JP3547621B2 - Method for producing alkali-free water glass solution - Google Patents
Method for producing alkali-free water glass solution Download PDFInfo
- Publication number
- JP3547621B2 JP3547621B2 JP22569898A JP22569898A JP3547621B2 JP 3547621 B2 JP3547621 B2 JP 3547621B2 JP 22569898 A JP22569898 A JP 22569898A JP 22569898 A JP22569898 A JP 22569898A JP 3547621 B2 JP3547621 B2 JP 3547621B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- water glass
- solution
- concentration
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 title claims description 47
- 235000019353 potassium silicate Nutrition 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000243 solution Substances 0.000 claims description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 28
- 238000000909 electrodialysis Methods 0.000 claims description 17
- 239000012528 membrane Substances 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 238000005341 cation exchange Methods 0.000 claims description 14
- 239000003011 anion exchange membrane Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 11
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 9
- 239000002738 chelating agent Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 5
- 238000010612 desalination reaction Methods 0.000 claims description 4
- 238000011033 desalting Methods 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 claims description 3
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 claims description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 3
- 229960003330 pentetic acid Drugs 0.000 claims description 3
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 claims description 2
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 claims description 2
- 229960001484 edetic acid Drugs 0.000 claims description 2
- ULHUCTVXHLHFHG-UHFFFAOYSA-N ethane-1,2-diamine;2-(2-hydroxyphenyl)acetic acid Chemical compound NCCN.OC(=O)CC1=CC=CC=C1O.OC(=O)CC1=CC=CC=C1O ULHUCTVXHLHFHG-UHFFFAOYSA-N 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 230000009919 sequestration Effects 0.000 claims description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 47
- 239000000463 material Substances 0.000 description 35
- 238000002347 injection Methods 0.000 description 28
- 239000007924 injection Substances 0.000 description 28
- 238000000502 dialysis Methods 0.000 description 23
- 239000003513 alkali Substances 0.000 description 22
- 239000000499 gel Substances 0.000 description 22
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 21
- 239000000377 silicon dioxide Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 239000002253 acid Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000000376 reactant Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- -1 alkali metal salts Chemical class 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000003014 ion exchange membrane Substances 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000005349 anion exchange Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000008237 rinsing water Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- IENXJNLJEDMNTE-UHFFFAOYSA-N acetic acid;ethane-1,2-diamine Chemical compound CC(O)=O.NCCN IENXJNLJEDMNTE-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
Images
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、周辺環境への影響が小さく、作液が簡便で、耐久性の優れた非アルカリ系シリカゾル系地盤改良剤の主剤として好適な脱アルカリ水ガラス溶液、およびその製造方法に関する。
【0002】
【従来の技術】
土木工事等において、掘削等により崩壊のおそれのある地盤、湧水等により掘削が困難な地盤等に対して、外部より地盤改良注入材を注入して地盤を改良する薬液注入工法が汎用さている。
【0003】
使用される地盤改良注入材は種々のものが知られているが、水ガラスを主剤とする地盤改良注入材が安価であり、ゲルタイムの調節も容易であることから主流を占めている。
【0004】
最近では、注入による固化物の強度が高くその耐久性に優れること、注入液が一液でありゲルタイムの調整も容易で取扱に便利なこと、また改良すべき地盤の土質の応用範囲が広く、さらに地盤改良後の固化物から溶出する異物の種類は限られ環境に与える影響が小さい、珪酸ナトリウムを酸により処理して酸性にし、硬化能力を賦与させたものを主材とする非アルカリ系シリカゾル地盤改良注入材が多く用いられている。
【0005】
この珪酸ナトリウム−酸の反応で得られる酸性の非アルカリ系シリカゾルは原料として酸、特に安価な硫酸を用いるため、さらに水ガラスも安価であるため経済的である。
【0006】
【発明が解決しようとする課題】
しかし、この非アルカリ系シリカゾル地盤改良注入材の注入に際しては、水ガラス中には多量のアルカリイオンを含有しているため、単に水ガラスに反応材を添加して攪拌するだけでは攪拌槽中でゲルが発生してしまい製造できない。これを解決するためには、反応材として特に強酸を用い、この強酸中に少しづつゆっくりと希釈した水ガラスを投入し攪拌するという非常に煩雑な方法で作液しなければならない。かかる事情から施工現場で連続的に作液するためには特殊な製造装置を必要とする。
【0007】
さらに、この地盤改良注入材は、使用可能なゲルタイムを得るのためのpH領域が3以下と低く、そのため地盤の固化前後に注入剤に由来する酸やアルカリ金属塩が固化物より流出していまい、地下水のpHを下げたり塩類濃度や電気伝導度を上昇させるなど、少なからずとも周辺環境に影響を与える可能性がある。
【0008】
他方、従来の非アルカリ系シリカゾルは反応材として硫酸を使用するため、次記(1)式に示す反応のように、ゲル化後の骨格構造の間隙水中に硫酸塩類として硫酸イオンが溶解する。
【0009】
【化1】
【0010】
この非アルカリ系シリカゾルの固結体が地下水に接触すると、容易にその硫酸イオンが溶出する。地盤改良範囲中あるいはその近傍にコンクリート構造物が存在する場合は、地下水中の硫酸イオンがコンクリート構造物の中に浸入し、反応式(2)〜式(4)に示すように、コンクリート中の水和成分と反応して膨張性のエトリンガイトを生成する。この生成時の膨張圧によりコンクリートのひびわれ、崩壊を引き起こす可能性がある。
【0011】
【化2】
【0012】
【化3】
【0013】
【化4】
【0014】
そこで、酸やナトリウム塩の溶出量を抑制し、より中性領域で使用するために水ガラスと混合する酸の使用量を少なくすることが考えられるが、この場合、水ガラスを十分に硬化することが困難となり、さらにゲルタイムが極度に短くなるなど十分な強度を有する注入剤が得られない。
【0015】
そこで、注入固結後の酸の影響を少なくし、水溶性アルカリ金属塩の流出量を極力少なくするためには、アルカリ分の少ない水ガラスを主材とした地盤改良注入材でなければならない。
【0016】
したがって、本発明の主たる課題は、電気透析法等のアルカリ除去法により得られる、モル比(SiO2/X2 O,X:アルカリ金属)が6以上の脱アルカリ水ガラス溶液を得て、これを主材とし、有機酸および無機酸のいずれか一方または両方とを反応材とする地盤改良注入材などに利用することにある。
【0017】
【課題を解決するための手段】
上記課題を解決した本発明の請求項1記載の発明は、電気透析槽内の両端各部に陽極および陰極を配置し、これらの間に陽イオン交換膜と陰イオン交換膜とを交互に位置させて、濃縮室と脱塩室を交互に形成し、
前記各電極に通電させるとともに、前記脱塩室に水ガラス水溶液を流通させ、前記濃縮室に金属封鎖用キレート剤を含有する水酸化ナトリウム水溶液または水酸化カリウム水溶液を流通させて電気透析を行い、
SiO2 濃度が1wt%以上、SiO2 /X2 O(NaまたはK)のモル比が6以上、かつpHが7〜12の範囲の脱アルカリ水ガラス水溶液を得ることを特徴とする脱アルカリ水ガラス溶液の製造方法である。
【0018】
請求項2記載の発明は、金属封鎖用キレート剤は、エチレンジアミンテトラ酢酸二ナトリウム、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ニトリロ三酢酸、プロピレンジアミン四酢酸、ビス(2−ヒドロキシフェニル酢酸)エチレンジアミン、またはこれらの塩、およびこれらの2種以上のもの、の群から選ばれたものである請求項1記載の脱アルカリ水ガラス溶液の製造方法である。
【0019】
【発明の実施の形態】
以下本発明を実施の形態を説明するとともに、実験例を示しながらさらに詳説する。
【0020】
(アルカリ除去法について)
<イオン交換樹脂法>
発明が解決しようとする課題の欄において説明した観点から、3号水ガラス中のアルカリ分を直接、除去する方法としてイオン交換樹脂を使用した脱アルカリ法が考えられる。このイオン交換法は水ガラス溶液を陽イオン交換樹脂層に通過させ、ナトリウムイオンを水素イオンと交換させる方法である。
【0021】
たとえば、市販のマクロポーラス型強酸性カチオン交換樹脂(オルガノ社製:アンバーライトIR−120B)を円筒実験装置内に充填し、SiO2 濃度を5%に希釈した3号水ガラスを樹脂容量と同量通液し、下部よりアルカリ除去水ガラス(活性シリカ)を回収した。
【0022】
この3号水ガラスを通液して回収した活性シリカは、無色透明で希釈水ガラスと同じであるが、不安定なものである。また、SiO2 濃度は2〜4.5程度(通液の時期によって異なる)で、モル比は1030〜1160、pH約3であり、ゲルタイムは約70時間、土中ゲルタイムは0.8分、サンドゲル強度が約2.5kgf/cm2である。したがって、使用できないことはないものの、強度の点や安定性の点が十分でないために、実用的に十分ではないことが知見された。
【0023】
<イオン交換膜電気透析法>
これに対して、かかるイオン交換樹脂法によることなく、イオン交換膜電気透析法によって得ることができる。このイオン交換膜電気透析法によって、本発明のSiO2 濃度が1wt%以上、SiO2 /X2 O(X:アルカリ金属)のモル比が6以上、かつpHが7〜12の範囲の脱アルカリ水ガラス溶液を得ることができる。
【0024】
本発明で使用する陰イオン交換膜は特に限定されず、公知の陰イオン交換膜を用いることができる。陰イオン交換膜の陰イオン交換基にも特に限定されず、公知の陰イオン交換基、例えば、アンモニウム塩基、ピリジニウム塩基、1級アミノ基、2級アミノ基、3級アミノ基等の陰イオン交換基が使用できる。なかでも、耐塩基性を有し、塩基性下にても交換基が解離しているアンモニウム塩基が望ましい。またこの陰イオン交換膜は重合型、縮合型、均一型、不均一型の別なく補強芯材の有無や、炭化水素系のもの、フッ素系のもの、材料・製造方法に由来する陰イオン交換膜の種類、型式などの別なくいかなるものであってもよい。本発明の好まし陰イオン交換膜は塩基に接触する関係上、耐塩基性の陰イオン交換膜が好ましい。
【0025】
さらに、本発明において使用する陽イオン交換膜も特に限定されず、公知の陽イオン交換膜を用いることができる。例えば、スルホン酸基、カルボン酸基、さらにこれらのイオン交換基が複数混在した陽イオン交換膜を使用できる。また、この陽イオン交換膜は、重合型、縮合型、均一型、不均一型の別なく、補強芯材の有無や、炭化水素系のもの、フッ素系のもの、材料・製造方法に由来する陽イオン交換膜の種類、型式などの別なくいかなるものであってもよい。本発明の好ましい陽イオン交換膜塩基に接触する関係上、耐塩基性の陽イオン交換膜が特に好ましい。
【0026】
本発明において、電気透析装置の電極は、公知のものが何ら制限なく使用できる。すなわち、陽極として、白金、チタン/白金、カーボン、ニッケル、ルテニウム/チタン、イリジウム/チタンなどでよく、陰極としては、鉄、ニッケル、白金、チタン/白金、カーボン、ステンレス鋼などでよい。さらに、電極の構造も公知の構造が特に制限なく採用される。一般的な構造としては、板状、メッシュ状、格子状等が挙げられる。
【0027】
本発明において、電極液は、水酸化ナトリウム、水酸化カリウム、陰陽極としては、ニッケルを使用するのが好ましい。
【0028】
本発明において、電気透析装置は、電極間に陽イオン交換膜と陰イオン交換膜を交互に配列して塩基室と濃縮室とを形成することによって構成される。図1は本発明の電気透析装置の代表的例を示す説明図である。ただし、本発明の電気透析装置は図1によって限定されるものではなく公知の構造が特に制限なく採用される。本発明の非アルカリ系シリカゾルを得る電気伝導装置として最も好適な構造は、各室を形成するための切欠部を中央に有する室枠を介して陰イオン交換膜と陽イオン交換膜とを交互に配列し、両端より締め付ける、いわゆるフィルタープレス型の構造である。各室枠には液供給口および液排出口が設けられ、各液供給口、液排出口には必要に応じて枝管を経由して主管に接続される。また、室枠内には、室枠の厚みを均一に維持すると共に、供給された液の流れを均一にするための配流作用を有するスペーサーを設けるのが一般的である。
【0029】
次に、このイオン交換膜電気透析の原理を製造方法と共に説明する。
電解質溶液に一対の陽極、陰極をセットし直流電流を流すと陽イオンは陰極に向かって、陰イオンは陽極に向かってそれぞれ移動する。イオン交換膜電気透析はこのようなイオンの性質を利用したものであり、希釈3号水ガラス水溶液中での平衡反応(加水分解)は、次記の(5)式および(6)式にあらわされる。
【0030】
【化5】
【0031】
【化6】
【0032】
そこで、図1に例示される製造装置を用いて水ガラス水溶液を得ることができる。すなわち、電気透析槽1内の両端各部に陽極2および陰極3を配置し、最も陰極側に陰イオン交換膜Aを位置させ、最も陽極側に陽イオン交換膜Kを位置させ、かつこれらの間に陽イオン交換膜Kと陰イオン交換膜Aとを交互に位置させて、濃縮室10と脱塩室20を交互に形成し、各電極2,3に通電させるとともに、前記脱塩室20に水ガラス水溶液を流通させ、前記濃縮室10に水酸化ナトリウム水溶液または水酸化カリウム水溶液を流通させて電気透析を行うものである。
【0033】
この場合、両電極2,3間に直流電流を通電させると、解離性の極めて高い強電解質であるNaOHのNaイオンは容易に陽イオン交換膜Kを透過して隣室に移動する。一方、珪酸は弱電解質(K1=10−9.8、K2=10−12 )であるため、陰イオン交換膜Aを透過し難いことから、隔室毎に脱Naイオン室(脱塩室20)とNaイオン濃縮室(濃縮室10)となる。
【0034】
この原理を利用して水ガラス中のアルカリ分であるNaイオンを低減させた水ガラス(以下透析シリカという)を製造することが可能となる。
【0035】
(透析シリカの製造例)
本発明の脱アルカリ水ガラス溶液の製造例を示すと、表1の装置条件の電気透析装置(トクヤマ社製:TS‐2−10型)を使用して、表2の条件でSiO2 含有量を6%に調整した3号水ガラス(電気伝導度:EC=24mS/ cm)をEC=4.5mS/ cmになるまで透析を行った。運転は、1バッチ毎に水洗(10分間の水洗を4回)後、次のバッチの透析を行う方法(間欠運転)と1バッチ毎に水洗をしないで次のバッチの透析を行う方法(連続運転)で行った。
【0036】
原液の電気伝導度(24mS/ cm)が4.5mS/ cmになるまで透析を行った結果、透析の電流効率、脱塩率、電気浸透水量は表3のようになった。また、透析時間と伝導度、およびpHと伝導度の関係を図2および図3に示した。
【0037】
【表1】
【0038】
【表2】
【0039】
【表3】
【0040】
間欠運転時には、濃縮液が白濁するトラブルはなかったが、連続運転時に2バッチ目で濃縮液の流量が低減し、目詰まり現象が発生した。透析膜を分解した結果、濃縮室にゲルが充満していた。
【0041】
この原因について考察すると、透析速度は電気伝導度が9mS/cm付近から次第に遅くなっており、脱塩が進行するのに伴い、水ガラス中に電気が通じにくくなるために起こる現象と考えられるが、同じ電気伝導度付近で水ガラスのpHが急激に低下し始める変曲点となっていることから考えて、この変曲点は遊離、あるいは珪酸と弱い結合をしているNaイオンのほぼ全量が脱塩された点と考えられ、この点以降は、珪酸と強い結合をしているNaイオンと僅かに電解している珪酸イオンが脱塩され始めた点とも考えられる。
【0042】
濃縮液の白濁は、純水で調製したNa0H溶液を使用した場合、白濁の発生がないことの事実確認から考えて、この白濁物は、水道水中に含有されているCaイオンが僅かに脱塩室側から移行してくる珪酸イオンと反応して珪酸カルシウムが生成されたことが原因と考えられる。また、連続連転時のゲル発生は水ガラス中に含有されているFeイオン、Alイオンが濃縮室側に移行してきて珪酸と反応していることも考えられる。そこで、濃縮液にあらかじめ金属封鎖剤(キレート剤)を添加しておくことにより白濁およびゲルの発生を抑制できると考え、実験を行った。その結果、エチレンジアミンテトラ酢酸二ナトリウム(EDTA・2Na・2H2 0)を1g/リットル添加することにより、白濁物の発生は抑制された。
【0043】
得られた透析シリカの成分分析結果を表4に示した。
【0044】
【表4】
【0045】
透析シリカは、外観上、希釈水ガラスと比較して少し白濁がかっており、成分的にはSiO2 濃度が透析時の水の移動、電気分解により若干濃縮されており、Na2 0濃度は約1/5に脱塩されていた。また、モル比約20の高モル比水ガラスになっているにもかかわらず、安定している(数ケ月置いておいてもSi02 の発生なし)。
【0046】
この透析シリカの透析直後からのpHと電気伝導度の経時変化の関係を図4に示す。この結果から、透析シリカは透析直後から24時間程度の熟成後、安定状態に入ることが判る。
【0047】
この透析シリカの構造を検討するためにNMR(核磁気共鳴)および赤外線吸収スペクトル(lR)を測定した。測定の結果、市販のコロイダルシリカと同様の構造を有しており、モル比的に小さいもののコロイダルシリカになっていると考えられる。
【0048】
(白濁について)
前述のように、白濁防止のためには、金属封鎖用キレート剤を用いるのが有効である。これに到る実験結果について説明する。
【0049】
JIS3号水ガラスを希釈して、Si02 濃度が6%になるように調製したものを脱塩液として用い、濃縮液としては、表5に示すように、(1)純水にNaOHを20g溶解させたNaOH溶液、(2)それぞれ水道水にNaOHを20g溶解させるとともに、エチレンジアミンテトラ酢酸二ナトリウム(EDTA・2Na・2H2 0)を無添加のもの、添加量を同表に示すようにそれぞれ4通りに変えたものを用い、脱塩液の電気伝導度が4.5mS/cmになるまで電気透析し、この過程で透析状況を目視観察した。結果を表5に示す。
【0050】
ここで、透析条件は、脱塩液を2.0リットル、濃縮液を2.0リットル、ポンプにより循環させる流量を脱塩液側および濃縮液側のそれぞれにおいて3.0リットル/分に設定し、1バッチ終了後、脱塩液および濃縮液を入れ替えて、2バッチまで透析を行ったものである。
【0051】
また、使用した水道水のCaイオン濃度は32mg/リットルであり、このCaイオンを理論的マスキングするためのEDTA・2Na・2H2 0(分子量372.2g)の添加量は約0.3g/リットル(=(0.032/40)×372.2)である。
【0052】
【表5】
【0053】
観察結果としては、純水で調製したもの、および水道水で調製したものにEDTA・2Na・2H2 0を理論量以上に添加した濃縮液の場合には、白濁の発生がなく、反対に添加量が理論量以下の場合には、白濁の程度差があるがいずれも白濁の発生をみた。
【0054】
さらに、白濁の発生がみられたものは、1バッチ目の透析時間が若干長くなるものの、ポンプ流量に変化は見られなかったが、2バッチ目ではポンプ流量が低下し、白濁の程度が大きいものは目詰まりを生じ流れなくなってしまった。この現象は、白濁の原因である珪酸ゲルが透析中に少しずつ膜間に目詰まりし、2バッチ目で完全に膜間を埋めてしまったためである。EDTA・2Na・2H2 0を0.1g/リットル添加したものは、白濁はわずかに発生する程度であるが、膜間に少しずつ目詰まりを発生させていることが、ポンプ流量の変化から判断できた。
【0055】
上記の実験例のほか、金属封鎖用キレート剤として、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ニトリロ三酢酸、プロピレンジアミン四酢酸、ビス(2−ヒドロキシフェニル酢酸)エチレンジアミン、またはこれらの塩、およびこれらの2種以上のもの、の群から選ばれたものを用いても、白濁防止に有効であることが確認できた。
【0056】
(地盤改良注入材としての利用について)
上述の透析シリカは地盤改良注入材として好適に用いることができる。この透析シリカの反応材としては、有機酸およびまたは無機酸を用いることができ、これは、水ガラス中のアルカリ分を中和させ、pHを酸性にするために用いるものであり、具体的には、無機酸として硫酸、塩酸、硝酸、リン酸、ポリりん酸、ほう酸、炭酸、重曹等、また有機酸として、酢酸、酒石酸、クエン酸等がある。
【0057】
本発明の水ガラス(透析シリカ)は、脱アルカリ処理されているため、少ない量の弱酸の使用で非アルカリ系シリカゾル地盤改良注入材を得ることができることが大きな特徴である。
上記脱アルカリ水ガラス溶液と反応材を用いた非アルカリ系シリカゾル地盤改良注入材の作液は、脱アルカリ水ガラス溶液を攪拌させながら反応材を投入するだけで可能であるため、きわめて簡便で、攪拌槽以外にラインミキサー等でも作液可能である。かかる作液した地盤改良注入材は、1液の注入材として適宜の注入管を用いて地盤に注入できる。
【0058】
本発明で得られる地盤改良注入材は、その構成成分の酸性シリカゾル中に含まれる酸やアルカリ性の陽イオン濃度が少いため、従来の非アルカリ系シリカゾル地盤改良注入材より液中でのシリカの安定度が高いので、それらと同様のゲルタイムが得られるpH値はより中性領域側となる。したがって、地盤改良での使用に際して、環境に影響を与える酸やアルカリ金属塩の溶出、混入を著しく抑制することができる。
【0059】
また、従来の珪酸ナトリウム−酸の非アルカリ系シリカゾル地盤改良注入材が有していた、優秀な地盤改良効果もそのまま継承されている。
【0060】
<地盤注入材としての実験例>
透析シリカは、それ自体、安定でゲルタイムを有しない。そこで、透析シリカを主材とした非アルカリ系シリカゾル作液の反応材および遅延材の種類を検討後、基本特性を測定した。
【0061】
活性シリカゾルのSiO2 濃度を6%に調製し、これに反応材、遅延材を添加して試料とした。強度試験、浸透試験およびゲルタイムの測定には、豊浦砂を使用した。
【0062】
反応材としてリン酸、クエン酸、助剤としてNaClを使用し、表6に示した配合でゲルタイムを測定した。
【0063】
表7に示すゲルタイムの実験結果より、配合N0.5が液状化用注入材としてのゲルタイムを有することから、この配合条件で実施した物性試験結果を下記に示す。一軸圧縮試験(湿空モールド養生および水中養生試験)結果を表8に示す。
【0064】
【表6】
【0065】
【表7】
【0066】
【表8】
【0067】
ここに、一軸圧縮試験は、水中養生は湿空モールド養生の材令7日の供試体を脱型・整形後、恒温(20℃)の水道水中に浸漬養生したものである。
【0068】
また、一次元浸透実験を図5に、溶出試験結果を図6に、ホモゲルの体積変化の結果を図7にそれぞれ示す。
【0069】
土中ゲルタイムはクエン酸量とpHの増減で調整可能であり、砂の種類毎に配合を変える必要がある。強度は、モールド、水中とも2.6kgf/cm2 であり、水中による劣化は認められず、目標強度以上であった。浸透能力は大きく、注入口から離れた位置でも強度は同じであった。ホモゲルの体積変化は、養生30日で僅か約0.3%の収縮の発生で目標条件内であった。Si02 の溶出率は養生30日で約2%であり、非アルカリ系シリカゾルとほぼ同程度であった。耐久性についても十分なものであることを知見した。
【0070】
さらに、3号水ガラスのSi02 濃度が6%のもの、3号水ガラスのSi02 濃度が7%のもの、透析シリカのSi02 濃度が6%のもの、および透析シリカのSi02 濃度が7%のもののそれぞれについて、表9に示すように、反応材としてリン酸を用い、同表に示すpHに調整し、豊浦砂のゲルタイムを測定したところ、図8〜図9に示す結果が得られた。
【0071】
【表9】
【0072】
この結果は、本発明によって得られる透析シリカを使用することにより、従来の3号水ガラスを使用したときと比較して同じゲルタイムを得るのに必要な反応剤量が約1/8以下程度になり、注入に使用可能なpH領域も従来より中性領域側になることを示している。
【0073】
また、従来の3号水ガラスのSi02 濃度が6%のもの(pH:4.0、75%リン酸量:59リットル/m3)と、本発明によって得られた透析シリカのSi02 濃度が6%のもの(pH:5.2、75%リン酸量:7.3リットル/m3)とについてホモゲル溶出試験を行ったところ、図10に示す結果が得られた。なお、これらはいずれも注入材のゲルタイムが約1時間を示すものである。
【0074】
この試験は、ホモゲルを直径5cm、高さ10cmの円柱状に成形したものを、2リットルの純水中に浸漬させ、経時的な電気伝導度を測定したものである。図10に示す結果は、本発明による非アルカリ系シリカゾルを用いて造成する固結体によれば、溶出量がきわめて少なくなることを示している。
【0075】
【発明の効果】
以上のとおり、本発明によれば、透析シリカを使用することにより、従来の3号水ガラスを使用したときと比較して同じゲルタイムを得るのに必要な反応剤量が約1/8以下程度になり、注入に使用可能なpH領域も従来より中性領域側になり、地盤改良材として使用した際に環境に与える影響が少ない非アルカリ系シリカゾルを得ることができる。
【図面の簡単な説明】
【図1】本発明のイオン交換膜電気透析法により脱アルカリ水ガラス溶液の製造設備例の説明図である。
【図2】実験結果を示すグラフである。
【図3】実験結果を示すグラフである。
【図4】実験結果を示すグラフである。
【図5】実験結果を示すグラフである。
【図6】実験結果を示すグラフである。
【図7】実験結果を示すグラフである。
【図8】実験結果を示すグラフである。
【図9】実験結果を示すグラフである。
【図10】実験結果を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dealkalized water glass solution suitable for use as a base material of a non-alkali silica sol-based soil conditioner having a small influence on a surrounding environment, a simple liquid preparation, and excellent durability, and a method for producing the same.
[0002]
[Prior art]
In civil engineering work, etc., the chemical solution injection method for improving the ground by injecting a ground improvement injection material from the outside into the ground that may collapse due to excavation, the ground that is difficult to excavate due to spring water, etc. is widely used. .
[0003]
Various ground improvement injection materials to be used are known, but the ground improvement injection material containing water glass as a main component is inexpensive and the adjustment of gel time is easy, so that it occupies the mainstream.
[0004]
In recent years, the strength of the solidified material by injection is high and its durability is excellent, the injection liquid is one liquid, the gel time can be easily adjusted and it is easy to handle, and the application range of ground soil to be improved is wide, In addition, the types of foreign substances eluted from the solidified material after ground improvement are limited and have little effect on the environment.Non-alkali silica sol mainly made of sodium silicate treated with acid to make it acidic and give hardening ability Ground improvement injection material is often used.
[0005]
The acidic non-alkali silica sol obtained by the sodium silicate-acid reaction is economical because an acid, particularly inexpensive sulfuric acid, is used as a raw material, and water glass is also inexpensive.
[0006]
[Problems to be solved by the invention]
However, when injecting this non-alkali silica sol ground improvement injection material, since a large amount of alkali ions are contained in the water glass, simply adding the reaction material to the water glass and stirring the water glass results in a stirring tank. Gels are generated and cannot be manufactured. In order to solve this, it is necessary to prepare a liquid by a very complicated method of using a strong acid in particular as a reactant, slowly adding slowly diluted water glass into the strong acid, and stirring. Under such circumstances, a special production apparatus is required to continuously produce a liquid at the construction site.
[0007]
Furthermore, this soil improvement injection material has a low pH range of 3 or less for obtaining a usable gel time, so that acids and alkali metal salts derived from the injection material do not flow out of the solidified material before and after the ground is solidified. In addition, there is a possibility that the surrounding environment is affected at least by lowering the pH of the groundwater or increasing the salt concentration or the electric conductivity.
[0008]
On the other hand, since the conventional non-alkali silica sol uses sulfuric acid as a reactant, sulfate ions are dissolved as sulfates in pore water having a skeletal structure after gelation, as shown in the following reaction (1).
[0009]
Embedded image
[0010]
When the solidified non-alkali silica sol comes into contact with groundwater, its sulfate ions are easily eluted. When a concrete structure exists in or near the ground improvement area, sulfate ions in the groundwater penetrate into the concrete structure, and as shown in the reaction equations (2) to (4), Reacts with hydration components to form swelling ettringite. The expansion pressure at the time of this generation may cause cracking and collapse of the concrete.
[0011]
Embedded image
[0012]
Embedded image
[0013]
Embedded image
[0014]
Therefore, it is conceivable to reduce the amount of acid or sodium salt eluted and reduce the amount of acid mixed with water glass for use in a more neutral region, but in this case, the water glass is sufficiently cured. This makes it difficult to obtain an injectable having sufficient strength such as extremely short gel time.
[0015]
Therefore, in order to reduce the influence of the acid after the injection and consolidation and to minimize the outflow of the water-soluble alkali metal salt, a ground improvement injection material mainly composed of water glass with a low alkali content must be used.
[0016]
Therefore, a main object of the present invention is to obtain a dealkalized water glass solution having a molar ratio (SiO 2 / X 2 O, X: alkali metal) of 6 or more obtained by an alkali removal method such as electrodialysis. As a main material and a ground improvement injection material or the like using one or both of an organic acid and an inorganic acid as a reaction material.
[0017]
[Means for Solving the Problems]
The invention according to
While conducting electricity to the respective electrodes, a water glass aqueous solution is allowed to flow through the desalting chamber, and a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution containing a chelating agent for sequestration is allowed to flow through the concentration chamber to perform electrodialysis.
A dealkalized water solution having an SiO 2 concentration of 1 wt% or more, a molar ratio of SiO 2 / X 2 O (Na or K) of 6 or more, and a pH in the range of 7 to 12; This is a method for producing a glass solution .
[0018]
In a second aspect of the invention, the chelating agent for sequestering includes disodium ethylenediaminetetraacetate, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, nitrilotriacetic acid, propylenediaminetetraacetic acid, bis (2-
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments and experimental examples.
[0020]
(About the alkali removal method)
<Ion exchange resin method>
From the viewpoint described in the section of the problem to be solved by the invention, as a method for directly removing the alkali component in the No. 3 water glass, a dealkalization method using an ion exchange resin can be considered. This ion exchange method is a method in which a water glass solution is passed through a cation exchange resin layer to exchange sodium ions with hydrogen ions.
[0021]
For example, a commercially available macroporous type strongly acidic cation exchange resin (manufactured by Organo: Amberlite IR-120B) is filled in a cylindrical experimental apparatus, and No. 3 water glass diluted to 5% with an SiO 2 concentration of the same amount as the resin capacity. The solution was passed in a small amount, and alkali-removed water glass (active silica) was recovered from the lower part.
[0022]
The activated silica recovered by passing through the No. 3 water glass is colorless and transparent and is the same as the diluted water glass, but is unstable. The SiO 2 concentration is about 2 to 4.5 (depending on the passage time), the molar ratio is 1030 to 1160, the pH is about 3, the gel time is about 70 hours, the gel time in soil is 0.8 minutes, Sand gel strength is about 2.5 kgf / cm 2 . Therefore, it was found that although it could not be used, it was not practically sufficient due to insufficient strength and stability.
[0023]
<Ion exchange membrane electrodialysis method>
On the other hand, it can be obtained by an ion exchange membrane electrodialysis method without using the ion exchange resin method. By this ion exchange membrane electrodialysis method, the dealkalization of the present invention in which the concentration of SiO 2 is 1 wt% or more, the molar ratio of SiO 2 / X 2 O (X: alkali metal) is 6 or more, and the pH is in the range of 7 to 12 is performed. A water glass solution can be obtained.
[0024]
The anion exchange membrane used in the present invention is not particularly limited, and a known anion exchange membrane can be used. The anion exchange group of the anion exchange membrane is not particularly limited, either, and is a known anion exchange group, for example, an anion exchange group such as an ammonium base, a pyridinium base, a primary amino group, a secondary amino group, and a tertiary amino group. Groups can be used. Among them, an ammonium base which has basic resistance and whose exchange group is dissociated even under basicity is desirable. The anion exchange membranes can be polymerized, condensed, homogeneous, or non-uniform, with or without a reinforcing core material, hydrocarbon-based, fluorine-based, and anion-exchange materials derived from materials and manufacturing methods. Any type may be used regardless of the type and type of the film. The preferred anion exchange membrane of the present invention is preferably a base-resistant anion exchange membrane in view of contact with a base.
[0025]
Furthermore, the cation exchange membrane used in the present invention is not particularly limited, and a known cation exchange membrane can be used. For example, a cation exchange membrane in which sulfonic acid groups, carboxylic acid groups, and a plurality of these ion exchange groups are mixed can be used. In addition, this cation exchange membrane is of polymerized type, condensed type, uniform type, non-uniform type, with or without a reinforcing core material, hydrocarbon type, fluorine type, derived from materials and manufacturing methods. The type and type of the cation exchange membrane may be of any type. In view of contact with the preferred cation exchange membrane base of the present invention, a base resistant cation exchange membrane is particularly preferred.
[0026]
In the present invention, known electrodes can be used for the electrodes of the electrodialysis apparatus without any limitation. That is, platinum, titanium / platinum, carbon, nickel, ruthenium / titanium, iridium / titanium and the like may be used as the anode, and iron, nickel, platinum, titanium / platinum, carbon and stainless steel may be used as the cathode. Further, a known structure is employed without particular limitation for the structure of the electrode. As a general structure, a plate shape, a mesh shape, a lattice shape, and the like can be given.
[0027]
In the present invention, it is preferable to use sodium hydroxide and potassium hydroxide as the electrode solution and nickel as the negative electrode.
[0028]
In the present invention, the electrodialysis apparatus is configured by alternately arranging cation exchange membranes and anion exchange membranes between electrodes to form a base chamber and a concentration chamber. FIG. 1 is an explanatory view showing a typical example of the electrodialysis apparatus of the present invention. However, the electrodialysis apparatus of the present invention is not limited to FIG. 1, and a known structure is employed without any particular limitation. The most preferable structure as an electric conduction device for obtaining the non-alkali silica sol of the present invention is that an anion exchange membrane and a cation exchange membrane are alternately arranged via a chamber frame having a cutout portion at the center for forming each chamber. It is a so-called filter press type structure that is arranged and tightened from both ends. Each chamber frame is provided with a liquid supply port and a liquid discharge port, and each liquid supply port and liquid discharge port is connected to a main pipe via a branch pipe as necessary. In addition, it is general to provide a spacer having a distribution function for keeping the thickness of the chamber frame uniform and making the flow of the supplied liquid uniform within the chamber frame.
[0029]
Next, the principle of the ion exchange membrane electrodialysis will be described together with the manufacturing method.
When a pair of anode and cathode are set in the electrolyte solution and a direct current is applied, cations move toward the cathode and anions move toward the anode. The ion exchange membrane electrodialysis utilizes such properties of ions, and the equilibrium reaction (hydrolysis) in the diluted No. 3 water glass aqueous solution is expressed by the following equations (5) and (6). It is.
[0030]
Embedded image
[0031]
Embedded image
[0032]
Then, a water glass aqueous solution can be obtained using the manufacturing apparatus illustrated in FIG. That is, the
[0033]
In this case, when a direct current is applied between the two
[0034]
Using this principle, it is possible to produce water glass (hereinafter referred to as dialyzed silica) in which Na ions, which are alkali components in water glass, are reduced.
[0035]
(Example of production of dialysis silica)
The production example of the dealkalized water glass solution of the present invention is shown below. The content of SiO 2 is measured under the conditions of Table 2 using an electrodialyzer (TS-2-10, manufactured by Tokuyama Corporation) under the conditions of Table 1. No. 3 water glass (electric conductivity: EC = 24 mS / cm) adjusted to 6% was dialyzed until EC = 4.5 mS / cm. The operation is performed by rinsing water for each batch (four times for 10 minutes) and then dialysis of the next batch (intermittent operation) and dialysis of the next batch without rinsing water for each batch (continuous operation) Driving).
[0036]
The dialysis was performed until the electric conductivity (24 mS / cm) of the stock solution became 4.5 mS / cm. As a result, the current efficiency of dialysis, the desalting rate, and the amount of electroosmotic water were as shown in Table 3. The relationship between dialysis time and conductivity, and the relationship between pH and conductivity are shown in FIGS.
[0037]
[Table 1]
[0038]
[Table 2]
[0039]
[Table 3]
[0040]
During the intermittent operation, there was no trouble that the concentrated solution became cloudy, but during the continuous operation, the flow rate of the concentrated solution was reduced in the second batch, and a clogging phenomenon occurred. As a result of disassembling the dialysis membrane, the concentration chamber was filled with gel.
[0041]
Considering the cause, the dialysis rate is considered to be a phenomenon that occurs because the electrical conductivity gradually decreases from around 9 mS / cm, and as desalination progresses, it becomes difficult for electricity to pass through the water glass. Considering that the inflection point where the pH of water glass starts to drop rapidly near the same electrical conductivity, this inflection point is almost the total amount of Na ions that are free or have a weak bond with silicic acid. Is considered to have been desalted, and after this point, it is also considered that Na ions that have a strong bond with silicic acid and silicate ions that are slightly electrolyzed have begun to be desalted.
[0042]
The cloudiness of the concentrated solution was confirmed by the fact that no cloudiness occurred when using a Na0H solution prepared with pure water. It is considered that calcium silicate was generated by reacting with silicate ions transferred from the chamber side. It is also conceivable that the gel generation during continuous continuous rotation is such that Fe ions and Al ions contained in the water glass migrate to the concentration chamber side and react with the silicic acid. Therefore, an experiment was conducted on the assumption that adding a sequestering agent (chelating agent) to the concentrated solution in advance could suppress clouding and generation of gel. As a result, by ethylenediaminetetraacetic acid disodium (EDTA · 2Na · 2H 2 0 ) is added 1 g / l, occurrence of white turbidity was was suppressed.
[0043]
Table 4 shows the results of the component analysis of the obtained dialyzed silica.
[0044]
[Table 4]
[0045]
The dialyzed silica is slightly cloudy in appearance as compared with the diluted water glass, and the SiO 2 concentration is slightly concentrated by the movement of water during dialysis and electrolysis, and the Na 2 O concentration is approximately It was desalinated to 1/5. Moreover, even though in a high molar ratio water glass molar ratio of about 20, (without even aside several months Si0 2 generation) are stable.
[0046]
FIG. 4 shows the relationship between the pH and the change over time in the electrical conductivity of the dialyzed silica immediately after dialysis. From this result, it is understood that the dialyzed silica enters a stable state after aging for about 24 hours immediately after dialysis.
[0047]
In order to examine the structure of the dialyzed silica, NMR (nuclear magnetic resonance) and infrared absorption spectrum (IR) were measured. As a result of the measurement, the colloidal silica has a structure similar to that of a commercially available colloidal silica, and is considered to be a colloidal silica having a small molar ratio.
[0048]
(About cloudiness)
As described above, in order to prevent cloudiness, it is effective to use a chelating agent for sequestering. The experimental results that lead to this will be described.
[0049]
A water solution prepared by diluting JIS No. 3 water glass so that the concentration of SiO 2 becomes 6% is used as a desalting solution. As a concentrated solution, as shown in Table 5, (1) 20 g of NaOH in pure water the dissolved NaOH solution, (2) causes the 20g of NaOH dissolved in tap water, respectively, as ethylenediaminetetraacetic acid disodium (EDTA · 2Na · 2H 2 0 ) of no addition, each amount as shown in Table Electrolysis was performed on the desalted solution until the electrical conductivity of the desalted solution reached 4.5 mS / cm, and the dialysis status was visually observed during this process. Table 5 shows the results.
[0050]
Here, the dialysis conditions were set such that the desalted solution was 2.0 liters, the concentrated solution was 2.0 liters, and the flow rates circulated by the pump were 3.0 liters / minute on the desalted solution side and the concentrated solution side, respectively. After the completion of one batch, the desalted solution and the concentrated solution were replaced, and dialysis was performed up to two batches.
[0051]
The Ca ion concentration of the tap water used was 32 mg / L, and the amount of EDTA · 2Na · 2H 20 (molecular weight 372.2 g) for theoretically masking the Ca ions was about 0.3 g / L. (= (0.032 / 40) × 372.2).
[0052]
[Table 5]
[0053]
As a result of the observation, in the case of a concentrate prepared with pure water or a concentrate prepared by adding EDTA · 2Na · 2H 20 to a stoichiometric amount to that prepared with tap water, there is no generation of white turbidity. When the amount was less than the theoretical amount, the occurrence of cloudiness was observed in all cases, although the degree of cloudiness varied.
[0054]
Further, in the case where turbidity was observed, although the dialysis time in the first batch was slightly longer, no change was observed in the pump flow rate. However, the pump flow rate decreased in the second batch, and the degree of turbidity was large. Things clogged and stopped flowing. This phenomenon is because the silica gel, which is the cause of cloudiness, was gradually clogged between the membranes during dialysis, and completely filled the membranes in the second batch. Those obtained by adding EDTA · 2Na ·
[0055]
In addition to the above experimental examples, as a chelating agent for sequestering, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, nitrilotriacetic acid, propylenediaminetetraacetic acid, bis (2-hydroxyphenylacetic acid) ethylenediamine, or a mixture thereof It was confirmed that the use of salts selected from the group consisting of salts and two or more of these salts was also effective in preventing cloudiness.
[0056]
(About use as ground improvement injection material)
The above-mentioned dialysis silica can be suitably used as a ground improvement injection material. As a reaction material of the dialysis silica, an organic acid and / or an inorganic acid can be used, which is used for neutralizing an alkali component in water glass and making the pH acidic, and specifically, There are sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, polyphosphoric acid, boric acid, carbonic acid, baking soda and the like as inorganic acids, and acetic acid, tartaric acid, citric acid and the like as organic acids.
[0057]
Since the water glass (dialysis silica) of the present invention has been subjected to dealkalization treatment, it is a major feature that a non-alkali silica sol ground improving injection material can be obtained by using a small amount of a weak acid.
Since the preparation of the non-alkali silica sol ground improvement injection material using the above dealkalized water glass solution and the reaction material is possible only by charging the reaction material while stirring the dealkalized water glass solution, it is extremely simple, In addition to the stirring tank, a liquid can be prepared using a line mixer or the like. The ground improvement injection material thus prepared can be injected into the ground as an injection material of one liquid by using an appropriate injection pipe.
[0058]
The soil-improved injection material obtained by the present invention has a lower concentration of acid and alkali cations contained in the acidic silica sol as a component thereof, and therefore has a higher stability of silica in the liquid than the conventional non-alkali silica sol soil-improved injection material. Since the degree is high, the pH value at which the same gel time is obtained is on the more neutral region side. Therefore, when used for ground improvement, the elution and mixing of acids and alkali metal salts that affect the environment can be significantly suppressed.
[0059]
In addition, the excellent ground improvement effect of the conventional sodium silicate-acid non-alkali silica sol ground improvement injection material has been inherited as it is.
[0060]
<Experimental example as ground injection material>
Dialysis silica itself is stable and has no gel time. Then, after examining the types of reactants and retarders of the non-alkali silica sol solution mainly composed of dialyzed silica, the basic characteristics were measured.
[0061]
The SiO 2 concentration of the activated silica sol was adjusted to 6%, and a reactant and a retarder were added thereto to prepare a sample. Toyoura sand was used for the strength test, the penetration test, and the measurement of the gel time.
[0062]
Phosphoric acid and citric acid were used as the reactants, and NaCl was used as an auxiliary, and the gel time was measured with the composition shown in Table 6.
[0063]
From the experimental results of the gel time shown in Table 7, since the formulation N0.5 has the gel time as the injection material for liquefaction, the results of the physical property tests performed under these blending conditions are shown below. Table 8 shows the results of the uniaxial compression test (moisture / air mold curing test and underwater curing test).
[0064]
[Table 6]
[0065]
[Table 7]
[0066]
[Table 8]
[0067]
Here, in the uniaxial compression test, the underwater curing was performed by removing and shaping the test specimen of 7 days of wet-air mold curing, and then immersing and curing the same in tap water at a constant temperature (20 ° C.).
[0068]
FIG. 5 shows a one-dimensional penetration experiment, FIG. 6 shows a dissolution test result, and FIG. 7 shows a result of a change in volume of the homogel.
[0069]
The soil gel time can be adjusted by increasing or decreasing the amount of citric acid and the pH, and it is necessary to change the composition for each type of sand. The strength was 2.6 kgf / cm 2 in both the mold and the water, and no deterioration due to the water was observed. The penetration ability was large, and the strength was the same even at a position away from the injection port. The volume change of the homogel was within the target condition with only about 0.3% shrinkage occurring after 30 days of curing. Si0 2 of the dissolution rate is about 2% curing 30 days, it was substantially the same as the non-alkaline silica sol. It was also found that the durability was sufficient.
[0070]
Furthermore, those Si0 2 concentration of water glass No. 3 is 6%, and Si0 2 concentration of water glass No. 3 is 7%, and Si0 2 concentration of the
[0071]
[Table 9]
[0072]
This result shows that by using the dialyzed silica obtained according to the present invention, the amount of the reactant required to obtain the same gel time as that obtained by using the conventional No. 3 water glass is reduced to about 1/8 or less. This indicates that the pH range usable for injection is also closer to the neutral range than before.
[0073]
In addition, the conventional No. 3 water glass having a SiO 2 concentration of 6% (pH: 4.0, 75% phosphoric acid amount: 59 L / m 3 ) and the SiO 2 concentration of the dialyzed silica obtained by the present invention. Was subjected to a homogel elution test with 6% (pH: 5.2, 75% phosphoric acid content: 7.3 liter / m 3 ), and the results shown in FIG. 10 were obtained. Each of these shows that the gel time of the injected material is about 1 hour.
[0074]
In this test, a homogel formed into a column having a diameter of 5 cm and a height of 10 cm was immersed in 2 liters of pure water, and the electrical conductivity was measured over time. The results shown in FIG. 10 show that the amount of elution is extremely small according to the compact formed using the non-alkali silica sol according to the present invention.
[0075]
【The invention's effect】
As described above, according to the present invention, by using dialysis silica, the amount of a reactant required to obtain the same gel time as compared with the case where conventional No. 3 water glass is used is about 1/8 or less. And the pH range usable for injection is also closer to the neutral range than before, and it is possible to obtain a non-alkali silica sol that has little effect on the environment when used as a ground improvement material.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an example of equipment for producing a dealkalized water glass solution by the ion exchange membrane electrodialysis method of the present invention.
FIG. 2 is a graph showing experimental results.
FIG. 3 is a graph showing experimental results.
FIG. 4 is a graph showing experimental results.
FIG. 5 is a graph showing experimental results.
FIG. 6 is a graph showing experimental results.
FIG. 7 is a graph showing experimental results.
FIG. 8 is a graph showing experimental results.
FIG. 9 is a graph showing experimental results.
FIG. 10 is a graph showing experimental results.
Claims (2)
前記各電極に通電させるとともに、前記脱塩室に水ガラス水溶液を流通させ、前記濃縮室に金属封鎖用キレート剤を含有する水酸化ナトリウム水溶液または水酸化カリウム水溶液を流通させて電気透析を行い、
SiO2 濃度が1wt%以上、SiO2 /X2 O(NaまたはK)のモル比が6以上、かつpHが7〜12の範囲の脱アルカリ水ガラス水溶液を得ることを特徴とする脱アルカリ水ガラス溶液の製造方法。An anode and a cathode are arranged at each end of the electrodialysis tank, and a cation exchange membrane and an anion exchange membrane are alternately positioned between them, thereby forming a concentration chamber and a desalination chamber alternately.
While conducting electricity to the respective electrodes, a water glass aqueous solution is allowed to flow through the desalting chamber, and a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution containing a chelating agent for sequestration is allowed to flow through the concentration chamber to perform electrodialysis.
A dealkalized water solution having an SiO 2 concentration of 1 wt% or more, a molar ratio of SiO 2 / X 2 O (Na or K) of 6 or more, and a pH in the range of 7 to 12; A method for producing a glass solution .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22569898A JP3547621B2 (en) | 1998-08-10 | 1998-08-10 | Method for producing alkali-free water glass solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22569898A JP3547621B2 (en) | 1998-08-10 | 1998-08-10 | Method for producing alkali-free water glass solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000053963A JP2000053963A (en) | 2000-02-22 |
JP3547621B2 true JP3547621B2 (en) | 2004-07-28 |
Family
ID=16833403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22569898A Expired - Fee Related JP3547621B2 (en) | 1998-08-10 | 1998-08-10 | Method for producing alkali-free water glass solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3547621B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346306A (en) * | 2003-04-28 | 2004-12-09 | Raito Kogyo Co Ltd | Manufacturing method of ground improvement injection material |
CN111039298B (en) * | 2020-01-13 | 2023-10-24 | 福建省三明正元化工有限公司 | Preparation method of high-dispersion silicon dioxide |
-
1998
- 1998-08-10 JP JP22569898A patent/JP3547621B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000053963A (en) | 2000-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3547621B2 (en) | Method for producing alkali-free water glass solution | |
JP4753265B2 (en) | Ground injection material and ground injection method | |
JP2012012483A (en) | Grout material for grouting and grouting method | |
JP3714586B2 (en) | Solidification material for ground injection | |
JP2004323326A (en) | Method for producing low alkaline water glass solution and material for civil engineering | |
JP4480903B2 (en) | Method for producing dealkalized water glass solution | |
KR100402455B1 (en) | Pouring material for ground | |
JP4908184B2 (en) | Ground injection grout material and ground injection method | |
JPS60144382A (en) | Grouting method and grouting apparatus | |
JPH1161124A (en) | Ground injection material, its manufacturing apparatus and injection method | |
JP2987620B2 (en) | Method of manufacturing ground injection material | |
KR100370880B1 (en) | Chemical Grouting by Use of Activated Silicate | |
JP4162197B2 (en) | Method for producing dealkalized water glass solution and method for producing injection material for ground improvement | |
JP4757428B2 (en) | Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material | |
JP3541135B2 (en) | Ground injection method | |
JP4093714B2 (en) | Method for producing acidic silica sol | |
JP2002079256A (en) | Method for manufacturing alkali removed water glass aqueous solution | |
KR20210052674A (en) | Method for preparing ion exchange resin with reduced metal impurity content | |
JP2004196922A (en) | Alkaline silica for ground hardening, apparatus for producing the same and ground hardening material | |
JP2001097714A (en) | Method for producing dealkalized water glass | |
JP2021079318A (en) | Method for producing iodine compound-containing aqueous solution | |
JP2003041253A (en) | Grouting material | |
KR102435016B1 (en) | Magnesium Oxychloride Cement And Method for Manufacturing the Same | |
JP2004346306A (en) | Manufacturing method of ground improvement injection material | |
JP2000109834A (en) | Chemical liquid for ground injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150423 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |