[go: up one dir, main page]

JP3552617B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3552617B2
JP3552617B2 JP34130099A JP34130099A JP3552617B2 JP 3552617 B2 JP3552617 B2 JP 3552617B2 JP 34130099 A JP34130099 A JP 34130099A JP 34130099 A JP34130099 A JP 34130099A JP 3552617 B2 JP3552617 B2 JP 3552617B2
Authority
JP
Japan
Prior art keywords
fuel ratio
catalyst
exhaust gas
exhaust
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34130099A
Other languages
Japanese (ja)
Other versions
JP2001152844A (en
Inventor
和弘 若尾
幸一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34130099A priority Critical patent/JP3552617B2/en
Publication of JP2001152844A publication Critical patent/JP2001152844A/en
Application granted granted Critical
Publication of JP3552617B2 publication Critical patent/JP3552617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、詳しくは、内燃機関の排出する排気ガスを機関排気通路に設けた触媒によって浄化する内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
排気浄化用触媒(以下「触媒」という。)を包蔵する触媒コンバータを内燃機関の機関排気通路に設け、触媒コンバータを通過する排気ガスを触媒により浄化する技術が周知である。
【0003】
一般に、触媒は、その温度が上昇してある温度範囲に至ると、排気中の有害成分を浄化する。そして、この触媒による排気ガスの浄化率が50パーセント以上になるほどに触媒が活性した時の温度のことを酸化反応による触媒の50%浄化温度といい、この明細書では、特に断らない限り前記50%浄化温度のことを便宜上、「触媒の活性温度」ということにする。
【0004】
ところで、一度冷えた状態にある内燃機関を始動しても、排気通路の触媒はすぐには暖まらないため、通常、その時の触媒温度は活性温度よりも低い。よって、その場合、触媒に排気ガスが至っても触媒は排気浄化できずにそのまま排気を大気中に放出してしまう。したがって、機関を寒冷時に始動する時は、できるだけ早く触媒を活性温度にまで高めることが望まれる。
【0005】
【発明が解決しようとする課題】
ところで、触媒コンバータが包蔵する触媒の温度は、触媒の部位の違いによって温度差を生じる。
【0006】
この関係を示したものが図5である。
図5の縦軸は触媒床温であり、その上にあるのは、触媒aの模式図であって、排気通路の形状に合わせて筒形をしたものを例示する。また、横軸は触媒横断面における触媒aの各部位を示し、例示的に横軸に記した中央部とあるのは触媒aの長手方向に延びる軸心bおよびその周囲の部分を含む部位であり、同じく外周部とあるのは触媒aの外周面cのことである。そして、これら各部位の温度をグラフ線Gで示す。
【0007】
そして、触媒aに排気ガスを流しても、触媒aの外周部は触媒中央部よりも大気に近いため放熱量が前記中央部よりも大きくなる。すなわち、触媒aの外周部は温度が上がり難いが中央部は上がり易い。
【0008】
また、一般に周知のごとく管内を流れる流体の速度は、管の中央部が管の壁面側よりも速い。このため、触媒内を流れる排気ガスの量も触媒中央部の方が壁面側よりも多くなる。
【0009】
触媒中央部は放熱量が少ない上にそこを流れる排気ガスの量も多いので比較的温度が高くなるのに対し、壁面側は中央部に比して放熱量が多くしかも流れる排気ガスの量も少ないので、触媒の温度分布は、図5のグラフ線Gのように横軸中央で高く両端で低い形態となる。
【0010】
このように、内燃機関の排気通路に設けられる触媒aは、排気ガスを流しても触媒温度がすぐには均一にならない。このような現象は、機関暖機がまだ十分でない、例えば寒冷時に内燃機関を始動したような場合に起こり易い。そして、 場合によっては、触媒内部では前記のごとく活性温度に達している部分とそうでない部分とに分かれ易く、活性温度に達していない部分を排気ガスが通過すると、排気ガスは浄化されずに大気中に放出されてしまう。
【0011】
一方、図6に示すように、触媒の活性温度(前記「酸化反応による触媒の50%浄化温度」のこと)は、触媒を通過する排気ガスの空燃比によって異なることが、本発明者の実験および研究によってわかっている。
【0012】
すなわち、酸化反応による触媒の50%浄化温度は、触媒を流れる排気ガスの空燃比がリッチなほど高く、リーンなほど低くなる。換言すれば、触媒温度が低くてもその温度に応じたリーンな度合いの排気ガスであれば、酸化反応による50%浄化は可能である。反対に排気ガスの空燃比がリッチの場合は、酸化反応が起こりにくい。
【0013】
本発明は、このような知見に基づいて発明されたものであり、その解決しようとする課題は、触媒内の部位ごとに温度差があることと、触媒を通過する排気ガスの空燃比によって、触媒の活性温度が異なることの2つの現象をうまく活用し、触媒全体の排気ガスの浄化率を高めることにある。
【0014】
【課題を解決するための手段】
本発明は前記課題を解決するために、以下の手段を採用した。
(1)本発明は、複数の気筒を有する内燃機関の排気通路に設けられこの排気通路に前記気筒から排出される排気ガスを浄化する排気浄化用触媒と、前記複数気筒のうちのいくつかをリッチ空燃比で作動するリッチ空燃比気筒群にし、残りをリーン空燃比で作動するリーン空燃比気筒群とし、前記リッチ空燃比気筒群が前記排気通路に排出するリッチな排気ガスと前記リーン空燃比気筒群が前記排気通路に排出するリーンな排気ガスとを前記触媒に導入することで、前記排気ガス中の未燃燃料成分の酸化反応を促進させて前記触媒の温度を高める気筒別空燃比制御手段と、を有する内燃機関の排気浄化装置において、前記気筒別空燃比制御手段による触媒昇温の実行時に、前記触媒を横断面で見た場合の中央部に向けて前記リッチ空燃比気筒群の排気ガスを前記触媒内に流入させ、前記触媒を横断面で見た場合の触媒内部の外側部位に向けて前記リーン空燃比気筒群の排気ガスを前記触媒内に流入させることにより、触媒の横断面で見た場合の中央部分には主としてリッチな排気ガスが流れ、触媒内部における外側部位にはリーンな排気ガスが流れることを特徴とした。
【0015】
このような構成の本発明では、気筒別空燃比制御手段による触媒昇温の実行時、触媒を横断面で見た場合の中央部に向けてリッチ空燃比気筒群の排気ガスを触媒内に流入させ、前記触媒を横断面で見た場合の触媒内部の外側部位に向けて前記リーン空燃比気筒群の排気ガスを前記触媒内に流入させるので、触媒中央部、換言すれば触媒内部のうち排気ガスが流れる方向に沿いかつ触媒の軸心を含む中央部分には、リッチな排気ガスが流れる。
【0016】
また、触媒内部における外側部位、すなわち触媒内部のうちリッチな排気ガスが流れる前記触媒中央部よりも外側部分ではリーンな排気ガスが流れる。
そして、既述のように、触媒は、排気ガスの空燃比がリッチであるほど50%浄化温度は高くなり、リーンであるほど50%浄化温度は低くなる。
【0017】
したがって、例えば寒冷時に機関始動した場合において、外気に近接する触媒内部における外側部位に排気ガスを流しても排気ガスの持つ熱は放出され易いため、当該外側部位は昇温し難い。
【0018】
しかし、本発明では、この外側部位にリーンな排気ガスを流すので、リーンの度合いを触媒の外部側温度に合わせて調整することで、低温でも酸化反応の促進によって排気ガスの浄化率を50%以上にできる。
【0019】
これに対し、触媒中央部には前記外側部位に比して高温度でリッチでしかも比較的多量の排気ガスが流れるため、リッチの度合いを触媒の中央部の温度に合わせて調整することで、当該触媒中央部における排気ガスの浄化率を50%以上にできる。
【0020】
このように、触媒内部の中央部における排気ガスの空燃比および触媒内部の外側部位における排気ガスの空燃比を、それぞれリッチ空燃比およびリーン空燃比に使い分けていずれも50%浄化温度にできるので、触媒内部の部位ごとに温度差があっても、そのことに起因して排気ガスの浄化率が不均一にならない。したがって、排気ガスの浄化率を触媒全体として高められる。
【0021】
なお、このようにリッチ空燃比の排気ガスとリーン空燃比の排気ガスを分別して触媒内に流しても触媒内がリッチな排気ガスとリーンな排気ガスとに完全に層別されるわけではない。
【0022】
リッチな排気ガスの主たる流れの方向として前記中央部に向かうのであり、リーンな排気ガスの主たる流れの方向として前記外側に向かうのであり、両ガスを混合しないのではない。排気浄化を好適に行う上で最終的に両者を混合することは極めて重要である。
【0023】
なぜならば、両排気ガスを完全に層別し、混合しないとすると、リッチな排気ガスは未燃炭化水素(以下「未燃HC」という。)が多い還元雰囲気にあり、リーンな排気ガスは酸素が多い酸化雰囲気におかれるため、前者の排気ガスは炭化水素(以下「HC」という。)や一酸化炭素(以下「CO」という。)の浄化がされずに排出され、後者の排気ガスは酸化雰囲気にあるのでHCやCOは浄化されても窒素酸化物(以下「NOx」という。)は浄化されずに排出されてしまうからである。
【0024】
このような理由から、基本的にリーンな排気ガスとリッチな排気ガスとは混合させることが望ましい。しかし、両者を混合しても、触媒の外周部は低温であるから当該外周部では触媒が活性し難い。よって、リーンな排気ガスとリッチな排気ガスとを基本的に混合するけれども、傾向としてリーンな排気ガスを触媒の外部側へ向けて、そしてリッチな排気ガスを触媒の中央部へ向けて流すようにしているのである。
【0025】
