[go: up one dir, main page]

JP3549183B2 - Underpass structure of viaduct - Google Patents

Underpass structure of viaduct Download PDF

Info

Publication number
JP3549183B2
JP3549183B2 JP29651998A JP29651998A JP3549183B2 JP 3549183 B2 JP3549183 B2 JP 3549183B2 JP 29651998 A JP29651998 A JP 29651998A JP 29651998 A JP29651998 A JP 29651998A JP 3549183 B2 JP3549183 B2 JP 3549183B2
Authority
JP
Japan
Prior art keywords
brace
brace material
viaduct
damper
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29651998A
Other languages
Japanese (ja)
Other versions
JP2000120022A (en
Inventor
素之 岡野
一 大内
一 涌井
信之 松本
正道 曽我部
浩之 在田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP29651998A priority Critical patent/JP3549183B2/en
Publication of JP2000120022A publication Critical patent/JP2000120022A/en
Application granted granted Critical
Publication of JP3549183B2 publication Critical patent/JP3549183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高架橋、特に鉄道用RC高架橋の下部構造に関する。
【0002】
【従来の技術】
道路、鉄道等の橋梁には、河川、海峡等を横断する狭義の橋梁のほかに市街地において連続的に建設される、いわゆる高架橋がある。かかる高架橋は、効率的な土地利用の観点から、道路上、鉄道上あるいは河川上の空間に連続して建設されることが多いが、コスト等の関係上、従来の高架橋の下部構造は、RCラーメン構造を採用することがほとんどであった。
【0003】
ところが、特に鉄道用の高架橋では、一般に上部構造の重量が大きくなりがちであるため、大地震時には、上部構造から作用する水平力をRCラーメン構造の柱状橋脚だけで支持しなければならず、柱状橋脚の基部同士を連結する基礎梁が不可欠になるなど、耐震上の制約が多かった。
【0004】
【発明が解決しようとする課題】
そこで、本出願人らは、RCラーメン構造の面内に逆V字状をなすブレース材を配置するとともに該ブレース材の頂部近傍とRCラーメン構造の梁との間にエネルギー吸収ダンパを設ける高架橋の下部構造を開発した。そして、かかる構成によれば、従来よりも大幅な耐震性の改善が実現可能であることがわかった。
【0005】
しかしながら、繰り返し水平荷重下では、主として鋼材で形成されるブレース材とRCラーメンとの変形性能の違いに起因してRCラーメンの柱状橋脚だけに塑性伸び変形が残留し、その結果、ブレース材からの引張力が軸力として柱状橋脚に作用し、柱状橋脚のじん性率が低下するという新たな問題を生じていた。
【0006】
本発明は、上述した事情を考慮してなされたもので、繰り返し水平荷重下において柱状橋脚に作用する軸力の増加を抑制可能な高架橋の下部構造を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る高架橋の下部構造は請求項1に記載したように、所定の間隔で立設された一対の柱状橋脚と該柱状橋脚の頂部に架け渡された梁とでRCラーメン構造を形成して前記一対の柱状橋脚及び前記梁を含む面内空間に逆V字状をなすブレース材を配置するとともに、該ブレース材の頂部近傍と前記梁の中央近傍との間に水平相対変位に対してエネルギー吸収を行うエネルギー吸収ダンパを介在させ、該エネルギー吸収ダンパを、前記梁若しくは前記ブレース材との間で鉛直相対変位が許容されるように該梁及び該ブレース材に連結したものである。
【0008】
また、本発明に係る高架橋の下部構造は請求項2に記載したように、所定の間隔で立設された一対の柱状橋脚と該柱状橋脚の頂部に架け渡された梁とでRCラーメン構造を形成して前記一対の柱状橋脚及び前記梁を含む面内空間に逆V字状をなすブレース材を配置するとともに、該ブレース材の頂部近傍と前記梁の中央近傍との間に水平相対変位に対してエネルギー吸収を行うエネルギー吸収ダンパを介在させて所定の連結部材で連結し、該連結部材、前記梁若しくは前記ブレース材の少なくともいずれかを前記柱状橋脚の塑性伸び変形が拘束されることがないように降伏させるものである。
また、本発明に係る高架橋の下部構造は、前記ブレース材を逆V字状に構成する2本のブレース本体の軸力作用線が前記梁にて交差するように前記ブレース材を構成したものである。
【0009】
本発明に係る高架橋の下部構造においては、上部構造からRCラーメン構造の梁に伝達された地震時水平力が、同じくRCラーメン構造を構成する一対の柱状橋脚に伝達されるとともに、梁の中央近傍に連結されたエネルギー吸収ダンパを介してブレース材にそれぞれ伝達される。そして、地震エネルギーが小さい場合には、RCラーメン構造及びブレース材による高い剛性によって上部構造の振幅が抑制されるとともに、地震エネルギーが大きい場合には、梁とブレース材頂部近傍との間に介在されたエネルギー吸収ダンパがそれらの水平相対変位に応じた強制変形を受けて履歴減衰によるエネルギー吸収が行われ、下部構造ひいては高架橋全体の揺れを速やかに収斂させる。
【0010】
一方、地震時水平力が高架橋の下部構造に作用すると、従来であれば、ブレース材がRCラーメン構造の柱状橋脚の塑性伸び変形を拘束するため、その拘束分に相当する軸力が柱状橋脚に新たに作用して柱状橋脚のじん性率が低下するという問題があったが、本発明においては、エネルギー吸収ダンパを、梁若しくはブレース材との間で鉛直相対変位が許容されるようにそれらに連結してあるため、ブレース材の引張力は、RCラーメン構造の梁、ひいては柱状橋脚に伝達せず、その結果、該柱状橋脚の軸力が増加することはない。
【0011】
また、本発明においては、エネルギー吸収ダンパを梁やブレース材にそれぞれ連結する連結部材、梁若しくはブレース材の少なくともいずれかを柱状橋脚の塑性伸び変形が拘束されることがないように降伏させるので、やはり、ブレース材の引張力は、RCラーメン構造の梁、ひいては柱状橋脚に伝達せず、その結果、該柱状橋脚の軸力が増加することはない。
【0012】
一対の柱状橋脚とは、橋軸方向に直交する方向、例えば地上に敷設された軌道や道路を跨ぐように配置する方向のみならず、橋軸方向に平行な方向も含む。なお、前者の場合には、いわゆる門型ラーメンとなることが多いが、後者の場合には、いわゆる連続ラーメンとなる。
【0013】
高架橋の上部構造については、道路橋であるか鉄道橋であるかといった用途は問わない。
【0014】
エネルギー吸収ダンパは、ラーメン構造の梁とブレース材の頂部近傍との相対水平変位に応じた強制変形を受けて履歴減衰によるエネルギー吸収が行われるものであれば、どのようなダンパを用いてもよい。例えば、リブ付き鋼板のせん断変形に伴う履歴減衰を利用したせん断型ダンパ、鋼棒の曲げ変形に伴う履歴減衰を利用した鋼棒曲げ型ダンパ、特に球面軸受けを組み込んだ鋼棒曲げ型ダンパなどが考えられる。
【0015】
エネルギー吸収ダンパを梁若しくはブレース材との間で鉛直相対変位が許容されるようにそれらに連結する構成としてはさまざまなものが考えられるが、例えばブレース材の頂部近傍にエネルギー吸収ダンパを固定する一方、RCラーメン構造の梁下面にアンカーボルトを定着し、該アンカーボルトの先端をエネルギー吸収ダンパに設けた挿通孔に遊貫することが考えられるし、逆に、RCラーメン構造の梁下面にエネルギー吸収ダンパを固定する一方、ブレース材の頂部にアンカーボルトを固定し、該アンカーボルトの先端をエネルギー吸収ダンパに設けた挿通孔に遊貫することが考えられる。なお、球面軸受けを組み込んだ鋼棒曲げ型ダンパを用いる場合には、鋼棒の抜け出しが本来的に考慮されており、該抜け出しが本発明でいう鉛直相対変位の許容に相当するのであらためて特段の工夫を施す必要はない。
【0016】
また、エネルギー吸収ダンパを梁やブレース材にそれぞれ連結する連結部材、梁若しくはブレース材の少なくともいずれかを柱状橋脚の塑性伸び変形が拘束されることがないように降伏させるには、例えば、連結部材の場合にはアンカーボルト等を降伏させる、梁の場合には該梁の主筋を少なくする、ブレース材の場合には低降伏点鋼材を使用するなどの構成が考えられる。
【0017】
【発明の実施の形態】
以下、本発明に係る高架橋の下部構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0018】
図1は、本実施形態に係る高架橋の下部構造を橋軸方向から見た正面図である。同図でわかるように、本実施形態に係る高架橋の下部構造は、所定の間隔で立設された一対の柱状橋脚1、1と該柱状橋脚の頂部に架け渡された梁2とで形成されたRCラーメン構造3と、該一対の柱状橋脚1、1及び梁2を含む面内空間に配置された逆V字状をなすブレース材4と、該ブレース材の頂部と梁2との間に介在されたエネルギー吸収ダンパとしてのせん断型ダンパ5とから構成してある。ここで、柱状橋脚1は、例えば杭6を地盤8に打ち込んだ上でその杭頭部に基部7を設け、該基部の上に立設するようにすればよい。また、ブレース材4は例えば鋼材で形成することができる。
【0019】
せん断型ダンパ5は、その下方においては図2に示すようにブレース材4の頂部に固定してあるが、その上方にT字断面状に固定された基板13には挿通孔12を形成してあり、該挿通孔にRCラーメン構造3の梁2下面に定着されたアンカーボルト11の先端を遊貫することで、せん断型ダンパ5を梁2との間で鉛直相対変位が許容されるように連結してある。せん断型ダンパ5は、例えばウェブにてせん断降伏する鋼材を用いて構成するとともに、該ウェブにて局部座屈することがないよう、例えば格子状の補強リブを面外方向に突設しておくのがよい。
【0020】
アンカーボルト11は、繰り返し水平荷重下でRCラーメン構造3の柱状橋脚1が徐々に伸びた場合に、繰り返し水平力を基板13を介してせん断型ダンパ5に伝達させつつ、挿通孔12からスムーズに上方に抜け出すことで鉛直方向の引張力をせん断型ダンパ5やブレース材4に伝達させないように、その外径を挿通孔12の内径よりも若干小さめに設定する。
【0021】
なお、図2では、せん断型ダンパ5の基板13と梁2の下面との間に隙間を設けてあるが、RCラーメン構造3と鋼材で形成されたブレース材4とを比較した場合、一般的には、ブレース材4の方が変形能力が優る、言い換えれば繰り返し水平荷重を受けた場合にブレース材4の方が塑性伸び変形を生じにくいことが多いので、かかる場合には、同図に示すような隙間を設けておく必要はない。
【0022】
アンカーボルト11が基板13から下方に突出する長さについては、繰り返し水平荷重を受けたときに基板13と梁2の下面との間に生じると想定される最大隙間よりも大きくなるように設定すればよい。また、それを満たす限り、同図のようなアンカーボルト11に代えて頭部付きのアンカーボルトを使用するようにしてもよい。
【0023】
本実施形態に係る高架橋の下部構造においては、地震の際に上部構造9(図1)からRCラーメン構造3の梁2に伝達された地震時水平力は、同じくRCラーメン構造を構成する一対の柱状橋脚1、1に伝達されるとともに、梁2の中央近傍に連結されたせん断型ダンパ5を介してブレース材4にそれぞれ伝達される。そして、地震エネルギーが小さい場合には、RCラーメン構造3及びブレース材4による高い剛性によって上部構造9の振幅が抑制されるとともに、地震エネルギーが大きい場合には、梁2とブレース材4頂部近傍との間に介在されたエネルギー吸収ダンパ5がそれらの水平相対変位に応じた強制変形を受けて履歴減衰によるエネルギー吸収が行われ、下部構造ひいては高架橋全体の揺れを速やかに収斂させる。
【0024】
一方、地震時水平力が高架橋の下部構造に作用すると、従来であれば、ブレース材がRCラーメン構造の柱状橋脚の塑性伸び変形を拘束するため、その拘束分に相当する軸力が柱状橋脚に新たに作用して柱状橋脚のじん性率が低下するという問題があったが、本実施形態においては、図3に示したように、RCラーメン構造3の柱状橋脚1、1が塑性伸び変形を生じても、梁2に定着されたアンカーボルト11は、せん断型ダンパ5の上端に固定された基板13から抜け出すので、引張力が伝達せず、かくして梁2とブレース材4との間で鉛直相対変位が許容されることとなる。一方、水平力については、梁2からアンカーボルト11、基板13を介してせん断型ダンパ5に伝達されるので、該せん断型ダンパは、地震時水平力をエネルギー吸収する。
【0025】
以上説明したように、本実施形態にかかる高架橋の下部構造によれば、地震エネルギーが小さい場合には、RCラーメン構造3及びブレース材4による高い剛性によって上部構造9の振幅を抑制することができるとともに、地震エネルギーが大きい場合には、梁2とブレース材4頂部近傍との間に介在されたせん断型ダンパ5によって履歴減衰によるエネルギー吸収を行い、下部構造ひいては高架橋全体の揺れを速やかに収斂させることが可能となる。
【0026】
一方、せん断型ダンパ5を梁2との間で鉛直相対変位が許容されるように該梁に連結してあるため、ブレース材4の引張力がRCラーメン構造3の梁2、ひいては柱状橋脚1、1に伝達するのが防止され、該柱状橋脚の軸力が増加することはない。また、せん断型ダンパ5自体の塑性変形による鉛直方向縮みが生じることも考えられるが、かかる鉛直変位についても、アンカーボルト11の抜け出しによって同様に吸収されるため、柱状橋脚の軸力を増加させるおそれはない。
【0027】
したがって、軸力増加に伴う柱状橋脚1、1のじん性率低下を未然に防止しつつ、せん断型ダンパ5による地震時水平力のエネルギー吸収を行って高い耐震性を確保することが可能となる。なお、一定規模以下の地震については、RCラーメン構造3及びブレース材4の変形を弾性域にとどめ、せん断型ダンパ5だけに地震エネルギーを集中させることができるため、塑性変形してエネルギー吸収作用が低下したせん断型ダンパ5を交換することにより、元通りの下部構造に復旧することができることは言うまでもない。
【0028】
本実施形態では、アンカーボルト11を梁2に単に定着させるようにしたが、梁2に予め埋設された雌ねじ部材にアンカーボルト11をねじ込む構成としておけば、アンカーボルト11を梁2から取り外すことによってせん断型ダンパ5の交換を容易に行うことが可能となる。
【0029】
また、本実施形態では、せん断型ダンパ5を梁2との間で鉛直相対変位が許容されるように該梁に連結するように構成したが、逆に梁2に固定し、ブレース材4の側で鉛直相対変位を吸収するようにしてもよいことは言うまでもない。
【0030】
また、本実施形態では、ブレース材4の下端を柱状橋脚1、1の基部に固定するようにしたが、これに代えて、柱状橋脚1、1の中間部に固定してもよいことは言うまでもない。
【0031】
また、本実施形態では、せん断型ダンパ5と梁2との間の鉛直相対変位を許容するように構成したが、これに代えて、図4に示すように、せん断型ダンパ5の上端を連結部材であるアンカーボルト21で梁2に連結するとともに、下端をブレース材22に連結し、これらアンカーボルト21、梁2若しくはブレース材22の少なくともいずれかを柱状橋脚1、1の塑性伸び変形が拘束されることがないように所定の降伏強度で降伏させるように構成してもよい。ここで、アンカーボルト21を降伏させる場合には、その本数や径あるいは材料強度を調整すればよいし、梁2を降伏させる場合にはその主筋を中央近傍にて少なくするか同図(b)に示すように断面を小さくし、該箇所にて塑性ヒンジが形成されるようにすればよいし、ブレース材22を降伏させる場合には例えば低降伏点鋼材を使用すればよい。
【0032】
かかる構成においても、上述の実施形態とほぼ同様の作用効果を奏するが、その説明についてはここでは省略する。
【0033】
また、本実施形態では、一対の柱状橋脚1、1を橋軸方向に直交する方向、例えば地上に敷設された軌道や道路を跨ぐように配置したが、これに代えて図5に示すように橋軸方向に平行な方向に適用してもよい。なお、かかる場合には、いわゆる連続ラーメンとなる。また、詳細については図2と同様であるので、ここではその説明を省略する。
【0034】
また、本実施形態では、エネルギー吸収ダンパとしてせん断型ダンパ5を採用したが、これに代えて図6に示すように鋼棒曲げ型ダンパ32としてもよい。鋼棒曲げ型ダンパ32は、梁2に定着された鋼棒33をブレース材4の頂部に溶接等で固定された2枚の基板34、34に形成された挿通孔に挿通するとともに、該挿通孔に球面軸受け31を設けてなる。
【0035】
かかる構成においては、同図(b)に示すように地震時水平力が梁2から鋼棒33を介して基板34、34に作用したとき、その水平力をブレース材4に伝達するとともに、繰り返し水平荷重下での鋼棒33の曲げによる履歴減衰によってエネルギー吸収が行われる。また、鋼棒33が基板34、34から同図矢印に示すように上方に抜け出すことによって梁2とブレース材4との鉛直相対変位が許容される。なお、図6についても基板34と梁2の下面との間に隙間が設けてあるが、上述の実施形態と同様、かかる隙間は必ずしも必要ではない。
【0036】
また、本実施形態では特に言及しなかったが、図7に示すように、逆V字状をなすブレース材4を構成する各ブレース本体41、41の軸力作用線が梁2にて交差するように該ブレース材を構成してもよい。
【0037】
かかる構成においては、同図(b)に示すように、梁2からブレース材4に作用する水平力Hの高さ位置が、ブレース本体41、41の軸力作用線の交点Rにほぼ一致する。つまり、梁2は、ブレース材4から反力として逆方向の水平力H´を受けることは当然としても、水平力Hの作用高さがブレース本体41、41の軸力作用線の交点Rに一致しているため、曲げモーメントが反力として梁2に作用する懸念がない。したがって、かかる曲げモーメントに起因する柱状橋脚1、1の軸力増加を抑制することも可能となる。ちなみに、ブレース材4を構成する各ブレース本体41、41の軸力作用線が梁2で交差せず、例えば同図(c)に示すように点Qで交差する場合には、水平力の反力H´に起因する曲げモーメントM´=dH´(dは点Qの梁2からの偏心距離)が反力として梁2に作用し、これが柱状橋脚1、1の軸力増加の原因となる。
【0038】
【発明の効果】
以上述べたように、請求項1及び請求項2に係る本発明の高架橋の下部構造によれば、軸力増加に伴う柱状橋脚のじん性率低下を未然に防止しつつ、エネルギー吸収ダンパによる地震時水平力のエネルギー吸収を行って高い耐震性を確保することが可能となる。
【0039】
【図面の簡単な説明】
【図1】本実施形態に係る高架橋の下部構造の正面図。
【図2】本実施形態に係る高架橋の下部構造の詳細図であり、(a)は正面図、(b)は(a)のA−A線に沿う水平断面図。
【図3】本実施形態に係る高架橋の下部構造の作用を示した正面図。
【図4】変形例に係る高架橋の下部構造を示した詳細図。
【図5】別の変形例に係る高架橋の下部構造を示した全体図。
【図6】別の変形例に係る高架橋の下部構造とその作用を示した詳細図。
【図7】別の変形例に係る高架橋の下部構造とその作用を示した詳細図。
【符号の説明】
1 柱状橋脚
2 梁
3 RCラーメン構造
4、22 ブレース材
5 せん断型ダンパ(エネルギー吸収ダンパ)
21 アンカーボルト(連結部材)
32 鋼棒曲げ型ダンパ(エネルギー吸収ダンパ)
41 ブレース本体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a viaduct, and more particularly to a substructure of a railway RC viaduct.
[0002]
[Prior art]
Bridges such as roads and railways include so-called viaducts that are continuously constructed in urban areas, in addition to narrow bridges that cross rivers and straits. Such viaducts are often constructed continuously in a space on roads, railroads or rivers from the viewpoint of efficient land use. However, due to costs and the like, the conventional substructure of the viaduct is RC In most cases, a ramen structure was adopted.
[0003]
However, especially in railway viaducts, the weight of the superstructure tends to be large in general. Therefore, in the event of a large earthquake, the horizontal force acting from the superstructure must be supported only by the columnar piers of the RC rigid frame structure. There were many constraints on earthquake resistance, such as the need for foundation beams connecting the bases of piers.
[0004]
[Problems to be solved by the invention]
In view of this, the present applicant disposes an inverted V-shaped brace material in the plane of the RC frame structure, and provides an energy absorbing damper between the vicinity of the top of the brace material and the beam of the RC frame structure. A substructure was developed. And it turned out that according to such a structure, the improvement of seismic resistance significantly more than before can be realized.
[0005]
However, under the repeated horizontal load, plastic elongation remains only on the columnar pier of the RC frame due to the difference in the deformation performance between the brace material formed of steel and the RC frame, and as a result, The tensile force acts on the columnar pier as an axial force, causing a new problem that the toughness of the columnar pier decreases.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a viaduct lower structure capable of suppressing an increase in axial force acting on a columnar pier under repeated horizontal loads.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the underpass structure of the viaduct according to the present invention includes a pair of pillar piers erected at predetermined intervals and a beam bridged on the top of the pillar piers as described in claim 1. And forming an inverted V-shaped brace material in an in-plane space including the pair of columnar piers and the beam, and forming a RC frame structure between the vicinity of the top of the brace material and the vicinity of the center of the beam. An energy absorbing damper for absorbing energy with respect to the horizontal relative displacement is interposed between the beam and the brace material such that a vertical relative displacement between the beam and the brace material is allowed. It is a concatenation.
[0008]
Further, the lower structure of the viaduct according to the present invention, as described in claim 2, has an RC frame structure composed of a pair of columnar piers erected at a predetermined interval and a beam spanned over the top of the columnar pier. An inverted V-shaped brace material is disposed in an in-plane space including the pair of columnar piers and the beam, and a horizontal relative displacement is generated between the vicinity of the top of the brace material and the vicinity of the center of the beam. The energy absorption damper that absorbs energy is interposed therebetween, and is connected by a predetermined connection member, and at least one of the connection member, the beam, and the brace material is not restrained from plastic elongation deformation of the columnar pier. Is to surrender.
The underpass structure of the viaduct according to the present invention is configured such that the brace material is configured such that the lines of axial force of two brace bodies constituting the inverted brace material intersect at the beam. is there.
[0009]
In the lower structure of the viaduct according to the present invention, the horizontal force at the time of the earthquake transmitted from the upper structure to the beam of the RC frame structure is transmitted to a pair of columnar piers also constituting the RC frame structure, and the vicinity of the center of the beam. Are transmitted to the brace members via energy absorbing dampers connected to the brace members. When the seismic energy is small, the amplitude of the upper structure is suppressed by the high rigidity of the RC frame structure and the brace material, and when the seismic energy is large, the structure is interposed between the beam and the vicinity of the top of the brace material. The energy absorbing dampers undergo forced deformation in accordance with their horizontal relative displacement to absorb energy by hysteresis, and quickly converge the shaking of the lower structure and thus the entire viaduct.
[0010]
On the other hand, if the horizontal force at the time of the earthquake acts on the substructure of the viaduct, the bracing material would restrict the plastic elongation deformation of the columnar pier of RC frame structure, so the axial force corresponding to the restraint would be applied to the columnar pier. Although there was a problem that the toughness of the columnar pier was lowered by newly acting, in the present invention, the energy absorbing damper was added to the beam or the brace material so that vertical relative displacement was allowed between the beam and the brace material. Because of the connection, the tensile force of the brace material is not transmitted to the RC frame beam, and thus to the pillar pier, so that the axial force of the pillar pier does not increase.
[0011]
Further, in the present invention, since the connecting member connecting the energy absorbing damper to the beam or the brace material, at least one of the beam and the brace material is yielded so that the plastic elongation deformation of the columnar pier is not restricted, Again, the tensile force of the brace material is not transmitted to the RC frame beam and thus to the column pier, so that the axial force of the column pier does not increase.
[0012]
The pair of columnar piers includes not only a direction orthogonal to the bridge axis direction, for example, a direction laid on a track or a road laid on the ground, but also a direction parallel to the bridge axis direction. In the case of the former, a so-called portal-type ramen is often used, whereas in the case of the latter, a so-called continuous ramen.
[0013]
Regarding the upper structure of the viaduct, it does not matter whether it is a road bridge or a railway bridge.
[0014]
Any energy absorbing damper may be used as long as the energy absorbing damper is subjected to forced deformation according to the relative horizontal displacement between the beam having the rigid frame structure and the vicinity of the top of the brace material and energy absorption is performed by hysteresis damping. . For example, shear-type dampers that use hysteretic damping due to the shear deformation of ribbed steel plates, steel-rod bending dampers that use hysteretic damping due to bending deformation of steel rods, particularly steel-bar bending dampers that incorporate spherical bearings, etc. Conceivable.
[0015]
There are various possible configurations for connecting the energy absorbing damper to the beam or the brace material so that vertical relative displacement is allowed between the beam and the brace material.For example, while the energy absorbing damper is fixed near the top of the brace material, It is conceivable that an anchor bolt is fixed to the lower surface of the beam of the RC frame and the tip of the anchor bolt penetrates through the insertion hole provided in the energy absorbing damper. It is conceivable that an anchor bolt is fixed to the top of the brace material while the damper is fixed, and the tip of the anchor bolt penetrates through an insertion hole provided in the energy absorbing damper. When using a steel bar bending type damper incorporating a spherical bearing, the escape of the steel bar is originally considered, and the escape corresponds to the allowable vertical relative displacement according to the present invention. There is no need to devise anything.
[0016]
In addition, in order to yield at least one of the connecting member for connecting the energy absorbing damper to the beam or the brace material so that the plastic elongation deformation of the columnar pier is not restricted, for example, the connecting member In the case of (1), the anchor bolts and the like are yielded, in the case of a beam, the main reinforcement of the beam is reduced, and in the case of a bracing material, a low yield point steel material is used.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a viaduct lower structure according to the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to components and the like that are substantially the same as those in the related art, and description thereof is omitted.
[0018]
FIG. 1 is a front view of a lower structure of a viaduct according to the present embodiment as viewed from a bridge axis direction. As can be seen from the figure, the lower structure of the viaduct according to the present embodiment is formed by a pair of columnar piers 1, 1 erected at predetermined intervals and a beam 2 bridged over the top of the columnar pier. RC frame structure 3, an inverted V-shaped brace member 4 arranged in an in-plane space including the pair of columnar piers 1, 1, and a beam 2, between the top of the brace member and the beam 2 And a shear type damper 5 as an interposed energy absorbing damper. Here, the columnar pier 1 may be configured such that, for example, a pile 6 is driven into the ground 8, a base 7 is provided at the pile head, and the pillar 6 is erected on the base. Further, the brace material 4 can be formed of, for example, a steel material.
[0019]
As shown in FIG. 2, the shear type damper 5 is fixed to the top of the brace material 4 below, and an insertion hole 12 is formed above the substrate 13 fixed in a T-shaped cross section. The shear-type damper 5 is allowed to move vertically with respect to the beam 2 by allowing the distal end of the anchor bolt 11 fixed to the lower surface of the beam 2 of the RC frame structure 3 to pass through the insertion hole. Connected. The shear-type damper 5 is made of, for example, a steel material that yields and yields on a web, and has, for example, a grid-like reinforcing rib protruding in an out-of-plane direction so as not to buckle locally on the web. Is good.
[0020]
The anchor bolt 11 smoothly transmits from the insertion hole 12 while repeatedly transmitting the horizontal force to the shearing damper 5 via the substrate 13 when the columnar pier 1 of the RC frame structure 3 gradually expands under the repeated horizontal load. The outer diameter is set to be slightly smaller than the inner diameter of the insertion hole 12 so as to prevent the tensile force in the vertical direction from being transmitted upward to the shear damper 5 and the brace material 4 so as not to be transmitted.
[0021]
Although a gap is provided between the substrate 13 of the shear damper 5 and the lower surface of the beam 2 in FIG. 2, when the RC frame structure 3 is compared with the brace material 4 formed of steel, a general In this case, the brace material 4 has better deformation capability, in other words, the brace material 4 is less likely to undergo plastic elongation deformation when repeatedly subjected to a horizontal load. It is not necessary to provide such a gap.
[0022]
The length of the anchor bolt 11 projecting downward from the substrate 13 is set to be larger than the maximum gap assumed to be generated between the substrate 13 and the lower surface of the beam 2 when repeatedly receiving a horizontal load. Just fine. Further, as long as this is satisfied, an anchor bolt with a head may be used instead of the anchor bolt 11 as shown in FIG.
[0023]
In the lower structure of the viaduct according to the present embodiment, the horizontal force at the time of the earthquake transmitted from the upper structure 9 (FIG. 1) to the beam 2 of the RC frame structure 3 at the time of the earthquake is a pair of the same RC frame structure. The power is transmitted to the columnar piers 1, 1, and also transmitted to the brace members 4 via the shear dampers 5 connected near the center of the beam 2. When the seismic energy is small, the amplitude of the upper structure 9 is suppressed by the high rigidity of the RC frame structure 3 and the brace member 4, and when the seismic energy is large, the beam 2 and the vicinity of the top of the brace member 4 are removed. The energy absorbing dampers 5 interposed therebetween are forcedly deformed in accordance with their horizontal relative displacement to perform energy absorption by hysteresis damping, thereby promptly converging the shaking of the lower structure and thus the entire viaduct.
[0024]
On the other hand, if the horizontal force at the time of the earthquake acts on the substructure of the viaduct, the bracing material would restrict the plastic elongation deformation of the columnar pier of RC frame structure, so the axial force corresponding to the restraint would be applied to the columnar pier. Although there was a problem that the toughness of the columnar pier was lowered due to a new action, in this embodiment, as shown in FIG. 3, the columnar piers 1, 1 of the RC frame structure 3 undergo plastic elongation deformation. Even if it occurs, the anchor bolt 11 fixed to the beam 2 escapes from the substrate 13 fixed to the upper end of the shear damper 5, so that no tensile force is transmitted, and thus the vertical between the beam 2 and the brace material 4 Relative displacement will be allowed. On the other hand, the horizontal force is transmitted from the beam 2 to the shear-type damper 5 via the anchor bolt 11 and the substrate 13, so that the shear-type damper absorbs the horizontal force during an earthquake.
[0025]
As described above, according to the viaduct lower structure according to the present embodiment, when the seismic energy is small, the amplitude of the upper structure 9 can be suppressed by the high rigidity of the RC frame structure 3 and the brace material 4. At the same time, when the seismic energy is large, the shear damper 5 interposed between the beam 2 and the vicinity of the top of the brace material 4 absorbs energy by hysteresis damping, and quickly converges the sway of the lower structure and the entire viaduct. It becomes possible.
[0026]
On the other hand, since the shear-type damper 5 is connected to the beam 2 so as to allow vertical relative displacement between the beam 2 and the beam 2, the tensile force of the brace member 4 causes the beam 2 of the RC rigid frame structure 3 and thus the columnar pier 1 to move. 1 is prevented, and the axial force of the pillar pier does not increase. It is also conceivable that plastic deformation of the shear damper 5 itself may cause a contraction in the vertical direction. However, such a vertical displacement is also absorbed by the escape of the anchor bolt 11, so that the axial force of the columnar pier is increased. It is not.
[0027]
Therefore, it is possible to secure the high seismic resistance by absorbing the energy of the horizontal force at the time of the earthquake by the shear type damper 5 while preventing the toughness ratio of the columnar piers 1 and 1 due to the increase of the axial force beforehand. . For earthquakes of a certain size or less, the deformation of the RC frame structure 3 and the brace members 4 can be kept in the elastic region and the seismic energy can be concentrated only on the shear damper 5, so that the energy is absorbed by plastic deformation. It is needless to say that the lower structure can be restored to the original lower structure by replacing the lowered shear damper 5.
[0028]
In this embodiment, the anchor bolt 11 is simply fixed to the beam 2. However, if the anchor bolt 11 is screwed into a female screw member embedded in the beam 2 in advance, the anchor bolt 11 can be removed from the beam 2. The replacement of the shear damper 5 can be easily performed.
[0029]
In this embodiment, the shear damper 5 is connected to the beam 2 such that vertical relative displacement is allowed between the beam 2 and the beam 2. Needless to say, the side may absorb the vertical relative displacement.
[0030]
Further, in the present embodiment, the lower end of the brace member 4 is fixed to the base of the columnar piers 1, 1, but it is needless to say that the lower end may be fixed to the intermediate portion of the columnar piers 1, 1. No.
[0031]
Further, in this embodiment, the vertical relative displacement between the shear damper 5 and the beam 2 is configured, but instead, as shown in FIG. 4, the upper end of the shear damper 5 is connected. The lower end is connected to the brace member 22 while at least one of the anchor bolt 21, the beam 2 and the brace member 22 is restrained by the plastic elongation deformation of the columnar piers 1, 1. It may be configured to yield at a predetermined yield strength so as not to be performed. Here, when the anchor bolts 21 yield, the number, diameter or material strength of the anchor bolts 21 may be adjusted. When yielding the beams 2, the main reinforcement may be reduced in the vicinity of the center, as shown in FIG. As shown in (1), the cross section may be reduced so that a plastic hinge may be formed at the location. When the brace material 22 is yielded, for example, a low yield point steel material may be used.
[0032]
With such a configuration, substantially the same operation and effect as those of the above-described embodiment can be obtained, but the description thereof is omitted here.
[0033]
In the present embodiment, the pair of columnar piers 1 and 1 are arranged in a direction orthogonal to the bridge axis direction, for example, so as to straddle a track or a road laid on the ground, but instead of this, as shown in FIG. It may be applied in a direction parallel to the bridge axis direction. In this case, a so-called continuous ramen is obtained. The details are the same as those in FIG. 2, and the description thereof is omitted here.
[0034]
Further, in the present embodiment, the shear type damper 5 is adopted as the energy absorbing damper. However, instead of this, a steel bar bending type damper 32 may be used as shown in FIG. The steel rod bending type damper 32 inserts the steel rod 33 fixed to the beam 2 into insertion holes formed in the two substrates 34, 34 fixed to the top of the brace material 4 by welding or the like. The hole is provided with a spherical bearing 31.
[0035]
In such a configuration, when a horizontal force at the time of an earthquake acts on the substrates 34 and 34 from the beam 2 via the steel rods 33 as shown in FIG. Energy absorption is performed by hysteresis damping due to bending of the steel bar 33 under a horizontal load. Further, when the steel rod 33 escapes upward from the substrates 34, 34 as shown by arrows in the figure, vertical relative displacement between the beam 2 and the brace material 4 is allowed. Although a gap is provided between the substrate 34 and the lower surface of the beam 2 also in FIG. 6, such a gap is not necessarily required as in the above-described embodiment.
[0036]
Although not particularly mentioned in the present embodiment, as shown in FIG. 7, the axial force action lines of the brace bodies 41, 41 constituting the brace material 4 having an inverted V shape intersect with the beam 2. The brace material may be configured as described above.
[0037]
In this configuration, as shown in FIG. 3B, the height position of the horizontal force H acting on the brace material 4 from the beam 2 substantially coincides with the intersection R of the axial force action lines of the brace bodies 41, 41. . That is, the beam 2 receives the horizontal force H ′ in the opposite direction as a reaction force from the brace material 4, but the height of the horizontal force H is set at the intersection R of the axial force action lines of the brace bodies 41, 41. Since they match, there is no concern that the bending moment acts on the beam 2 as a reaction force. Therefore, it is also possible to suppress an increase in the axial force of the columnar piers 1, 1 caused by the bending moment. Incidentally, when the lines of action of the axial forces of the brace bodies 41, 41 constituting the brace material 4 do not intersect at the beam 2, but intersect at a point Q as shown in FIG. The bending moment M '= dH' (d is the eccentric distance of the point Q from the beam 2) caused by the force H 'acts on the beam 2 as a reaction force, which causes an increase in the axial force of the columnar piers 1,1. .
[0038]
【The invention's effect】
As described above, according to the underpass structure of the present invention according to claims 1 and 2, the toughness of the columnar pier due to the increase in the axial force is prevented, and the earthquake caused by the energy absorbing damper is prevented. It becomes possible to secure high earthquake resistance by absorbing the energy of horizontal force.
[0039]
[Brief description of the drawings]
FIG. 1 is a front view of a viaduct lower structure according to an embodiment.
FIG. 2 is a detailed view of a lower structure of a viaduct according to the embodiment, (a) is a front view, and (b) is a horizontal cross-sectional view along the line AA of (a).
FIG. 3 is a front view showing the operation of the viaduct lower structure according to the embodiment.
FIG. 4 is a detailed view showing a lower structure of a viaduct according to a modification.
FIG. 5 is an overall view showing a lower structure of a viaduct according to another modification.
FIG. 6 is a detailed view showing a lower structure of a viaduct according to another modification and its operation.
FIG. 7 is a detailed view showing a lower structure of a viaduct according to another modification and its operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Column pier 2 Beam 3 RC frame structure 4, 22 Brace material 5 Shear type damper (energy absorption damper)
21 Anchor bolt (connecting member)
32 Steel rod bending type damper (energy absorbing damper)
41 Brace body

Claims (3)

所定の間隔で立設された一対の柱状橋脚と該柱状橋脚の頂部に架け渡された梁とでRCラーメン構造を形成して前記一対の柱状橋脚及び前記梁を含む面内空間に逆V字状をなすブレース材を配置するとともに、該ブレース材の頂部近傍と前記梁の中央近傍との間に水平相対変位に対してエネルギー吸収を行うエネルギー吸収ダンパを介在させ、該エネルギー吸収ダンパを、前記梁若しくは前記ブレース材との間で鉛直相対変位が許容されるように該梁及び該ブレース材に連結したことを特徴とする高架橋の下部構造。An RC frame structure is formed by a pair of pillar piers erected at predetermined intervals and a beam bridged on the top of the pillar pier, and an inverted V-shape is formed in an in-plane space including the pair of pillar piers and the beam. While disposing a brace material having a shape, an energy absorption damper for absorbing energy with respect to horizontal relative displacement is interposed between the vicinity of the top of the brace material and the vicinity of the center of the beam, and the energy absorption damper is A viaduct lower structure, which is connected to the beam or the brace material such that vertical relative displacement between the beam and the brace material is allowed. 所定の間隔で立設された一対の柱状橋脚と該柱状橋脚の頂部に架け渡された梁とでRCラーメン構造を形成して前記一対の柱状橋脚及び前記梁を含む面内空間に逆V字状をなすブレース材を配置するとともに、該ブレース材の頂部近傍と前記梁の中央近傍との間に水平相対変位に対してエネルギー吸収を行うエネルギー吸収ダンパを介在させて所定の連結部材で連結し、該連結部材、前記梁若しくは前記ブレース材の少なくともいずれかを前記柱状橋脚の塑性伸び変形が拘束されることがないように降伏させることを特徴とする高架橋の下部構造。An RC frame structure is formed by a pair of pillar piers erected at predetermined intervals and a beam bridged on the top of the pillar pier, and an inverted V-shape is formed in an in-plane space including the pair of pillar piers and the beam. A brace material having a shape is arranged, and an energy absorption damper for absorbing energy with respect to horizontal relative displacement is interposed between the vicinity of the top of the brace material and the vicinity of the center of the beam, and connected by a predetermined connection member. A lower structure of a viaduct, wherein at least one of the connecting member, the beam and the brace material is yielded so that plastic extension deformation of the columnar pier is not restricted. 前記ブレース材を逆V字状に構成する2本のブレース本体の軸力作用線が前記梁にて交差するように前記ブレース材を構成した請求項2記載の高架橋の下部構造。The lower structure of a viaduct according to claim 2, wherein the brace member is configured such that axial action lines of two brace bodies that form the brace member in an inverted V shape intersect at the beam.
JP29651998A 1998-10-19 1998-10-19 Underpass structure of viaduct Expired - Fee Related JP3549183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29651998A JP3549183B2 (en) 1998-10-19 1998-10-19 Underpass structure of viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29651998A JP3549183B2 (en) 1998-10-19 1998-10-19 Underpass structure of viaduct

Publications (2)

Publication Number Publication Date
JP2000120022A JP2000120022A (en) 2000-04-25
JP3549183B2 true JP3549183B2 (en) 2004-08-04

Family

ID=17834594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29651998A Expired - Fee Related JP3549183B2 (en) 1998-10-19 1998-10-19 Underpass structure of viaduct

Country Status (1)

Country Link
JP (1) JP3549183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202420A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member
JP2011202419A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083090A (en) * 2003-09-09 2005-03-31 Tokai Univ Prop vibration damping device
KR101393328B1 (en) * 2012-07-17 2014-05-09 대우조선해양 주식회사 Barge hull structure of barge plant
CN109778661B (en) * 2019-01-21 2024-12-20 浙江工业大学 Three-point adjustable steel truss T-beam cross beam
CN111560831A (en) * 2020-04-21 2020-08-21 中铁武汉勘察设计研究院有限公司 Continuous bridge without fixed support
CN114922053B (en) * 2022-05-31 2024-07-26 中铁大桥勘测设计院集团有限公司 Common rail same-layer bridge deck separation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202420A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member
JP2011202419A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member

Also Published As

Publication number Publication date
JP2000120022A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US6698053B2 (en) Method for seismically reinforcing a reinforced concrete frame
AU742308B2 (en) Pile foundation structure
KR100589289B1 (en) Seismic reinforcement device for bridge using round bar and seismic reinforcement method using the same
JP4957295B2 (en) Seismic control pier structure
JP3549183B2 (en) Underpass structure of viaduct
US7254921B2 (en) Rocking hinge bearing system for isolating structures from dynamic/seismic loads
JPH10140873A (en) Building damping structure
JP4140028B2 (en) Seismic reinforcement structure
CN110042745A (en) Antidetonation bridge pier component
CN212956923U (en) Assembled steel construction building strutting arrangement
JP3712178B2 (en) Seismic frame structure and its design method
JP2000226815A (en) Bridge fall preventing structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP2004270816A (en) Vibration control device and vibration control structure
JP3835676B2 (en) Seismic frame structure and its design method
JP2005188240A (en) Vibration control structure
KR20210041813A (en) Girder Joint
KR102771569B1 (en) Seismic reinforcement structure of building foundation and Design and construction method of building frame structure with the same
KR102751352B1 (en) Steel frame structure connection reinforcement system
JP2003074019A (en) Pedestal structure, and aseismatic reinforcement structure
KR100588447B1 (en) Bridge bridge and girder integrated structure and construction method
JP2024055743A (en) Structure against debris flow
JP2012117364A (en) Vibration control bridge pier structure
JP2003049406A (en) Aseismatic frame structure and its design method
KR200372778Y1 (en) SCR pier unification structure of H-beam taped bridge

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees