[go: up one dir, main page]

JP3551780B2 - Varistor and manufacturing method thereof - Google Patents

Varistor and manufacturing method thereof Download PDF

Info

Publication number
JP3551780B2
JP3551780B2 JP25825398A JP25825398A JP3551780B2 JP 3551780 B2 JP3551780 B2 JP 3551780B2 JP 25825398 A JP25825398 A JP 25825398A JP 25825398 A JP25825398 A JP 25825398A JP 3551780 B2 JP3551780 B2 JP 3551780B2
Authority
JP
Japan
Prior art keywords
varistor
temperature
electrode
zno
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25825398A
Other languages
Japanese (ja)
Other versions
JP2000091107A (en
Inventor
一茂 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25825398A priority Critical patent/JP3551780B2/en
Publication of JP2000091107A publication Critical patent/JP2000091107A/en
Application granted granted Critical
Publication of JP3551780B2 publication Critical patent/JP3551780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器を異常高電圧から保護するバリスタおよびその製造方法に関するものである。
【0002】
【従来の技術】
従来のバリスタは、主成分のZnOに副成分としてBi,Co,MnO,Al等を含むバリスタ材料の成形体を、1150〜1350℃の温度で焼成した後、焼結体の両面に電極ペーストを印刷、焼付けを行いバリスタを完成させていた。
【0003】
【発明が解決しようとする課題】
前記バリスタ材料は実用的なバリスタ特性を得るには1150℃より高い温度で焼成する必要がある。このためAg又はAg−Pd化合物を主成分とする電極ペーストを成形体に塗布し、成形体と電極とを1150℃より高い温度で一体焼成を行うと、電極金属成分のAgが溶融凝集したり、Pdが組成中のBiと反応し電極としての機能が消失してしまう。従って電極の形成は成形体の焼成と別個に行わなければならないという問題があった。
【0004】
本発明はこの問題点を解決するもので、成形体の焼結と電極形成を同時に行うことのできるバリスタおよびその製造方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記課題を解決する本発明のバリスタは、主成分のZnOに副成分として少なくともBiと、Sbを含む組成物に、更にMn化合物を溶液の形でMnがZnOに対し0.01〜1.0at%の範囲で添加した材料を用いた成形体を850〜1100℃の温度で焼成したバリスタ素子を用いたものである。この構成とすることにより溶液の形で添加したMn化合物は成形体の焼成過程で、熱分解し活性度の高いMnOとなり、これがBiと容易に反応し成形体の焼結開始温度を低温側に押し下げる効果があり、この結果、バリスタの成形体を比較的低い850〜1100℃の温度でも焼結させることができ、従って成形体の焼結と電極形成を同時に行うことができると共に、低温焼成によって主成分のZnO結晶粒径が均一な大きさとなり、得られたバリスタはバリスタ電圧のバラツキ(標準偏差σ)が小さくなり歩留まりも向上するという効果がある。
【0006】
【発明の実施の形態】
本発明の請求項1に記載の発明は、ZnOを主成分とし副成分として少なくともBiとSbを含む組成物に、更にMn化合物の溶液の形でMnがZnOに対し0.01〜1.0at%の範囲となるように添加した材料の成形体を850〜1100℃の温度で焼成したバリスタ素子を用いたバリスタである。溶液の形で添加したMn化合物は成形体の焼成過程の600℃近傍の温度で熱分解し化学的活性が高いMnOとなり、これが組成物中のBiと容易に反応し比較的低温度で液相を生成し、この液相がZnOと反応し焼結開始温度を低下させる効果があり、このため、従来の焼成温度より低い850〜1100℃の温度でも焼結が可能となり、従って、成形体の焼結と電極形成を同時に行うことができると共に、低温で焼結を行うため主成分のZnO結晶粒径が均一な大きさに成長し、バリスタ電圧のバラツキを小さくし、特性歩留まりを向上させると言う作用をも有するものである。
【0007】
本発明の請求項2に記載の発明は、Mn化合物としてMn(NOまたはMnSOを溶液の形で用いた請求項1に記載のバリスタである。溶液の状態で添加し前記効果が得られるMn化合物の材料を規定したものであると共に、溶液の状態で添加することにより微量なMnの分散性を向上させることができるという作用を有するものである。
【0008】
本発明の請求項3に記載の発明は、電極金属成分としてAgまたはAg−Pd化合物を用いた請求項1に記載のバリスタである。850〜1100℃の温度範囲でバリスタ成形体との一体焼結が可能な電極金属成分を規定したものである。
【0009】
本発明の請求項4に記載の発明は、成形体の両面に融点が850℃以上の金属成分を主成分とする電極ペーストを印刷塗布後、成形体と電極を一体焼成することを特徴とする請求項1に記載のバリスタの製造方法である。前項で説明したように本発明のバリスタ組成物は850〜1100℃の低温で焼結が可能であるため、融点が850℃以上の金属成分からなる電極ペーストを成形体に塗布し、成形体の焼結と電極形成を同時に行うことが可能となるものである。
【0010】
以下本発明の一実施の形態について説明する。
(実施の形態1)
図1に本発明の一実施の形態のバリスタを示す。図1において1はバリスタ素子、2a,2bは電極である。
【0011】
このバリスタの製造方法について以下に説明する。先ず、主成分のZnOに、副成分としてBiを0.5mol%、Sbを0.25mol%、Coを0.5mol%、Alを0.005mol%含む組成物に、更にMn(NO溶液をMnがZnOに対し0.005〜1.5at%の範囲となるように添加、混合した後、脱水乾燥を行う。得られた各バリスタ材料にポリビニルアルコールを加えて造粒を行う。
【0012】
次に、各造粒粉を80MPa/cmの成形圧力で、直径15mm、厚さ1.5mmの円板を成形した後、夫々の成形体の両面にAgを主成分とする電極ペーストをスクリーン印刷法を用いて直径10mmの電極2a,2bの印刷を行い、950℃の温度で5時間、成形体と電極2a,2bの一体焼成を行いバリスタを作製した。比較例としてMn(NOに代えて、MnOを用いMnをZnOに対し0.005〜1.5at%の範囲で添加した材料についても同条件で処理してバリスタを作製した。
【0013】
得られた夫々のバリスタに1mA及び10μAの電流を流したときのバリスタ電圧を測定し、これから厚さ1mm当たりのバリスタ電圧(V1mA/mm)、及び電圧非直線係数(α)を算出し、その結果を(表1)に示した。尚、電圧非直線係数αは(数1)より求めたものである。
【0014】
【表1】

Figure 0003551780
【0015】
【数1】
Figure 0003551780
【0016】
(表1)に示すように、Mn(NOの溶液の形でのMnをZnOに対し0.01から1.0at%の範囲で添加したものは、バリスタ電圧のバラツキ(標準偏差σ)が小さく、電圧非直線性が高い。これに対しMnの添加量が0.01at%より少ない場合、バリスタ電圧が高過ぎ実用的ではなく、またバリスタ電圧のバラツキも大きい。また、Mnの添加量が1.0at%より多い場合、電圧非直線性が極めて小さくなる。一方Mn(NOの代わりにMnOを用いた場合は、同じMnの添加量であるにも拘らずバリスタ電圧が高く、バリスタ電圧のバラツキが大きいことがわかる。
【0017】
また、前記組成物の内、Mnを添加量0.5at%とした組成について、800から1000℃の各温度で30分間焼成し、各温度における焼成収縮率を測定しその結果を図2に示した。
【0018】
図2から明らかなように、MnをMn(NOの溶液の形で添加した場合、粉末状態のMnOの形で添加した場合よりも低い温度で、成形体の焼成収縮が始り比較的低い温度で焼結反応が終了することがわかる。これは、溶液の形で添加したMn(NOが成形体の焼結過程の600℃近傍温度で熱分解し、化学的活性度の高いMnO微粒子を生成する。これが組成中のBiと反応し比較的低い温度で液相を生成する。この液相がZnOと反応し焼結開始温度を低下させるものと思われる。従って、従来の焼成温度より低い850〜1100℃の温度でも成形体の焼結を終了させることができることを示している。
【0019】
この結果から推測すると、本実施の形態のMnの添加量が0.01at%より少ない場合、活性度の高いMnOが少なく、MnOとBiとで生成される液相が少なく、950℃でZnOの結晶粒成長促進効果が不十分となり、バリスタ焼結体が末焼結の状態であることを示しているものと思われる。しかしながら1.0at%より多い場合、電圧非直線性が小さくなる理由については解析が十分になされていないため定かではない。
【0020】
以上の結果から1100℃以下の焼成温度で、電圧非直線係数が大きく、しかもバリスタ電圧のバラツキが小さい焼結体を得るためには、MnをMn(NO溶液の形で0.01〜1.0at%の範囲で添加する必要があることがわかる。尚、本実施の形態ではMn(NOの溶液の形で添加したが、これをMnSOの溶液を用いても同様な効果が得られることを確認している。
【0021】
(実施の形態2)
先ず、実施の形態1で作製したMn(NOの形でMnをZnOに対し0.1at%添加した造粒粉を用い、80MPa/cmの成形圧力で直径15mm、厚さ1.5mmの円板状に成形を行った。
【0022】
次に、成形体の両面に(表2)に示す組成の電極ペーストを用い、直径10mmの電極2a,2bをスクリーン印刷した。
【0023】
次いで、850から1100℃の温度で30分間、成形体の焼結と電極2a,2bの形成を同時に行いバリスタを作製した。得られたバリスタの電極2a,2bの形成状態を評価し、その結果を(表2)に示した。
【0024】
【表2】
Figure 0003551780
【0025】
(表2)に示したように、電極2a,2bの金属成分がAgのみの場合、焼成温度がAgの溶融温度960℃を超えるとAgが溶融凝縮してしまい電極2a,2bとしての機能を果たさなくなる。一方金属成分のAgにPdを添加することにより1100℃までは電極機能を保つことはできるが、焼成温度が1100℃を超えるとバリスタ材料成分中のBiと電極2a,2bの成分のPdが反応し電極2a,2bとしての機能が消失し好ましくない。
【0026】
また、何れの場合においても、850℃より低い温度では電極2a,2bの形成状態は良好であるが、バリスタ素子1の焼結が不十分でバリスタ電圧が高くなり過ぎ実用的でなくなる。このため電極2a,2bの金属成分がAgのみの場合は850℃〜950℃の温度範囲、AgにPdを添加した場合は850〜1100℃で焼成することを行うことによって、実用に適するバリスタ特性を有するバリスタを得ることが可能となる。
【0027】
尚、本実施の形態では電極金属成分にAgとAg−Pd化合物を用いたが、本発明のバリスタ成形体の焼成温度範囲で溶融せず、またバリスタ材料成分中の構成元素と反応しない金属であれば、その他の金属を使用しても良い。
【0028】
【発明の効果】
以上本発明によれば、主成分のZnOに副成分として少なくともBi,Sbを含むバリスタ組成物に、さらにMn化合物を溶液の形でMnがZnOに対し0.01〜1.0at%の範囲で添加することによって、このバリスタ材料は焼成過程の600℃近傍の温度で溶液の形で添加したMn化合物が分解し活性度の高いMnOの微粒子となり、これが成分中のBiと反応し、比較的低い温度で液相を生成し焼結開始温度を低下させる効果がある。従って850〜1100℃の焼成温度で、成形体焼結と電極形成を同時に行うことが可能となる。また、得られた焼成体は均一なZnO結晶粒で構成され、電圧非直線性が大きくしかもバリスタ電圧のバラツキが小さくなり特性歩留まりが向上する。
【図面の簡単な説明】
【図1】本発明の一実施の形態のバリスタの製造方法により得たバリスタの断面図
【図2】本発明の組成の焼成温度と焼結体収縮率の関係を示す図
【符号の説明】
1 バリスタ素子
2a 電極
2b 電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a varistor for protecting various electronic devices from abnormally high voltage and a method for manufacturing the varistor.
[0002]
[Prior art]
Conventional varistor, a shaped body of the varistor material containing Bi 2 O 3, Co 2 O 3, MnO 2, Al 2 O 3 or the like to ZnO principal component as an auxiliary component, after firing at a temperature of 1,150-1,350 ° C. The electrode paste was printed and baked on both sides of the sintered body to complete the varistor.
[0003]
[Problems to be solved by the invention]
The varistor material must be fired at a temperature above 1150 ° C. to obtain practical varistor properties. For this reason, when an electrode paste containing Ag or an Ag-Pd compound as a main component is applied to a molded body and the molded body and the electrode are integrally fired at a temperature higher than 1150 ° C., Ag of the electrode metal component may melt and aggregate. , Pd reacts with Bi 2 O 3 in the composition and the function as an electrode is lost. Therefore, there is a problem that the formation of the electrode must be performed separately from the firing of the molded body.
[0004]
An object of the present invention is to solve this problem, and an object of the present invention is to provide a varistor capable of simultaneously performing sintering of a compact and forming an electrode, and a method of manufacturing the varistor.
[0005]
[Means for Solving the Problems]
The varistor of the present invention that solves the above-mentioned problem is characterized in that a composition containing at least Bi 2 O 3 and Sb 2 O 3 as subcomponents in ZnO as a main component and a Mn compound in the form of a solution further containing Mn in the form of a solution containing 0% of ZnO. A varistor element obtained by firing a molded body using a material added in the range of 0.01 to 1.0 at% at a temperature of 850 to 1100 ° C. With this configuration, the Mn compound added in the form of a solution is thermally decomposed into MnO 2 having a high activity during the firing process of the molded body, which easily reacts with Bi 2 O 3 to start sintering of the molded body. Has the effect of lowering the temperature of the varistor to a lower temperature. As a result, the varistor compact can be sintered even at a relatively low temperature of 850 to 1100 ° C., so that sintering of the compact and electrode formation can be performed simultaneously. In addition, the main component ZnO crystal grain size becomes uniform by low-temperature firing, and the obtained varistor has the effect of reducing the varistor voltage variation (standard deviation σ) and improving the yield.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention relates to a composition containing ZnO as a main component and at least Bi 2 O 3 and Sb 2 O 3 as subcomponents, and further comprising a solution of a Mn compound in which Mn is reduced to 0 relative to ZnO. This is a varistor using a varistor element obtained by firing a molded body of a material added in a range of 0.01 to 1.0 at% at a temperature of 850 to 1100 ° C. The Mn compound added in the form of a solution is thermally decomposed at a temperature near 600 ° C. in the firing process of the molded body to form MnO 2 having high chemical activity, which easily reacts with Bi 2 O 3 in the composition and has a relatively low activity. A liquid phase is generated at a temperature, and the liquid phase reacts with ZnO to lower the sintering start temperature. Therefore, sintering is possible even at a temperature of 850 to 1100 ° C. lower than the conventional firing temperature, and In addition, the sintering of the compact and the electrode formation can be performed simultaneously, and the sintering at a low temperature allows the main component ZnO crystal grain size to grow to a uniform size, thereby reducing the variation in the varistor voltage and reducing the characteristic yield. It also has the effect of improving
[0007]
The invention according to claim 2 of the present invention is the varistor according to claim 1, wherein Mn (NO 3 ) 2 or MnSO 4 is used as a Mn compound in the form of a solution. It defines the material of the Mn compound that can be added in the state of a solution to obtain the above-mentioned effect, and has the effect of improving the dispersibility of a trace amount of Mn by adding the state of the solution. .
[0008]
The invention according to claim 3 of the present invention is the varistor according to claim 1, wherein Ag or an Ag-Pd compound is used as an electrode metal component. It defines an electrode metal component that can be integrally sintered with the varistor molded body in a temperature range of 850 to 1100 ° C.
[0009]
The invention described in claim 4 of the present invention is characterized in that after forming and applying an electrode paste containing a metal component having a melting point of 850 ° C. or more as a main component on both surfaces of the molded body, the molded body and the electrode are integrally fired. A method for manufacturing a varistor according to claim 1. As described in the preceding section, since the varistor composition of the present invention can be sintered at a low temperature of 850 to 1100 ° C., an electrode paste composed of a metal component having a melting point of 850 ° C. or more is applied to the molded body, and Sintering and electrode formation can be performed simultaneously.
[0010]
Hereinafter, an embodiment of the present invention will be described.
(Embodiment 1)
FIG. 1 shows a varistor according to an embodiment of the present invention. In FIG. 1, 1 is a varistor element, and 2a and 2b are electrodes.
[0011]
A method for manufacturing this varistor will be described below. First, the ZnO main component, 0.5 mol% of Bi 2 O 3 as an auxiliary component, Sb 2 O 3 and 0.25mol%, Co 2 O 3 and 0.5 mol%, the Al 2 O 3 0.005mol% A Mn (NO 3 ) 2 solution is further added to and mixed with the composition so that Mn is in a range of 0.005 to 1.5 at% with respect to ZnO, followed by dehydration drying. Granulation is performed by adding polyvinyl alcohol to each of the obtained varistor materials.
[0012]
Next, each granulated powder was molded at a molding pressure of 80 MPa / cm 2 into a disk having a diameter of 15 mm and a thickness of 1.5 mm, and an electrode paste containing Ag as a main component was screened on both surfaces of each molded body. The electrodes 2a and 2b having a diameter of 10 mm were printed by a printing method, and the molded body and the electrodes 2a and 2b were integrally fired at a temperature of 950 ° C. for 5 hours to produce a varistor. As a comparative example, a varistor was manufactured by treating MnO 2 in place of Mn (NO 3 ) 2 and using Mn in a range of 0.005 to 1.5 at% with respect to ZnO under the same conditions.
[0013]
The varistor voltage when a current of 1 mA and 10 μA was passed through each of the obtained varistors was measured, and a varistor voltage per 1 mm thickness (V 1 mA / mm) and a voltage nonlinear coefficient (α) were calculated. The results are shown in (Table 1). Note that the voltage nonlinear coefficient α is obtained from (Equation 1).
[0014]
[Table 1]
Figure 0003551780
[0015]
(Equation 1)
Figure 0003551780
[0016]
As shown in Table 1, Mn (NO 3 ) 2 in the form of a solution in which Mn was added in the range of 0.01 to 1.0 at% with respect to ZnO was found to have a variation in varistor voltage (standard deviation σ). ) Is small and the voltage non-linearity is high. On the other hand, when the added amount of Mn is less than 0.01 at%, the varistor voltage is too high and is not practical, and the varistor voltage varies greatly. When the amount of Mn is more than 1.0 at%, the voltage non-linearity becomes extremely small. On the other hand, when MnO 2 was used instead of Mn (NO 3 ) 2, the varistor voltage was high and the variation in varistor voltage was large despite the same amount of Mn added.
[0017]
In addition, of the above compositions, the composition in which Mn was added in an amount of 0.5 at% was fired at 800 to 1000 ° C. for 30 minutes, and the firing shrinkage at each temperature was measured. The results are shown in FIG. Was.
[0018]
As is clear from FIG. 2, when Mn is added in the form of a solution of Mn (NO 3 ) 2 , firing shrinkage of the molded body starts at a lower temperature than when Mn is added in the form of MnO 2 in a powder state. It can be seen that the sintering reaction ends at a relatively low temperature. This is because Mn (NO 3 ) 2 added in the form of a solution is thermally decomposed at a temperature around 600 ° C. during the sintering process of the molded body, and MnO 2 fine particles having high chemical activity are generated. This reacts with Bi 2 O 3 in the composition to form a liquid phase at relatively low temperatures. It is considered that this liquid phase reacts with ZnO and lowers the sintering start temperature. Therefore, it shows that the sintering of the compact can be completed even at a temperature of 850 to 1100 ° C. lower than the conventional firing temperature.
[0019]
From the results, when the addition amount of Mn in the present embodiment is less than 0.01 at%, the amount of MnO 2 having high activity is small, and the liquid phase generated by MnO 2 and Bi 2 O 3 is small, At 950 ° C., the effect of promoting the crystal grain growth of ZnO becomes insufficient, which indicates that the varistor sintered body is in a state of powder sintering. However, if it is more than 1.0 at%, it is not clear why the voltage non-linearity becomes small because the analysis is not sufficiently performed.
[0020]
From the above results, at a firing temperature of 1100 ° C. or less, in order to obtain a sintered body having a large voltage nonlinear coefficient and a small variation in varistor voltage, Mn must be contained in the form of a Mn (NO 3 ) 2 solution in the form of 0.01%. It is understood that it is necessary to add in the range of ~ 1.0 at%. In this embodiment, Mn (NO 3 ) 2 was added in the form of a solution, but it has been confirmed that the same effect can be obtained by using MnSO 4 solution.
[0021]
(Embodiment 2)
First, using a granulated powder prepared by adding Mn (0.1 at%) to ZnO in the form of Mn (NO 3 ) 2 prepared in Embodiment 1, a diameter of 15 mm and a thickness of 1 mm under a molding pressure of 80 MPa / cm 2 . It was formed into a 5 mm disk shape.
[0022]
Next, electrodes 2a and 2b having a diameter of 10 mm were screen-printed on both surfaces of the molded body using an electrode paste having a composition shown in (Table 2).
[0023]
Next, sintering of the compact and formation of the electrodes 2a and 2b were simultaneously performed at a temperature of 850 to 1100 ° C. for 30 minutes to produce a varistor. The state of formation of the electrodes 2a and 2b of the obtained varistor was evaluated, and the results are shown in (Table 2).
[0024]
[Table 2]
Figure 0003551780
[0025]
As shown in (Table 2), when the metal component of the electrodes 2a and 2b is only Ag, if the sintering temperature exceeds the melting temperature of Ag of 960 ° C., the Ag is melted and condensed to function as the electrodes 2a and 2b. Will not work. On the other hand, by adding Pd to Ag of the metal component, the electrode function can be maintained up to 1100 ° C., but when the firing temperature exceeds 1100 ° C., the Bi 2 O 3 in the varistor material component and the components of the electrodes 2a and 2b are not mixed. Pd reacts and loses the function as the electrodes 2a and 2b, which is not preferable.
[0026]
In any case, at a temperature lower than 850 ° C., the formation state of the electrodes 2 a and 2 b is good, but the varistor element 1 is insufficiently sintered and the varistor voltage becomes too high to be practical. For this reason, when the metal component of the electrodes 2a and 2b is only Ag, firing is performed at a temperature range of 850 ° C. to 950 ° C., and when Pd is added to Ag, firing is performed at 850 to 1100 ° C., so that varistor characteristics suitable for practical use are obtained. Can be obtained.
[0027]
In this embodiment, Ag and the Ag-Pd compound are used as the electrode metal components. However, a metal that does not melt in the firing temperature range of the varistor molded body of the present invention and does not react with the constituent elements in the varistor material component is used. If so, other metals may be used.
[0028]
【The invention's effect】
As described above, according to the present invention, a varistor composition containing at least Bi 2 O 3 and Sb 2 O 3 as subcomponents in ZnO as a main component, and a Mn compound in the form of a solution containing Mn in an amount of 0.01 to 1 with respect to ZnO. When the varistor material is added in the range of 0.0 at%, the Mn compound added in the form of a solution is decomposed at a temperature of about 600 ° C. in the firing process to form highly active MnO 2 fine particles, which are Bi in the component. It reacts with 2 O 3 to produce a liquid phase at a relatively low temperature, which has the effect of lowering the sintering start temperature. Therefore, at a firing temperature of 850 to 1100 ° C., it is possible to simultaneously perform sintering of the compact and electrode formation. In addition, the obtained fired body is composed of uniform ZnO crystal grains, has a large voltage non-linearity, has a small variation in varistor voltage, and has an improved characteristic yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a varistor obtained by a method for manufacturing a varistor according to one embodiment of the present invention.
1 Varistor element 2a Electrode 2b Electrode

Claims (4)

ZnOを主成分とし副成分として少なくともBiとSbを含むバリスタ組成物に、更にMn化合物の溶液をMnがZnOに対し0.01〜1.0at%となるように添加した材料を用いた成形体を、850〜1100℃の温度で焼成したバリスタ素子を用いたバリスタ。The varistor composition comprising at least Bi 2 O 3 and Sb 2 O 3 as a subcomponent to a main component ZnO, further a solution of Mn compound Mn was added to a 0.01~1.0At% to ZnO A varistor using a varistor element obtained by firing a formed body using a material at a temperature of 850 to 1100 ° C. Mn化合物としてMn(NO)またはMnSOを溶液の形で用いた請求項1に記載のバリスタ。Varistor according to claim 1 using Mn of (NO 3) or MnSO 4 in the form of a solution as a Mn compound. 電極金属成分としてAgまたはAg−Pd化合物を用いた請求項1に記載のバリスタ。The varistor according to claim 1, wherein Ag or an Ag-Pd compound is used as an electrode metal component. 成形体の両面に融点が850℃以上の金属成分を主成分とする電極ペーストを塗布後、成形体と電極を一体焼結する請求項1に記載のバリスタの製造方法。The method for manufacturing a varistor according to claim 1, wherein after applying an electrode paste mainly containing a metal component having a melting point of 850 ° C. or more to both surfaces of the molded body, the molded body and the electrode are integrally sintered.
JP25825398A 1998-09-11 1998-09-11 Varistor and manufacturing method thereof Expired - Lifetime JP3551780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25825398A JP3551780B2 (en) 1998-09-11 1998-09-11 Varistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25825398A JP3551780B2 (en) 1998-09-11 1998-09-11 Varistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000091107A JP2000091107A (en) 2000-03-31
JP3551780B2 true JP3551780B2 (en) 2004-08-11

Family

ID=17317667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25825398A Expired - Lifetime JP3551780B2 (en) 1998-09-11 1998-09-11 Varistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3551780B2 (en)

Also Published As

Publication number Publication date
JP2000091107A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP5099011B2 (en) Barium titanate-based semiconductor ceramic composition and PTC element using the same
JP3551780B2 (en) Varistor and manufacturing method thereof
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JP3551781B2 (en) Varistor and manufacturing method thereof
JPH0812814B2 (en) Varistor material and manufacturing method thereof
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JP2000044333A (en) Production of zinc oxide varistor
JP3555395B2 (en) Barium lead titanate based semiconductor porcelain composition
JP3313533B2 (en) Zinc oxide-based porcelain composition and method for producing the same
JP2751511B2 (en) Method of manufacturing voltage non-linear resistor
JPH068211B2 (en) Manufacturing method of varistor material
JP2001328862A (en) Barium lead titanate based semiconductor porcelain composition
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JPH10308302A (en) Zinc oxide-based porcelain composition and its production and zinc oxide varistor
JPH0311082B2 (en)
JPH0812811B2 (en) Method of manufacturing voltage non-linear resistor
JPH01222404A (en) Manufacture of voltage dependent non-linear resistor
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH09320815A (en) Manufacture of zno varistor
JPH09266102A (en) Conductive chip ceramic device
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JP4183100B2 (en) Voltage Nonlinear Resistor Porcelain Composition
JP2002097071A (en) Zinc oxide porcelain composition, method for producing the same, zinc oxide varistor and zinc oxide varistor device using the same
JP2000016866A (en) Method for producing barium titanate-based semiconductor material
JPH0258306A (en) Voltage-dependent nonlinear resistor and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

EXPY Cancellation because of completion of term