(2)本発明の内燃機関の排気浄化装置は、前記複数の気筒を直列配置してなる機関ブロックを備え、この機関ブロックに配列される気筒数を4つにし、この4つの気筒のうちリッチ空燃比気筒群を第2および第3気筒で形成し、リーン空燃比気筒群を第1および第4気筒で形成することもできる。
【0026】
第2および第3気筒は機関ブロックの中央にあり、第1および第4気筒はそれぞれ機関ブロックの両端にある。この関係で、第2および第3気筒は触媒中央部にまた第1および第4の気筒は触媒の外側に向けて排気ガスを流し易い。このため第2および第3気筒と触媒中央部および第1および第4気筒と触媒の外側とは位置的に対応関係にあるといえる。このため、第2および第3気筒および第1および第4気筒から排出される排気ガスをそれぞれ触媒中央部および触媒の外側に向けて導入し易くなる。
【0027】
(3)前記リッチ空燃比気筒群を構成する各気筒の排気ポートおよび前記リーン空燃比気筒群を構成する各気筒の排気ポートにそれぞれ接続される複数の排気管を有しこれら複数の排気管をまとめて形成される排気集合管を備え、この排気集合管の中央部に前記リッチ空燃比気筒群と接続されている排気管を配し、その周囲に前記リーン空燃比気筒群と接続されている排気管を配し、この排気集合管と前記触媒とを接続するようにしてもよい。
【0028】
(4)単に気筒別空燃比制御を行っただけでは、各気筒の出力が不均一になって運転フィーリングが悪化する。しかし、本発明では、リッチ空燃比気筒群の点火時期を遅角し、リーン空燃比気筒群の点火時期を進角するので、各気筒の出力が均一になり、運転フィーリングの悪化を防止できる。
【0029】
(5)前記排気集合管の中央部に配置された前記リッチ空燃比気筒群に係る排気管とその周囲に配置された前記リーン空燃比気筒群に係る排気管との間を連通する連通孔を有するようにしてもよい。
【0030】
このように連通孔を有するようにすることで、前記のように、リーンな排気ガスとリッチな排気ガスとの混合が為され易くなる。その連通穴の数や大きさについては実験等によって最適なものを見出すことが望ましい。
【0031】
(6)前記リッチ空燃比気筒群から排出されるリッチな排気ガスと、前記リーン空燃比気筒群から排出されるリーンな排気ガスのトータルの空燃比は、比較的リーン寄りの空燃比であることが好ましい。
【0032】
排気ガスの空燃比がストイキにあるときよりもややリーン空燃比寄りにあるときの方が酸化反応が促進するからである。そして、このように排気ガスの空燃比が全体としてリーン寄りであると触媒の浄化率が高まるからである。
【0033】
【発明の実施の形態】
以下、本発明の内燃機関の排気浄化装置の実施の形態を図1から図4を参照して説明する。
【0034】
図1は本発明の排気浄化装置を適用したエンジンAの概略構成を示す。
図1には、吸気系を省略し、排気系との関係を示すエンジン本体(機関ブロック)1を示唆する。
【0035】
エンジン本体1には、図示しないウォータジャケットが形成され、図示しないラジエータとの間で機関冷却水を循環してエンジンを冷却する。機関冷却水温度は図示しない温度センサで検出する。
【0036】
また、前記吸気系には、吸入空気量を検出するエアフローメータ(図示せず)が備えられている。
エンジン本体1は、1番気筒#1,2番気筒#2,3番気筒#3,4番気筒#4を備えている。
【0037】
各気筒#1〜4には、それぞれ点火栓2および燃料噴射弁3が備えられている。そして、燃料噴射弁3からは燃料が各気筒内に直接噴射される。
気筒#1〜#4は、二つの気筒群に分割されている。すなわち、1番気筒#1と4番気筒#4とからなる気筒群#Lと、2番気筒#2と3番気筒#3とからなる気筒群#Rとである。
【0038】
また、エンジン本体1の排気行程の順序は、1番気筒#1→3番気筒#3→4番気筒#4→2番気筒#2に設定されており、各気筒は、排気行程が互いに連続しない気筒同士に分割されている。
【0039】
気筒#1〜#4は、排気通路の一部を構成する排気集合管としての排気マニホールド4を介して排気浄化用触媒としての始動時触媒5を収容したケーシング6に接続されている。
【0040】
始動時触媒5には三元触媒が適用される。ケーシング6は排気管7を介して吸蔵還元型NOx触媒(以下「NOx触媒」という。)8を収容したケーシング9に接続され、ケーシング9は排気管10を介して図示しないマフラーに接続されている。
【0041】
三元触媒で形成される始動時触媒5は、HC,COを酸化させるとともに排気ガスの空燃比がストイキにあるときに最大にNOxを還元する。
NOx触媒8は、流入する排気ガスの空燃比がリーン(酸化雰囲気)のときはNOxを吸収し、排気ガス中の酸素濃度が低下してHCやCOの多い還元雰囲気ではそれまで吸収していたNOxを放出して窒素Nに還元する触媒である。
【0042】
エンジンコントロール用の電子制御ユニット(ECU)20は、図示しない、双方向性バスによって相互に接続された、中央処理制御装置CPU,読み出し専用メモリROM,ランダムアクセスメモリRAM,入力インタフェース回路、出力インタフェース回路等から構成されている。
【0043】
前記入力インタフェース回路は、前記図示しないとした温度センサやエアフローメータ等の各種センサと電気的に接続され、これら各種センサの出力信号が入力インタフェース回路からECU20内に入ると、これらのパラメータは、一時的にランダムアクセスメモリRAMに記憶される。そして、CPUがこれらのパラメータに基づいて必要とする演算処理を行うにあたり、双方向性バスを通じてランダムアクセスメモリRAMが記憶していた前記パラメータを必要に応じて呼び出す。
【0044】
前記出力インタフェース回路は、点火栓2や燃料噴射弁3等、前記各種センサの出力信号に基づいて作動する各種装置と電気的に接続され、これら各種装置は、CPUの演算結果に基づいて、適宜作動する。
【0045】
そして、点火栓2および燃料噴射弁3については、それぞれその点火時期,燃料噴射時期期,燃料噴射期間がCPUによって制御される。なお、CPUはECU20に属するのでCPUの制御はECU20の制御と同義とする。
【0046】
ECU20は、エンジンの運転状態に応じて燃料噴射弁3を制御することによってエンジン出力を得るために筒内で燃焼される燃料の量を調整し、この調整により、排気ガスをリーン空燃比の排気ガスにしたりリッチな空燃比の排気ガスにしたりする。
【0047】
また、エンジンAにおいては、前記4気筒のうちの#2と#3とをリッチ空燃比で作動する気筒群#Rをリッチ空燃比気筒群となるように、また残りの#1と#4とをリーン空燃比で作動する気筒群#Lをリーン空燃比気筒群となるように燃料噴射弁3から噴射される燃料の量を制御する。
【0048】
リッチ空燃比気筒群#Rおよびリーン空燃比気筒群#Lがそれぞれ排出するリッチな排気ガスおよびリーンな排気ガスを、ケーシング6内の始動時触媒5に導入することで、排気ガス中の未燃燃料成分の酸化反応を促進させて始動時触媒5の温度を高める気筒別空燃比制御がエンジンAの運転状態に応じて実行される。
【0049】
また、気筒別空燃比制御の実行時、始動時触媒5にあっては、この触媒5を横断面で見た場合の中央部に向けてリッチ空燃比気筒群#Rからの排気ガスを触媒5内に流入させ、触媒5を横断面で見た場合の触媒内部の外側部位に向けてリーン空燃比気筒群#Lからの排気ガスを触媒5内に流入させるようになっている。
【0050】
そのために、例えば、排気マニホールド4の形状は次のようになっている。図1および図2を参照して説明する。
すなわち、排気マニホールド4は、リッチ空燃比気筒群#Rを構成する気筒#2および#3の排気ポートおよびリーン空燃比気筒群#Lを構成する気筒#1および#4の排気ポートにそれぞれ対応して接続される排気枝管4,4,4,4を有する。そして、排気マニホールド4の中央部に位置するリッチ空燃比気筒群#Rに係る排気枝管4,4をひとまとめになるように両者を途中で合流させて一本の合流管25を形成し、この合流管25の周囲にリーン空燃比気筒群#Lに係る排気枝管4,4で包み込む囲繞形態にしてある。
【0051】
したがって、排気枝管4,4,4,4と接続されているケーシング6内の始動時触媒5は、その中央部、換言すれば触媒5内部のうち排気ガスが流れる方向に沿ってかつ触媒5の軸心を含む中央部分には、主としてリッチな排気ガスが排気枝管4,4から導入され、触媒5内部における外側部位、すなわち触媒5内部のうち触媒5中央部よりも外側部分には、リーンな排気ガスが排気枝管4,4から導入される。
【0052】
しかして、このようにして排気枝管4,4,4,4から始動時触媒5内に排気ガスを導入することで前記気筒別空燃比制御が実現する。
ところで、単に気筒別空燃比制御を行っただけでは、各気筒の出力が不均一になって運転フィーリングが悪化する。しかし、リッチ空燃比気筒群#Rの点火時期を遅角し、リーン空燃比気筒群#Lの点火時期を進角することで、各気筒の出力が均一になり、運転フィーリングの悪化を防止するようになっている。
【0053】
また、図3に示すように、合流管25の周囲に排気枝管4,4に連通する連通孔30を複数設けることで、リッチな排気ガスとリーンな排気ガスとが連通孔30を介して相互に行き交うことによってそれらの混合率を高めるようにしてもよい。
【0054】
次に図4を用いて気筒群別空燃比制御実行ルーチンを説明するためのフローチャートについて述べる。
気筒群別空燃比制御実行ルーチンはS101からS106の6つのステップからなる。そして、これら各ステップの処理はすべてECU20に属するCPUが行う。
【0055】
S101において、エンジン本体1の機関冷却水温度が所定値以下かどうかを温度センサが検出したパラメータに基づいて判定する。ここでいう所定値とは気筒群別空燃比制御を行わなければならないほどに未だ暖機が十分でないかどうかを判断する一つの目安とする値である。
【0056】
機関冷却水温度がすでに十分高く、例えば70℃以上あれば、その時にはすでに触媒が十分活性されているので、気筒別空燃比制御を行わずとも始動時触媒5が排気浄化機能を十分に発揮できると考えられる。このため、水温が所定値以下の場合のみ気筒別空燃比制御を行うこととし、水温が所定値よりも高い場合は、否定判定して気筒別空燃比制御を行わない通常運転を行うものとする。
【0057】
S102では始動時触媒5の触媒推定温度が所定値以上かどうかを判定する。ここで触媒推定温度とは、始動時触媒5全体の平均温度を推定した温度であり、所定値とは例えば始動時触媒5が排気浄化機能を発揮できる最低温度のことである。排気浄化機能を発揮できなければ、未燃HC等の未燃燃料成分がそのまま大気中に放出されてしまう虞があるので、未燃燃料成分の大気中への放出を許容できる最低限の範囲を確保するためである。
【0058】
なお、始動時触媒5の温度は温度センサで測定してもよいが、エアフローメータが検出した吸入空気量の積算値から触媒温度を推定するのが一般的である。S102で肯定判定した場合は、S103に進み、否定判定した場合は、通常運転を行う。
【0059】
S103では、吸入空気量が所定値以下かどうか判定する。吸入空気量が多過ぎて排気ガス中の酸素量が多いと、未燃燃料成分が燃焼し過ぎてしまい、その結果、始動時触媒5の温度が異常に高まって熱劣化を生じる等好ましくない状態になる虞があるからである。S103で肯定判定したらS104に進み、否定判定したら通常運転を行う。
【0060】
S104では、始動後所定時間を経過したかどうかを判定する。この所定時間は、始動時触媒5の温度が気筒別空燃比制御の実行を行うのに適した温度範囲の上限を確保するのに要する時間であり、内燃機関の種類や車種によって異なる。
【0061】
S104で否定判定したら気筒別空燃比制御の実行を行うのに適した温度範囲内に触媒温度があるとしてS105に進んで気筒別空燃比制御を行い、肯定判定したら気筒別空燃比制御の実行を行うのに適した温度範囲外に触媒温度があるとして通常運転を行う。
【0062】
なお、この気筒別空燃比制御実行ルーチンを構成するプログラムはECU20のROMに記憶され、ROMの属性はECU20にあるので、気筒別空燃比制御を行うこのプログラムの属するECU20のことを気筒別空燃比制御手段ということにする。
【0063】
以上述べた構成からなるものが本発明の実施の形態に係る内燃機関の排気浄化装置である。
次にこのような構成の内燃機関の排気浄化装置を適用したエンジンAの作用効果を説明する。
【0064】
エンジンAでは、始動時触媒5を横断面で見た場合の中央部に向けてリッチ空燃比気筒群#Rの排気ガスを始動時触媒5内に流入させ、始動時触媒5を横断面で見た場合の外側に向けてリーン空燃比気筒群#Lの排気ガスを始動時触媒5内に流入させる。
【0065】
このため、まず始動時触媒5の中央部、換言すれば始動時触媒5内部のうち排気ガスが流れる方向に沿いかつ始動時触媒5の軸心を含む中央部分にはリッチな排気ガスが流れる。また、始動時触媒5内部における外側部位、すなわち始動時触媒5内部のうちリッチな排気ガスが流れる始動時触媒5の中央部よりも外側部分ではリーンな排気ガスが流れる。
【0066】
そして、既述のように、触媒の特性として、すなわち始動時触媒5の特性として排気ガスの空燃比がリッチであるほど50%浄化温度は高くなり、リーンであるほど50%浄化温度は低くなる。
【0067】
したがって、始動時触媒5がまだ暖機されていない例えば寒冷時に機関始動した場合において、外気に近接する側の、始動時触媒5内部における外側部位に排気ガスを流しても、排気ガスの持つ熱は放出され易いため、当該外側部位は昇温し難い。
【0068】
しかし、始動時触媒5では、この外側部位にリーンな排気ガスが流れるので、リーンの度合いを始動時触媒5の外側部位の温度に合わせて調整することで、低温でも排気ガス浄化率を50%以上にできる。
【0069】
これに対し、始動時触媒5の中央部には始動時触媒5の内部における外側部位よりも高温度でリッチな排気ガスが比較的多量に流れるので、リッチの度合いを始動時触媒5の中央部の温度に合わせて調整することで、始動時触媒5の中央部でも排気ガスの浄化率を50%以上にできる。
【0070】
このように、始動時触媒5の内部における中央部および外側部位を、それぞれ50%浄化温度にするにあたり、排気ガスの空燃比をそれぞれリッチ空燃比およびリーン空燃比に使い分けているので、始動時触媒5の中で部位ごとに温度差があっても、そのことに起因して排気ガスの浄化率が不均一にならない。したがって、排気ガスの浄化率を触媒全体として高められる。
【0071】
なお、このようにリッチ空燃比の排気ガスとリーン空燃比の排気ガスを分別して触媒内に流してもリッチな排気ガスとリーンな排気ガスとが完全に層別されるわけではない。
【0072】
リッチな排気ガスの流れの傾向として主として始動時触媒5の中央部を流れ、リーンな排気ガスの流れの傾向として主として始動時触媒5の外側を流れるということであり、リーンな排気ガスとリッチな排気ガスとが混合しないというわけではなく両者を例えば前記連通孔30を介してより効率的に混合することも最終的に排気浄化を好適に行う上で重要である。
【0073】
なぜならば、完全に両排気ガスを層別して混合しないとすると、リッチな排気ガスは未燃HCが多くて還元雰囲気にあり、リーンな排気ガスは酸素が多くて酸化雰囲気にあるため、前者はHCやCOの浄化がされずに排出され、後者は酸化雰囲気にあるのでHC,COは浄化できてもNOx浄化がされずに排出されてしまうからである。
【0074】
このように基本的にはリーンな排気ガスとリッチな排気ガスとを混合させることが望ましい。しかし、混合すると、始動時触媒5の外周部が低温であるため当該部分では始動時触媒5が触媒中央部に比して活性し難い。
【0075】
このため、最終的に排気浄化を好適に行うためには、前記のようにリーンな排気ガスとリッチな排気ガスとの混合をするのは重要だけれども、傾向としてリーンな排気ガスを触媒の外部側へ、そしてリッチな排気ガスを触媒の中央部へと流すようにして始動時触媒5の全体ができるだけ均一に暖機されて50%浄化温度に達し易くするのである。
【0076】
また、気筒#2および#3は機関ブロックであるエンジン本体1の中央にあり、気筒#1および#4はそれぞれエンジン本体1の両端にあるので、前二者の気筒#2および#3は始動時触媒5の触媒中央部にまた後二者の気筒#1および#4は始動時触媒5の外側に向けて排気ガスを流す。
【0077】
このため気筒#2および#3と始動時触媒5の中央部および気筒#1および#4と触媒の外側とは位置的に対応関係にあり、気筒#2,#3および気筒#1,#4から排出される排気ガスを、それぞれ始動時触媒5の中央部および始動時触媒5の外側に向けて導入し易い。
【0078】
加えて、排気マニホールド4には、その中央部に位置するリッチ空燃比気筒群#Rに係る排気枝管4,4をひとまとめになるように途中で合流して一本の合流管25を形成するとともに、この合流管25の周囲にリーン空燃比気筒群#Lに係る排気枝管4,4で包み込むように形成し、かつ合流管25の周囲に排気枝管4,4に連通する連通孔30を複数設けてあるので、リーンな排気ガスとリッチな排気ガスとの混合が一層されや易くなる。
【0079】
さらに、リッチ空燃比気筒群#Rから排出されるリッチな排気ガスと、リーン空燃比気筒群#Lから排出されるリーンな排気ガスのトータルの空燃比は、比較的リーン寄りの空燃比であることが好ましい。
【0080】
排気ガスの空燃比がストイキにあるときよりもややリーン空燃比寄りにあるときの方が酸化反応が促進するからである。そして、このように排気ガスの空燃比が全体としてリーン寄りであると触媒の浄化率が高まるからである。
【0081】
【発明の効果】
本発明によれば、触媒の中で部位ごとに温度差があっても、そのことに起因して排気ガスの浄化率が不均一にならず、したがって、排気ガスの浄化率を触媒全体として高められる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】図1のII−II線断面図である。
【図3】図2の応用例を示す図である。
【図4】気筒別空燃比制御実行ルーチンを説明するためのフローチャートである。
【図5】触媒内部の温度はその内側と外側とでは触媒内を流れる排気ガスに温度差を生じることを説明するための図である。
【図6】触媒の活性温度(50%浄化温度)は、触媒を通過する排気ガスの空燃比によって異なることを説明するための図である。
【符号の説明】
A エンジン
1 エンジン本体(機関ブロック)
#1 1番気筒
#2 2番気筒
#3 3番気筒
#4 4番気筒
2 点火栓
3 燃料噴射弁
4 排気マニホールド(排気集合管)
排気枝管(排気管)
排気枝管(排気管)
排気枝管(排気管)
排気枝管(排気管)
5 始動時触媒(排気浄化用触媒)
6 ケーシング
7 排気管(排気通路)
8 吸蔵還元型NOx触媒
9 ケーシング
10 排気管(排気通路)
20 ECU(気筒別空燃比制御手段)
25 合流管
30 連通孔
#R リッチ空燃比気筒群
#L リーン空燃比気筒群
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas discharged from the internal combustion engine with a catalyst provided in an engine exhaust passage.
[0002]
[Prior art]
2. Description of the Related Art A technique for providing a catalytic converter that contains an exhaust purification catalyst (hereinafter referred to as “catalyst”) in an engine exhaust passage of an internal combustion engine and purifying exhaust gas passing through the catalytic converter with a catalyst is well known.
[0003]
Generally, when the temperature of the catalyst rises and reaches a certain temperature range, the catalyst purifies harmful components in the exhaust gas. The temperature at which the catalyst is activated so that the exhaust gas purification rate by the catalyst becomes 50% or more is referred to as the 50% purification temperature of the catalyst by the oxidation reaction. The% purification temperature is referred to as “catalyst activation temperature” for convenience.
[0004]
By the way, even if the internal combustion engine in a cold state is started once, the catalyst in the exhaust passage does not immediately warm, so the catalyst temperature at that time is usually lower than the activation temperature. Therefore, in that case, even if the exhaust gas reaches the catalyst, the catalyst cannot be exhausted, and the exhaust is released into the atmosphere as it is. Therefore, when starting the engine in cold weather, it is desirable to raise the catalyst to the active temperature as soon as possible.
[0005]
[Problems to be solved by the invention]
By the way, the temperature of the catalyst contained in the catalytic converter causes a temperature difference due to the difference in the portion of the catalyst.
[0006]
FIG. 5 shows this relationship.
The vertical axis in FIG. 5 is the catalyst bed temperature, and above that is a schematic diagram of the catalyst a, and illustrates a cylindrical shape in accordance with the shape of the exhaust passage. Further, the horizontal axis indicates each part of the catalyst a in the catalyst cross section, and the central part illustrated by way of example on the horizontal axis is a part including the axial center b extending in the longitudinal direction of the catalyst a and its peripheral part. The outer peripheral part is the outer peripheral surface c of the catalyst a. The temperature of each part is indicated by a graph line G.
[0007]
Even if exhaust gas is allowed to flow through the catalyst a, the outer peripheral portion of the catalyst a is closer to the atmosphere than the central portion of the catalyst, so that the heat release amount is larger than that of the central portion. That is, the temperature of the outer peripheral portion of the catalyst a is difficult to rise, but the central portion is likely to rise.
[0008]
Further, as is generally known, the velocity of the fluid flowing in the pipe is higher at the center of the pipe than at the wall surface side of the pipe. For this reason, the amount of exhaust gas flowing in the catalyst is also larger at the center of the catalyst than at the wall surface.
[0009]
The central part of the catalyst has a small amount of heat release and a large amount of exhaust gas flowing therethrough, so the temperature is relatively high, whereas the wall side has a large amount of heat release compared to the center part and the amount of exhaust gas flowing therethrough Therefore, the temperature distribution of the catalyst is high at the center of the horizontal axis and low at both ends as shown by the graph line G in FIG.
[0010]
As described above, the catalyst a provided in the exhaust passage of the internal combustion engine does not have a uniform catalyst temperature immediately even when exhaust gas flows. Such a phenomenon is likely to occur when the engine is not sufficiently warmed up, for example, when the internal combustion engine is started in cold weather. In some cases, inside the catalyst, it is easy to be divided into a portion that has reached the activation temperature as described above and a portion that has not reached the activation temperature, and if the exhaust gas passes through the portion that has not reached the activation temperature, the exhaust gas is not purified and the atmosphere is not purified. It will be released inside.
[0011]
On the other hand, as shown in FIG. 6, the inventor's experiment is that the activation temperature of the catalyst (the “50% purification temperature of the catalyst by oxidation reaction”) varies depending on the air-fuel ratio of the exhaust gas passing through the catalyst. And know by research.
[0012]
That is, the 50% purification temperature of the catalyst by the oxidation reaction is higher as the air-fuel ratio of the exhaust gas flowing through the catalyst is richer and lower as it is leaner. In other words, even if the catalyst temperature is low, 50% purification by oxidation reaction is possible if the exhaust gas has a lean degree corresponding to the temperature. On the other hand, when the air-fuel ratio of the exhaust gas is rich, the oxidation reaction hardly occurs.
[0013]
The present invention has been invented based on such knowledge, and the problem to be solved is that there is a temperature difference for each part in the catalyst and the air-fuel ratio of the exhaust gas passing through the catalyst, The aim is to improve the exhaust gas purification rate of the entire catalyst by making good use of the two phenomena of different catalyst activation temperatures.
[0014]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
(1) The present invention provides an exhaust purification catalyst that is provided in an exhaust passage of an internal combustion engine having a plurality of cylinders and purifies exhaust gas discharged from the cylinders in the exhaust passage, and some of the plurality of cylinders. The rich air-fuel ratio cylinder group that operates at a rich air-fuel ratio and the rest as a lean air-fuel ratio cylinder group that operates at a lean air-fuel ratio, and the rich exhaust gas that the rich air-fuel ratio cylinder group exhausts into the exhaust passage and the lean air-fuel ratio A cylinder-by-cylinder air-fuel ratio control that promotes an oxidation reaction of unburned fuel components in the exhaust gas and increases the temperature of the catalyst by introducing lean exhaust gas discharged from the cylinder group into the exhaust passage into the catalyst. An exhaust gas purification apparatus for an internal combustion engine, wherein the rich air-fuel ratio cylinder is directed toward a central portion when the catalyst is viewed in a cross section when the catalyst temperature rise is performed by the cylinder-by-cylinder air-fuel ratio control means. Allowed to flow into the exhaust gas into the catalyst, flowing the exhaust gas of the lean air-fuel ratio cylinder group towards catalytic within the outer portion when viewed the catalyst in cross section in said catalyst As a result, rich exhaust gas mainly flows in the central portion when viewed in the cross section of the catalyst, and lean exhaust gas flows in the outer portion inside the catalyst. It was characterized by that.
[0015]
In the present invention having such a configuration, when the temperature of the catalyst is raised by the cylinder-by-cylinder air-fuel ratio control means, the exhaust gas of the rich air-fuel ratio cylinder group flows into the catalyst toward the center when the catalyst is viewed in a cross section. The exhaust gas of the lean air-fuel ratio cylinder group flows into the catalyst toward the outer portion inside the catalyst when the catalyst is seen in a cross section. Rich exhaust gas flows in the central portion along the gas flow direction and including the catalyst axis.
[0016]
In addition, lean exhaust gas flows in an outer portion inside the catalyst, that is, in an outer portion of the inside of the catalyst where the rich exhaust gas flows than the central portion of the catalyst.
As described above, the richer the air-fuel ratio of the exhaust gas, the higher the 50% purification temperature of the catalyst, and the lower the leaner, the lower the 50% purification temperature.
[0017]
Therefore, for example, when the engine is started in cold weather, the heat of the exhaust gas is likely to be released even if the exhaust gas flows through the outside portion inside the catalyst close to the outside air.
[0018]
However, in the present invention, since lean exhaust gas is allowed to flow through this outer portion, the degree of leanness is adjusted in accordance with the external temperature of the catalyst, so that the exhaust gas purification rate is increased by 50% by promoting the oxidation reaction even at low temperatures. More than that.
[0019]
On the other hand, since a relatively large amount of exhaust gas flows at a higher temperature than the outer portion in the catalyst central portion, a rich amount of exhaust gas flows, so by adjusting the degree of richness according to the temperature of the catalyst central portion, The exhaust gas purification rate in the catalyst central portion can be 50% or more.
[0020]
In this way, the air-fuel ratio of the exhaust gas in the central part inside the catalyst and the air-fuel ratio of the exhaust gas in the outside part inside the catalyst can be used separately for the rich air-fuel ratio and the lean air-fuel ratio, respectively, so that both can be made 50% purification temperature. Even if there is a temperature difference for each part in the catalyst, the exhaust gas purification rate does not become uneven due to the temperature difference. Therefore, the exhaust gas purification rate can be increased as a whole catalyst.
[0021]
Even if the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas are separated and flowed into the catalyst as described above, the inside of the catalyst is not completely stratified into the rich exhaust gas and the lean exhaust gas. .
[0022]
The direction of the main flow of rich exhaust gas is toward the central portion, the direction of the main flow of lean exhaust gas is toward the outside, and the two gases are not mixed. It is extremely important to finally mix the two in order to suitably perform exhaust purification.
[0023]
This is because if the two exhaust gases are completely stratified and not mixed, the rich exhaust gas is in a reducing atmosphere with a lot of unburned hydrocarbons (hereinafter referred to as “unburned HC”), and the lean exhaust gas is oxygen. Therefore, the former exhaust gas is discharged without purification of hydrocarbons (hereinafter referred to as “HC”) and carbon monoxide (hereinafter referred to as “CO”). This is because nitrogen oxides (hereinafter referred to as “NOx”) are discharged without being purified even if HC and CO are purified because they are in an oxidizing atmosphere.
[0024]
For this reason, it is basically desirable to mix lean exhaust gas and rich exhaust gas. However, even if both are mixed, since the outer peripheral portion of the catalyst is at a low temperature, the catalyst is hardly activated at the outer peripheral portion. Therefore, although the lean exhaust gas and the rich exhaust gas are basically mixed, the lean exhaust gas tends to flow toward the outside of the catalyst and the rich exhaust gas flows toward the center of the catalyst. It is.
[0025]
(2) An exhaust emission control device for an internal combustion engine according to the present invention includes an engine block in which the plurality of cylinders are arranged in series, and the number of cylinders arranged in the engine block is set to four. The air-fuel ratio cylinder group can be formed by the second and third cylinders, and the lean air-fuel ratio cylinder group can be formed by the first and fourth cylinders.
[0026]
The second and third cylinders are in the center of the engine block, and the first and fourth cylinders are respectively at both ends of the engine block. In this relationship, the second and third cylinders easily flow the exhaust gas toward the center of the catalyst, and the first and fourth cylinders flow toward the outside of the catalyst. Therefore, it can be said that the second and third cylinders and the catalyst central portion and the first and fourth cylinders and the outside of the catalyst are in a positional relationship. For this reason, it becomes easy to introduce exhaust gas discharged from the second and third cylinders and the first and fourth cylinders toward the catalyst center and the outside of the catalyst, respectively.
[0027]
(3) A plurality of exhaust pipes connected to the exhaust ports of the cylinders constituting the rich air-fuel ratio cylinder group and the exhaust ports of the cylinders constituting the lean air-fuel ratio cylinder group, respectively. An exhaust collecting pipe formed collectively is provided, and an exhaust pipe connected to the rich air-fuel ratio cylinder group is arranged at the center of the exhaust collecting pipe, and is connected to the lean air-fuel ratio cylinder group around the exhaust pipe. An exhaust pipe may be provided to connect the exhaust collecting pipe and the catalyst.
[0028]
(4) Simply performing the cylinder-by-cylinder air-fuel ratio control makes the output of each cylinder non-uniform and the driving feeling deteriorates. However, in the present invention, the ignition timing of the rich air-fuel ratio cylinder group is retarded and the ignition timing of the lean air-fuel ratio cylinder group is advanced, so that the output of each cylinder becomes uniform and it is possible to prevent deterioration in driving feeling. .
[0029]
(5) A communication hole that communicates between the exhaust pipe related to the rich air-fuel ratio cylinder group arranged in the center of the exhaust collecting pipe and the exhaust pipe related to the lean air-fuel ratio cylinder group arranged around the exhaust pipe. You may make it have.
[0030]
By having the communication holes in this way, as described above, it becomes easy to mix lean exhaust gas and rich exhaust gas. As for the number and size of the communication holes, it is desirable to find an optimum one through experiments.
[0031]
(6) The total air-fuel ratio of the rich exhaust gas discharged from the rich air-fuel ratio cylinder group and the lean exhaust gas discharged from the lean air-fuel ratio cylinder group is a relatively lean air-fuel ratio. Is preferred.
[0032]
This is because the oxidation reaction is promoted when the air-fuel ratio of the exhaust gas is slightly closer to the lean air-fuel ratio than when it is stoichiometric. This is because the purification rate of the catalyst increases when the air-fuel ratio of the exhaust gas is lean as a whole.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described below with reference to FIGS.
[0034]
FIG. 1 shows a schematic configuration of an engine A to which an exhaust emission control device of the present invention is applied.
FIG. 1 suggests an engine body (engine block) 1 that omits the intake system and shows the relationship with the exhaust system.
[0035]
A water jacket (not shown) is formed in the engine body 1, and engine cooling water is circulated between the engine body 1 and a radiator (not shown) to cool the engine. The engine coolant temperature is detected by a temperature sensor (not shown).
[0036]
The intake system is provided with an air flow meter (not shown) for detecting the intake air amount.
The engine body 1 includes a first cylinder # 1, a second cylinder # 2, a third cylinder # 3, and a fourth cylinder # 4.
[0037]
Each cylinder # 1-4 is provided with a spark plug 2 and a fuel injection valve 3, respectively. Then, fuel is directly injected into each cylinder from the fuel injection valve 3.
The cylinders # 1 to # 4 are divided into two cylinder groups. That is, a cylinder group #L composed of the first cylinder # 1 and the fourth cylinder # 4 and a cylinder group #R composed of the second cylinder # 2 and the third cylinder # 3.
[0038]
Further, the order of the exhaust stroke of the engine body 1 is set as No. 1 cylinder # 1 → No. 3 cylinder # 3 → No. 4 cylinder # 4 → No. 2 cylinder # 2, and the exhaust stroke of each cylinder is continuous with each other. Not divided into cylinders.
[0039]
The cylinders # 1 to # 4 are connected to a casing 6 containing a start-up catalyst 5 as an exhaust purification catalyst via an exhaust manifold 4 as an exhaust collecting pipe constituting a part of the exhaust passage.
[0040]
A three-way catalyst is applied to the starting catalyst 5. The casing 6 is connected to a casing 9 containing an NOx storage reduction catalyst (hereinafter referred to as “NOx catalyst”) 8 via an exhaust pipe 7, and the casing 9 is connected to a muffler (not shown) via an exhaust pipe 10. .
[0041]
The start-up catalyst 5 formed of a three-way catalyst oxidizes HC and CO and reduces NOx to the maximum when the air-fuel ratio of the exhaust gas is stoichiometric.
The NOx catalyst 8 absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean (oxidizing atmosphere), and has absorbed until then in the reducing atmosphere where the oxygen concentration in the exhaust gas is reduced and HC and CO are high. Release NOx and nitrogen N 2 It is a catalyst that reduces to
[0042]
An electronic control unit (ECU) 20 for engine control includes a central processing controller CPU, a read-only memory ROM, a random access memory RAM, an input interface circuit, and an output interface circuit, which are connected to each other by a bidirectional bus (not shown). Etc.
[0043]
The input interface circuit is electrically connected to various sensors (not shown) such as a temperature sensor and an air flow meter. When output signals of these various sensors enter the ECU 20 from the input interface circuit, these parameters are temporarily stored. Are stored in random access memory RAM. Then, when the CPU performs necessary arithmetic processing based on these parameters, the parameters stored in the random access memory RAM are called up as necessary through the bidirectional bus.
[0044]
The output interface circuit is electrically connected to various devices that operate based on output signals of the various sensors, such as the spark plug 2 and the fuel injection valve 3, and these various devices are appropriately connected based on the calculation results of the CPU. Operate.
[0045]
The ignition timing, the fuel injection timing period, and the fuel injection period of the spark plug 2 and the fuel injection valve 3 are controlled by the CPU. In addition, since CPU belongs to ECU20, control of CPU is synonymous with control of ECU20.
[0046]
The ECU 20 controls the fuel injection valve 3 according to the operating state of the engine to adjust the amount of fuel combusted in the cylinder in order to obtain the engine output. By this adjustment, the exhaust gas is discharged to the lean air-fuel ratio. Gas or rich air-fuel ratio exhaust gas.
[0047]
Further, in the engine A, the cylinder group #R that operates # 2 and # 3 of the four cylinders with a rich air-fuel ratio becomes a rich air-fuel ratio cylinder group, and the remaining # 1 and # 4 The amount of fuel injected from the fuel injection valve 3 is controlled so that the cylinder group #L that operates at a lean air-fuel ratio becomes a lean air-fuel ratio cylinder group.
[0048]
By introducing the rich exhaust gas and the lean exhaust gas discharged by the rich air-fuel ratio cylinder group #R and the lean air-fuel ratio cylinder group #L to the start-up catalyst 5 in the casing 6, unburned in the exhaust gas The cylinder-by-cylinder air-fuel ratio control that promotes the oxidation reaction of the fuel component to increase the temperature of the starting catalyst 5 is executed according to the operating state of the engine A.
[0049]
Further, when the cylinder-by-cylinder air-fuel ratio control is executed, the start-up catalyst 5 uses the exhaust gas from the rich air-fuel ratio cylinder group #R to the catalyst 5 toward the center when the catalyst 5 is viewed in a cross section. The exhaust gas from the lean air-fuel ratio cylinder group #L is caused to flow into the catalyst 5 toward the outer portion inside the catalyst when the catalyst 5 is viewed in a cross section.
[0050]
Therefore, for example, the shape of the exhaust manifold 4 is as follows. This will be described with reference to FIGS.
That is, the exhaust manifold 4 corresponds to the exhaust ports of cylinders # 2 and # 3 constituting the rich air-fuel ratio cylinder group #R and the exhaust ports of cylinders # 1 and # 4 constituting the lean air-fuel ratio cylinder group #L, respectively. Connected exhaust branch pipes 4 1 , 4 2 , 4 3 , 4 4 Have The exhaust branch pipe 4 related to the rich air-fuel ratio cylinder group #R located at the center of the exhaust manifold 4 2 , 4 3 Are joined together to form a single joining pipe 25, and the exhaust branch pipe 4 associated with the lean air-fuel ratio cylinder group #L is formed around the joining pipe 25. 1 , 4 4 It is in the form of a go that wraps around.
[0051]
Therefore, the exhaust branch pipe 4 1 , 4 2 , 4 3 , 4 4 The start-up catalyst 5 in the casing 6 connected to the center is mainly rich in the central portion, in other words, in the central portion of the catalyst 5 along the direction in which the exhaust gas flows and including the axis of the catalyst 5. Exhaust gas is exhaust branch 4 2 , 4 3 The lean exhaust gas is introduced into the exhaust branch pipe 4 at an outer portion inside the catalyst 5, that is, outside the center of the catalyst 5 in the catalyst 5. 1 , 4 4 It is introduced from.
[0052]
In this way, the exhaust branch pipe 4 1 , 4 2 , 4 3 , 4 4 Thus, the cylinder-by-cylinder air-fuel ratio control is realized by introducing exhaust gas into the start-up catalyst 5.
By the way, simply performing the cylinder-by-cylinder air-fuel ratio control makes the output of each cylinder non-uniform and the driving feeling deteriorates. However, by retarding the ignition timing of the rich air-fuel ratio cylinder group #R and advancing the ignition timing of the lean air-fuel ratio cylinder group #L, the output of each cylinder becomes uniform, and deterioration of driving feeling is prevented. It is supposed to be.
[0053]
Further, as shown in FIG. 3, the exhaust branch pipe 4 is provided around the merging pipe 25. 1 , 4 4 By providing a plurality of communication holes 30 that communicate with each other, rich exhaust gas and lean exhaust gas may pass through the communication holes 30 to increase their mixing ratio.
[0054]
Next, a flowchart for explaining a cylinder group-specific air-fuel ratio control execution routine will be described with reference to FIG.
The cylinder group-specific air-fuel ratio control execution routine includes six steps from S101 to S106. All of these steps are performed by the CPU belonging to the ECU 20.
[0055]
In S101, it is determined based on the parameter detected by the temperature sensor whether the engine coolant temperature of the engine body 1 is equal to or lower than a predetermined value. The predetermined value referred to here is a value that serves as one guideline for determining whether the warm-up is still insufficient to perform the cylinder group air-fuel ratio control.
[0056]
If the engine coolant temperature is already sufficiently high, for example, 70 ° C. or higher, the catalyst has already been sufficiently activated at that time, so that the start-up catalyst 5 can sufficiently perform the exhaust purification function without performing cylinder-by-cylinder air-fuel ratio control. it is conceivable that. For this reason, cylinder-by-cylinder air-fuel ratio control is performed only when the water temperature is equal to or lower than a predetermined value. When the water temperature is higher than the predetermined value, a negative determination is made and normal operation is performed without performing cylinder-by-cylinder air-fuel ratio control. .
[0057]
In S102, it is determined whether the estimated catalyst temperature of the starting catalyst 5 is equal to or higher than a predetermined value. Here, the estimated catalyst temperature is a temperature obtained by estimating the average temperature of the entire starting catalyst 5, and the predetermined value is, for example, the lowest temperature at which the starting catalyst 5 can perform the exhaust purification function. If the exhaust purification function cannot be performed, unburned fuel components such as unburned HC may be released into the atmosphere as they are, so the minimum range that allows the release of unburned fuel components into the atmosphere is limited. This is to ensure.
[0058]
The temperature of the starting catalyst 5 may be measured by a temperature sensor, but the catalyst temperature is generally estimated from the integrated value of the intake air amount detected by the air flow meter. If a positive determination is made in S102, the process proceeds to S103, and if a negative determination is made, normal operation is performed.
[0059]
In S103, it is determined whether the intake air amount is equal to or less than a predetermined value. If the amount of intake air is too large and the amount of oxygen in the exhaust gas is large, the unburned fuel component will burn too much, resulting in an unfavorable condition such as abnormally high temperature of the start-up catalyst 5 and thermal degradation. It is because there is a possibility of becoming. If a positive determination is made in S103, the process proceeds to S104, and if a negative determination is made, normal operation is performed.
[0060]
In S104, it is determined whether or not a predetermined time has elapsed after starting. This predetermined time is the time required for the temperature of the starting catalyst 5 to secure the upper limit of the temperature range suitable for performing the cylinder-by-cylinder air-fuel ratio control, and varies depending on the type of the internal combustion engine and the vehicle type.
[0061]
If a negative determination is made in S104, it is determined that the catalyst temperature is within a temperature range suitable for performing the cylinder-by-cylinder air-fuel ratio control, the process proceeds to S105, and the cylinder-by-cylinder air-fuel ratio control is performed. Normal operation is performed assuming that the catalyst temperature is outside the temperature range suitable for the operation.
[0062]
The program that constitutes the cylinder-by-cylinder air-fuel ratio control execution routine is stored in the ROM of the ECU 20, and since the attribute of the ROM is in the ECU 20, the ECU 20 to which the program that performs cylinder-by-cylinder air-fuel ratio control belongs is designated It will be called control means.
[0063]
What consists of the structure described above is the exhaust gas purification apparatus for an internal combustion engine according to the embodiment of the present invention.
Next, the function and effect of the engine A to which the exhaust gas purification apparatus for an internal combustion engine having such a configuration is applied will be described.
[0064]
In the engine A, the exhaust gas of the rich air-fuel ratio cylinder group #R flows into the start-up catalyst 5 toward the center when the start-up catalyst 5 is seen in a cross section, and the start-up catalyst 5 is seen in a cross section. In this case, the exhaust gas of the lean air-fuel ratio cylinder group #L is caused to flow into the start-up catalyst 5 toward the outside.
[0065]
For this reason, first, rich exhaust gas flows through the central portion of the starting catalyst 5, in other words, the central portion of the inside of the starting catalyst 5 along the direction in which the exhaust gas flows and includes the axis of the starting catalyst 5. Further, lean exhaust gas flows in an outer portion in the start-up catalyst 5, that is, in an outer portion of the start-up catalyst 5 in which the rich exhaust gas flows than the central portion of the start-up catalyst 5.
[0066]
As described above, as a characteristic of the catalyst, that is, as a characteristic of the start-up catalyst 5, the richer the air-fuel ratio of the exhaust gas, the higher the 50% purification temperature, and the leaner, the lower the 50% purification temperature. .
[0067]
Accordingly, when the engine 5 is not warmed up yet, for example, when the engine is started in cold weather, the heat of the exhaust gas even if the exhaust gas is allowed to flow to the outside portion inside the startup catalyst 5 on the side close to the outside air. Is likely to be released, and thus the outer portion is difficult to increase in temperature.
[0068]
However, in the starting catalyst 5, lean exhaust gas flows through this outer portion, so that the exhaust gas purification rate is 50% even at low temperatures by adjusting the degree of lean according to the temperature of the outer portion of the starting catalyst 5. More than that.
[0069]
In contrast, since a relatively large amount of rich exhaust gas flows at a higher temperature than the outside portion in the start-up catalyst 5 in the center of the start-up catalyst 5, the degree of richness is determined in the center of the start-up catalyst 5. By adjusting according to this temperature, the purification rate of the exhaust gas can be made 50% or more even at the center of the catalyst 5 at the time of starting.
[0070]
As described above, the air-fuel ratio of the exhaust gas is selectively used as the rich air-fuel ratio and the lean air-fuel ratio when the central portion and the outer portion inside the start-up catalyst 5 are each 50% purification temperature. Even if there is a temperature difference for each part in 5, the exhaust gas purification rate does not become uneven due to that. Therefore, the exhaust gas purification rate can be increased as a whole catalyst.
[0071]
Even if the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas are separated and flowed into the catalyst as described above, the rich exhaust gas and the lean exhaust gas are not completely stratified.
[0072]
The trend of rich exhaust gas flow is mainly through the center of the start-up catalyst 5, and the trend of lean exhaust gas flow is mainly through the outside of the start-up catalyst 5, which is rich with lean exhaust gas. It does not mean that the exhaust gas does not mix, and it is important to mix the two more efficiently, for example, through the communication hole 30 in order to finally perform exhaust purification appropriately.
[0073]
This is because if the exhaust gases are not completely layered and mixed, the rich exhaust gas has a lot of unburned HC and is in a reducing atmosphere, and the lean exhaust gas has a lot of oxygen and is in an oxidizing atmosphere. This is because the CO and CO are discharged without being purified, and the latter is in an oxidizing atmosphere, so that HC and CO are discharged without being purified with NOx even though they can be purified.
[0074]
Basically, it is desirable to mix lean exhaust gas and rich exhaust gas. However, when mixed, since the outer peripheral portion of the start-up catalyst 5 is low in temperature, the start-up catalyst 5 is less likely to be activated in that portion than the catalyst center portion.
[0075]
For this reason, in order to finally perform exhaust purification appropriately, it is important to mix lean exhaust gas and rich exhaust gas as described above. As a result, rich exhaust gas is allowed to flow toward the center of the catalyst so that the entire start-up catalyst 5 is warmed up as uniformly as possible to easily reach the 50% purification temperature.
[0076]
Since cylinders # 2 and # 3 are in the center of engine body 1 which is an engine block, and cylinders # 1 and # 4 are at both ends of engine body 1, respectively, the first two cylinders # 2 and # 3 are started. The latter two cylinders # 1 and # 4 flow through the catalyst center of the hour catalyst 5 toward the outside of the catalyst 5 at the start.
[0077]
For this reason, the cylinders # 2 and # 3 and the central portion of the starting catalyst 5 and the cylinders # 1 and # 4 and the outside of the catalyst are in a positional relationship, and the cylinders # 2, # 3 and the cylinders # 1, # 4 It is easy to introduce the exhaust gas discharged from the engine toward the center of the starting catalyst 5 and the outside of the starting catalyst 5.
[0078]
In addition, the exhaust manifold 4 includes an exhaust branch pipe 4 related to the rich air-fuel ratio cylinder group #R located in the center thereof. 2 , 4 3 Are joined together to form a single joining pipe 25, and the exhaust branch pipe 4 associated with the lean air-fuel ratio cylinder group #L is formed around the joining pipe 25. 1 , 4 4 And the exhaust branch pipe 4 is formed around the merging pipe 25. 1 , 4 4 Since a plurality of communication holes 30 communicating with each other are provided, it becomes easier to mix lean exhaust gas and rich exhaust gas.
[0079]
Further, the total air-fuel ratio of the rich exhaust gas discharged from the rich air-fuel ratio cylinder group #R and the lean exhaust gas discharged from the lean air-fuel ratio cylinder group #L is an air-fuel ratio that is relatively lean. It is preferable.
[0080]
This is because the oxidation reaction is promoted when the air-fuel ratio of the exhaust gas is slightly closer to the lean air-fuel ratio than when it is stoichiometric. This is because the purification rate of the catalyst increases when the air-fuel ratio of the exhaust gas is lean as a whole.
[0081]
【The invention's effect】
According to the present invention, even if there is a temperature difference for each part in the catalyst, the exhaust gas purification rate does not become uneven due to that, and therefore the exhaust gas purification rate is increased as a whole catalyst. It is done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust emission control device for an internal combustion engine according to the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a diagram illustrating an application example of FIG. 2;
FIG. 4 is a flowchart for explaining a cylinder-by-cylinder air-fuel ratio control execution routine.
FIG. 5 is a diagram for explaining that the temperature inside the catalyst causes a temperature difference in the exhaust gas flowing inside the catalyst between the inside and the outside.
FIG. 6 is a diagram for explaining that the activation temperature (50% purification temperature) of the catalyst varies depending on the air-fuel ratio of the exhaust gas passing through the catalyst.
[Explanation of symbols]
A engine
1 Engine body (Engine block)
# 1 1st cylinder
# 2 Cylinder 2
# 3 Cylinder 3
# 4 4th cylinder
2 Spark plug
3 Fuel injection valve
4 Exhaust manifold (exhaust collecting pipe)
4 1 Exhaust branch pipe (exhaust pipe)
4 2 Exhaust branch pipe (exhaust pipe)
4 3 Exhaust branch pipe (exhaust pipe)
4 4 Exhaust branch pipe (exhaust pipe)
5 Start-up catalyst (exhaust purification catalyst)
6 Casing
7 Exhaust pipe (exhaust passage)
8 NOx storage reduction catalyst
9 Casing
10 Exhaust pipe (exhaust passage)
20 ECU (air-fuel ratio control means for each cylinder)
25 Junction pipe
30 communication hole
#R Rich air-fuel ratio cylinder group
#L Lean air-fuel ratio cylinder group

Claims (6)

複数の気筒を有する内燃機関の排気通路に設けられこの排気通路に前記気筒から排出される排気ガスを浄化する排気浄化用触媒と、
前記複数気筒のうちのいくつかをリッチ空燃比で作動するリッチ空燃比気筒群にし、残りをリーン空燃比で作動するリーン空燃比気筒群とし、前記リッチ空燃比気筒群が前記排気通路に排出するリッチな排気ガスと前記リーン空燃比気筒群が前記排気通路に排出するリーンな排気ガスとを前記触媒に導入することで、前記排気ガス中の未燃燃料成分の酸化反応を促進させて前記触媒の温度を高める気筒別空燃比制御手段と、
を有する内燃機関の排気浄化装置において、
前記気筒別空燃比制御手段による触媒昇温の実行時、前記触媒を横断面で見た場合の中央部に向けて前記リッチ空燃比気筒群の排気ガスを前記触媒内に流入させ、前記触媒を横断面で見た場合の触媒内部の外側部位に向けて前記リーン空燃比気筒群の排気ガスを前記触媒内に流入させることにより、触媒の横断面で見た場合の中央部分には主としてリッチな排気ガスが流れ、触媒内部における外側部位にはリーンな排気ガスが流れることを特徴とする内燃機関の排気浄化装置。
An exhaust purification catalyst that is provided in an exhaust passage of an internal combustion engine having a plurality of cylinders and purifies exhaust gas discharged from the cylinder in the exhaust passage;
Some of the plurality of cylinders are a rich air-fuel ratio cylinder group that operates at a rich air-fuel ratio, and the remaining are a lean air-fuel ratio cylinder group that operates at a lean air-fuel ratio, and the rich air-fuel ratio cylinder group is discharged into the exhaust passage. By introducing rich exhaust gas and lean exhaust gas discharged from the lean air-fuel ratio cylinder group into the exhaust passage to the catalyst, the oxidation reaction of unburned fuel components in the exhaust gas is promoted, and the catalyst A cylinder-specific air-fuel ratio control means for increasing the temperature of the cylinder;
In an exhaust gas purification apparatus for an internal combustion engine having
When the catalyst temperature rise by the cylinder-by-cylinder air-fuel ratio control means is performed, the exhaust gas of the rich air-fuel ratio cylinder group is caused to flow into the catalyst toward the center when the catalyst is seen in a cross section, and the catalyst is By flowing the exhaust gas of the lean air-fuel ratio cylinder group into the catalyst toward the outer part inside the catalyst when viewed in a cross section, the central portion when viewed in the cross section of the catalyst is mainly rich. An exhaust gas purification apparatus for an internal combustion engine, characterized in that exhaust gas flows and lean exhaust gas flows in an outer portion inside the catalyst .
前記複数の気筒を直列配置してなる機関ブロックを備え、この機関ブロックに配列される気筒数を4つにし、この4つの気筒のうち前記リッチ空燃比気筒群を第2および第3気筒で形成し、前記リーン空燃比気筒群を第1および第4気筒で形成したことを特徴とする請求項1記載の内燃機関の排気浄化装置。An engine block having the plurality of cylinders arranged in series is provided. The number of cylinders arranged in the engine block is four, and the rich air-fuel ratio cylinder group of the four cylinders is formed by the second and third cylinders. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the lean air-fuel ratio cylinder group is formed of first and fourth cylinders. 前記リッチ空燃比気筒群を構成する各気筒の排気ポートおよび前記リーン空燃比気筒群を構成する各気筒の排気ポートにそれぞれ接続される複数の排気管を有しこれら複数の排気管をまとめて形成される排気集合管を備え、この排気集合管の中央部に前記リッチ空燃比気筒群と接続されている排気管を配し、その周囲に前記リーン空燃比気筒群と接続されている排気管を配し、この排気集合管と前記触媒とを接続したことを特徴とする請求項1または2記載の内燃機関の排気浄化装置。A plurality of exhaust pipes connected to the exhaust ports of the cylinders constituting the rich air-fuel ratio cylinder group and the exhaust ports of the cylinders constituting the lean air-fuel ratio cylinder group, respectively, are formed together. An exhaust pipe connected to the rich air-fuel ratio cylinder group at the center of the exhaust collecting pipe, and an exhaust pipe connected to the lean air-fuel ratio cylinder group around the exhaust pipe The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the exhaust collecting pipe and the catalyst are connected. 前記リッチ空燃比気筒群の点火時期を遅角し、前記リーン空燃比気筒群の点火時期を進角することを特徴とする請求項1から3いずれか記載の内燃機関の排気浄化装置。4. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the ignition timing of the rich air-fuel ratio cylinder group is retarded and the ignition timing of the lean air-fuel ratio cylinder group is advanced. 前記排気集合管の中央部に配置された前記リッチ空燃比気筒群に係る排気管とその周囲に配置された前記リーン空燃比気筒群に係る排気管との間を連通する連通孔を有することを特徴とする請求項1記載の内燃機関の排気浄化装置。A communication hole that communicates between the exhaust pipe related to the rich air-fuel ratio cylinder group arranged in the center of the exhaust collecting pipe and the exhaust pipe related to the lean air-fuel ratio cylinder group arranged around the exhaust pipe. 2. An exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is an internal combustion engine. 前記リッチ空燃比気筒群から排出されるリッチな排気ガスと、前記リーン空燃比気筒群から排出されるリーンな排気ガスのトータルの空燃比は、比較的リーン寄りの空燃比であることを特徴とする請求項1記載の内燃機関の排気浄化装置。The total air-fuel ratio of the rich exhaust gas discharged from the rich air-fuel ratio cylinder group and the lean exhaust gas discharged from the lean air-fuel ratio cylinder group is a relatively lean air-fuel ratio. An exhaust emission control device for an internal combustion engine according to claim 1.
JP34130099A 1999-11-30 1999-11-30 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3552617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34130099A JP3552617B2 (en) 1999-11-30 1999-11-30 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34130099A JP3552617B2 (en) 1999-11-30 1999-11-30 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001152844A JP2001152844A (en) 2001-06-05
JP3552617B2 true JP3552617B2 (en) 2004-08-11

Family

ID=18344992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34130099A Expired - Lifetime JP3552617B2 (en) 1999-11-30 1999-11-30 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3552617B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016713A2 (en) 2005-08-11 2007-02-15 Avl List Gmbh Method for increasing the exhaust gas temperature for an internal combustion engine
AT500991B1 (en) * 2006-02-09 2008-01-15 Avl List Gmbh Exhaust gas temperature increasing method for internal combustion engine, involves operating set of cylinders with high fuel to air ratio, and operating another set of cylinders is operated with low fuel to air ratio
JP4790787B2 (en) * 2008-12-17 2011-10-12 本田技研工業株式会社 Control device for internal combustion engine
JP5129214B2 (en) * 2009-08-24 2013-01-30 三菱電機株式会社 Control device for internal combustion engine
JP5731248B2 (en) * 2011-03-23 2015-06-10 大阪瓦斯株式会社 Engine control device
KR101262983B1 (en) * 2011-09-02 2013-05-08 현대자동차주식회사 Engine control method of vehicle
DE102012018967B4 (en) * 2012-09-26 2024-09-26 Daimler Truck AG Method for regenerating a particle filter and arrangement of an exhaust system on an internal combustion engine of a vehicle

Also Published As

Publication number Publication date
JP2001152844A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US6378298B2 (en) Exhaust purifying apparatus and method for internal combustion engine
KR100375846B1 (en) Apparatus for purifing exhaust gas of internal combustion engine
US6481200B1 (en) Catalyst warming apparatus of internal combustion engine
US6205776B1 (en) Air-fuel ration control system for multi-cylinder internal combustion engine
JP3552617B2 (en) Exhaust gas purification device for internal combustion engine
JP6717091B2 (en) Method of warming up exhaust purification catalyst of internal combustion engine
JP2000337129A (en) Exhaust emission control device for internal combustion engine
JP4475117B2 (en) Engine air-fuel ratio control device
JP3779828B2 (en) Exhaust gas purification device for internal combustion engine
JP3820770B2 (en) In-cylinder direct injection spark ignition engine
US6658840B2 (en) Apparatus for and method of controlling a vehicle engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP3627561B2 (en) Air-fuel ratio control apparatus for multi-cylinder internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP2884798B2 (en) Exhaust gas purification device for internal combustion engine
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP2001227335A (en) Exhaust emission control device for internal combustion engine
KR101836286B1 (en) Catalyst oxygen purge control apparatus and the method
JP3552562B2 (en) Exhaust gas purification device for internal combustion engine
JP3052778B2 (en) In-cylinder injection internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP2003166436A (en) Exhaust purification system for in-cylinder injection spark ignition type multi-cylinder engine
JP4292632B2 (en) Exhaust gas purification device for internal combustion engine
JPH04262016A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Ref document number: 3552617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term