[go: up one dir, main page]

JP3549166B2 - Ventilation control device - Google Patents

Ventilation control device Download PDF

Info

Publication number
JP3549166B2
JP3549166B2 JP21437194A JP21437194A JP3549166B2 JP 3549166 B2 JP3549166 B2 JP 3549166B2 JP 21437194 A JP21437194 A JP 21437194A JP 21437194 A JP21437194 A JP 21437194A JP 3549166 B2 JP3549166 B2 JP 3549166B2
Authority
JP
Japan
Prior art keywords
human body
ventilation
gas concentration
indoor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21437194A
Other languages
Japanese (ja)
Other versions
JPH0875203A (en
Inventor
育雄 赤嶺
猛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21437194A priority Critical patent/JP3549166B2/en
Publication of JPH0875203A publication Critical patent/JPH0875203A/en
Application granted granted Critical
Publication of JP3549166B2 publication Critical patent/JP3549166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、焦電形赤外線センサにより人体を検出し、人体の動きの頻度によって判定される活動量のレベルや、この活動量レベルに基づいて推定される室内ガス濃度に基づいて換気量を最適に制御することのできる換気装置の制御装置に関する。
【0002】
【従来の技術】
従来の焦電形赤外線センサを用いた換気装置としては、特開平4−218294号公報に記載されているように、各部屋ごとに人の疑似静止状態を含めてその存在を検知しうる焦電形赤外線センサを設け、この焦電形赤外線センサの検知信号により、検知エリアに人が入った時点で換気用のファンが駆動し、人が検知エリア内にいる限り駆動を持続し、人が退出した時点で始めて停止させるという方法が知られている。
【0003】
【発明が解決しようとする課題】
上記従来技術の焦電形赤外線センサを用いた換気装置は、部屋の中の人の有無によって換気ファンの制御を行うものであり、人がいる場合は、その人がどのような状態で生活しているのかにかかわらず換気装置を駆動するために、かなり活動的な生活をしている場合などのように人体から排出される二酸化炭素などの量が多くなったときに、十分な換気が得られないといった問題があった。
【0004】
また、室内温度と室外温度との温度差による換気負荷や、室内温度が安定状態に到達したかどうかにかかわらず換気装置を駆動するために、換気を行うことで室温変化が大きくなり、室内にいる人体にとって不快になる場合があるといった問題があった。
【0005】
本発明は上記従来の課題を解決するもので、室内を適正なレベルのガス濃度に維持することができ、快適性の向上を図ることを目的としている。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するため、焦電形赤外線センサよりなり室内の人体の動きを検出して人体検出パルス信号を出力する人体検出手段と、異なる所定時間の計時を行う第1のタイマー手段と第2のタイマー手段と、前記人体検出パルス信号の数を前記第1のタイマー手段により所定時間積算し、その積算パルス数に応じて人体の活動量を判定する活動量判定手段と、前記活動量判定手段より出力される活動量レベル信号および前記第2のタイマー手段により活動量レベル信号の継続時間に基づいて室内ガス濃度を推定する室内ガス濃度推定手段と、室内ガス濃度を所定値以下に設定する室内ガス濃度設定手段を設け、前記室内ガス濃度推定手段および前記室内ガス濃度設定手段より出力される室内ガス濃度信号と設定室内ガス濃度との差に応じて換気量の制御を行う第の換気量制御手段を備えたものである。
【0009】
また本発明は、焦電形赤外線センサよりなり室内の人体の動きを検出して人体検出パルス信号を出力する人体検出手段と、所定時間の計時を行う第1のタイマー手段と、前記人体検出パルス信号の数を前記第1のタイマー手段により所定時間積算し、その積算パルス数に応じて人体の活動量を判定する活動量判定手段と、室内温度検出手段と室内温度設定手段と、前記室内温度検出手段および室内温度設定手段より出力される室内温度と設定室温との差により部屋が安定状態であるかどうかを判定する過渡安定判定手段を設け、前記過渡安定判定手段および活動量判定手段より出力される過渡安定信号と活動量レベル信号の両者に応じて換気量の制御を行う第4の換気量制御手段を備えたものである。
【0010】
また本発明は、室内温度検出手段に代えて室内の快適度を検出する快適度検出手段を、また室内温度設定手段に代えて快適度を設定する快適度設定手段を備えたものである。
【0011】
【作用】
上記構成において本発明の作用は、以下の通りである。
【0012】
焦電形赤外線センサよりなる人体検知手段により室内の人体の動きに応じて出力される人体検出パルス信号を所定時間積算し、そのパルス数に対応して人体の活動量を活動量判定手段により判定し、その活動量が大きいほど換気制御手段によって換気量を多くして室内の二酸化炭素などが増大しないようにする。
【0013】
また、活動量判定手段により判定された活動量レベルの継続時間によって、室内ガス濃度推定手段により二酸化炭素などの室内ガス濃度を推定し、設定されている室内ガス濃度と比較して換気量を制御することにより、室内ガス濃度を所定値以下にすることができる。
【0014】
また、活動量レベルに応じた換気量制御に加えて室内温度と室外温度との温度差を検出して、この内外温度差が大きい場合は自然換気量が増大することと、換気負荷が増大することを考慮して通常の場合よりも換気量を減少させ、室内にいる人体に不快感を与えることなく換気制御を行うことができる。
【0015】
また、室内温度が設定温度に到達していない過渡的な部屋の状態においても、人体に不快感を与えないように通常の場合よりも換気量を減少させ、快適性を向上させる。
【0016】
参考例
以下、本発明の参考例について、図1〜図7を用いて説明する。
【0017】
図1は本発明の第1の実施例における換気装置の制御装置のブロック図を示す。図1において、1は焦電形赤外線センサよりなり室内の人体の動きを検出して人体検出パルス信号1Aを出力する人体検出手段、4は所定時間の計時を行う第1のタイマー手段、2は人体検出手段1からの人体検出パルス信号1Aを受け人体検出パルス信号1Aの数を第1のタイマー手段4により所定時間積算し、その積算パルス数に応じて人体の活動量を判定し活動量レベル信号2Aを出力する活動量判定手段、3は活動量判定手段2からの活動量レベル信号2Aを受け活動量レベル信号2Aに応じて換気量信号3Aを出力する第1の換気量制御手段である。
【0018】
上記の構成において、その動作について図2〜図4を参照して説明する。室内にいる人体の活動量が大きい場合には人体検出手段1からの人体検出パルス信号1Aが頻繁に出力されるために、所定時間この人体検出パルス信号1Aを積算すると、その値は大きくなる。したがって、図2に示すように人体検出パルス信号1Aの積算パルス数が多いときには、活動量判定手段2において活動量レベルが大きいと判定し、逆に積算パルス数が少ないときには活動量レベルが小さいと判定する。また、人体の活動量レベルと人体から排出される二酸化炭素量とは図3に示すような関係がある。つまり、活動量レベルが大きくなると人体で摂取される酸素量が多くなり、これに伴って人体から排出される二酸化炭素の量が増大することが知られている。
【0019】
このように人体の活動量レベルが大きくなると、人体から排出される二酸化炭素の量が増大するために、室内の二酸化炭素の濃度が高くなる。そこで、図4に示すように人体の活動量レベルが大きいときは、第1の換気量制御手段3によって換気量を多くするように換気量信号3Aが出力され、換気扇(図示せず)などによって換気量が増大するために、室内の二酸化炭素の濃度が大きく増加することがなく、適正なレベルの濃度に維持することができる。
【0021】
図5換気装置の制御装置のブロック図を示す。図5において、11は室内の温度を検出し室内温度信号11Aを出力する室内温度検出手段、12は室外の温度を検出し室外温度信号12Aを出力する室外温度検出手段、13は室内温度信号11Aと室外温度信号12Aを入力信号として室内と室外の温度差を検出して内外温度差信号13Aを出力する内外温度差検出手段、14は活動量レベル信号2Aと内外温度差信号13Aを入力信号として人体の活動量レベルと内外温度差に応じて換気量信号14Aを出力する第2の換気量制御手段である。
【0022】
上記の構成において、その動作について図6および図7を参照して説明する。図6は部屋の気密度と自然換気量との関係を内外温度差をパラメータとして示したものである。部屋の気密度とは室外あるいは隣接する空間との隙間がどれくらいあるかを示す数値であり、通常、単位床面積当たりの隙間面積で表わされることが多い。図6に示すように気密度が同じ値であっても内外温度差によって自然換気量が異なり、内外温度差が大きいほど自然換気量が多いことが知られている。そこで、活動量判定手段2から出力される活動量レベル信号2Aに応じて換気量を制御することに加えて、内外温度差による自然換気量を考慮した換気量制御を行う。つまり、図7に示すように一定の活動量レベルであっても、内外温度差によって自然換気量が異なることを考慮して、内外温度差が大きいときは通常の温度差のときに比べて換気量を少なくする。
【0023】
このように参考例によれば、内外温度差が大きいときには換気量を少なくしても自然換気量が増大することにより、全体の換気量としてはそれほど変わらないために、室内の二酸化炭素の濃度を適正なレベルに維持することができる。さらに、内外温度差が大きいときに換気量を少なくすることによって換気による熱負荷の低減になり、換気制御に伴う室温変化が少なくなるなど快適性の面での向上を図ることができる。
【0024】
【実施例】
(実施例
次に、本発明の第の実施例について図8〜図10を用いて説明する。ここで、先の参考例と同一のものについては、同一の符号を付して説明を省略する。
【0025】
図8は本発明の第の実施例における換気装置の制御装置のブロック図を示す。図8において、24は所定時間の計時を行う第2のタイマー手段、21は活動量判定手段2より出力される活動量レベル信号2Aおよび第2のタイマー手段24より、活動量レベル信号2Aの継続時間に基づいて室内のガス濃度を推定する室内ガス濃度推定手段、22は室内のガス濃度を所定値以下に設定する室内ガス濃度設定手段、23は室内ガス濃度推定手段21より出力される室内ガス濃度信号21Aと、室内ガス濃度設定手段22より出力される室内ガス濃度設定信号22Aの両者の信号を受けて換気量信号23Aを出力する第3の換気量制御手段である。
【0026】
上記の構成において、その動作について図9および図10を参照して説明する。
【0027】
図9は、室内ガスの汚染度の代表的な目安として一般に用いられる二酸化炭素の濃度変化を人体の活動量レベルをパラメータとして示したものである。活動量レベルが大きい場合には人体で摂取される酸素量が多くなり、これに伴って人体から排出される二酸化炭素の量が増大するため室内の二酸化炭素の濃度が時間の増加とともに増大する。このように、人体の活動量レベルの継続時間によって室内の二酸化炭素の濃度変化を計算により推定することができる。本実施例では、この考え方に基づき、活動量判定手段2より出力される活動量レベル信号2Aの継続時間を第2のタイマー手段24により計時を行い、活動量レベルとその継続時間の両者により室内ガス濃度推定手段21により室内の二酸化炭素の濃度を推定し、その結果を室内ガス濃度信号21Aとして第3の換気量制御手段23へ出力を行うものである。
【0028】
図10は本実施例の動作の一例を示すものである。図10において、時間T1までは不在状態で、T1にて室内に入室しソファなどに座ってくつろいでいるようなシーンである。このとき、時間T1以降人体検出手段1にて室内の人体の動きが検出され、人体パルス信号1Aが人体検出手段1から出力され、第1のタイマー手段4により所定時間このパルス信号が積算され、その積算値により活動量判定手段2によりその活動量レベルがM1と判定され、活動量レベル信号2Aとして出力される。そして、この活動量レベルM1の継続時間が第2のタイマー手段24により計時され、室内ガス濃度推定手段21により室内の二酸化炭素の濃度が推定される。このとき、推定された二酸化炭素の濃度は室内ガス濃度設定手段22で設定されている値σsよりも低いので、第3の換気量制御手段23によって制御される換気量は0である。その後、時間T2になって掃除のようなハードワークを始めると、活動量判定手段2によりM2と判定され活動量レベル信号2Aとして出力される。そして同様に第2のタイマー手段24によって活動量レベルM2の継続時間が計時され、室内の二酸化炭素濃度の推移が室内ガス濃度推定手段21により推定される。そして、時間T3になり室内ガス濃度推定手段21から出力される室内ガス濃度信号21Aの値が、室内ガス濃度設定手段22で設定されている濃度σsに到達すると、第3の換気量制御手段23により換気量信号23AがV1として出力され、換気扇(図示せず)などによって換気が開始される。そして、時間T4になり掃除を終えて食事など始めると、活動量判定手段2によりM3の活動量として判定され活動量判定信号2Aとして出力されるとともに、活動量がM2からM3と小さくなったことを検知して、第3の換気量制御手段23により換気量信号23AがV2として出力される。そして、換気量信号23AがV1からV2と少なくなったことにより換気量が低下する。その後も同様の動作が行われ、活動量判定信号2AがM3で継続し、換気量信号23AがV2のときは室内ガス濃度信号21Aが設定濃度σsよりもあまり高くならないために、この状態で維持したままである。
【0029】
このように本実施例によれば、人体の活動量レベルとその継続時間によって、室内の二酸化炭素の濃度を推定しながら適切に換気量の制御を行うので、設定濃度以上に大きく二酸化炭素の濃度が増加することがなく、適正なレベルの濃度に維持することができる。
【0030】
(実施例
次に、本発明の第の実施例について図11〜図13を用いて説明する。ここで、先の実施例と同一のものについては、同一の符号を付して説明を省略する。
【0031】
図11は本発明の第の実施例における換気装置の制御装置のブロック図を示す。図11において、31は室内温度の設定を行い室内温度設定信号31Aを出力する室内温度設定手段、32は室内温度信号11Aと室内温度設定信号31Aを入力信号として、室内温度と設定室内温度との偏差により部屋の空調状態が過渡期かあるいは安定期にあるのかを判定し過渡安定信号32Aを出力する過渡安定手段、33は活動量レベル信号2Aと過渡安定信号32Aを入力信号として換気量信号33Aを出力する第4の換気量制御手段である。
【0032】
上記の構成において、その動作について図12および図13を参照して説明する。
【0033】
図12は活動量レベルに対する換気量の関係を過渡期と安定期とをパラメータとして示したものである。つまり、活動量レベルが同じであっても、部屋の状態が過渡期の場合は、換気による熱負荷を考慮して安定期に対して換気量を少なく設定するものである。
【0034】
図13は本実施例の動作の一例を示すものである。図13において、活動量レベルはM1であり、空調機により暖房運転が開始された場合である。いま、時間T1までは室内温度検出手段11によって検出された室内温度が室内温度設定手段31によって設定されている設定温度θsよりも低いために、過渡安定判定手段32により部屋の状態が過渡期であると判定され、その結果、第4の換気量制御手段33により、図12に示すように活動量レベルがM1で過渡期であるからV1なる換気量として出力される。その後、空調機により室内温度が上昇してきて時間T1になると、室内温度が設定時間θsに到達し、このとき、過渡安定手段32により部屋が安定状態に達したと判定され、第4の換気量制御手段33によりV2なる換気量として換気量信号33Aが出力される。
【0035】
このように本実施例によれば、室内温度と設定室内温度との偏差により部屋の空調状態が過渡期かあるいは安定期にあるかを判定して、過渡期の場合は安定期に比べて換気量を少なくすることにより換気による熱負荷の低減が図られ、室内の快適性を向上させることができる。
【0036】
(実施例
次に、本発明の第の実施例について図14,図15および図12を用いて説明する。ここで、先の実施例と同一のものについては、同一の符号を付して説明を省略する。
【0037】
図14は本発明の第の実施例における換気装置の制御装置のブロック図を示す。図14において、41は室内の快適度を検出し快適度信号41Aを出力する快適度検出手段、42は室内の快適度の設定を行い快適度設定信号42Aを出力する快適度設定手段である。ここで快適度とは、室内温度以外の要素も考慮して決定されるものである。例えば、室内温度以外に輻射温度、気流、湿度等を検出あるいは推定し、求めることのできるPMV値や、室内温度と輻射温度より求めることのできる作用温度などである。
【0038】
上記の構成において、その動作について図15を参照して説明する。
図15において活動量レベルはM1であり、空調機により暖房運転が開始された場合である。いま、時間T1までは快適度検出手段41によって検出された快適度が、快適度設定手段42によって設定されている設定快適度φsよりも低いために、過渡安定判定手段32により部屋の状態が過渡期であると判定され、その結果、第4の換気量制御手段33により、図12に示すように活動量レベルがM1で過渡期であるからV1なる換気量として出力される。その後、空調機により室内の快適度が上昇してきて時間T1になると、快適度が設定快適度φsに到達し、このとき、過渡安定判定手段32により部屋が安定状態に達したと判定され、第4の換気量制御手段33によりV2なる換気量として換気量信号33Aが出力される。
【0039】
このように本実施例によれば、室内の快適度と設定快適度との偏差により部屋の空調状態が過渡期かあるいは安定期にあるかを判定して、過渡期の場合は安定期に比べて換気量を少なくすることにより、換気による熱負荷の低減が図られ、室内の快適性を向上させることができる。
【0040】
【発明の効果】
本発明は上記実施例の説明から明らかなように、活動量レベル信号の継続時間に基づいて室内ガス濃度を推定する室内ガス濃度推定手段と、室内ガス濃度を所定値以下に設定する室内ガス濃度設定手段と、室内ガス濃度推定手段および室内ガス濃度設定手段より出力される室内ガス濃度信号と設定室内ガス濃度との差に応じて換気量の制御を行う第3の換気量制御手段を備えたことにより、人体の活動レベルとその継続時間によって、室内の二酸化炭素の濃度を推定しながら適切に換気量の制御を行うので、設定濃度以上に大きく二酸化炭素の濃度が増加することがなく、適正なレベルの濃度に維持することができ、快適性の向上を図ることができる。
【0041】
また、本発明は、室内温度検出手段と室内温度設定手段と、室内温度検出手段および室内温度設定手段より出力される室内温度と設定室温との差により部屋が安定状態であるかどうかを判定する過渡安定判定手段を設け、過渡安定判定手段および活動量判定手段より出力される過渡安定信号と活動量レベル信号の両者に応じて換気量の制御を行う第4の換気量制御手段を備えたことにより、室内温度と設定室内温度との偏差により部屋の空調状態が過渡期かあるいは安定期にあるかを判定して、過渡期の場合は安定期に比べて換気量を少なくすることにより、換気による熱負荷を図り、室内の快適性向上させることができる。
【0042】
また、本発明は、室内の快適度を検出する快適度検出手段と、快適度を設定する快適度設定手段を備えたことにより、部屋の快適度を検出しながら部屋の空調状態が過渡期にあるときは、換気量を少なくし換気による熱負荷を低減し快適性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の参考例の換気装置の制御装置のブロック図
【図2】同、積算パルス数と活動量との関係の説明図
【図3】同、活動量レベルと二酸化炭素排出量との関係の説明図
【図4】同、活動量レベルと換気量との関係の説明図
【図5】同、換気装置の制御装置のブロック図
【図6】同、気密度と自然換気量との関係の説明図
【図7】同、活動量レベルと換気量との関係の説明図
【図8】本発明の第の実施例の換気装置の制御装置のブロック図
【図9】同、活動量レベルと二酸化炭素濃度変化との関係の説明図
【図10】同、動作を示すタイムチャート
【図11】本発明の第の実施例の換気装置の制御装置のブロック図
【図12】本発明の第および第の実施例の活動量レベルと換気量との関係の説明図
【図13】本発明の第の実施例の動作を示すタイムチャート
【図14】本発明の第の実施例の換気装置の制御装置のブロック図
【図15】同、動作を示すタイムチャート
【符号の説明】
1 人体検出手段
2 活動量判定手段
3 第1の換気量制御手段
4 第1のタイマー手段
11 室内温度検出手段
12 室外温度検出手段
13 内外温度差検出手段
14 第2の換気量制御手段
21 室内ガス濃度推定手段
22 室内ガス濃度設定手段
23 第3の換気量制御手段
24 第2のタイマー手段
31 室内温度設定手段
32 過渡安定判定手段
33 第4の換気量制御手段
41 快適度検出手段
42 快適度設定手段
[0001]
[Industrial applications]
The present invention detects a human body with a pyroelectric infrared sensor, and optimizes a ventilation amount based on an activity amount level determined based on the frequency of movement of the human body and an indoor gas concentration estimated based on the activity amount level. The present invention relates to a control device for a ventilator that can be controlled in a controlled manner.
[0002]
[Prior art]
As a conventional ventilator using a pyroelectric infrared sensor, as described in Japanese Patent Application Laid-Open No. 4-218294, a pyroelectric device capable of detecting the presence of each room including a pseudo stationary state of a person is disclosed. A ventilating fan is driven when a person enters the detection area by the detection signal of the pyroelectric infrared sensor, and continues to be driven as long as the person is in the detection area. There is known a method in which the operation is first stopped at the time when the operation is performed.
[0003]
[Problems to be solved by the invention]
The above-described conventional ventilating device using a pyroelectric infrared sensor controls a ventilation fan according to the presence or absence of a person in a room. In order to operate the ventilation system regardless of whether the air is discharged, sufficient ventilation can be obtained when the amount of carbon dioxide and the like emitted from the human body increases, such as when living a fairly active life. There was a problem that it could not be done.
[0004]
In addition, ventilation changes the room temperature by performing ventilation to drive the ventilation load regardless of whether the indoor temperature has reached a stable state or the ventilation load due to the temperature difference between the indoor temperature and the outdoor temperature. There is a problem that it may be uncomfortable for a certain human body.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to improve the comfort of a room by maintaining an appropriate gas concentration in the room.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a human body detecting means comprising a pyroelectric infrared sensor for detecting the movement of a human body in a room and outputting a human body detection pulse signal, and a first timer means for measuring a different predetermined time. When a second timer means, the human body detection pulse signal by integrating predetermined time by the first timer means the number of, and determining the amount of activity determination means of a human body activity amount in accordance with the number of the integrated pulses, the activity Indoor gas concentration estimating means for estimating the indoor gas concentration based on the activity level signal output from the quantity determining means and the duration of the activity level signal by the second timer means; An indoor gas concentration setting means for setting, and a difference between an indoor gas concentration signal output from the indoor gas concentration estimating means and the indoor gas concentration setting means and a set indoor gas concentration. Those having a third ventilation control means for controlling ventilation according.
[0009]
Also, the present invention provides a human body detecting means comprising a pyroelectric infrared sensor for detecting a motion of a human body in a room and outputting a human body detection pulse signal, a first timer means for measuring a predetermined time, and the human body detection pulse. An activity amount determining unit that integrates the number of signals by the first timer unit for a predetermined time and determines an activity amount of a human body according to the integrated pulse number; an indoor temperature detecting unit; an indoor temperature setting unit; A transient stability determining means for determining whether or not the room is in a stable state based on a difference between the room temperature output from the detecting means and the indoor temperature setting means and the set room temperature, and an output from the transient stability determining means and the activity amount determining means; And a fourth ventilation control means for controlling the ventilation according to both the transient stability signal and the activity level signal.
[0010]
Further, the present invention is provided with a comfort level detecting means for detecting the indoor comfort level in place of the indoor temperature detecting means, and a comfort level setting means for setting the comfort level in place of the indoor temperature setting means.
[0011]
[Action]
The operation of the present invention in the above configuration is as follows.
[0012]
The human body detection pulse signal output according to the movement of the human body in the room is integrated by the human body detection means composed of a pyroelectric infrared sensor for a predetermined time, and the activity amount of the human body is determined by the activity amount determination means in accordance with the number of pulses. Then, as the amount of activity increases, the amount of ventilation is increased by the ventilation control means so that the amount of indoor carbon dioxide and the like does not increase.
[0013]
In addition, the indoor gas concentration estimating means estimates the indoor gas concentration such as carbon dioxide, based on the duration of the activity amount level determined by the activity amount determining means, and controls the ventilation amount by comparing with the set indoor gas concentration. By doing so, the indoor gas concentration can be reduced to a predetermined value or less.
[0014]
Further, in addition to the ventilation amount control according to the activity amount level, the temperature difference between the indoor temperature and the outdoor temperature is detected, and when the inside / outside temperature difference is large, the natural ventilation increases and the ventilation load increases. Taking this into consideration, the ventilation amount can be reduced as compared with the normal case, and the ventilation control can be performed without causing discomfort to the human body in the room.
[0015]
Further, even in a transitional room state in which the room temperature has not reached the set temperature, the ventilation is reduced as compared with a normal case so as not to cause discomfort to the human body, and the comfort is improved.
[0016]
( Reference example )
Hereinafter, a reference example of the present invention will be described with reference to FIGS.
[0017]
FIG. 1 shows a block diagram of a control device for a ventilation device according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a human body detecting means which comprises a pyroelectric infrared sensor and detects a motion of a human body in a room and outputs a human body detection pulse signal 1A; 4 denotes a first timer means for measuring a predetermined time; The human body detection pulse signal 1A from the human body detection means 1 is received, the number of the human body detection pulse signals 1A is integrated for a predetermined time by the first timer means 4, the activity amount of the human body is determined according to the integrated pulse number, and the activity level is determined. The activity amount determining means 3 for outputting the signal 2A is a first ventilation amount controlling means for receiving the activity amount level signal 2A from the activity amount determining means 2 and outputting the ventilation amount signal 3A according to the activity amount level signal 2A. .
[0018]
The operation of the above configuration will be described with reference to FIGS. When the activity amount of the human body in the room is large, the human body detection pulse signal 1A is frequently output from the human body detection means 1. Therefore, when the human body detection pulse signal 1A is integrated for a predetermined time, the value increases. Therefore, as shown in FIG. 2, when the integrated pulse number of the human body detection pulse signal 1A is large, the activity amount determining means 2 determines that the activity level is large, and conversely, when the integrated pulse number is small, the activity level is small. judge. The activity level of the human body and the amount of carbon dioxide emitted from the human body have a relationship as shown in FIG. That is, it is known that as the activity level increases, the amount of oxygen taken in by the human body increases, and accordingly, the amount of carbon dioxide emitted from the human body increases.
[0019]
When the activity level of the human body increases in this way, the amount of carbon dioxide emitted from the human body increases, so that the concentration of carbon dioxide in the room increases. Therefore, as shown in FIG. 4, when the activity level of the human body is large, a ventilation signal 3A is output by the first ventilation control means 3 so as to increase the ventilation, and a ventilation fan (not shown) or the like is used. Since the ventilation volume is increased, the concentration of carbon dioxide in the room does not increase significantly, and the concentration can be maintained at an appropriate level.
[0021]
Figure 5 shows a block diagram of a control device of the ventilation device. In FIG. 5, 11 is an indoor temperature detecting means for detecting an indoor temperature and outputting an indoor temperature signal 11A, 12 is an outdoor temperature detecting means for detecting an outdoor temperature and outputting an outdoor temperature signal 12A, and 13 is an indoor temperature signal 11A. And an outdoor temperature difference detecting means for detecting the temperature difference between the indoor and the outdoor using the outdoor temperature signal 12A as an input signal and outputting an indoor / outdoor temperature difference signal 13A, and an activity amount level signal 2A and an indoor / outdoor temperature difference signal 13A as input signals. The second ventilation amount control means outputs the ventilation amount signal 14A according to the activity level of the human body and the difference between the inside and outside temperatures.
[0022]
The operation of the above configuration will be described with reference to FIGS. FIG. 6 shows the relationship between the air density of the room and the natural ventilation rate using the inside / outside temperature difference as a parameter. The air tightness of a room is a numerical value indicating how much a gap is formed between an outdoor space and an adjacent space, and is often expressed as a gap area per unit floor area. As shown in FIG. 6, it is known that even when the air density is the same value, the natural ventilation differs depending on the inside / outside temperature difference, and the natural ventilation increases as the inside / outside temperature difference increases. Therefore, in addition to controlling the ventilation according to the activity level signal 2A output from the activity determining means 2, ventilation control is performed in consideration of the natural ventilation due to the temperature difference between inside and outside. That is, as shown in FIG. 7, even when the activity level is constant, taking into account that the natural ventilation differs depending on the inside / outside temperature difference, the ventilation is larger when the inside / outside temperature difference is larger than when the normal temperature difference is used. Reduce the amount.
[0023]
Thus, according to the reference example , when the temperature difference between the inside and outside is large, the natural ventilation increases even if the ventilation is reduced, so that the overall ventilation does not change so much. It can be maintained at an appropriate level. Further, when the inside / outside temperature difference is large, reducing the ventilation volume reduces the heat load due to ventilation, and can improve the comfort in that the room temperature change accompanying ventilation control is reduced.
[0024]
【Example】
(Example 1 )
Next, a first embodiment of the present invention will be described with reference to FIGS. Here, the same components as those of the above-described reference example are denoted by the same reference numerals, and description thereof is omitted.
[0025]
FIG. 8 is a block diagram of a control device of the ventilation device according to the first embodiment of the present invention. In FIG. 8, reference numeral 24 denotes second timer means for measuring a predetermined time, and reference numeral 21 denotes an activity level signal 2A output from the activity level determination means 2 and a continuation of the activity level signal 2A from the second timer means 24. Indoor gas concentration estimating means for estimating indoor gas concentration based on time, indoor gas concentration setting means for setting indoor gas concentration to a predetermined value or less, and indoor gas concentration output from indoor gas concentration estimating means 21 The third ventilation amount control means receives the signal of both the concentration signal 21A and the indoor gas concentration setting signal 22A output from the indoor gas concentration setting means 22, and outputs a ventilation amount signal 23A.
[0026]
The operation of the above configuration will be described with reference to FIGS.
[0027]
FIG. 9 shows a change in the concentration of carbon dioxide, which is generally used as a representative standard of the degree of indoor gas pollution, using the activity level of the human body as a parameter. When the activity level is high, the amount of oxygen taken in by the human body increases, and the amount of carbon dioxide emitted from the human body increases with this. Therefore, the concentration of carbon dioxide in the room increases with time. As described above, the change in the concentration of carbon dioxide in the room can be estimated by calculation based on the duration of the activity level of the human body. In the present embodiment, based on this concept, the duration of the activity level signal 2A output from the activity level determining means 2 is measured by the second timer means 24, and the indoor time is measured by both the activity level and the duration. The gas concentration estimation means 21 estimates the concentration of carbon dioxide in the room, and outputs the result to the third ventilation control means 23 as an indoor gas concentration signal 21A.
[0028]
FIG. 10 shows an example of the operation of this embodiment. FIG. 10 shows a scene in which the user is absent until time T1, enters a room at T1, sits down on a sofa or the like, and relaxes. At this time, the movement of the human body in the room is detected by the human body detecting means 1 after time T1, the human body pulse signal 1A is output from the human body detecting means 1, and this pulse signal is integrated by the first timer means 4 for a predetermined time, The activity level is determined as M1 by the activity level determination means 2 based on the integrated value, and is output as an activity level signal 2A. The duration of the activity level M1 is measured by the second timer means 24, and the indoor gas concentration estimating means 21 estimates the concentration of carbon dioxide in the room. At this time, since the estimated concentration of carbon dioxide is lower than the value σs set by the indoor gas concentration setting means 22, the ventilation rate controlled by the third ventilation rate control means 23 is zero. Thereafter, when a hard work such as cleaning is started at time T2, the activity amount determination unit 2 determines that the work is M2 and outputs the result as the activity amount level signal 2A. Similarly, the duration of the activity level M2 is measured by the second timer means 24, and the transition of the indoor carbon dioxide concentration is estimated by the indoor gas concentration estimating means 21. Then, at time T3, when the value of the indoor gas concentration signal 21A output from the indoor gas concentration estimating means 21 reaches the concentration σs set by the indoor gas concentration setting means 22, the third ventilation rate controlling means 23 As a result, the ventilation signal 23A is output as V1, and ventilation is started by a ventilation fan (not shown) or the like. Then, at time T4, when the cleaning is completed and a meal or the like is started, the activity amount determination means 2 determines the activity amount of M3, outputs the activity amount determination signal 2A, and reduces the activity amount from M2 to M3. Is detected, the ventilation amount signal 23A is output by the third ventilation amount control means 23 as V2. Then, the ventilation rate decreases due to the decrease in the ventilation rate signal 23A from V1 to V2. After that, the same operation is performed, and when the activity amount determination signal 2A continues at M3 and the ventilation amount signal 23A is V2, the indoor gas concentration signal 21A does not become much higher than the set concentration σs, so this state is maintained. It remains.
[0029]
As described above, according to this embodiment, the ventilation amount is appropriately controlled while estimating the indoor carbon dioxide concentration based on the activity level of the human body and the duration thereof. Can be maintained at an appropriate level without increasing the concentration.
[0030]
(Example 2 )
Next, a second embodiment of the present invention will be described with reference to FIGS. 11 to 13. Here, the same components as those in the previous embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0031]
FIG. 11 is a block diagram of a control device for a ventilation device according to a second embodiment of the present invention. In FIG. 11, reference numeral 31 denotes an indoor temperature setting means for setting an indoor temperature and outputting an indoor temperature setting signal 31A. Reference numeral 32 denotes an input between the indoor temperature signal 11A and the indoor temperature setting signal 31A, and a difference between the indoor temperature and the set indoor temperature. Transient stabilizing means for judging whether the air conditioning state of the room is in a transitional period or a stable period based on the deviation and outputting a transient stabilization signal 32A. Is a fourth ventilation amount control means that outputs the following.
[0032]
The operation of the above configuration will be described with reference to FIGS.
[0033]
FIG. 12 shows the relationship between the amount of ventilation and the amount of activity, using the transition period and the stable period as parameters. In other words, even when the activity level is the same, if the room state is in the transitional period, the ventilation amount is set smaller than the stable period in consideration of the heat load due to ventilation.
[0034]
FIG. 13 shows an example of the operation of this embodiment. In FIG. 13, the activity level is M1, and this is a case where the heating operation is started by the air conditioner. Since the room temperature detected by the room temperature detecting means 11 is lower than the set temperature θs set by the room temperature setting means 31 until time T1, the state of the room is in the transition period by the transient stability determining means 32. It is determined that there is, and as a result, as shown in FIG. 12, since the activity amount level is M1 and the transition period is the transition period, the fourth ventilation amount control means 33 outputs the ventilation amount as V1. Thereafter, when the room temperature rises by the air conditioner and reaches time T1, the room temperature reaches the set time θs. At this time, the transient stabilizing means 32 determines that the room has reached a stable state, and the fourth ventilation rate The control means 33 outputs a ventilation volume signal 33A as a ventilation volume of V2.
[0035]
As described above, according to the present embodiment, it is determined whether the air-conditioning state of the room is in the transition period or the stable period based on the difference between the room temperature and the set room temperature. By reducing the amount, the heat load due to ventilation can be reduced, and the indoor comfort can be improved.
[0036]
(Example 3 )
Next, a third embodiment of the present invention will be described with reference to FIGS. 14, 15 and 12. FIG. Here, the same components as those in the previous embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0037]
FIG. 14 is a block diagram of a control device for a ventilation device according to a third embodiment of the present invention. In FIG. 14, reference numeral 41 denotes a comfort level detecting means for detecting the indoor comfort level and outputting a comfort level signal 41A, and reference numeral 42 denotes a comfort level setting means for setting the indoor comfort level and outputting a comfort level setting signal 42A. Here, the comfort level is determined in consideration of factors other than the room temperature. For example, a PMV value that can be obtained by detecting or estimating a radiation temperature, airflow, humidity, and the like in addition to the room temperature, and an operating temperature that can be obtained from the room temperature and the radiation temperature.
[0038]
The operation of the above configuration will be described with reference to FIG.
In FIG. 15, the activity level is M1, and this is a case where the heating operation is started by the air conditioner. Since the comfort level detected by the comfort level detection unit 41 is lower than the set comfort level φs set by the comfort level setting unit 42 until the time T1, the state of the room is transiently set by the transient stability determination unit 32. As a result, as shown in FIG. 12, the fourth ventilation control means 33 outputs the ventilation amount V1 because the activity level is M1 and the transition period is the transition period. Thereafter, when the indoor comfort level is increased by the air conditioner and reaches time T1, the comfort level reaches the set comfort level φs. At this time, the transient stability determining unit 32 determines that the room has reached the stable state. The ventilation amount signal 33A is output by the ventilation amount control means 33 of No. 4 as the ventilation amount of V2.
[0039]
As described above, according to the present embodiment, it is determined whether the air-conditioning state of the room is in the transition period or the stable period based on the deviation between the indoor comfort level and the set comfort level. By reducing the amount of ventilation, the heat load due to ventilation can be reduced, and the indoor comfort can be improved.
[0040]
【The invention's effect】
As is clear from the description of the above embodiment, the present invention provides an indoor gas concentration estimating means for estimating an indoor gas concentration based on the duration of an activity level signal, and an indoor gas concentration setting the indoor gas concentration at a predetermined value or less. Setting means, and third ventilation rate control means for controlling the ventilation rate according to the difference between the indoor gas concentration signal output from the indoor gas concentration estimating means and the indoor gas concentration setting means and the set indoor gas concentration. By controlling the ventilation volume appropriately while estimating the concentration of carbon dioxide in the room based on the activity level of the human body and its duration, the concentration of carbon dioxide does not increase more than the set concentration. Concentration can be maintained at an appropriate level, and comfort can be improved .
[0041]
Further, the present invention determines whether or not the room is in a stable state based on a difference between the room temperature output from the room temperature detection unit and the room temperature setting unit and the set room temperature. A transient stability determination means is provided, and a fourth ventilation control means for controlling the ventilation according to both the transient stability signal and the activity level signal output from the transient stability determination means and the activity quantity determination means is provided. By determining whether the air conditioning state of the room is in a transitional period or a stable period based on the deviation between the room temperature and the set room temperature, in the case of the transitional period, the ventilation is reduced by reducing the amount of ventilation compared to the stable period. achieving the heat load due to, it is possible to make improved indoor comfort.
[0042]
In addition, the present invention includes the comfort level detecting means for detecting the comfort level of the room and the comfort level setting means for setting the comfort level. In some cases, it is possible to reduce the amount of ventilation, reduce the heat load due to ventilation, and improve comfort .
[Brief description of the drawings]
FIG. 1 is a block diagram of a control device of a ventilator according to a reference example of the present invention. FIG. 2 is an explanatory diagram showing a relationship between an integrated pulse number and an activity amount. FIG. 3 is an activity amount level and a carbon dioxide emission amount. FIG. 4 is an explanatory diagram of the relationship between the activity level and the ventilation amount. FIG. 5 is a block diagram of a control device of the ventilator. FIG. 6 is an air density and a natural ventilation amount. FIG. 7 is an explanatory diagram of the relationship between the activity level and the ventilation volume. FIG. 8 is a block diagram of the control device of the ventilator according to the first embodiment of the present invention. FIG. 10 is a diagram showing the relationship between the activity level and the change in carbon dioxide concentration. FIG. 10 is a time chart showing the operation. FIG. 11 is a block diagram of the control device of the ventilator according to the second embodiment of the present invention. ] of the relationship between the second and activity levels and ventilation of a third embodiment of the present invention illustrating 13 second of the present invention Block diagram of a control device of the ventilation device of a third embodiment of a time chart Figure 14 the present invention illustrating the operation of施例[15] the, EXPLANATION OF REFERENCE NUMERALS time chart showing the operation
REFERENCE SIGNS LIST 1 human body detecting means 2 activity amount determining means 3 first ventilation rate controlling means 4 first timer means 11 indoor temperature detecting means 12 outdoor temperature detecting means 13 inside / outside temperature difference detecting means 14 second ventilation rate controlling means 21 indoor gas Concentration estimating means 22 Indoor gas concentration setting means 23 Third ventilation rate control means 24 Second timer means 31 Indoor temperature setting means 32 Transient stability determination means 33 Fourth ventilation rate control means 41 Comfort detection means 42 Comfort setting means

Claims (3)

焦電形赤外線センサよりなり室内の人体の動きを検出して人体検出パルス信号を出力する人体検出手段と、異なる所定時間の計時を行う第1のタイマー手段と第2のタイマー手段と、前記人体検出パルス信号の数を前記第1のタイマー手段により所定時間積算し、その積算パルス数に応じて人体の活動量を判定する活動量判定手段と、前記活動量判定手段より出力される活動量レベル信号および前記第2のタイマー手段により活動量レベル信号の継続時間に基づいて室内ガス濃度を推定する室内ガス濃度推定手段と、室内ガス濃度を所定値以下に設定する室内ガス濃度設定手段を設け、前記室内ガス濃度推定手段および前記室内ガス濃度設定手段より出力される室内ガス濃度信号と設定室内ガス濃度との差に応じて換気量の制御を行う第の換気量制御手段を備えた換気装置の制御装置。A human body detecting means comprising a pyroelectric infrared sensor and detecting the movement of the human body in the room and outputting a human body detection pulse signal; first timer means and second timer means for measuring different predetermined times; An activity amount determining means for integrating the number of detection pulse signals by the first timer means for a predetermined time and determining an activity amount of the human body according to the integrated pulse number; and an activity amount level outputted from the activity amount determining means. A signal and an indoor gas concentration estimating means for estimating an indoor gas concentration based on the duration of the activity level signal by the second timer means, and an indoor gas concentration setting means for setting the indoor gas concentration to a predetermined value or less, the indoor gas concentration estimation means and said chamber gas concentration third to control the ventilation in accordance with the difference between the indoor gas concentration signal and setting the indoor gas concentration output from the setting means Control device for ventilation apparatus having a gas amount control means. 焦電形赤外線センサよりなり室内の人体の動きを検出して人体検出パルス信号を出力する人体検出手段と、所定時間の計時を行う第1のタイマー手段と、前記人体検出パルス信号の数を前記第1のタイマー手段により所定時間積算し、その積算パルス数に応じて人体の活動量を判定する活動量判定手段と、室内温度検出手段と室内温度設定手段と、前記室内温度検出手段および室内温度設定手段より出力される室内温度と設定室温との差により部屋が安定状態であるかどうかを判定する過渡安定判定手段を設け、前記過渡安定判定手段および活動量判定手段より出力される過渡安定信号と活動量レベル信号の両者に応じて換気量の制御を行う第の換気量制御手段を備えた換気装置の制御装置。A human body detecting means comprising a pyroelectric infrared sensor and detecting the movement of the human body in the room and outputting a human body detection pulse signal; first timer means for measuring a predetermined time; and counting the number of the human body detection pulse signals. Activity amount determining means for integrating for a predetermined time by the first timer means and determining the activity amount of the human body according to the integrated pulse number; indoor temperature detecting means and indoor temperature setting means; A transient stability determining means for determining whether the room is in a stable state based on a difference between the room temperature output from the setting means and the set room temperature, and a transient stability signal output from the transient stability determining means and the activity amount determining means; A control device for a ventilator, comprising: a fourth ventilation volume control means for controlling the ventilation volume in accordance with both of the first and second activity level signals . 室内温度検出手段に代えて室内の快適度を検出する快適度検出手段を、また室内温度設定手段に代えて快適度を設定する快適度設定手段を備えた請求項2記載の換気装置の制御装置。 3. The control device for a ventilator according to claim 2, further comprising a comfort level detecting means for detecting the degree of comfort in the room in place of the indoor temperature detecting means, and a comfort level setting means for setting the comfort level in place of the indoor temperature setting means. .
JP21437194A 1994-09-08 1994-09-08 Ventilation control device Expired - Fee Related JP3549166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21437194A JP3549166B2 (en) 1994-09-08 1994-09-08 Ventilation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21437194A JP3549166B2 (en) 1994-09-08 1994-09-08 Ventilation control device

Publications (2)

Publication Number Publication Date
JPH0875203A JPH0875203A (en) 1996-03-19
JP3549166B2 true JP3549166B2 (en) 2004-08-04

Family

ID=16654687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21437194A Expired - Fee Related JP3549166B2 (en) 1994-09-08 1994-09-08 Ventilation control device

Country Status (1)

Country Link
JP (1) JP3549166B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360606A (en) * 2000-03-23 2001-09-26 Kleenair Maintenance Services Device for automatically controlling an air maintenance system
JP2005140474A (en) * 2003-11-10 2005-06-02 Matsushita Electric Ind Co Ltd Ventilation equipment
JP2005147469A (en) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd Ventilator
JP4915046B2 (en) * 2005-02-07 2012-04-11 パナソニック株式会社 Ventilator and internet home appliance system using ventilator
JP5602118B2 (en) * 2011-10-13 2014-10-08 三菱電機株式会社 Ventilation equipment control system
JP2017003203A (en) * 2015-06-11 2017-01-05 株式会社東芝 Estimation device, estimation method, and estimation program
JP6567358B2 (en) * 2015-08-06 2019-08-28 シャープ株式会社 Electrical equipment
JP6712509B2 (en) * 2016-07-06 2020-06-24 シャープ株式会社 Detection system
CN109307357B (en) * 2018-09-28 2019-08-02 重庆洲亿节能技术有限公司 A kind of energy saving central air conditioner
JP7243314B2 (en) * 2019-03-12 2023-03-22 三菱電機株式会社 ventilator
JP2022175209A (en) * 2021-05-13 2022-11-25 日立ジョンソンコントロールズ空調株式会社 air conditioner
JP2022175208A (en) * 2021-05-13 2022-11-25 日立ジョンソンコントロールズ空調株式会社 air conditioner
CN114543179A (en) * 2022-01-21 2022-05-27 青岛海尔空调器有限总公司 Fresh air pipeline, air conditioner and control method of air conditioner
CN114543316A (en) * 2022-01-21 2022-05-27 青岛海尔空调器有限总公司 Control method and control system of air conditioner, electronic equipment and storage medium
CN114992791B (en) * 2022-06-13 2023-07-04 珠海格力电器股份有限公司 Oxygen-enriched air conditioner and control method and control device thereof

Also Published As

Publication number Publication date
JPH0875203A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3549166B2 (en) Ventilation control device
CN110260480A (en) Indoor fresh air control method and device and equipment with fresh air function
KR101278245B1 (en) Air conditioner with function of predictively controlling indoor-air quality
JP2808038B2 (en) Air conditioner by activity sensing
JPH04320748A (en) Control device for air conditioner
JP2020070997A (en) Control system, control method, and program
JP2518099B2 (en) Ventilation equipment
JP3463723B2 (en) Air purifier control device
JPH0552379A (en) Control of air conditioner
JP3070083B2 (en) Air conditioner
JPH04194538A (en) Air conditioner control method
JP7370289B2 (en) Blower
JP4231716B2 (en) Indoor ventilation system
JPH0599472A (en) Controlling method of air-conditioning machine
JPH0712391A (en) Air conditioning system and control of the same
JP7672360B2 (en) Automatic control device
JPH0689920B2 (en) Air conditioner timer start operation control method
KR940006911B1 (en) Method of controlling temperature and airflow in air conditioners
JPH0571786A (en) Control device of air conditioner
JPH06294536A (en) Method for controlling air conditioner
JPH0642798A (en) Heating and humidifying controller
JP2642687B2 (en) Ventilation equipment
JP3024219B2 (en) Heater control device
JPH03221743A (en) Air-conditioner
JPH0533984A (en) Ventilation system for air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees