[go: up one dir, main page]

JP3551573B2 - Steel for carburized gear with excellent gear cutting - Google Patents

Steel for carburized gear with excellent gear cutting Download PDF

Info

Publication number
JP3551573B2
JP3551573B2 JP24378695A JP24378695A JP3551573B2 JP 3551573 B2 JP3551573 B2 JP 3551573B2 JP 24378695 A JP24378695 A JP 24378695A JP 24378695 A JP24378695 A JP 24378695A JP 3551573 B2 JP3551573 B2 JP 3551573B2
Authority
JP
Japan
Prior art keywords
gear
steel
hardness
carburized
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24378695A
Other languages
Japanese (ja)
Other versions
JPH0967644A (en
Inventor
敦臣 秦野
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP24378695A priority Critical patent/JP3551573B2/en
Publication of JPH0967644A publication Critical patent/JPH0967644A/en
Application granted granted Critical
Publication of JP3551573B2 publication Critical patent/JP3551573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は良好な歯切り性を有し、耐衝撃特性に優れた歯車部品を得ることのできる浸炭又は浸炭窒化用鋼に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、機械構造部品である歯車やシャフト等に用いられる歯車用鋼として、JIS鋼のSCr420,SCM420に代表される肌焼鋼が用いられてきた。
しかしながら歯車の高強度化の要求が益々高まるにつれ、疲労強度や衝撃強度を向上させた浸炭歯車用鋼が種々提案されている。これらの歯車用鋼は、主にNi,Mo等の靱性向上元素の増量により強度向上を図っているが、一方でこれら元素の増量により被削性等の製造性が劣化し、問題となっている。
【0003】
被削性の中でも特に歯切り性は素材の硬さの影響を受け、硬くて粘いベイナイト組織が析出して素材の硬さが90HRB以上となると極端に工具寿命が低下することが知られている。
【0004】
合金設計による被削性向上手法としては、切削抵抗を減少させる目的でPb,Bi等の快削元素の添加が一般に行われている。しかし素材の硬さが90HRB以下の領域では快削元素の効果が有効に作用するものの、90HRB以上になると快削元素添加による工具寿命向上の程度が小さくなり、所望の工具寿命が得られないといった問題を生じてきた。
【0005】
本発明はこのような事情を背景としてなされたもので、その目的とするところは、歯切り性に優れ且つ衝撃強度が良好な浸炭歯車用鋼を提供することにある。
【0006】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものであり、その要旨とするところは、浸炭歯車用鋼の組成を重量%でC:0.08〜0.35%、Si:≦0.5%、Mn:≦1.5%、P:≦0.03%、S:≦0.03%、O:≦0.0020%であり、更にs−B:0.0003〜0.0050%、Nb:0.005〜0.20%、Ti:0.005〜0.10%、N:≦0.020%、s−Al:≦0.05%、0.02≧Ti−3.6N≧−0.01、残部実質的にFeから成る組成とし、且つ焼入れ性試験における理想臨界直径D値が1.5〜4インチであるようになしたことにある。
【0007】
ここで本発明においては、更にCr,Ni,Mo,Vの1種又は2種以上を、Cr:≦5.0%、Ni:≦3.0%、Mo:≦1.0%、V:≦1.0%の量で含有させることができる。
【0008】
更にまた、Pb,Bi,Te,Ca,Seの1種又は2種以上を、Pb:≦0.4%、Bi:≦0.4%、Te:0.001〜0.05%、Ca:0.0005〜0.0030%、Se:0.003〜0.05%の量で含有させることができる。
【0009】
【作用】
本発明は、合金組成を調整し、熱間鍛造まま若しくは焼ならし処理後において85HRB以下の硬さを確保し、良好な歯切り性を得るとともに、浸炭焼入・焼戻後においては従来鋼と同等以上の良好な強度を得るため、Bの焼入れ性向上効果を活用している点を特徴としている。以下その詳細を具体的に説明する。
【0010】
肌焼鋼における焼ならし後の硬さは、いうまでもなく焼ならし後の組織により決定される。しかしながら組織から硬さへの定量的な変換は容易ではなく、合金設計に反映させるには今一つ難点があり、簡便な手法が望まれていた。
これらの事情を背景として鋭意検討した結果、焼入れ性試験の結果を一つの指標としてこれを利用することにより、焼ならし後の硬さの推定と合金設計への反映が可能であることを見出した。
【0011】
焼入れ性試験は、本来焼入れ後の臨海直径等焼入れ後の性状を把握するものであり、C,Si,Mnを初めとして各種合金元素の影響が従来からの研究により明らかにされている。そしてこの焼入れ性試験の結果は、歯車の浸炭焼入・焼戻時にも広く適用され、鋼材の品質規格の一つとして利用されている。
【0012】
しかしながら焼入れ性試験の結果を浸炭歯車に利用する場合、例えばジョミニー式の一端焼入れ法の結果を例にとると、焼入れ端からの距離が5mm〜15mmにおける硬さを規定することがほとんどであり、それ以降の値はあまり重要視されていないのが実情である。
これは歯車の強度を確保するという観点で歯元硬さ、心部硬さを最適なものにする場合、浸炭歯車の大きさや歯車形状から決定されたものである。そして先にも述べたように製品強度のばらつきの減少という点からも鋼材性能の重要な因子として管理されており、焼入れ性特性値と合金組成との相関を利用した鋼材製造プロセスも確立されている。
【0013】
一方、肌焼鋼の焼ならし処理における冷却は、通常大気放冷いわゆる空冷が一般的であるが、焼ならし硬さも焼入れ性と同様に各種合金元素の影響がほぼ明確になっている。
この点に着目し、焼ならし硬さと焼入れ性試験の結果をもとに検討した結果、浸炭歯車に使用される肌焼鋼の焼ならし硬さとジョミニー式一端焼入れ性試験結果におけるD値との間に良い相関が得られることを見出した。
【0014】
これらの知見をもとに焼ならし後の硬さを低い値とするための合金設計を行うと、確かに低い焼ならし硬さが得らえるものの、JからJ15付近の硬さも同様に低くなり、浸炭後の焼入・焼戻後の強度が確保できないといった問題を生ずる。
この問題を解決する手段として、本発明ではBの焼入れ性向上効果に着目した。
【0015】
Bの焼入れ性向上効果の特徴は、他の合金元素と異なり、焼入れ端からの距離20mm:J20までの焼入れ性は向上するものの、それ以降の距離においてその効果はほとんど見られないといった点にある。
【0016】
これによりB添加とD値を規制する合金設計とを組み合わせることにより、歯切り性と歯車強度双方に良好な浸炭歯車用鋼を得ることが可能となった。即ち、Bの焼入れ性向上効果分だけ他の合金元素を減量することにより焼ならし硬さを低くすることが可能となり、歯切り性を従来鋼に比べ飛躍的に向上させることが可能となった。
以下に各合金元素の限定理由について詳述する。
【0017】
C:0.08〜0.35%
Cは鋼の強度を確保するために必須の元素であり、その含有量が浸炭焼入・焼戻後の心部硬さを決定する。そこで本発明ではC量の下限を0.08%とし、心部の硬さを確保している。
しかしその含有量が多過ぎると熱間鍛造後や焼ならし後の硬さが増大して被削性を低下させるとともに、浸炭焼入・焼戻後の衝撃強度を低下させる等の弊害をもたらすので、C含有量の上限を0.35%とした。
【0018】
Si:≦0.5%
Siはフェライト強化型元素であり、多量に添加すると硬さの増加に伴い被削性が劣化する。また浸炭時の粒界酸化を助長して破壊の起点となりやすいので、その上限を0.5%とする。
【0019】
Mn:≦1.5%
Mnは鋼の熱間加工性を高め、焼入れ性を確保するために添加される。しかし過剰に添加すると素材の軟化焼なましを困難とし、また被削性や冷鍛性を劣化させるので、その上限を1.5%とする。
【0020】
P:≦0.03%
Pはオーステナイト粒界に偏析して靱性を低下させるため、含有量はできる限り少ない方が望ましいが、後述するBの粒界脆化抑制効果により靱性が改善されるので、その上限を0.03%とする。
【0021】
S:≦0.03%
Sは鋼中でMnSなる非金属介在物を形成して被削性を向上させるが、一方で横方向の靱性を損なうのでその上限を0.03%とする。
【0022】
O:≦0.0020%
Oは硬質であるアルミナを生成し、疲労破壊の起点となるので極力低減する。
【0023】
s−B:0.0003〜0.0050%
Bは本発明において重要な元素であり、前述したように焼入れ性を向上させるとともに粒界のP偏析を抑制し、靱性を改善する効果がある。0.0003%未満の含有量ではその効果は少なく、0.0050%を超えて含まれてもその効果は飽和し、また赤熱脆性を起こす。
【0024】
Nb:0.005〜0.20%
Nbはオーステナイト結晶粒を微細化する元素であるが、0.005%未満の含有量ではその効果は少なく、0.20%を超えて含まれるとその効果は飽和するばかりか巨大な晶出物を生成し、製造性を劣化させる。
【0025】
Ti:0.005〜0.10%
N :≦0.020%
0.02≧Ti−3.6N≧−0.01
Nは鋼中でBと結合しBNとなり、Bの焼入れ性向上効果を損なう元素である。これを防止するためにNとの親和力がBより強いTiを添加する。その効果を確実に発揮させるためにはTi−3.6N(%)の値を−0.01以上とすることが必要である。
また一方、いたずらにTi,Nを添加すると鋼材の製造性が低下するばかりでなく、巨大なTiNの生成により歯車の強度を低下させる。そこでTi,Nそれぞれの上限を規制するとともに、Ti−3.6Nの値を0.02%以下とした。
【0026】
s−Al:≦0.05%
Alは脱酸剤として必要な元素であるが、多量に添加すると疲労破壊の起点となる巨大なアルミナ介在物を生成し、強度を低下させるのでその上限を0.05%とする。
【0027】
値:1.5〜4インチ
被削性、特に歯切り性を確保するためには85HRB以下の硬さとすることが望ましい。種々の調査研究の結果、肌焼鋼においてこの焼ならし後の硬さとD値には良い相関があり、85HRB以下を確保するためにはD値を4インチ以下とする必要があることが判明した。
一方、D値が1.5インチ未満の場合には、浸炭又は浸炭窒化処理後の硬化深さを確保できず、疲労強度が低下する。
【0028】
Cr:≦5.0%
Ni:≦3.0%
Mo:≦1.0%
V :≦1.0%
これらは何れも鋼の焼入れ性の向上、結晶粒の微細化及び浸炭部や内部の靱性向上に有効な元素なので、それぞれ5.0%以下、3.0%以下、1.0%以下、1.0%以下の範囲で単独又は複合添加しても良い。但し上記範囲を超えて添加しても、その靱性向上効果は飽和するばかりか、230HRB以下の硬さを確保することが困難になる。
【0029】
Pb:≦0.4%
Bi:≦0.4%
Te:0.001〜0.05%
Ca:0.0005〜0.0030%
Se:0.003〜0.05%
これら元素は被削性の向上や切削加工時のバリ生成を抑制する働きを持っており、それぞれ上記の範囲とすることにより効果が現われる。但し各元素とも添加し過ぎると製造性を悪化させる。
【0030】
【実施例】
表1に示す化学組成を有する熱間圧延鋼材から平行部8mmの小野式回転曲げ疲れ試験片及びノッチ径10mmRのシャルピー衝撃試験片を焼ならし処理の後、作製した。焼ならし処理は925℃に1時間保持後空冷した。
小野式回転曲げ疲れ試験片とシャルピー衝撃試験片は浸炭焼入・焼戻処理を行い、室温での試験に供した。尚、浸炭焼入・焼戻処理条件は表面炭素濃度の狙い値を0.8%とし、910℃で浸炭処理を2時間、拡散処理を1時間行った後、830℃で保持後80℃の油中へ焼き入れた。焼戻しは160℃で2時間の保持後空冷した。
【0031】
また被削性の評価として、焼ならし処理材について超硬ホブによる歯切り試験を行い、工具寿命を比較した。工具寿命はクレータ摩耗が50μmとなる寿命とした。尚、切削条件は切削速度:148m/min、送り:4mm/rpm、切込み:5.4mmとした。
【0032】
【表1】

Figure 0003551573
【0033】
表2に実験結果を示している。1〜10が本発明鋼の試験結果であり、11〜18が比較鋼の試験結果である。尚、11はJIS鋼のSCr420の結果を示している。
【0034】
【表2】
Figure 0003551573
【0035】
表2の結果において、本発明鋼は何れもSCr420に比べ、2〜9倍の良好な歯切り性を有するとともに、2〜4倍の高い衝撃値が得られている。また疲労強度の低下もなく、SCr420と同等以上の疲れ限度を確保している。
【0036】
一方、C量が請求範囲以下である比較鋼12は歯切り性と衝撃特性は良好であるものの、疲れ限度がSCr420に比べ低い値となっている。逆にC量の高い13やMn量の高い15は焼ならし硬さが高く、歯切り性が低下している。
Si量の高い14は、浸炭処理時に生成する粒界酸化層の悪影響により、疲労強度,衝撃特性共に低下している。
【0037】
TiとNの関係式の値が−0.01以下である16は、Bの焼入れ性向上効果が十分に発揮されず、浸炭後の内部硬さが低いものとなり、その結果疲労強度の低下を招いている。
また同様にD値が1.5インチ未満の18も低い内部硬さにより低い疲れ限度を示している。逆にD値が4インチを超える高い値を有する17は焼ならし硬さが非常に高く、本試験条件では寿命評価が不可能なほど低い工具寿命であった。
【0038】
【発明の効果】
以上のように本発明によれば、浸炭歯車用鋼に良好な歯切り性と耐衝撃特性を、疲労強度を低下させることなく付与することができ、これにより歯車部品の製造コストの削減や歯車部品の小型化を推進できるなど産業上大きな効果を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carburizing or carbonitriding steel capable of obtaining a gear part having good gear cutting performance and excellent impact resistance.
[0002]
Problems to be solved by the prior art and the invention
Conventionally, case hardening steels represented by JIS steels SCr420 and SCM420 have been used as gear steels used for gears, shafts and the like as mechanical structural parts.
However, with increasing demands for higher strength gears, various carburized gear steels with improved fatigue strength and impact strength have been proposed. These steels for gears mainly improve the strength by increasing the toughness-improving elements such as Ni and Mo, but on the other hand, the increased amounts of these elements deteriorate the machinability such as machinability and become a problem. I have.
[0003]
Among the machinability, in particular, the gear cutting is affected by the hardness of the material, and it is known that a hard and sticky bainite structure is precipitated and the tool life is extremely reduced when the hardness of the material becomes 90HRB or more. I have.
[0004]
As a method of improving machinability by alloy design, addition of free-cutting elements such as Pb and Bi is generally performed for the purpose of reducing cutting resistance. However, in the region where the hardness of the material is 90 HRB or less, the effect of the free-cutting element works effectively, but when the hardness is 90 HRB or more, the degree of improvement of the tool life by the addition of the free-cutting element becomes small, and a desired tool life cannot be obtained. A problem has arisen.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a carburized gear steel having excellent gear cutting performance and excellent impact strength.
[0006]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems, and the gist of the invention is that the composition of the steel for carburized gears is C: 0.08 to 0.35% by weight%, Si: ≦ 0.5%, Mn: ≤ 1.5%, P: ≤ 0.03%, S: ≤ 0.03%, O: ≤ 0.0020%, and s-B: 0.0003-0. 0050%, Nb: 0.005 to 0.20%, Ti: 0.005 to 0.10%, N: ≦ 0.020%, s-Al: ≦ 0.05%, 0.02 ≧ Ti-3 .6N ≧ -0.01, a composition comprising the balance substantially Fe, and the ideal critical diameter D I value in hardenability test is in that no such that 1.5 to 4 inches.
[0007]
Here, in the present invention, one or more of Cr, Ni, Mo, and V are further added to Cr: ≦ 5.0%, Ni: ≦ 3.0%, Mo: ≦ 1.0%, and V: It can be contained in an amount of ≦ 1.0%.
[0008]
Further, one or more of Pb, Bi, Te, Ca, and Se may be used by adding Pb: ≦ 0.4%, Bi: ≦ 0.4%, Te: 0.001 to 0.05%, Ca: 0.0005 to 0.0030%, Se: 0.003 to 0.05%.
[0009]
[Action]
The present invention adjusts the alloy composition, secures a hardness of 85 HRB or less after hot forging or after normalizing, obtains good gear-cutting properties, and uses conventional steel after carburizing, quenching and tempering. It is characterized by utilizing the effect of improving the hardenability of B in order to obtain a good strength equal to or higher than that of B. The details will be specifically described below.
[0010]
The hardness of the case hardened steel after normalizing is, of course, determined by the structure after normalizing. However, quantitative conversion from texture to hardness is not easy, and there is another difficulty in reflecting it in alloy design, and a simple method has been desired.
As a result of intensive studies with these circumstances as background, it was found that by using the results of the hardenability test as an index, it is possible to estimate the hardness after normalization and reflect it in alloy design. Was.
[0011]
The quenchability test is intended to grasp properties after quenching, such as the critical diameter after quenching, and the effects of various alloying elements including C, Si, and Mn have been clarified by conventional studies. The results of this hardenability test are widely applied to the case of carburizing and quenching and tempering of gears, and are used as one of the quality standards of steel products.
[0012]
However, when using the results of the quenchability test for carburized gears, for example, taking the results of the Jominy-type one-end quenching method as an example, most often define the hardness at a distance from the quenched end of 5 mm to 15 mm, The fact is that the values after that are not given much importance.
This is determined from the size and gear shape of the carburized gear when optimizing the root hardness and core hardness from the viewpoint of ensuring the strength of the gear. And as mentioned earlier, it is controlled as an important factor of steel performance from the viewpoint of reduction in variation in product strength, and a steel manufacturing process utilizing the correlation between hardenability characteristics and alloy composition has been established. I have.
[0013]
On the other hand, the cooling in the normalizing treatment of the case hardening steel is generally air cooling, so-called air cooling, but the effect of various alloying elements on the normalizing hardness is almost clear similarly to the hardenability.
Focusing on this point, the results of investigation on the basis of the results of normalizing the hardness and hardenability test, normalizing the hardness of hardened steel that is used in the carburized gear and Jominy formula end hardenability test results in D I value And found that a good correlation was obtained.
[0014]
Doing these findings normalizing alloy design for the hardness and low value after based, although certainly lower normalizing hardness Tokuraeru, also the hardness of the near J 15 from J 5 Similarly, the strength becomes low, and the strength after quenching and tempering after carburizing cannot be secured.
As means for solving this problem, the present invention focused on the effect of improving the hardenability of B.
[0015]
Features of hardenability improving effect of B is different from the other alloying elements, the distance 20mm from the quenching end: Although hardenability until J 20 improves, to a point such as the effect is hardly seen in the subsequent distance is there.
[0016]
By combining this with alloy design to regulate the addition of B and D I values, it becomes possible to obtain a gear cutting of a gear strength both in steel for good carburization gear. That is, by reducing the amount of other alloy elements by the effect of improving the hardenability of B, the normalization hardness can be reduced, and the gear cutting performance can be dramatically improved compared to conventional steel. Was.
Hereinafter, the reasons for limiting each alloy element will be described in detail.
[0017]
C: 0.08 to 0.35%
C is an element essential for securing the strength of steel, and its content determines the core hardness after carburizing and tempering. Therefore, in the present invention, the lower limit of the C content is set to 0.08%, and the hardness of the core is secured.
However, if the content is too large, the hardness after hot forging or normalizing increases, thereby reducing machinability and causing adverse effects such as lowering impact strength after carburizing and tempering. Therefore, the upper limit of the C content is set to 0.35%.
[0018]
Si: ≦ 0.5%
Si is a ferrite reinforced element, and when added in a large amount, machinability deteriorates with an increase in hardness. Further, since it promotes grain boundary oxidation at the time of carburization and easily becomes a starting point of fracture, its upper limit is made 0.5%.
[0019]
Mn: ≦ 1.5%
Mn is added in order to enhance the hot workability of the steel and secure the hardenability. However, if added excessively, it becomes difficult to soften and anneal the material, and also deteriorates machinability and cold forgeability, so the upper limit is made 1.5%.
[0020]
P: ≦ 0.03%
Since P segregates at austenite grain boundaries and lowers toughness, it is desirable that the content is as small as possible. However, since the toughness is improved by the effect of suppressing the grain boundary embrittlement of B described later, the upper limit is set to 0.03. %.
[0021]
S: ≦ 0.03%
S forms non-metallic inclusions of MnS in steel to improve machinability, but impairs lateral toughness, so the upper limit is made 0.03%.
[0022]
O: ≦ 0.0020%
O produces alumina which is hard and becomes a starting point of fatigue fracture, so that it is reduced as much as possible.
[0023]
s-B: 0.0003-0.0050%
B is an important element in the present invention, and has an effect of improving hardenability, suppressing P segregation at grain boundaries, and improving toughness as described above. If the content is less than 0.0003%, the effect is small. If the content is more than 0.0050%, the effect is saturated and red hot embrittlement occurs.
[0024]
Nb: 0.005 to 0.20%
Nb is an element for refining austenite crystal grains, but its effect is small when its content is less than 0.005%, and when it exceeds 0.20%, its effect is not only saturated but also a large crystallized substance. And deteriorates the manufacturability.
[0025]
Ti: 0.005 to 0.10%
N: ≦ 0.020%
0.02 ≧ Ti−3.6N ≧ −0.01
N is an element that combines with B in steel to form BN and impairs the effect of improving the hardenability of B. In order to prevent this, Ti having an affinity for N that is stronger than B is added. In order to ensure that the effect is exerted, the value of Ti-3.6N (%) needs to be -0.01 or more.
On the other hand, if Ti and N are added unnecessarily, not only does the productivity of the steel material decrease, but also the strength of the gear decreases due to the generation of huge TiN. Therefore, the upper limit of each of Ti and N is regulated, and the value of Ti-3.6N is set to 0.02% or less.
[0026]
s-Al: ≦ 0.05%
Al is an element necessary as a deoxidizing agent, but when added in a large amount, a large alumina inclusion serving as a starting point of fatigue fracture is generated and the strength is reduced, so the upper limit is made 0.05%.
[0027]
D I value: 1.5 to 4 inches machinability, particularly in order to ensure the toothed resistance is preferably less than or equal to the hardness 85HRB. Result of various research, there is a good correlation between the hardness and D I values after the normalizing in hardening steel, it is necessary to not more than 4 inches and D I value in order to ensure the following 85HRB There was found.
On the other hand, if D I value is less than 1.5 inches, it can not be secured hardening depth after carburizing or carbonitriding, fatigue strength decreases.
[0028]
Cr: ≦ 5.0%
Ni: ≦ 3.0%
Mo: ≦ 1.0%
V: ≦ 1.0%
Each of these elements is an element effective for improving the hardenability of steel, refining the crystal grains, and improving the toughness of the carburized portion and the inside. Therefore, these are 5.0% or less, 3.0% or less, 1.0% or less, and 1% or less, respectively. You may add individually or in combination within the range of 0.0% or less. However, even if added beyond the above range, the effect of improving toughness is not only saturated, but also it becomes difficult to secure hardness of 230 HRB or less.
[0029]
Pb: ≦ 0.4%
Bi: ≦ 0.4%
Te: 0.001 to 0.05%
Ca: 0.0005 to 0.0030%
Se: 0.003 to 0.05%
These elements have the function of improving machinability and suppressing the generation of burrs at the time of cutting, and the effects are exhibited by setting the above ranges. However, if each element is added too much, the productivity is deteriorated.
[0030]
【Example】
Ono-type rotary bending fatigue test pieces having a parallel portion of 8 mm and Charpy impact test pieces having a notch diameter of 10 mmR were prepared from a hot-rolled steel material having the chemical composition shown in Table 1 after normalizing treatment. In the normalizing process, the sample was kept at 925 ° C. for 1 hour and air-cooled.
The Ono-type rotating bending fatigue test piece and the Charpy impact test piece were subjected to carburizing quenching and tempering treatment, and subjected to a test at room temperature. The carburizing quenching and tempering treatment conditions were as follows: the target value of the surface carbon concentration was 0.8%, the carburizing treatment was performed at 910 ° C. for 2 hours, the diffusion treatment was performed for 1 hour, and the temperature was maintained at 830 ° C. and then 80 ° C. Quenched in oil. Tempering was carried out at 160 ° C. for 2 hours and air-cooled.
[0031]
As an evaluation of the machinability, a gear hobbing test was performed on the normalized material using a carbide hob, and the tool life was compared. The tool life was defined as a life at which crater wear became 50 μm. The cutting conditions were as follows: cutting speed: 148 m / min, feed: 4 mm / rpm, cutting depth: 5.4 mm.
[0032]
[Table 1]
Figure 0003551573
[0033]
Table 2 shows the experimental results. 1 to 10 are the test results of the steel of the present invention, and 11 to 18 are the test results of the comparative steel. In addition, 11 has shown the result of SCr420 of JIS steel.
[0034]
[Table 2]
Figure 0003551573
[0035]
In the results shown in Table 2, the steels of the present invention each have 2 to 9 times better gear cutting performance than SCr420, and also have 2 to 4 times higher impact value. Also, there is no decrease in fatigue strength, and a fatigue limit equal to or higher than that of SCr420 is secured.
[0036]
On the other hand, the comparative steel 12 having a C content equal to or less than the claimed range has good gear cutting performance and impact characteristics, but has a lower fatigue limit than SCr420. Conversely, 13 having a high C content and 15 having a high Mn content have a high normalizing hardness and a low gear cutting property.
In the case of 14 having a high Si content, both the fatigue strength and the impact characteristics are reduced due to the adverse effect of the grain boundary oxide layer generated during the carburizing treatment.
[0037]
When the value of the relational expression between Ti and N is -0.01 or less, the effect of improving the hardenability of B is not sufficiently exhibited, and the internal hardness after carburization becomes low, resulting in a decrease in fatigue strength. Inviting.
Similarly D I value indicates a low fatigue limit by 18 is low internal hardness of less than 1.5 inches. D I value conversely is very high 17 normalizing hardness with a high value of more than 4 inches in this test conditions were low tool life as impossible life evaluation.
[0038]
【The invention's effect】
As described above, according to the present invention, good gear cutting performance and impact resistance can be imparted to a carburized gear steel without reducing fatigue strength, thereby reducing the manufacturing cost of gear parts and reducing gears. Industrially significant effects can be obtained such as promotion of miniaturization of parts.

Claims (3)

重量%で
C :0.08〜0.35%
Si:≦0.5%
Mn:≦1.5%
P :≦0.03%
S :≦0.03%
O :≦0.0020%
であり、更に
s−B:0.0003〜0.0050%
Nb:0.005〜0.20%
Ti:0.005〜0.10%
N :≦0.020%
s−Al:≦0.05%
0.02≧Ti−3.6N≧−0.01
残部実質的にFeから成り、且つ焼入れ性試験における理想臨界直径D値が1.5〜4インチであることを特徴とする歯切り性に優れた浸炭歯車用鋼。
C: 0.08 to 0.35% by weight%
Si: ≦ 0.5%
Mn: ≦ 1.5%
P: ≦ 0.03%
S: ≦ 0.03%
O: ≦ 0.0020%
And s-B: 0.0003 to 0.0050%
Nb: 0.005 to 0.20%
Ti: 0.005 to 0.10%
N: ≦ 0.020%
s-Al: ≦ 0.05%
0.02 ≧ Ti−3.6N ≧ −0.01
The balance substantially Fe, and toothed excellent in carburizing gear steel, characterized in that the ideal critical diameter D I value in hardenability test is 1.5 to 4 inches.
請求項1において、更にCr,Ni,Mo,Vの1種又は2種以上を
Cr:≦5.0%
Ni:≦3.0%
Mo:≦1.0%
V :≦1.0%
の量で含有していることを特徴とする歯切り性に優れた浸炭歯車用鋼。
2. The method according to claim 1, wherein one or more of Cr, Ni, Mo, and V are Cr: ≦ 5.0%.
Ni: ≦ 3.0%
Mo: ≦ 1.0%
V: ≦ 1.0%
Carburized gear steel with excellent gear cutting characteristics, characterized in that it is contained in an amount of:
請求項1又は2において、更にPb,Bi,Te,Ca,Seの1種又は2種以上を
Pb:≦0.4%
Bi:≦0.4%
Te:0.001〜0.05%
Ca:0.0005〜0.0030%
Se:0.003〜0.05%
の量で含有していることを特徴とする歯切り性に優れた浸炭歯車用鋼。
3. The method according to claim 1, wherein one or more of Pb, Bi, Te, Ca, and Se are Pb: ≦ 0.4%.
Bi: ≦ 0.4%
Te: 0.001 to 0.05%
Ca: 0.0005 to 0.0030%
Se: 0.003 to 0.05%
Carburized gear steel with excellent gear cutting characteristics, characterized in that it is contained in an amount of:
JP24378695A 1995-08-28 1995-08-28 Steel for carburized gear with excellent gear cutting Expired - Fee Related JP3551573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24378695A JP3551573B2 (en) 1995-08-28 1995-08-28 Steel for carburized gear with excellent gear cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24378695A JP3551573B2 (en) 1995-08-28 1995-08-28 Steel for carburized gear with excellent gear cutting

Publications (2)

Publication Number Publication Date
JPH0967644A JPH0967644A (en) 1997-03-11
JP3551573B2 true JP3551573B2 (en) 2004-08-11

Family

ID=17108949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24378695A Expired - Fee Related JP3551573B2 (en) 1995-08-28 1995-08-28 Steel for carburized gear with excellent gear cutting

Country Status (1)

Country Link
JP (1) JP3551573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093070A1 (en) 2010-01-27 2011-08-04 Jfeスチール株式会社 Case-hardened steel and carburized material
EP3085795A1 (en) * 2015-04-20 2016-10-26 Hyundai Motor Company Carburizing alloy steel having improved durability and method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044435A1 (en) * 2000-12-01 2002-06-06 Aichi Steel Corporation Steel for carburization and carburized gear
JP4539804B2 (en) * 2001-04-10 2010-09-08 大同特殊鋼株式会社 Carburizing steel with excellent hardenability and parts manufacturability
KR20030006410A (en) * 2001-07-12 2003-01-23 현대자동차주식회사 High Strength Alloy Gear Steel
US7507303B2 (en) * 2004-09-08 2009-03-24 Arvinmeritor Technology, Llc Carbonitrided low manganese carbon steel alloy driveline component
JP7205112B2 (en) * 2018-08-24 2023-01-17 大同特殊鋼株式会社 carbonitriding steel
CN114774790B (en) * 2022-04-29 2023-08-15 南京工业大学 Round steel for large-size low-yield-ratio gear and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798657A (en) * 1980-12-06 1982-06-18 Nisshin Steel Co Ltd Carburizing steel with superior workability and carburizability
JPS59182952A (en) * 1983-04-01 1984-10-17 Daido Steel Co Ltd Case hardening steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093070A1 (en) 2010-01-27 2011-08-04 Jfeスチール株式会社 Case-hardened steel and carburized material
EP3085795A1 (en) * 2015-04-20 2016-10-26 Hyundai Motor Company Carburizing alloy steel having improved durability and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0967644A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
CN112292471B (en) Mechanical component
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPH08311607A (en) Low distortion carburized gear excellent in root bending strength and method of manufacturing the same
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JP5804832B2 (en) Steel material made of carburizing steel with excellent torsional fatigue properties
JPH0953149A (en) Case hardening steel with high strength and high toughness
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP4581966B2 (en) Induction hardening steel
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JPH11217649A (en) Steel material for induction hardening having both cold workability and high strength properties, and its manufacturing method
CN109196134A (en) The manufacturing method of case-hardened steel and its manufacturing method and geared parts
JP2894184B2 (en) Steel for soft nitriding
JP4737601B2 (en) High temperature nitriding steel
JP3118346B2 (en) Tooth wheel
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JP4821582B2 (en) Steel for vacuum carburized gear
JPH11131135A (en) Induction-hardened parts and production thereof
JPH0570924A (en) Method for carburizing heat treatment of high strength gear small in strain and the gear
CN107532252B (en) Case hardening steel
JP2016102253A (en) Steel component
JPH0860294A (en) Production of parts for machine structural use, excellent in fatigue strength, and case hardening steel for producing pertinent parts for machine structural use
JP7623411B2 (en) Nitriding steel with excellent cold forgeability and nitriding properties and cold forged nitrided parts
JPH09324848A (en) Carbon sintered gear component

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees