JP3552059B2 - Polyester composite film for metal lamination - Google Patents
Polyester composite film for metal lamination Download PDFInfo
- Publication number
- JP3552059B2 JP3552059B2 JP14632893A JP14632893A JP3552059B2 JP 3552059 B2 JP3552059 B2 JP 3552059B2 JP 14632893 A JP14632893 A JP 14632893A JP 14632893 A JP14632893 A JP 14632893A JP 3552059 B2 JP3552059 B2 JP 3552059B2
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- layer
- composite film
- film
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Laminated Bodies (AREA)
Description
【0001】
【産業上の利用分野】
本発明は金属貼合せ用ポリエステル複合フイルムに関し、更に詳細には、飲料缶、食料缶等の金属缶を得るためのラミネート鋼板の構成材料として好適なポリエステル複合フイルムに関する。
【0002】
【従来の技術】
従来、金属缶において、金属臭が内容物へ移行すること(フレーバー不良)及び内容物により金属缶内面が腐食されることを防止するため、錫メッキ鋼板、クロム処理鋼板、ニッケルメッキ鋼板等にポリエステルフイルムを加熱・加圧接着して得たラミネート鋼板が種々検討されている。例えば、特公昭57−23584号公報、特公昭59−34580号公報、特公昭62−61427号公報等にその技術内容が開示されている。
しかしながら、該技術では単層フイルムを用いることが前提となるためフイルムの構成ポリマーの融点以上の温度で鋼板とラミネートして十分に密着させた場合、製缶加工時の衝撃で局所的なフイルム破れ(クラック)が発生する。又、融点より低い温度でラミネートした場合、製缶加工時での衝撃によるクラックは発生しにくいが、製缶加工工程、その後の熱処理工程及び/又は内容物充填後のレトルト処理工程で密着不良に伴うフイルム剥離が生じる。
係る欠点を回避するため、特開平2−81630号公報では、複合フイルムを用いることが開示されている。
しかしながら、該技術ではレトルト処理で剥離することが多く、未だ満足されるものではなかった。
【0003】
【発明が解決しようとする課題】
本発明は前期事情に鑑みてなされたものであって、製缶加工工程での耐衝撃性が確保され、かつ密着性が良好な(特にレトルト処理による剥離が発生しにくい)ポリエステルフイルムを提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記目的を達成した本発明のポリエステルフイルムとは、融点が220℃以上のポリエステルより成る基材層(A層)と融点が200℃以上でA層の融点より5℃以上低いポリエステルより成る接着層(B層)によって構成される複合フイルムであって、かつ該複合フイルムの熱収縮力が40gfである点に要旨を有するものである。
【0005】
作用
本発明のポリエステル複合フイルムとは、融点が220℃以上であるポリエステル樹脂(A層)と融点が200℃以上でA層の融点より5℃以上低いポリエステル樹脂(B層)を積層した後、少なくとも一軸延伸されていることが必須要件である。但し、延伸方法は特に限定されるものではない。
本発明のポリエステル複合フイルムを鋼板とラミネートする際、A層の融点より低い温度でB層と鋼板を貼合せて使用することが本発明の効果を発揮する上で好ましい。
【0006】
本発明のポリエステル複合フイルムにおいて、A層の融点が220℃以上であるためラミネート後の耐衝撃性に優れている。その結果、製缶加工でクラックが発生しにくいため、得られた金属缶内面の耐腐食性が確保される。
逆に、A層の融点が220℃未満の場合、ラミネート後の耐衝撃性が低下し、製缶加工でクラックが発生しやすい。
【0007】
A層の厚みは特に限定するものではないが5〜60μが好ましい。
又、B層の融点が200℃以上で(A層の融点−5)℃以下であるため、A層の耐衝撃性を確保した状態でラミネートが可能であり、かつ、レトルト処理による剥離が抑制される。
逆に、B層の融点が(A層の融点−5)℃を超える場合、ラミネート後の耐衝撃性が低下し、製缶加工でクラックが発生しやすい。又、B層の融点が200℃未満の場合、レトルト処理による剥離が発生しやすい。
又、複合フイルムの熱収縮力が40gf以下であるためレトルト処理による剥離が抑制される。逆に、複合フイルムの熱収縮力が40gfより大きい場合、レトルト処理による剥離が発生しやすい。
本発明のポリエステル複合フイルムとはジカルボン酸とジオールとの重縮合で得られるポリエステルフイルムである。
【0008】
係るジカルボン酸としてテレフタル酸、イソフタル酸、フタル酸、2−6−ナフタレン酸、アジピン酸、セバシン酸、デカンジカルボン酸、アゼライン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、ダイマー酸等の単独物又は混合物が使用できる。又、ジオールとしてエチレングリコール、ネオペンチルグリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、デカンジオール等の単独物又は混合物が使用できる。又、2種以上のジカルボン酸やジオールの共重合体もしくはジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等の他のモノマーやポリマーとの共重合体を使用してもよい。又、必要に応じて酸化防止剤、熱安定剤、紫外線、吸収剤、可塑剤、無機粒子、無機滑剤、有機滑剤、顔料、帯電防止剤等を分散・配合させてもよい。
次に本発明のポリエステル複合フイルムの製造方法の一例を示す。A層、B層を構成するポリエステル樹脂を別々の押出機で押出し、ダイ外又はダイ内で2層化した後急冷することにより未延伸フイルムを得る。該未延伸フイルムを70〜110℃で縦方向に2〜4倍延伸し、次いで80〜110℃で横方向に3〜5倍延伸した後120〜240℃で熱処理すれば、本発明のポリエステル複合フイルムが得られる。
【0009】
以下実施例に基づき本発明を詳細に説明する。実施例及び比較例に用いた測定方法とポリエステルは以下のとおりである。
1.融点
各層の樹脂物を300℃で5分間加熱・溶融した後液体窒素で急冷して得たサンプル10mgを用い、示差走査型熱量計を用いて10℃/分で昇温して得た発熱・吸熱曲線において融解に伴う吸熱ピークの頂点温度を融点とした。
【0010】
2.熱収縮力
複合フイルムより巾4mm×長さ20〜30mmのサンプルを切出し、熱機械分析計を用い、サンプルホルダー間隔5mm、初期荷重5gf、30℃より10℃/分で昇温して得た荷重曲線において収縮に伴う最大値(複合フイルムの縦方向及び横方向の収縮力)を求めた。
上記縦方向収縮力と横方向の収縮力の平均値を熱収縮力と定義した。
【0011】
3.耐衝撃性
ポリエステルB層面を接着層として所定温度に加熱したティンフリー鋼板に水冷ロールで圧着した後、水中に急冷してラミネート鋼板を得た。該ラミネート鋼板に対して落錐衝撃テスト(衝撃子先端径4mm、衝撃子重量0.4kg、衝撃子落下高さ30cm)によりフイルム側から衝撃を与え、該衝撃部を第1図に示した様な方法で6Vの直流電源負荷後30秒後の電流値を測定した。電流値が小さい程耐衝撃性が良好である。
【0012】
4.レトルト密着性
落錐衝撃後のラミ鋼板(フイルム側から衝撃を与えたものと鋼板側から衝撃を与えたもの)を120℃で30分間レトルト処理した後、フイルムの剥離の有無を目視判定した。
【0013】
5.耐熱性評価
耐衝撃性評価用サンプルと同じ方法で得たラミネート鋼板より5cm×5cmに切断したものをサンプルとし、100gの分銅をフイルム面側に置いた状態で220℃で10分間加熱した後の分銅の跡型発生程度で評価した。
【0014】
6.実施例及び比較例で使用したポリエステル
ポリエステルA:ポリエチレンテレフタレート
ポリエステルB:ポリエチレンテレフタレートイソフタレート(エチレンイソフタレートの繰り返し単位 10mol%)
ポリエステルC:ポリエチレンテレフタレートイソフタレート(エチレンイソフタレートの繰り返し単位 22mol%)
ポリエステルD:ポリブチレンテレフタレート
ポリエステルE:テレフタル酸/イソフタル酸/アジピン酸//ブタンジオール=65/10/25//100の共重合体
【0015】
実施例1
A層がポリエステルA85重量%、ポリエステルB15重量%とし、B層がポリエステルA50重量%、ポリエステルC50重量%とし、ダイ外結合で2層化した後290℃で押出し急冷して未延伸フイルムを得た。該未延伸フイルムを100℃で縦方向に3.5倍延伸し、次いで横方向に4.0倍延伸した後180℃で熱処理して厚み12μ(B層/A層=3μ/9μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0016】
実施例2
A層がポリエステルB単独 B層がポリエステルA20重量%、ポリエステルC80重量%である以外は実施例1に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0017】
実施例3
横延伸後の熱処理温度が210℃である以外は実施例2に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0018】
実施例4
A層がポリエステルA80重量%、ポリエステルD20重量%である以外は実施例1に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0019】
比較例1、2
ポリエステルA85重量%、ポリエステルB15重量%を実施例1に記載した方法で厚み25μの単層ポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0020】
比較例3
ポリエステルA50重量%、ポリエステルC50重量%実施例1に記載した方法で厚み25μの単層ポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0021】
比較例4
A層がポリエステルA20重量%、ポリエステルC80重量%であり、B層がポリエステルA10重量%、ポリエステルC90重量%である以外は実施例1に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0022】
比較例5
A層がポリエステルB、B層がポリエステルEである以外は実施例1に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
【0023】
比較例6
A層がポリエステルA85重量%、ポリエステルBが15重量%、B層がポリエステルA15重量%、ポリエステルBが85重量%である以外は実施例1に記載した方法で厚み25μ(B層/A層=3μ/22μ)のポリエステルフイルムを得た。該ポリエステルフイルムの特性を表1に示す。
実施例1〜4及び比較例1〜4を第1表に示す温度でラミネートした後耐衝撃性及びレトルト処理後の密着性を評価した。
表1より明らかなごとく実施例1〜4で得られたポリエステルフイルムは耐衝撃性及びレトルト処理後の密着性が優れている。従って金属貼合せ用ポリエステルフイルムとして高品質である。
一方、比較例2〜4のポリエステルフイルムは耐衝撃性が劣り、比較例1、5、6のポリエステルフイルムはレトルト処理後の密着性が著しく劣るため、金属貼合せ用ポリエステルフイルムとして品質が劣る。
【0024】
【発明の効果】
以上説明した様に本発明のポリエステル複合フイルムは少なくとも一軸延伸された2種2層複合ポリエステルフイルムであり、各層の融点及び複合フイルムの熱収縮力が適正な範囲に制御されているため、製缶時での耐衝撃性に優れており、さらにレトルト処理での剥離が起らない。その結果、内面保護性(フレーバー性、耐腐食性)に優れた金属缶が得られる。又、本発明のポリエステルフイルムを鋼板の内面にラミネートした場合、得られる金属缶は内面保護性が優れているばかりでなく、外面美観性が優れたものとなる。
【0025】
【表1】
【図面の簡単な説明】
【図1】図1は鋼板にフイルムを接着した後、耐衝撃性の程度を評価するための装置の略図である。
【符号の説明】
1.フイルム
2.鋼 板
3.白金電極
4.1%塩化ナトリウム
5.電流計
6.直流電源[0001]
[Industrial applications]
The present invention relates to a polyester composite film for metal lamination, and more particularly to a polyester composite film suitable as a constituent material of a laminated steel sheet for obtaining a metal can such as a beverage can or a food can.
[0002]
[Prior art]
Conventionally, in metal cans, tin-plated steel sheets, chrome-treated steel sheets, nickel-plated steel sheets, etc. have been used to prevent metal odor from migrating to the contents (defective flavor) and prevent the contents from corroding the inner surface of the metal cans. Various laminated steel sheets obtained by bonding a film under heat and pressure have been studied. For example, the technical contents are disclosed in JP-B-57-23584, JP-B-59-34580, and JP-B-62-61427.
However, in this technique, it is premised that a single-layer film is used. Therefore, when the film is laminated with a steel plate at a temperature equal to or higher than the melting point of the polymer constituting the film and sufficiently adhered, local film tearing due to an impact at the time of can making processing. (Cracks) occur. Also, when laminated at a temperature lower than the melting point, cracks due to impact during can making are unlikely to occur, but poor adhesion occurs in the can making process, the subsequent heat treatment process and / or the retort treatment process after filling the contents. Accompanying film peeling occurs.
To avoid such a drawback, Japanese Patent Application Laid-Open No. 2-81630 discloses the use of a composite film.
However, in this technique, peeling is often caused by retort treatment, which has not been satisfactory.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and provides a polyester film which ensures impact resistance in a can-making process and has good adhesion (particularly, hardly causes peeling due to retort treatment). It is intended for that purpose.
[0004]
[Means for Solving the Problems]
The polyester film of the present invention that has achieved the above object is a base layer (A layer) made of polyester having a melting point of 220 ° C. or more and an adhesive layer made of polyester having a melting point of 200 ° C. or more and 5 ° C. or more lower than the melting point of the A layer. This is a composite film composed of (B layer), and has a gist in that the heat shrinkage force of the composite film is 40 gf.
[0005]
The polyester composite film of the present invention is obtained by laminating a polyester resin (A layer) having a melting point of 220 ° C. or more and a polyester resin (B layer) having a melting point of 200 ° C. or more and 5 ° C. or more lower than the melting point of the A layer. It is an essential requirement that the film be stretched at least uniaxially. However, the stretching method is not particularly limited.
When laminating the polyester composite film of the present invention with a steel sheet, it is preferable to use the B layer and the steel sheet together at a temperature lower than the melting point of the A layer in order to exhibit the effects of the present invention.
[0006]
In the polyester composite film of the present invention, since the melting point of the layer A is 220 ° C. or higher, the impact resistance after lamination is excellent. As a result, cracks are less likely to occur during the can-making process, so that the corrosion resistance of the inner surface of the obtained metal can is ensured.
Conversely, if the melting point of the layer A is less than 220 ° C., the impact resistance after lamination is reduced, and cracks are liable to occur in the can making process.
[0007]
The thickness of the layer A is not particularly limited, but is preferably 5 to 60 μm.
In addition, since the melting point of the layer B is 200 ° C. or more and (melting point of the layer A−5) ° C. or less, lamination can be performed with the impact resistance of the layer A secured, and peeling due to retort treatment is suppressed. Is done.
Conversely, if the melting point of the layer B exceeds (melting point of the layer A-5) ° C., the impact resistance after lamination is reduced, and cracks are liable to occur in the can-making process. When the melting point of the B layer is less than 200 ° C., peeling is likely to occur due to the retort treatment.
Further, since the heat shrinkage force of the composite film is 40 gf or less, peeling due to the retort treatment is suppressed. Conversely, if the heat shrinkage force of the composite film is greater than 40 gf, peeling due to retort processing is likely to occur.
The polyester composite film of the present invention is a polyester film obtained by polycondensation of a dicarboxylic acid and a diol.
[0008]
As such a dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 2-6-naphthalene acid, adipic acid, sebacic acid, decanedicarboxylic acid, azelaic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, a single substance or a mixture of dimer acids, etc. Can be used. As the diol, ethylene glycol, neopentyl glycol, butanediol, hexanediol, cyclohexanedimethanol, decanediol and the like can be used alone or in a mixture. Further, a copolymer of two or more dicarboxylic acids or diols or a copolymer with another monomer or polymer such as diethylene glycol, triethylene glycol, polyethylene glycol, or polytetramethylene glycol may be used. If necessary, antioxidants, heat stabilizers, ultraviolet rays, absorbers, plasticizers, inorganic particles, inorganic lubricants, organic lubricants, pigments, antistatic agents and the like may be dispersed and blended.
Next, an example of the method for producing the polyester composite film of the present invention will be described. The polyester resin constituting the layer A and the layer B is extruded by a separate extruder, formed into two layers outside or inside the die, and then rapidly cooled to obtain an unstretched film. The unstretched film is stretched 2 to 4 times in the machine direction at 70 to 110 ° C., then stretched 3 to 5 times in the transverse direction at 80 to 110 ° C., and then heat-treated at 120 to 240 ° C. to obtain the polyester composite of the present invention. A film is obtained.
[0009]
Hereinafter, the present invention will be described in detail based on examples. The measurement methods and polyesters used in the examples and comparative examples are as follows.
1. Using a 10 mg sample obtained by heating and melting the resin material of each layer at 300 ° C. for 5 minutes and then quenching with liquid nitrogen, using a differential scanning calorimeter to raise the temperature at 10 ° C./min. The peak temperature of the endothermic peak accompanying melting in the endothermic curve was defined as the melting point.
[0010]
2. A sample having a width of 4 mm and a length of 20 to 30 mm was cut out from the heat shrinkable composite film, and the load obtained by using a thermomechanical analyzer at a sample holder interval of 5 mm, an initial load of 5 gf, and heating from 30 ° C at 10 ° C / min. The maximum value (shrinkage force in the longitudinal and transverse directions of the composite film) associated with shrinkage in the curve was determined.
The average value of the longitudinal contraction force and the lateral contraction force was defined as the heat contraction force.
[0011]
3. Using a layer of impact-resistant polyester B as an adhesive layer, a tin-free steel sheet heated to a predetermined temperature was pressure-bonded with a water-cooled roll, and then rapidly cooled in water to obtain a laminated steel sheet. An impact was applied to the laminated steel sheet from the film side by a drop impact test (impactor tip diameter 4 mm, impactor weight 0.4 kg, impactor drop height 30 cm), and the impact portion was as shown in FIG. The current value was measured 30 seconds after the 6V DC power supply load by a suitable method. The smaller the current value, the better the impact resistance.
[0012]
4. Retort adhesion After laminating steel plates (one that had an impact from the film side and one that had an impact from the steel plate side) after the falling cone impact, the film was retorted at 120 ° C. for 30 minutes, and the presence or absence of peeling of the film was visually determined.
[0013]
5. Heat resistance evaluation A sample cut into 5 cm x 5 cm from a laminated steel sheet obtained by the same method as the impact resistance evaluation sample was used as a sample, and heated at 220 ° C for 10 minutes with a 100 g weight placed on the film surface side. The evaluation was based on the degree of trace formation of the weight.
[0014]
6. Polyester used in Examples and Comparative Examples Polyester A: polyethylene terephthalate Polyester B: polyethylene terephthalate isophthalate (repeating unit of ethylene isophthalate 10 mol%)
Polyester C: polyethylene terephthalate isophthalate (22 mol% of repeating units of ethylene isophthalate)
Polyester D: Polybutylene terephthalate Polyester E: Copolymer of terephthalic acid / isophthalic acid / adipic acid // butanediol = 65/10/25 // 100
Example 1
The A layer was made up of 85% by weight of polyester A and 15% by weight of polyester B, and the B layer was made up of 50% by weight of polyester A and 50% by weight of polyester C. After being formed into two layers by die bonding, it was extruded and rapidly cooled at 290 ° C. to obtain an unstretched film. . The unstretched film is stretched 3.5 times in the machine direction at 100 ° C., then stretched 4.0 times in the transverse direction, and then heat-treated at 180 ° C. to obtain a polyester having a thickness of 12 μ (B layer / A layer = 3 μ / 9 μ). I got a film. Table 1 shows the properties of the polyester film.
[0016]
Example 2
A layer was polyester B alone Polyester film having a thickness of 25 μ (B layer / A layer = 3 μ / 22 μ) was obtained by the method described in Example 1 except that the B layer was 20% by weight of polyester A and 80% by weight of polyester C. Table 1 shows the properties of the polyester film.
[0017]
Example 3
A polyester film having a thickness of 25 μ (B layer / A layer = 3 μ / 22 μ) was obtained by the method described in Example 2 except that the heat treatment temperature after the transverse stretching was 210 ° C. Table 1 shows the properties of the polyester film.
[0018]
Example 4
A polyester film having a thickness of 25μ (layer B / layer A = 3μ / 22μ) was obtained by the method described in Example 1 except that the layer A was 80% by weight of polyester A and 20% by weight of polyester D. Table 1 shows the properties of the polyester film.
[0019]
Comparative Examples 1 and 2
85% by weight of polyester A and 15% by weight of polyester B were obtained by the method described in Example 1 to obtain a single-layered polyester film having a thickness of 25 μm. Table 1 shows the properties of the polyester film.
[0020]
Comparative Example 3
Polyester A 50% by weight, Polyester C 50% by weight A single-layer polyester film having a thickness of 25 μm was obtained by the method described in Example 1. Table 1 shows the properties of the polyester film.
[0021]
Comparative Example 4
Except that the layer A is composed of 20% by weight of polyester A and 80% by weight of polyester C, and the layer B is composed of 10% by weight of polyester A and 90% by weight of polyester C, a thickness of 25 μm (B layer / A layer = 3 μ / 22μ) of a polyester film was obtained. Table 1 shows the properties of the polyester film.
[0022]
Comparative Example 5
A polyester film having a thickness of 25 μ (layer B / layer A = 3 μ / 22 μ) was obtained by the method described in Example 1 except that layer A was polyester B and layer B was polyester E. Table 1 shows the properties of the polyester film.
[0023]
Comparative Example 6
Except that A layer is 85% by weight of polyester A, 15% by weight of polyester B, B layer is 15% by weight of polyester A, and 85% by weight of polyester B, a thickness of 25 μm (B layer / A layer = 3 μ / 22 μ) of a polyester film was obtained. Table 1 shows the properties of the polyester film.
After laminating Examples 1 to 4 and Comparative Examples 1 to 4 at the temperatures shown in Table 1, impact resistance and adhesion after retort treatment were evaluated.
As is clear from Table 1, the polyester films obtained in Examples 1 to 4 are excellent in impact resistance and adhesion after retort treatment. Therefore, it is of high quality as a polyester film for metal bonding.
On the other hand, the polyester films of Comparative Examples 2 to 4 are inferior in impact resistance, and the polyester films of Comparative Examples 1, 5, and 6 are remarkably inferior in adhesion after retort treatment, so that the quality is inferior as a polyester film for metal bonding.
[0024]
【The invention's effect】
As described above, the polyester composite film of the present invention is a two-layer, two-layer composite polyester film that is at least uniaxially stretched, and the melting point of each layer and the heat shrinkage of the composite film are controlled in appropriate ranges. It has excellent impact resistance at the time, and does not peel off during retort treatment. As a result, a metal can excellent in inner surface protection (flavor property, corrosion resistance) can be obtained. When the polyester film of the present invention is laminated on the inner surface of a steel sheet, the resulting metal can has not only excellent inner surface protection but also excellent outer surface aesthetics.
[0025]
[Table 1]
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for evaluating the degree of impact resistance after bonding a film to a steel plate.
[Explanation of symbols]
1. 1. Film Steel plate3. 4. platinum electrode 4.1% sodium chloride Ammeter 6. DC power supply
Claims (1)
ここでいう熱収縮力とは、以下の測定方法で得られた値を意味する。
複合フィルムより巾4mm×長さ20〜30mmのサンプルを切出し、熱機械分析計を用い、サンプルホルダー間隔5mm、初期荷重5gf、30℃より10℃/分で昇温して得た荷重曲線において収縮に伴う最大値(複合フイルムの縦方向及び横方向の収縮力)を求め、上記縦方向収縮力と横方向の収縮力の平均値を計算した。Polyethylene terephthalate resins and polybutylene terephthalate melting point made of a resin is made of polyester resin composition above 220 ° C. base material layer (A layer) and a polyethylene terephthalate resin and the polyethylene ethylene terephthalate isophthalate mp consisting phthalate resin A layer at 220 ° C. or higher A composite film composed of an adhesive layer (layer B) made of a polyester resin composition having a melting point of at least 5 ° C. lower than the melting point of the composite film, wherein the heat shrinkage of the composite film is 40 gf or less. For polyester composite film.
Here, the heat shrink force means a value obtained by the following measuring method.
A sample having a width of 4 mm and a length of 20 to 30 mm was cut out from the composite film, and contracted in a load curve obtained by using a thermomechanical analyzer at a sample holder interval of 5 mm, an initial load of 5 gf, and raising the temperature from 30 ° C. at 10 ° C./min. (The shrinking force in the longitudinal and lateral directions of the composite film) was calculated, and the average value of the shrinking force in the longitudinal direction and the shrinking force in the lateral direction was calculated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14632893A JP3552059B2 (en) | 1993-06-17 | 1993-06-17 | Polyester composite film for metal lamination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14632893A JP3552059B2 (en) | 1993-06-17 | 1993-06-17 | Polyester composite film for metal lamination |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH071694A JPH071694A (en) | 1995-01-06 |
JP3552059B2 true JP3552059B2 (en) | 2004-08-11 |
Family
ID=15405200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14632893A Expired - Lifetime JP3552059B2 (en) | 1993-06-17 | 1993-06-17 | Polyester composite film for metal lamination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3552059B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5897941A (en) * | 1996-04-12 | 1999-04-27 | Cryovac, Inc. | High modulus film |
JP4338108B2 (en) * | 1997-11-21 | 2009-10-07 | 東レ株式会社 | Polyester film for metal plate lamination molding |
DE69833984T2 (en) | 1998-01-06 | 2007-03-15 | Toyo Boseki K.K. | Polyester multilayer film, a metal plate coated with this film, and a foil-coated metal container |
JP4078780B2 (en) * | 2000-02-18 | 2008-04-23 | 東洋製罐株式会社 | Welding can body and its manufacturing method |
JP4169500B2 (en) * | 2001-09-13 | 2008-10-22 | 帝人デュポンフィルム株式会社 | Laminated polyester film for 3 piece metal can lamination |
JP6880758B2 (en) * | 2017-01-17 | 2021-06-02 | 東洋紡株式会社 | Lid material and packaging using it |
-
1993
- 1993-06-17 JP JP14632893A patent/JP3552059B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH071694A (en) | 1995-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004322643A (en) | Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film | |
JP2004322642A (en) | Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film | |
JP2004322647A (en) | Coextrusion transparent biaxially oriented polyester film, and its manufacturing method and lid material for tray comprising the film | |
EP0798112A2 (en) | Biaxially oriented laminated polyester film for use as film to be bonded onto metal sheet | |
JP2004322644A (en) | Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film | |
JP2004322645A (en) | Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film | |
JP2004322646A (en) | Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film | |
JP3552059B2 (en) | Polyester composite film for metal lamination | |
JP3391090B2 (en) | Polyester composite film for bonding metal sheets | |
JP3279733B2 (en) | Composite polyester film for metal lamination | |
JPH0639979A (en) | Polyester film for metallic sheet laminating fabrication | |
JP3139505B2 (en) | Film for metal lamination | |
JP3396962B2 (en) | Heat shrinkable polyester composite film | |
JPH07331196A (en) | Composite polyester film for lamination with metal and metallic sheet or container laminated therewith | |
JP3304003B2 (en) | Polyester composite film for metal lamination | |
JP3413679B2 (en) | Polyester composite film for metal lamination | |
JPH05269819A (en) | Film for laminating on metal and manufacture thereof | |
JPH09226738A (en) | Metal can and synthetic resin film for metal can | |
JP2002178471A (en) | Polyester film for laminating metal plate, metal plate and metal vessel formed by using the same | |
JP3304002B2 (en) | Polyester composite film for metal lamination | |
JPH0890717A (en) | Polyester resin laminated metal panel and production thereof | |
JP3221531B2 (en) | Polyester composite film for metal lamination | |
KR100265927B1 (en) | Polyester film and method for manufacturing the same | |
JP2950109B2 (en) | Laminate | |
JP3252932B2 (en) | Polyester composite film for metal lamination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20031119 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20040119 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040226 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040408 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20040421 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130514 |
|
EXPY | Cancellation because of completion of term |