin-film thermocouple is exposed to the back surface of the substrate, and the heat conductor is opposed to the back surface. A bottom plate formed of a bottom plate is provided, and a projection formed on a surface of the bottom plate facing the back surface is in contact with the conductor exposed on the back surface side.
[0013]
According to the fourth aspect of the present invention, the substrate, the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film are arranged in a plane with the first electrical connection portion interposed therebetween, so that an electric series configuration is formed on the substrate. A plurality of thin-film thermocouples arranged and formed as described above; a second electrical junction disposed between the thin-film thermocouples to electrically connect the plurality of thin-film thermocouples in series; A projection is formed on the array, and the projection formed on the surface facing the thin-film thermocouple is formed of a heat conductor having a structure in contact with one of the first and second electrical junctions. comprising a plate, in correspondence with each position of the electrical junction towards the convex portion of the upper plate is not contact metal is embedded in the substrate, the metal upper surface is substantially flush with the surface of the substrate, the lower surface At least a part of the heat conductor is exposed on the back side of the substrate and faces the back side. Li Cheng bottom plate is placed, the convex portions formed to project facing surfaces between the rear surface of the bottom plate is in contact with the metal that is exposed to the back side.
[0014]
According to a fifth aspect of the present invention, in any one of the third and fourth aspects, the peripheral portion of the upper plate and the peripheral portion of the bottom plate are connected and fixed to each other via a frame.
[0015]
According to a sixth aspect of the present invention, in the fifth aspect , the internal space surrounded by the upper plate, the bottom plate, and the frame is evacuated.
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film have a rectangular shape and the same shape, and the plurality of thin film thermocouples are formed on the substrate. Are arranged vertically and horizontally.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the present invention. In this example, a thermoelectric conversion device 21 includes a substrate 23 on which a plurality of thin film thermocouples 22 are formed surrounded by an upper plate 24, a bottom plate 25, and a frame 26. It is assumed to be housed in a closed internal space. FIG. 2 shows the substrate 23 on which the thin film thermocouple 22 is formed. First, the structure of the thin film thermocouple 22 and the substrate 23 will be described with reference to FIG.
[0017]
The thin film thermocouple 22 is formed by laminating a P-type thermoelectric semiconductor thin film 27 and an N-type thermoelectric semiconductor thin film 28 at one end via an electric bonding layer 29 and the rest via an insulating layer 31. In this example, The P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric semiconductor thin film 28 are rectangular and have the same shape.
The thin film thermocouples 22 are vertically and horizontally arranged on a substrate 23, and in this example, four thin film thermocouples 22 are formed, four in each of length and width.
The electrical bonding layers 29 of the thin-film thermocouples 22 in each row are aligned so as to be located on one row as shown in FIG. 2A, and the electrical bonding of the odd-numbered thin-film thermocouples 22 counted from the left in the figure is performed. The layer 29 is located on the left side of the square, and the electrical bonding layers 29 of the thin-film thermocouples 22 in the even rows are located on the right side of the square.
[0018]
A conductor 32 is disposed at the other end of the thin-film thermocouple 22 opposite to the one at which the electrical bonding layer 29 is formed. The 16 thin-film thermocouples 22 are electrically connected in series by the conductor 32. I have. As shown in FIG. 2A, the conductor 32 is located on the right side of the square for the thin-film thermocouples 22 in the odd-numbered rows and on the left-hand side of the square for the thin-film thermocouples 22 in the even-numbered rows.
As shown in FIG. 2B, the conductor 32 connecting the adjacent thin film thermocouples 22 has one end located on one thin film thermocouple 22, that is, disposed on the N-type thermoelectric semiconductor thin film 28, and the other end connected. It is located below the other thin film thermocouple 22, that is, below the P-type thermoelectric semiconductor thin film 27.
[0019]
In this example, the conductor 32 located below each thin film thermocouple 22 is embedded in the substrate 23, and the upper surface thereof is substantially flush with the surface of the substrate 23. The conductor 32 is led out to the edge of the substrate 23 from both ends of the 16 thin film thermocouples 22 connected in series by the conductor 32 to form a pair of terminal portions 32a, and a lead wire is connected to these terminal portions 32a. 33 is connected, for example, by soldering.
The substrate 23 is formed with two elongated grooves 34 from the back side, and the conductor 32 located below each thin film thermocouple 22 passes through these grooves 34 so that at least a part of the lower surface thereof is on the back side of the substrate 23. It is exposed to.
[0020]
The thin film thermocouple 22 having the above-described configuration is manufactured by a film forming process using a mask, and a P-type thermoelectric semiconductor thin film 27, an electric bonding layer 29, an insulating layer 31, The N-type thermoelectric semiconductor thin film 28 and the conductor 32 extending from the embedded conductor 32 to the N-type thermoelectric semiconductor thin film 28 are sequentially formed. Although not shown, when the conductor 32 extending from the embedded conductor 32 to the N-type thermoelectric semiconductor thin film 28 is formed, a film is not formed directly on the side surface of the P-type thermoelectric semiconductor thin film 27 so that the film is not directly formed. This side surface is also protected by the insulating layer 31. If necessary, a protective layer may be further formed thereon. In order to embed the conductor 32 in the substrate 23, the conductor 32 can be obtained by, for example, vapor-depositing the target portion on the substrate surface by, for example, ion milling. The groove 34 is formed by embedding the conductor 32 in the substrate 23 and then hollowing out the substrate 23 by, for example, wet etching or the like. After forming the groove 34, the above-described film forming process is performed.
[0021]
The substrate 23 is an insulating substrate, such as a glass substrate.
The thin-film thermocouple 22 is formed on the plane of the substrate 23 as described above, that is, since the thin-film thermocouple 22 can be formed on a flat substrate most suitable for forming the thermoelectric semiconductor thin films 27 and 28, Any thin film material can be used for the semiconductor thin films 27 and 28. For example, next-generation materials such as skutterudite-based materials and semiconductor superlattices, nanowire films, and nanoparticle films, which are expected to have a high figure of merit in the form of a thin film, can be used. Note that a conventional thermoelectric conversion material such as bismuth tellurium can also be used.
[0022]
The insulating layer 31 is made of, for example, silicon oxide or silicon nitride, and the electrical bonding layer 29 and the conductor 32 are made of, for example, gold or copper. The electric bonding layer 29 may be constituted by the P-type thermoelectric semiconductor thin film 27 itself by forming a step portion corresponding to the electric bonding layer 29 on the upper surface of the P-type thermoelectric semiconductor thin film 27.
Next, an arrangement structure of the upper plate 24 and the bottom plate 25 combined with the substrate 23 on which the thin film thermocouples 22 are formed will be described with reference to FIG.
Both the upper plate 24 and the bottom plate 25 are made of a heat conductor, and the substrate 23 is sandwiched between the upper plate 24 and the bottom plate 25.
[0023]
The upper plate 24 located on the array of the thin film thermocouples 22 has three elongated projections 35 formed on the surface facing the thin film thermocouple 22 in this example. On one end of the thermocouple 22 where the electric bonding layer 29 is formed, the thin film thermocouple 22 is in contact with the N-type thermoelectric semiconductor thin film 28. In FIG. 1B, the two-dot chain line indicates the planar shape of the projection 35.
On the other hand, the bottom plate 25 disposed on the back surface side of the substrate 23 has two elongated convex portions 36 protrudingly formed on the surface facing the substrate 23, and these convex portions 36 are formed in grooves 34 formed in the substrate 23. Each of the conductors 32 is fitted and comes into contact with the conductor 32 exposed at the bottom of the groove 34. The board surfaces of the substrate 23 and the bottom plate 25 are in contact with each other as shown in the drawing.
[0024]
Both the upper plate 24 and the bottom plate 25 are formed of an electrically insulating material having good thermal conductivity, and for example, alumina is used as the material. Also, a metal such as copper whose surface is in contact with the thin-film thermocouple 22 or the conductor 32 is coated with, for example, alumina to secure electrical insulation.
The upper plate 24 and the bottom plate 25 are connected and fixed to each other via a frame 26, and a substrate 23 on which the thin film thermocouples 22 are formed is sandwiched between the upper plate 24 and the bottom plate 25 to form a thin film thermoelectric device. The thermoelectric conversion device 21 of the integrated type is completed.
[0025]
The upper plate 24 and the bottom plate 25 are fixed to the frame 26 made of a material such as plastic, which has low thermal conductivity and is electrically insulating and elastic. By fixing with such an elastic material, the thermoelectric conversion device 21 having high mechanical strength against thermal deformation or the like can be configured.
Further, when the upper plate 24, the bottom plate 25, and the frame 26 are bonded and fixed, for example, by bonding in a vacuum to make the internal space vacuum, heat loss can be further reduced. According to the thermoelectric conversion device 21 having the above-described configuration, a form in which heat is absorbed and dissipated by both sides of the flat plate structure, that is, the top plate 24 and the bottom plate 25 is used, and the conventional bulk material shown in FIG. 6B is used. The same structure as the thermoelectric conversion device can be realized.
[0026]
When used as a thermoelectric generator, for example, heat can be generated by supplying heat through the upper plate 24 to one end of the thin-film thermocouple 22 where the electrical junction 29 is located. At this time, in order to keep the temperature difference high, the bottom plate 25 may be kept at a low temperature, whereby the bottom plate 25 and the other end opposite to one end of the thin film thermocouple 22 through the conductor 32 embedded in the substrate 23. The part is kept cold.
The thermoelectric conversion device 21 can be used as a thermoelectric generator or an electronic cooling / heating device. The outer shapes of the upper plate 24 and the bottom plate 25 are not limited to flat surfaces. The shape can be adapted to the shape of the body.
[0027]
Note that the order of lamination of the P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric semiconductor thin film 28 may be reverse to this example.
FIG. 3 shows a cross-sectional structure of a thermoelectric conversion device 37 in which the substrate 23 is thinner than the configuration shown in FIG. In this example, after the conductor 32 is embedded in the surface of the substrate having a thickness of several hundred μm in advance, the thin substrate 23 is obtained by grinding the substrate surface by, for example, polishing, and the entire conductor 32 is exposed on the back side of the substrate 23. I have.
According to this configuration, since the convex portion 36 provided on the bottom plate 25 contacts only a part of the surface of the conductor 32 and the substrate 23, the heat supplied from the bottom plate 25 can pass through the substrate 23 as compared with the example of FIG. Loss can be suppressed, and the thermoelectric conversion efficiency can be further improved.
[0028]
FIG. 4 shows a thermoelectric conversion device 38 in which the peripheral portion of the upper plate 24 is fixed to the substrate 23 via the frame body 26, that is, in which the bottom plate 25 is not provided. Such a configuration can also be adopted according to use conditions or applications. In this example, the conductor 32 disposed below the thin film thermocouple 22 is embedded in the substrate 23. However, for example, a configuration in which a film is formed on the substrate 23 may be adopted. However, in terms of the formation of the thermoelectric semiconductor thin films 27 and 28, it is preferable to bury the thermoelectric semiconductor thin films 27 and 28 to make the film formation surface flatter. FIG. 5 shows that the P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric semiconductor thin film 28 constituting the thin-film thermocouple 22 are not formed in a laminated structure, but are arranged in a plane on a substrate 23 to form the thin-film thermocouple 22. This is an example.
[0029]
In this thermoelectric conversion device 41, a P-type thermoelectric semiconductor thin film 27 and an N-type thermoelectric semiconductor thin film 28 having the same rectangular shape are arranged with a first electrical junction 42 interposed therebetween to form a thin-film thermocouple 22. The thin film thermocouples 22 are arranged and formed on the substrate 23 so as to form an electrically serial configuration.
In this example, eight thin-film thermocouples 22 are arranged, and the thin-film thermocouples 22 are connected to each other at a second electrical junction 43 so that the eight thin-film thermocouples 22 are electrically connected in series. .
[0030]
In this example, the convex portion 35 provided on the upper plate 24 made of a heat conductor is configured to be in contact with the second electrical connection portion 43.
On the other hand, a metal 44 such as gold or copper is buried in the substrate 23 corresponding to each position of the first electrical joint portion 42 where the convex portion 35 of the upper plate 24 is not in contact. The protrusion 36 of the bottom plate 25 made of a heat conductor is brought into contact. In this example, the substrate 23 has a small thickness, similarly to the thermoelectric conversion device 37 shown in FIG.
[0031]
The first electrical joint 42 and the second electrical joint 43 are both formed by forming a metal thin film such as gold or copper. In the figure, 32a indicates a terminal portion. The structure shown in FIG. 5 also has a form in which heat is absorbed and radiated on both sides of the flat plate type structure, and the thermoelectric semiconductor thin films 27 and 28 can be formed on the plane of the substrate 23. However, the degree of integration of the thin film thermocouple 22 is inferior to the thermoelectric conversion devices 21 and 37 described above.
[0032]
【The invention's effect】
As described above, according to the present invention, similarly to the thermoelectric conversion device using the conventional bulk material shown in FIG. A thermoelectric conversion device on which a semiconductor is formed can be obtained.
Further, since a large number of thin film thermocouples can be collectively formed by a film forming process, cost reduction can be achieved in that respect as compared with a thermoelectric conversion device using a bulk material. .
[0033]
In addition, since a thermoelectric semiconductor thin film can be formed on a flat substrate and the substrate material can be appropriately selected, it is high unless specific production conditions such as the type and flatness of the substrate, the temperature at the time of film formation, the atmosphere gas, and the degree of vacuum are used. Materials that do not provide thermoelectric semiconductor thin films with a figure of merit can be used.In other words, skutterudite-based materials, semiconductor superlattices, nanowire films, nanoparticle films, etc. should also be used as thin-film thermocouple materials. Can be.
Therefore, by forming a thin film thermocouple with such a material, a thermoelectric conversion device having extremely high thermoelectric conversion efficiency can be obtained.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing one embodiment of the invention of claim 3, and FIG. 1B is a plan view of a substrate on which thin-film thermocouples are arranged and formed.
FIG. 2 is a view for explaining details of a substrate on which thin film thermocouples are arranged and formed in FIG. 1, A is a plan view, B is a DD sectional view thereof, and C is an EE sectional view thereof.
FIG. 3 is a sectional view showing another embodiment of the invention of claim 3;
FIG. 4 is a sectional view showing one embodiment of the invention of claim 1;
FIG. 5A is a sectional view showing an embodiment of the invention of claim 4 , and FIG. 5B is a plan view of a substrate on which thin film thermocouples are arranged.
6A is a schematic diagram illustrating the principle of thermoelectric power generation, and FIG. 6B is a schematic diagram of a thermoelectric conversion device using a conventional bulk material.

Claims (7)

基板と、
その基板上に配列形成され、P型熱電半導体薄膜とN型熱電半導体薄膜とが一端部において電気的接合層を介し、残部において絶縁層を介して積層されてなる複数の薄膜熱電対と、
それら薄膜熱電対の上記一端部と反対の他端部に配置されて上記複数の薄膜熱電対を電気的に直列に接続する導体と、
上記の薄膜熱電対の配列上に位置され、その薄膜熱電対との対向面に突出形成された凸部が上記一端部上において各薄膜熱電対と接触する構造とされた熱伝導体よりなる上板とを具備することを特徴とする薄膜熱電対集積型熱電変換デバイス。
A substrate,
A plurality of thin-film thermocouples arranged and formed on the substrate, wherein a P-type thermoelectric semiconductor thin film and an N-type thermoelectric semiconductor thin film are laminated via an electrical bonding layer at one end and an insulating layer at the other end;
A conductor arranged at the other end of the thin film thermocouple opposite to the one end and electrically connecting the plurality of thin film thermocouples in series;
The heat conductor is arranged on the array of the thin film thermocouples, and the protrusion formed on the surface facing the thin film thermocouple is formed of a heat conductor having a structure in contact with each thin film thermocouple on the one end. A thermoelectric conversion device integrated with a thin film thermocouple.
請求項1記載の薄膜熱電対集積型熱電変換デバイスにおいて、
隣接する上記薄膜熱電対を接続する上記導体は一端が一方の薄膜熱電対の上に位置され、他端が他方の薄膜熱電対の下に位置されており、
その薄膜熱電対の下に位置する導体は上記基板に埋め込まれて、その上面が基板表面とほぼ面一とされていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
The thin-film thermocouple integrated thermoelectric conversion device according to claim 1,
The conductor connecting the adjacent thin film thermocouples has one end located above one thin film thermocouple and the other end located below the other thin film thermocouple,
A thin-film thermocouple integrated thermoelectric conversion device, wherein a conductor located below the thin-film thermocouple is embedded in the substrate, and an upper surface thereof is substantially flush with a surface of the substrate.
請求項2記載の薄膜熱電対集積型熱電変換デバイスにおいて、
各薄膜熱電対の下に位置する上記導体はその下面の少なくとも一部が上記基板の裏面側に露出されており、
上記裏面と対向して熱伝導体よりなる底板が配置され、
その底板の上記裏面との対向面に突出形成された凸部が上記裏面側に露出された導体と接触されていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
The thin-film thermocouple integrated thermoelectric conversion device according to claim 2,
The conductor located below each thin film thermocouple has at least a portion of its lower surface exposed to the back surface of the substrate,
A bottom plate made of a heat conductor is arranged facing the back surface,
A thin-film thermocouple-integrated thermoelectric conversion device, wherein a projection formed on a surface of the bottom plate facing the back surface is in contact with a conductor exposed on the back surface side.
基板と第1の電気的接合部を挟んでP型熱電半導体薄膜とN型熱電半導体薄膜とが平面配置されてなり、上記基板上に電気的に直列構成をなすように配列形成された複数の薄膜熱電対とそれら各薄膜熱電対間に配置されて上記複数の薄膜熱電対を電気的に直列に接続する第2の電気的接合部と上記薄膜熱電対の配列上に位置され、その薄膜熱電対との対向面に突出形成された凸部が上記第1もしくは第2の電気的接合部のいずれか一方と接触する構造とされた熱伝導体よりなる上板とを具備する薄膜熱電対集積型熱電変換デバイスにおいて、
上記上板の凸部が接触されない方の電気的接合部の各位置と対応して上記基板に金属が埋め込まれ、
その金属は上面が上記基板の表面とほぼ面一とされ、下面の少なくとも一部が上記基板の裏面側に露出されており、
上記裏面と対向して熱伝導体よりなる底板が配置され、
その底板の上記裏面との対向面に突出形成された凸部が上記裏面側に露出された金属と接触されていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
A substrate, a plurality of P-type thermoelectric semiconductor thin films and an N-type thermoelectric semiconductor thin film arranged in a plane with the first electrical junction therebetween, and a plurality of P-type thermoelectric semiconductor thin films arranged and formed on the substrate so as to be electrically connected in series. a thin-film thermocouple, and a second electrical connection section that connects disposed electrically in series with said plurality of thin film thermocouples between them each of the thin film thermocouple is located on the sequence of the thin film thermocouple, it and a top plate protrusions which are protruded surface facing the thin film thereof thermocouple is made of the structure and thermal conductors in contact with either one of the first or second electrical connection section in the thin film thermocouple integrated thermoelectric conversion device,
Metal is buried in the substrate corresponding to each position of the electrical junction where the protrusion of the upper plate is not contacted,
The metal has an upper surface substantially flush with the surface of the substrate, and at least a portion of the lower surface is exposed on the back surface of the substrate,
A bottom plate made of a heat conductor is arranged facing the back surface,
A thin-film thermocouple-integrated thermoelectric conversion device, wherein a projection formed on a surface of the bottom plate facing the back surface is in contact with the metal exposed on the back surface side.
請求項3もしくは記載のいずれかの薄膜熱電対集積型熱電変換デバイスにおいて、
上記上板の周縁部と底板の周縁部とが枠体を介して互いに連結固定されていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
The thin-film thermocouple integrated thermoelectric conversion device according to claim 3 or 4 ,
A thin-film thermocouple integrated thermoelectric conversion device, wherein a peripheral portion of the upper plate and a peripheral portion of the bottom plate are connected and fixed to each other via a frame.
請求項記載の薄膜熱電対集積型熱電変換デバイスにおいて、
上記上板と底板と枠体とによって囲まれた内部空間が真空とされていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
The thin-film thermocouple integrated thermoelectric conversion device according to claim 5 ,
A thermoelectric conversion device integrated with a thin film thermocouple, wherein an inner space surrounded by the upper plate, the bottom plate, and the frame is evacuated.
請求項1乃至記載のいずれかの薄膜熱電対集積型熱電変換デバイスにおいて、
上記P型熱電半導体薄膜とN型熱電半導体薄膜とは方形形状とされ、かつ同一形状とされており、
上記複数の薄膜熱電対は上記基板上に縦横に配列されていることを特徴とする薄膜熱電対集積型熱電変換デバイス。
The thin-film thermocouple integrated thermoelectric conversion device according to any one of claims 1 to 6 ,
The P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film are rectangular and have the same shape,
The thin-film thermocouple integrated thermoelectric conversion device, wherein the plurality of thin-film thermocouples are arranged vertically and horizontally on the substrate.
JP2001138442A 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device Expired - Fee Related JP3554861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138442A JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138442A JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2002335021A JP2002335021A (en) 2002-11-22
JP3554861B2 true JP3554861B2 (en) 2004-08-18

Family

ID=18985378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138442A Expired - Fee Related JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3554861B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936496B2 (en) 2002-12-20 2005-08-30 Hewlett-Packard Development Company, L.P. Nanowire filament
CN1820380B (en) 2004-01-19 2010-05-05 松下电器产业株式会社 Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
US7649139B2 (en) 2004-03-25 2010-01-19 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element and thermoelectric conversion module
JP4273137B2 (en) 2005-09-26 2009-06-03 Tdk株式会社 Thermoelectric element
JPWO2011065185A1 (en) * 2009-11-27 2013-04-11 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof
DE102010022668B4 (en) * 2010-06-04 2012-02-02 O-Flexx Technologies Gmbh Thermoelectric element and module comprising a plurality of such elements
JP5589589B2 (en) * 2010-06-17 2014-09-17 富士通株式会社 Thermoelectric element and method for manufacturing thermoelectric element
KR101237235B1 (en) 2010-08-20 2013-02-26 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
KR101892621B1 (en) * 2010-11-09 2018-08-28 삼성전자 주식회사 Thermoelectric device and method for forming the same
JP2012186297A (en) * 2011-03-04 2012-09-27 Fujitsu Ltd Thermoelectric conversion module and manufacturing method therefor
KR101621750B1 (en) 2013-05-30 2016-05-17 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
JP6405446B2 (en) 2015-02-24 2018-10-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP6665464B2 (en) * 2015-09-25 2020-03-13 Tdk株式会社 Thin film thermoelectric element

Also Published As

Publication number Publication date
JP2002335021A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4472359B2 (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
US9748466B2 (en) Wafer scale thermoelectric energy harvester
US8692104B2 (en) Thermoelectric element
US9620700B2 (en) Wafer scale thermoelectric energy harvester
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
TWI443882B (en) Thermoelectric apparatus and method of fabricating the same
US20100263701A1 (en) Thermoelectric device, manufacturing method for manufacturing thermoelectric device, control system for controlling thermoelectric device, and electronic appliance
US20120145209A1 (en) Thermoelectric element and thermoelectric module including the same
TWI353673B (en) Integrated package having solar cell and thermoele
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
US8809667B2 (en) Thermoelectric semiconductor component
KR20120019536A (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
US9899588B2 (en) Thermoelectric element
JP2006294935A (en) High efficiency low loss thermoelectric module
US10763418B2 (en) Thermoelectric device
WO2012070395A1 (en) Thermoelectric conversion module
JP2012532468A (en) Module having a plurality of thermoelectric elements
JPH0870142A (en) Thermoelectric element
JPH08153898A (en) Thermoelectric element
JP2011082272A (en) Thermoelectric cooling device
US20200052178A1 (en) Thermoelectric conversion device
US20180226559A1 (en) Thermoelectric conversion device
EP3442039B9 (en) Thermoelectric conversion module
US20190252593A1 (en) Thermoelectric conversion device and manufacturing method thereof
CN215496782U (en) Refrigeration chip and nanometer water ion generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees