JP3544825B6 - Antibacterial acrylic fiber and method for producing the same - Google Patents
Antibacterial acrylic fiber and method for producing the same Download PDFInfo
- Publication number
- JP3544825B6 JP3544825B6 JP1997179863A JP17986397A JP3544825B6 JP 3544825 B6 JP3544825 B6 JP 3544825B6 JP 1997179863 A JP1997179863 A JP 1997179863A JP 17986397 A JP17986397 A JP 17986397A JP 3544825 B6 JP3544825 B6 JP 3544825B6
- Authority
- JP
- Japan
- Prior art keywords
- chitosan
- quaternary ammonium
- acrylic fiber
- antibacterial
- ammonium salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【0001】
【発明の属する技術分野】
本発明は衣料、インテリア及び資材用途等として用いることのできる抗菌性アクリル繊維及びその製造方法に関する。
【0002】
【従来の技術】
抗菌性繊維は、雑菌の増殖を抑制し、不快な異臭の発生を防止する目的で近年広く使用されており、衣料用、幼児、老人向け繊維製品として、また最近では健康と快適を強く求める消費者ニーズを受け、一般消費者向け製品として市中に広く流通している。
【0003】
このような抗菌性繊維には、種々の抗菌剤が用いられており、繊維製品への抗菌剤の複合処理方法も様々である。例えば、抗菌剤としては、銀−ゼオライト系を代表とする無機金属系物質を用いる技術(特開平5−272008号公報等)、銅化合物又は銅や亜鉛などの金属微粉末を繊維中に添加する方法(特開昭55−115440号公報等)、4級アンモニウム塩を誘導体を用いる方法(特開昭59−130371号公報)、トリクロロカルバニリド等のハロジアリル尿素化合物を用いる方法(特開平2−259169号公報)、その他の化合物としてサイアベンダゾール系化合物(特開昭61−616号公報)、フェノール系化合物(特開昭60−252713号公報等)、脂肪酸エステル系化合物を用いる方法(特開昭63−6173号公報等)などが知られている。
【0004】
しかしながら、銀、銅化合物を複合化した繊維は、晒し処理を行うと銀、銅化合物が変性し抗菌性が失われるという問題がある。
【0005】
こうした背景のもと、最近天然抗菌剤の機能性付与剤が注目されている。
例えば、青森ヒバや台湾ヒノキから抽出されるヒノキチオールは抗菌、防カビ性、防虫等の機能を持ち、甲殻類等から得られる天然多糖類キチンの脱アセチル化物であるキトサンは抗菌防臭、MRSA等に対する増殖抑制効果、高保湿性、アトピー性皮膚炎の予防、改善その他多くの機能を有すると言われ、繊維に付与して衣類に使用すると快適な感触が得られるという事例が知られている。
【0006】
キトサンをアクリル繊維に付与する方法としては、接着剤を用いる方法、キトサン微粉末を紡糸原液に練り込む方法、キトサンの酸性溶液で処理する方法等が知られている。しかしながら、キトサンを接着剤を用いて繊維に付与しようとするとキトサンの凝集作用で接着剤が凝集硬化してしまったり、またキトサン本来の機能を発現させようとすると接着剤の量が限定されることにより洗濯耐久性に劣る。また、キトサンを微粉末に粉砕してアクリロニトリル系重合体溶液に均一分散し公知の方法で紡糸しようとしても紡糸口金の紡糸孔に詰まる等の理由により生産性よく紡糸することは困難である。
【0007】
さらにアクリル繊維をキトサン酸性溶液に浸漬し、引き続いてアルカリ浴で中和して繊維表面に析出させる方法で得られたキトサン付与アクリル繊維の抗菌性能は、染色、柔軟処理等の後加工や洗濯により容易に失われる。
【0008】
【発明が解決しようとする課題】
そこで、本発明は、抗菌繊維製品に求められる、多くの細菌に対して効果があり、繊維の染色、晒し、柔軟処理等の後加工や洗濯、アイロン等の繊維製品が使用環境で受ける様々な処理による抗菌防臭性低下を回避し、かつ生産から廃棄まで含めた全過程で有害な物質を生じない抗菌アクリル繊維及びその製造方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、キトサン含有量が0.05〜2重量%、第四級アンモニウム塩含有量がキトサン含有量を上回り、3重量%以下の範囲にあることを特徴とする抗菌性アクリル繊維を第一の要旨とする。
【0010】
また、アクリロニトリル系重合体を溶剤に溶解した重合体溶液を、湿式紡糸し乾燥緻密化する以前の糸条を、キトサンと第四級アンモニウム塩の混合溶液に浸漬するか、キトサンと第四級アンモニウム塩溶液に順次浸漬し、その後乾燥緻密化することを特徴とする抗菌性アクリル繊維の製造方法を第二の要旨とする。
【0011】
【発明の実施の形態】
本発明において、アクリロニトリル系重合体とは、アクリロニトリル単位を50重量%以上含有し、これと共重合可能な不飽和単量体単位とからなるビニル重合体である。アクリロニトリル系重合体中のアクリロニトリル単位の量が50重量%未満の場合は、アクリル繊維の特徴である染色鮮明性、発色性が悪化するとともに、熱特性をはじめとする他の物性も低下する。
【0012】
アクリロニトリルと共重合可能な不飽和単量体としては、アクリル酸、メタクリル酸、又はこれらのアルキルエステル類、酢酸ビニル、アクリルアミド、塩化ビニル、塩化ビニリデン、さらに目的によってはビニルベンゼンスルホン酸ソーダ、メタリルスルホン酸ソーダ、アリルスルホン酸ソーダ、アクリルアミドメチルプロパンスルホン酸ソーダ、ソディウムパラスルホフェニールメタリルエーテル等のイオン性不飽和単量体を用いることができる。
【0013】
本発明に用いるキトサンは、例えばカニ、エビ等の甲殻類の外骨格を形成するキチン質から炭酸カルシウム、タンパク質を除去して得られるキチンを濃アルカリと加熱して脱アセチル化した塩基性多糖類である。
【0014】
本発明の抗菌性アクリル繊維のキトサン含有量としては、後述の測定方法で測定した含有量で0.05〜2重量%の範囲であることが、抗菌防臭性と染色性、柔軟性の両立の点から必要である。キトサン含有量が0.05重量%未満の場合、十分な柔軟性と抗菌性が発現しないし、2重量%を超える場合は染色性の低下、あるいは紡績工程でのキトサン脱落による操業性の悪化が発生する。特にアクリル繊維の長所である発色鮮明性を維持するためには、キトサン含有量が0.05重量%〜1重量%の範囲が特に好ましい。
【0015】
本発明において、キトサン含有量と称するのは実施例のところに述べた方法により測定したのもである。
【0016】
本発明の抗菌性アクリル繊維はキトサンとともに第四級アンモニウム塩を繊維に含有していることが必要である。驚くべきことに、この構成によりキトサンを含有することによって得られる柔軟性が恒久的なものとなる。第四級アンモニウム塩の含有量は、キトサン含有量を上回り、3重量%以下であることが必要である。第四級アンモニウム塩の含有量がキトサン含有量未満では、柔軟性が低くなると共に、キトサンと第四級アンモニウム塩の混合溶液に浸漬する製造工程時においてはキトサンの分散安定化、乾燥緻密化時の繊維の膠着抑制等の効果が低くなる。又、3重量%を超えると、染色性の低下、あるいは紡績工程での第四級アンモニウム塩の脱落による操業性悪化の原因となる。
【0017】
キトサンと第四級アンモニウム塩の併用は、キトサンと第四級アンモニウム塩の混合溶液に浸漬する製造工程においては、キトサンの安定分散化を維持し、さらに乾燥緻密化工程で繊維の膠着防止が可能となる利点も有する。
【0018】
特に、キトサンによる抗菌性能を染色、晒し等の後加工時、あるいは洗濯処理時においても維持し、製造工程でキトサンの安定分散化を容易にするためには、一般式が
【0019】
[R1R2(CH3)2N]+X-
(但し、R1、R2は炭素数8〜18の同一又は異なるアルキル基、X-はハロゲンイオン、有機酸アニオン又はオキソ酸イオンを示す。)の第四級アンモニウム塩の使用が好ましい。ここで有機酸アニオンはカルボキシレート、スルホネート、サルフェート、ホスフェート及びホスホネートの群から選ばれる1種以上のものであり、特にカルボキシレートとサルフェートが好ましい。有機酸アニオンを用いると、他のアニオンを用いた場合に繊維上に付着したハロゲンイオンやオキソ酸イオンによって引き起こされる紡績工程等の後工程での発錆の問題を抑制できる点で有利である。
【0020】
このような第四級アンモニウム塩としては、塩化ジデシルジメチルアンモニウム、塩化ジヒドロキシエチルデシルエチルアンモニウム、N−ヒドロキシエチルN,N−ジメチルN−ステアリルアミドエチルアンモニウムエチルスルホネート、ジデシルジメチルアンモニウムアジペート、ジデシルジメチルアンモニウムグルコネート等が好ましく用いられる。
【0021】
本発明の抗菌性アクリル繊維は、沸水中30分処理により工程油剤を除去しても低い繊維−繊維間の静摩擦係数を維持している。このことは染色工程、繊維製品となった後の洗濯を経ても低い繊維−繊維間の静摩擦係数、すなわち柔軟性が維持されることを意味し、最終繊維製品中にて本発明の繊維を70重量%以上使用する場合は、アクリル繊維製品の最終仕上げ工程時に通常使用する柔軟剤量を低くすることが可能となる。
【0022】
本発明の抗菌性アクリル繊維を紡績糸、布帛、不織布等の繊維複合体として用いる場合、抗菌性能と柔軟性を得るためには、本発明の抗菌性アクリル繊維が70重量%以上混合し、抗菌性のみを得るためには20重量%以上混合されていることが好ましい。本発明の抗菌性アクリル繊維と混合する繊維としては、使用目的に合わせて選択すればよく特に限定しないが、通常のアクリル繊維、綿、レーヨン、ウール、麻、絹、ポリエステル等公知の繊維が挙げられる。
【0023】
次に本発明の抗菌性アクリル繊維の製造方法について説明する。
上記のアクリロニトリル系重合体を溶解し、紡糸する溶剤としては、上記重合体が紡糸可能な濃度に溶解すればよく特に限定しないが、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶剤、硝酸、ロダン塩ソーダ、塩化亜鉛等の無機物の濃厚水溶液が挙げられる。後述する乾燥緻密化前のアクリル繊維糸条のミクロボイド形成の点からジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶剤が好適に用いられる。
【0024】
本発明においては、乾燥緻密化する前の凝固糸、洗浄糸、延伸糸と呼ばれる段階のアクリル繊維に、キトサンが酸の存在下に塩を形成し溶解する性質を用いて、キトサンとともに第四級アンモニウム塩を付与することが、後加工、洗濯等の使用環境でのキトサン脱落、キトサンの抗菌防臭性能の失活を抑制する上で必要である。本発明のアクリル繊維に付与されたキトサン、第四級アンモニウム塩の多くは、乾燥緻密化以前のアクリル繊維糸条に存在するミクロボイドや繊維組織中の比較的ルーズな部分に取り込まれ析出することにより脱落、失活が抑制され、抗菌防臭性が持続するものと推定される。
【0025】
乾燥緻密化以前のアクリル繊維糸条をキトサンと第四級アンモニウム塩の混合溶液に浸漬する方法は、工程を簡略化し、キトサン溶液の安定性の点で有利で、キトサン溶液と第四級アンモニウム塩溶液に順次浸漬する方法は工程管理を容易にすると同時に、キトサンの繊維中への含浸程度を独立して制御できるという点で有利である。
【0026】
第四級アンモニウム塩溶液の槽は、アクリル繊維の工程油剤処理槽と独立に設けることもできるし、工程油剤処理槽と兼ねても良い。第四級アンモニウム塩溶液に工程油剤を添加し、乾燥緻密化前のアクリル繊維糸条を処理することには、恒久的な柔軟性がさらに顕著となるので好ましい。
【0027】
キトサンを酸性水溶液に溶解するときの濃度としては、5重量%以下が容易に溶解できるので好ましい。酸の種類は特に限定しないが、塩酸、酢酸、乳酸、蟻酸等が好適に使用可能である。また、酸の濃度は、紡糸工程の腐食の問題からキトサンが溶解する範囲で低い程好ましい。
【0028】
本発明では第四級アンモニウム塩のほかにカチオン系又はノニオン系界面活性剤を併用することができる。
【0029】
【実施例】
以下の実施例により、本発明を更に具体的に説明する。なお、実施例において「重量%」は単に「%」と表示した。
(キトサン含有量の測定法)
1)秤量したアクリル繊維0.2gに70%塩化亜鉛溶液10mlを添加し、繊維を溶解した。
2)ジメチルアセトアミド2mlを添加して1時間放置した。
【0030】
3)エーリッヒ試薬(p−ジメチルアミノベンズアルデヒドの1%エタノール溶液)1mlを添加した。
4)2時間後に波長435nmで3)の溶液の吸光度を測定した。
5)検量線からキトサン濃度を求め、アクリル繊維含有量に換算した。
【0031】
(第四級アンモニウム塩含有量の測定法)
アクリル繊維をDMSO−d6中に4%となるように溶解し、1H−NMRを測定し、アクリロニトリル系重合体由来のピークと第四級アンモニウム塩由来のピークの面積比から繊維中の含有量を求めた。
【0032】
(重合体の還元粘度)
アクリニトリル系重合体の還元粘度ηredは、アクリニトリル系重合体をジメチルホルムアミドに0.5%となるよう溶解した重合体溶液の粘度を25℃においてキャノンフェンスケ粘度計を用いて測定した。
【0033】
(抗菌性能測定)
繊維製品衛生加工協議会で定めた菌数測定法により、黄色ブドウ状球菌による菌数増減値差を求めた。菌数増減値差1.6以上を抗菌性有効の基準とした。尚、洗濯方法は同協議会で定めた方法に従った。
【0034】
(繊維−繊維間の静摩擦係数)
レーダー法繊維摩擦係数測定機(興亜商会製)を使用して繊維−繊維間の静摩擦係数を測定した。
【0035】
(実施例1)
水系懸濁重合法により還元粘度1.96のアクリロニトリル系重合体(アクリロニトリル/酢酸ビニル=93/7重量比)を得た。これをジメチルアセトアミドに共重合体濃度が25%となるように溶解し紡糸原液とした。
【0036】
この紡糸原液を40℃、30%ジメチルアセトアミド水溶液を満たした紡糸浴中に湿式紡糸し、沸水中で溶剤を洗浄しながら5倍延伸を施した後、引き続き、キトサン(共和テクノス株式会社フローナックC)0.1%、酢酸0.05%、界面活性剤としてポリオキシエチレン(重合度200)0.3%、第四級アンモニウム塩として塩化ジデシルジメチルアンモニウム0.35%を分散した工程油剤を付与する油浴中に導き、繊維重量に対する付着水分量が100%となるように脱水した。その後、150℃の熱ローラーで乾燥緻密化を行った。
【0037】
さらに2.5kg/cm2の加圧スチームの中で緩和処理を行い、単繊維繊度3デニールのキトサン処理アクリル繊維を得た。本繊維中の付着キトサン量と第四級アンモニウム塩量を前記の方法で測定したところ0.08%と0.33%であった。また、油浴槽でのキトサンの分離、乾燥緻密化工程での繊維の膠着は認められなかった。
【0038】
この繊維を浴比1:50の沸水中で30分処理、水洗、風乾後の繊維−繊維間の静摩擦係数を測定したところ0.285であった。
【0039】
またこの繊維を51mm長にカットし、紡績糸を作製した。この紡績糸50g、染料(保土ヶ谷化学株式会社カチロンblue KGLH)0.25g、酢酸1g、酢酸ナトリウム0.25gを純水1000g中に添加し100℃まで昇温し、その温度℃で30分保持した後、水洗、脱水、乾燥した。染色後の紡績糸に対し肉眼判定で発色鮮明性を評価すると同時に、洗濯前、洗濯10回後の抗菌性を評価した。結果は表1のとおりであった。
【0040】
(実施例2〜4、比較例1〜3)
実施例1において、油浴槽中のキトサン濃度、酢酸濃度、界面活性剤濃度、キトサン酸性水溶液浸漬後の付着水分率を段階的に変更し、キトサン含有量、塩化ジデシルジメチルアンモニウム含有量の異なるアクリル繊維を得た。いずれも、油浴槽でのキトサンの分離、乾燥緻密化工程での繊維の膠着は認められなかった。実施例1と同様に操作して、繊維−繊維間の静摩擦係数、抗菌性を評価した結果、表1のとおりであった。
キトサン含有量2.4%、塩化ジデシルジメチルアンモニウム含有量2.88%原綿(比較例2)とキトサン含有量0.4%、塩化ジデシルジメチルアンモニウム含有量3.25%原綿(比較例3)は紡糸乾燥ローラーと、紡績工程へのキトサン(比較例2)あるいは塩化ジデシルジメチルアンモニウム(比較例3)付着が大であり、紡績糸を得ることは出来なかった。
【0041】
(比較例4)
界面活性剤としてポリオキシエチレン濃度0.2%、塩化ジメチルジデシルアンモニウム濃度0.2%のみからなりキトサンを含まない油浴槽で処理するほかは実施例1と同様に操作して、単繊維繊度3デニールのアクリル繊維を得た。実施例1と同様に測定した繊維−繊維間の静摩擦係数は0.455であった。
【0042】
この繊維を実施例と同様な操作を行って染色した紡績糸とした後、染色後洗濯前、洗濯10回後の抗菌性を評価した結果、表1に示した通り抗菌性は発現しなかった。
【0043】
(実施例5)
実施例1で得られたアクリル繊維30%と綿70%を混合して紡績糸を作製した。実施例1と同じ条件でカチオン染色した後、洗濯前、洗濯10回後の抗菌性を評価したところそれぞれ2.8と1.9であった。
【0044】
(実施例6)
油浴中の第四級アンモニウム塩と界面活性剤を塩化ジヒドロキシエチルデシルエチルアンモニウムの濃度0.3%、ポリオキシエチレン(重合度200)の濃度0.3%とした以外は実施例1と同様にしてアクリル繊維を得た。キトサン含有量は0.09%、塩化ジヒドロキシエチルデシルエチルアンモニウムの含有量は0.29%であった。また繊維−繊維間の静摩擦係数は0.320、抗菌性は洗濯前2.8、洗濯10回後は2.2であった。
【0045】
(実施例7)
油浴中の第四級アンモニウム塩と界面活性剤をN−ヒドロキシエチルN,N−ジメチルN−ステアリルアミドエチルアンモニウムエチルスルホネートの濃度0.4%、エチレンオキサイドプロピレンオキサイドブロックポリエーテル(エチレンオキサイド/プロピレンオキサイド=40/60、分子量5000)の濃度0.2%とした以外は実施例1と同様にしてアクリル繊維を得た。原綿中のキトサン含有量は0.09%、N−ヒドロキシエチルN、N−ジメチルN−ステアリルアミドエチルアンモニウムエチルスルホネートの含有量は0.38%であった。また繊維−繊維間の静摩擦係数は0.290、抗菌性は洗濯前2.6、洗濯10回後は2.0であった。
【0046】
(実施例8)
油浴中のキトサン(共和テクノス株式会社フローナックC)濃度0.1%、酢酸濃度0.05%、塩化ジデシルジメチルアンモニウム濃度0.35%に設定し、また工程油剤処理槽中のエチレンオキサイドプロピレンオキサイドブロックポリエーテル(エチレンオキサイド/プロピレンオキサイド=40/60、分子量5000)の濃度を0.2%した以外は実施例1と同様にして、アクリル繊維を得た。キトサン含有量は0.09%、塩化ジデシルジメチルアンモニウム付着量は0.32%であった。また、繊維−繊維間の静摩擦係数は0.295、抗菌性は洗濯前5.0、洗濯10回後4.8であった。
【0047】
(比較例5)
油浴中の界面活性剤をポリオキシエチレン(重合度200)の濃度0.5%とし、第四級アンモニウム塩を添加しない他は実施例1と同様にしてアクリル繊維を得た。キトサン含有量は0.09%であった。しかし繊維−繊維間の静摩擦係数は0.410であり、原綿の膠着が多く紡績糸を得ることはできなかった。
【0048】
(実施例11)
実施例1の「キトサン(共和テクノス株式会社フローナックC)0.1%、酢酸0.05%、界面活性剤としてポリオキシエチレン(重合度200)0.3%、第四級アンモニウム塩として塩化ジデシルジメチルアンモニウム0.35%を分散した工程油剤を付与する油浴中に導」く代わりに、「キトサン(共和テクノス株式会社フローナックC)0.1%、酢酸0.05%の浸漬漕に導入した後、界面活性剤としてポリオキシエチレン(重合度200)0.3%、第四級アンモニウム塩として塩化ジデシルジメチルアンモニウム0.35%を分散した工程油剤を付与する油浴中に導」き、アクリル繊維を得た。実施例1と同様にして、繊維−繊維間の静摩擦係数、抗菌性を評価した結果、表1のとおりであった。
【0049】
(実施例12〜14、比較例6、7)
実施例11においてキトサン溶液漕のキトサン濃度及び油浴槽中の塩化ジデシルジメチルアンモニウムの濃度段階的に変更し、キトサンと塩化ジデシルジメチルアンモニウムを含有するアクリル繊維を得た。実施例1と同様にして、繊維−繊維間の静摩擦係数、抗菌性を評価した結果、表1のとおりであった。
キトサン含有量2.48%、塩化ジデシルジメチルアンモニウム含有量2.96%の原綿(比較例6)は紡糸乾燥ローラーと、紡績工程へのキトサン付着が大であり紡績糸を得ることはできなかった。
【0050】
(比較例8)
キトサン溶液漕を介さず、界面活性剤としてポリオキシエチレン濃度0.2%、塩化ジデシルジメチルアンモニウム濃度0.2%とからなる油浴槽で処理する他は実施例11と同様に操作して、単繊維繊度3デニールのアクリル繊維を得た。実施例1と同様にして、測定した繊維−繊維間の静摩擦係数は0.446であった。
【0051】
この繊維を実施例1と同様に操作して、染色した紡績糸とした後、洗濯前、洗濯10回後の抗菌性を評価した結果、表1のとおり抗菌性は発現しなかった。
【0052】
(実施例15)
実施例11で得られたアクリル繊維30%と綿70%を混合して紡績糸を作製した。実施例1と同じ条件でカチオン染色した後、洗濯前、洗濯10回後の抗菌性を評価したところ、それぞれ3.1、2.4であった。
【0053】
(実施例16)
実施例11において、油浴中の第四級アンモニウム塩と界面活性剤を塩化ジヒドロキシエチルデシルエチルアンモニウム濃度0.3%、ポリオキシエチレン(重合度200)濃度0.3%とした以外は実施例11と同様にしてアクリル繊維を得た。原綿中のキトサン含有量は0.1%、塩化ジヒドロキシエチルデシルエチルアンモニウム含有量は0.29%であった。また繊維−繊維間の静摩擦係数は0.334、抗菌性は洗濯前4.26、洗濯10回後は3.5であった。
【0054】
(実施例17)
実施例11において、油浴中の第四級アンモニウム塩と界面活性剤をN−ヒドロキシエチルN,N−ジメチルN−ステアリルアミドエチルアンモニウムエチルスルホネートの濃度0.4%、エチレンオキサイドプロピレンオキサイドブロックポリエーテル(エチレンオキサイド/プロピレンオキサイド=40/60、分子量5000)の濃度0.2%とした以外は実施例11と同様にしてアクリル繊維を得た。原綿中のキトサン含有量は0.1%、N−ヒドロキシエチルN、N−ジメチルN−ステアリルアミドエチルアンモニウムエチルスルホネートの含有量は0.40%であった。また繊維−繊維間の静摩擦係数は0.298、抗菌性は洗濯前3.2、洗濯10回後は2.3であった。
【0055】
(実施例18)
実施例11において、油浴中のキトサン(共和テクノス株式会社フローナックC)濃度を0.1%、酢酸濃度を0.05%、塩化ジデシルジメチルアンモニウム濃度を0.35%にそれぞれ設定し、また工程油剤処理漕中のエチレンオキサイドプロピレンオキサイドブロックポリエーテル(エチレンオキサイド/プロピレンオキサイド=40/60、分子量5000)の濃度を0.2%とした以外は実施例11と同様にして、アクリル繊維を得た。キトサン含有量は0.1%、塩化ジヒドロキシエチルデシルエチルアンモニウム含有量は0.32%であった。また繊維−繊維間の静摩擦係数は0.295、抗菌性は洗濯前5.0、洗濯10回後は4.8であった。
【0056】
(比較例9)
実施例11において、油浴中の界面活性剤をポリオキシエチレン(重合度200)の濃度0.5%とし、第四級アンモニウム塩を添加しない他は実施例11と同様にしてアクリル繊維を得た。キトサン含有量は0.09%であった。しかし繊維−繊維間の静摩擦係数は0.410であり、原綿の膠着が多く紡績糸を得ることはできなかった。
【0057】
(実施例19)
実施例11において、油浴中の第四級アンモニウム塩をジデシルジメチルアンモニウムアジペート濃度0.4%とした以外は実施例11と同様にしてアクリル繊維を得た。キトサン含有量は0.1%、ジデシルジメチルアンモニウムアジペート含有量は0.39%であった。また繊維−繊維間の静摩擦係数は0.287、抗菌性は洗濯前4.8、洗濯10回後4.4であった。
【0058】
(実施例20)
実施例11において、油浴中の第四級アンモニウム塩をジデシルジメチルアンモニウムグルコネート濃度0.5%とした以外は実施例11と同様にしてアクリル繊維を得た。キトサン含有量は0.1%、ジデシルジメチルアンモニウムグルコネート含有量は0.47%であった。また繊維−繊維間の静摩擦係数は0.269、抗菌性は洗濯前5.2、洗濯10回後4.5であった。
【0059】
【表1】
【0060】
【発明の効果】
本発明によれば、繊維の染色、晒等の後加工や洗濯、アイロンなど繊維製品が使用環境でうける処理に対して抗菌性能が低下しないアクリル繊維が得られる。また、柔軟性を有するため、最終繊維製品中に本発明の繊維を70%以上使用する場合は、最終仕上げ工程で使用する柔軟処理剤の使用量を大幅に減少することができる。また、本発明の製造方法によれば、前記の繊維を効率よく製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial acrylic fiber that can be used for apparel, interior, materials, and the like, and a method for producing the same.
[0002]
[Prior art]
Antibacterial fibers have been widely used in recent years for the purpose of suppressing the growth of various bacteria and preventing the generation of unpleasant odors, and as a textile product for clothing, infants, and elderly people, and recently, consumption that strongly demands health and comfort. In response to consumer needs, it is widely distributed throughout the city as a product for general consumers.
[0003]
Various antibacterial agents are used for such antibacterial fibers, and there are various methods for complex treatment of the antibacterial agents on the fiber products. For example, as an antibacterial agent, a technique using an inorganic metal material typified by silver-zeolite (JP-A-5-272008, etc.), a copper compound or a metal fine powder such as copper or zinc is added to the fiber. Method (Japanese Patent Laid-Open No. 55-115440), a method using a derivative of a quaternary ammonium salt (Japanese Patent Laid-Open No. 59-130371), a method using a halodiallyl urea compound such as trichlorocarbanilide (Japanese Patent Laid-Open No. Hei 2- 259169), as other compounds, cyabendazole compounds (JP-A 61-616), phenolic compounds (JP 60-252713, etc.), fatty acid ester compounds Sho 63-6173, etc.) are known.
[0004]
However, a fiber in which silver and a copper compound are combined has a problem that, when exposed to treatment, the silver and copper compounds are modified and the antibacterial properties are lost.
[0005]
Against this background, recently, natural antibacterial function-imparting agents have attracted attention.
For example, hinokitiol extracted from Aomori hiba and Taiwan cypress has antibacterial, fungicidal and insect repellent functions, and chitosan, which is a deacetylated product of natural polysaccharide chitin obtained from crustaceans, has antibacterial, deodorant, MRSA, etc. It is said to have a growth inhibitory effect, high moisturizing property, prevention and improvement of atopic dermatitis, and many other functions, and there are known examples that a comfortable feel can be obtained when applied to clothing by applying to fibers.
[0006]
Known methods for applying chitosan to acrylic fibers include a method using an adhesive, a method of kneading chitosan fine powder into a spinning dope, and a method of treating with an acidic solution of chitosan. However, if chitosan is applied to fibers using an adhesive, the adhesive will coagulate and harden due to the aggregating action of chitosan, and the amount of adhesive will be limited if an attempt is made to express chitosan's original functions. This is inferior in washing durability. Further, even if chitosan is pulverized into a fine powder and uniformly dispersed in an acrylonitrile-based polymer solution and spun by a known method, it is difficult to spin with high productivity because of clogging of the spinneret spin hole.
[0007]
Furthermore, the antibacterial performance of the chitosan-added acrylic fiber obtained by dipping the acrylic fiber in an acidic solution of chitosan, subsequently neutralizing with an alkaline bath and precipitating it on the fiber surface is achieved by post-processing such as dyeing and softening treatment and washing. Easily lost.
[0008]
[Problems to be solved by the invention]
Therefore, the present invention is effective against many bacteria required for antibacterial fiber products, and various kinds of fiber products such as post-processing such as dyeing, exposing, and softening of fibers, washing, and ironing in an environment of use. It is an object of the present invention to provide an antibacterial acrylic fiber that avoids a decrease in antibacterial and deodorant properties due to treatment and does not produce harmful substances throughout the entire process from production to disposal, and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention provides an antibacterial acrylic fiber characterized in that the chitosan content is 0.05 to 2% by weight, the quaternary ammonium salt content is more than the chitosan content and is in the range of 3% by weight or less. The gist of
[0010]
Alternatively, a polymer solution in which an acrylonitrile polymer is dissolved in a solvent is dipped in a mixed solution of chitosan and quaternary ammonium salt, or the chitosan and quaternary ammonium salt, before being wet-spun and dried and densified. A second gist is a method for producing an antibacterial acrylic fiber, which is characterized by sequentially immersing in a salt solution and then drying and densifying.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the acrylonitrile-based polymer is a vinyl polymer containing 50% by weight or more of acrylonitrile units and comprising unsaturated monomer units copolymerizable therewith. When the amount of acrylonitrile units in the acrylonitrile-based polymer is less than 50% by weight, the dyeing vividness and color development characteristic of acrylic fibers are deteriorated and other physical properties such as thermal properties are also deteriorated.
[0012]
Examples of unsaturated monomers copolymerizable with acrylonitrile include acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, acrylamide, vinyl chloride, vinylidene chloride, and depending on the purpose, sodium vinylbenzene sulfonate and methallyl. Ionic unsaturated monomers such as sodium sulfonate, sodium allyl sulfonate, sodium acrylamide methyl propane sulfonate, sodium parasulfophenyl methallyl ether and the like can be used.
[0013]
The chitosan used in the present invention is a basic polysaccharide obtained by deacetylating chitin obtained by removing calcium carbonate and protein from chitin that forms the exoskeleton of crustaceans such as crabs and shrimps and heating with concentrated alkali. It is.
[0014]
The chitosan content of the antibacterial acrylic fiber of the present invention is in the range of 0.05 to 2% by weight as measured by the measurement method described later, which satisfies both antibacterial and deodorant properties, dyeability and flexibility. Necessary from a point. When the chitosan content is less than 0.05% by weight, sufficient flexibility and antibacterial properties are not exhibited. When the chitosan content exceeds 2% by weight, the dyeability deteriorates or the operability deteriorates due to the removal of chitosan in the spinning process. Occur. In particular, in order to maintain the color vividness which is an advantage of acrylic fibers, the chitosan content is particularly preferably in the range of 0.05% by weight to 1% by weight.
[0015]
In the present invention, the chitosan content is measured by the method described in Examples.
[0016]
The antibacterial acrylic fiber of the present invention needs to contain a quaternary ammonium salt in the fiber together with chitosan. Surprisingly, this configuration makes the flexibility obtained by containing chitosan permanent. The content of the quaternary ammonium salt needs to exceed the chitosan content and be 3% by weight or less. When the content of the quaternary ammonium salt is less than the content of chitosan, the flexibility is lowered, and during the manufacturing process of immersing in the mixed solution of chitosan and quaternary ammonium salt, during dispersion stabilization of the chitosan and dry densification The effect of suppressing the sticking of the fibers becomes low. On the other hand, if it exceeds 3% by weight, the dyeability is lowered, or the operability is deteriorated due to the quaternary ammonium salt being removed in the spinning process.
[0017]
The combined use of chitosan and quaternary ammonium salt maintains the stable dispersion of chitosan in the manufacturing process where it is immersed in a mixed solution of chitosan and quaternary ammonium salt, and also prevents fiber sticking in the dry densification process. There are also advantages.
[0018]
In particular, in order to maintain the antibacterial performance of chitosan during post-processing such as dyeing and bleaching, or during washing, and to facilitate stable dispersion of chitosan in the production process, the general formula is
[R 1 R 2 (CH 3 ) 2 N] + X −
It is preferable to use a quaternary ammonium salt (wherein R 1 and R 2 are the same or different alkyl groups having 8 to 18 carbon atoms, and X − represents a halogen ion, an organic acid anion or an oxo acid ion). Here, the organic acid anion is one or more selected from the group of carboxylate, sulfonate, sulfate, phosphate and phosphonate, and carboxylate and sulfate are particularly preferable. Use of an organic acid anion is advantageous in that the problem of rusting in a subsequent process such as a spinning process caused by halogen ions or oxo acid ions attached to the fiber when other anions are used can be suppressed.
[0020]
Such quaternary ammonium salts include didecyldimethylammonium chloride, dihydroxyethyldecylethylammonium chloride, N-hydroxyethyl N, N-dimethylN-stearylamidoethylammonium ethylsulfonate, didecyldimethylammonium adipate, didecyl Dimethylammonium gluconate and the like are preferably used.
[0021]
The antibacterial acrylic fiber of the present invention maintains a low fiber-to-fiber coefficient of static friction even when the process oil is removed by treatment with boiling water for 30 minutes. This means that the low coefficient of friction between the fibers and fibers, that is, the flexibility is maintained even after washing after the dyeing process and the textile product, and the fiber of the present invention is 70% in the final textile product. In the case of using more than% by weight, it becomes possible to reduce the amount of the softener normally used in the final finishing process of the acrylic fiber product.
[0022]
When the antibacterial acrylic fiber of the present invention is used as a fiber composite such as spun yarn, fabric or nonwoven fabric, in order to obtain antibacterial performance and flexibility, the antibacterial acrylic fiber of the present invention is mixed in an amount of 70% by weight or more. In order to obtain only the property, it is preferable that 20% by weight or more is mixed. The fiber to be mixed with the antibacterial acrylic fiber of the present invention is not particularly limited as long as it is selected according to the purpose of use, but includes known acrylic fiber, cotton, rayon, wool, hemp, silk, polyester, and other known fibers. It is done.
[0023]
Next, the manufacturing method of the antibacterial acrylic fiber of this invention is demonstrated.
The solvent for dissolving and spinning the acrylonitrile-based polymer is not particularly limited as long as the polymer is dissolved at a spinnable concentration, but organic solvents such as dimethylacetamide, dimethylformamide, and dimethylsulfoxide, nitric acid, rhodan Examples thereof include concentrated aqueous solutions of inorganic substances such as salt soda and zinc chloride. An organic solvent such as dimethylacetamide, dimethylformamide, or dimethylsulfoxide is preferably used from the viewpoint of forming microvoids in the acrylic fiber yarn before drying and densification described later.
[0024]
In the present invention, chitosan forms a salt in the presence of an acid and dissolves in acrylic fibers at a stage called dried, densified coagulated yarn, washed yarn, drawn yarn, and quaternary with chitosan. It is necessary to give an ammonium salt in order to suppress the deactivation of chitosan in the use environment such as post-processing and washing, and the deactivation of the antibacterial and deodorizing performance of chitosan. Most of the chitosan and quaternary ammonium salts imparted to the acrylic fiber of the present invention are taken into the microvoids present in the acrylic fiber yarn before drying and densification, and are deposited and deposited in relatively loose parts of the fiber structure. It is estimated that dropout and deactivation are suppressed and antibacterial and deodorant properties are maintained.
[0025]
The method of immersing the acrylic fiber yarn before drying and densification in the mixed solution of chitosan and quaternary ammonium salt is advantageous in terms of the stability of the chitosan solution and the chitosan solution and the quaternary ammonium salt. The method of sequentially immersing in a solution is advantageous in that the process control is facilitated and at the same time the degree of impregnation of chitosan into the fibers can be controlled independently.
[0026]
The tank of the quaternary ammonium salt solution can be provided independently of the process oil agent treatment tank of acrylic fiber, or may serve as the process oil agent treatment tank. It is preferable to add a process oil to the quaternary ammonium salt solution and treat the acrylic fiber yarn before drying and densification, since permanent flexibility becomes more remarkable.
[0027]
The concentration when chitosan is dissolved in an acidic aqueous solution is preferably 5% by weight or less because it can be easily dissolved. Although the kind of acid is not particularly limited, hydrochloric acid, acetic acid, lactic acid, formic acid and the like can be suitably used. The acid concentration is preferably as low as possible in the range in which chitosan is dissolved due to corrosion problems in the spinning process.
[0028]
In the present invention, in addition to a quaternary ammonium salt, a cationic or nonionic surfactant can be used in combination.
[0029]
【Example】
The following examples further illustrate the present invention. In the examples, “wt%” is simply indicated as “%”.
(Measurement method of chitosan content)
1) 10 ml of 70% zinc chloride solution was added to 0.2 g of the weighed acrylic fiber to dissolve the fiber.
2) 2 ml of dimethylacetamide was added and left for 1 hour.
[0030]
3) 1 ml of Erich reagent (1% ethanol solution of p-dimethylaminobenzaldehyde) was added.
4) After 2 hours, the absorbance of the solution of 3) was measured at a wavelength of 435 nm.
5) The chitosan concentration was determined from the calibration curve and converted to the acrylic fiber content.
[0031]
(Method of measuring quaternary ammonium salt content)
Acrylic fiber is dissolved in DMSO-d 6 so as to be 4%, 1 H-NMR is measured, and the content in the fiber is determined from the area ratio of the peak derived from the acrylonitrile polymer and the peak derived from the quaternary ammonium salt. The amount was determined.
[0032]
(Reduced viscosity of polymer)
The reduced viscosity ηred of the acrylonitrile polymer was measured using a Canon Fenceke viscometer at 25 ° C. with a polymer solution obtained by dissolving the acrylonitrile polymer in dimethylformamide at 0.5%.
[0033]
(Measurement of antibacterial performance)
The difference in the increase / decrease in the number of bacteria due to Staphylococcus aureus was determined by the method for measuring the number of bacteria defined by the Textile Sanitation Processing Council. The difference in bacterial count increase / decrease value of 1.6 or more was used as the standard for antibacterial activity. The washing method was in accordance with the method established by the council.
[0034]
(Coefficient of static friction between fibers)
Using a radar method fiber friction coefficient measuring machine (manufactured by Koa Shokai), the coefficient of static friction between fibers was measured.
[0035]
Example 1
An acrylonitrile polymer (acrylonitrile / vinyl acetate = 93/7 weight ratio) having a reduced viscosity of 1.96 was obtained by an aqueous suspension polymerization method. This was dissolved in dimethylacetamide so that the copolymer concentration was 25% to obtain a spinning dope.
[0036]
This spinning stock solution was wet-spun into a spinning bath filled with a 30% dimethylacetamide aqueous solution at 40 ° C., and subjected to 5 times stretching while washing the solvent in boiling water, followed by chitosan (Kyowa Technos Co., Ltd., Flowac C). A process oil in which 0.1% acetic acid 0.05%, polyoxyethylene (degree of polymerization 200) 0.3% as a surfactant and 0.35% didecyldimethylammonium chloride as a quaternary ammonium salt are dispersed. It led to the oil bath to provide and it spin-dehydrated so that the moisture content with respect to a fiber weight might be 100%. Thereafter, drying and densification were performed with a heat roller at 150 ° C.
[0037]
Further, relaxation treatment was performed in a pressurized steam of 2.5 kg / cm 2 to obtain a chitosan-treated acrylic fiber having a single fiber fineness of 3 denier. The amount of adhering chitosan and the amount of quaternary ammonium salt in this fiber were measured by the above-mentioned method and found to be 0.08% and 0.33%. Further, separation of chitosan in the oil bath and fiber sticking in the drying densification process were not observed.
[0038]
The fiber was measured for a coefficient of static friction between fiber and fiber after 30 minutes of treatment in boiling water at a bath ratio of 1:50, washing with water, and air drying to find 0.285.
[0039]
Moreover, this fiber was cut into 51 mm length, and the spun yarn was produced. 50 g of this spun yarn, 0.25 g of dye (Hodogaya Chemical Co., Ltd. Katilon blue KGLH), 1 g of acetic acid, and 0.25 g of sodium acetate were added to 1000 g of pure water, heated to 100 ° C., and held at that temperature for 30 minutes. Thereafter, it was washed with water, dehydrated and dried. The dyed spun yarn was evaluated for visual color clarity by naked eye judgment, and at the same time, antibacterial properties were evaluated before and after washing 10 times. The results are shown in Table 1.
[0040]
(Examples 2-4, Comparative Examples 1-3)
In Example 1, the chitosan concentration in the oil bath, the acetic acid concentration, the surfactant concentration, the moisture content after immersion in the chitosan acidic aqueous solution were changed stepwise, and the acrylics differing in chitosan content and didecyldimethylammonium chloride content. Fiber was obtained. In any case, separation of chitosan in the oil bath and fiber sticking in the drying densification process were not recognized. As a result of operating in the same manner as in Example 1 and evaluating the coefficient of static friction between fibers and antibacterial properties, the results are shown in Table 1.
Chitosan content 2.4%, didecyldimethylammonium chloride content 2.88% raw cotton (Comparative Example 2) and chitosan content 0.4%, didecyldimethylammonium chloride content 3.25% raw cotton (Comparative Example 3) ) Had a large adhesion to the spinning drying roller and chitosan (Comparative Example 2) or didecyldimethylammonium chloride (Comparative Example 3) to the spinning process, and it was impossible to obtain a spun yarn.
[0041]
(Comparative Example 4)
The single fiber fineness is the same as in Example 1 except that the surfactant is a polyoxyethylene concentration of 0.2% and a dimethyldidecylammonium chloride concentration of 0.2% and is treated in an oil bath containing no chitosan. A 3 denier acrylic fiber was obtained. The coefficient of static friction between the fibers measured in the same manner as in Example 1 was 0.455.
[0042]
After making this fiber into a spun yarn dyed by performing the same operation as in Example, antibacterial property was not expressed as shown in Table 1 as a result of evaluating antibacterial property after dyeing before washing and after 10 washings. .
[0043]
(Example 5)
30% acrylic fiber obtained in Example 1 and 70% cotton were mixed to prepare a spun yarn. After cationic dyeing under the same conditions as in Example 1, the antibacterial properties before and after washing 10 times were evaluated to be 2.8 and 1.9, respectively.
[0044]
(Example 6)
Example 1 except that the quaternary ammonium salt and the surfactant in the oil bath were adjusted to 0.3% dihydroxyethyldecylethylammonium chloride and 0.3% polyoxyethylene (degree of polymerization 200). An acrylic fiber was obtained. The chitosan content was 0.09%, and the content of dihydroxyethyl decylethylammonium chloride was 0.29%. The coefficient of static friction between fibers was 0.320, the antibacterial property was 2.8 before washing, and 2.2 after 10 washings.
[0045]
(Example 7)
A quaternary ammonium salt and a surfactant in an oil bath were mixed with a 0.4% concentration of N-hydroxyethyl N, N-dimethyl N-stearylamide ethylammonium ethyl sulfonate, ethylene oxide / propylene oxide block polyether (ethylene oxide / propylene). An acrylic fiber was obtained in the same manner as in Example 1 except that the concentration of oxide = 40/60, molecular weight 5000) was 0.2%. The chitosan content in the raw cotton was 0.09%, and the content of N-hydroxyethyl N and N-dimethyl N-stearylamidoethylammonium ethyl sulfonate was 0.38%. The coefficient of static friction between the fibers was 0.290, the antibacterial property was 2.6 before washing, and 2.0 after 10 washings.
[0046]
(Example 8)
Chitosan (Kyowa Technos Co., Ltd. Flownack C) concentration in oil bath is set to 0.1%, acetic acid concentration 0.05%, didecyldimethylammonium chloride concentration 0.35%, and ethylene oxide in the process oil treatment tank An acrylic fiber was obtained in the same manner as in Example 1 except that the concentration of propylene oxide block polyether (ethylene oxide / propylene oxide = 40/60, molecular weight 5000) was 0.2%. The chitosan content was 0.09%, and the amount of didecyldimethylammonium chloride deposited was 0.32%. The coefficient of static friction between fibers was 0.295, and the antibacterial property was 5.0 before washing and 4.8 after 10 washings.
[0047]
(Comparative Example 5)
An acrylic fiber was obtained in the same manner as in Example 1 except that the surfactant in the oil bath had a polyoxyethylene (degree of polymerization of 200) concentration of 0.5% and no quaternary ammonium salt was added. The chitosan content was 0.09%. However, the coefficient of static friction between fibers was 0.410, and there was much sticking of raw cotton, and it was not possible to obtain spun yarn.
[0048]
(Example 11)
Example 1 “Chitosan (Kyowa Technos Co., Ltd. Flownack C) 0.1%, acetic acid 0.05%, polyoxyethylene (degree of polymerization 200) 0.3% as a surfactant, chloride as a quaternary ammonium salt Instead of “introducing into an oil bath to which a process oil agent in which 0.35% of didecyldimethylammonium is dispersed” is applied, “a chitosan (Kyowa Technos Co., Ltd., Flownack C) 0.1%, acetic acid 0.05% soaker” And then introduced into an oil bath to which a process oil containing 0.3% polyoxyethylene (degree of polymerization 200) as a surfactant and 0.35% didecyldimethylammonium chloride as a quaternary ammonium salt is applied. "Acquired acrylic fiber. As in Example 1, the coefficient of static friction between the fibers and the fibers and the antibacterial properties were evaluated.
[0049]
(Examples 12 to 14, Comparative Examples 6 and 7)
In Example 11, the chitosan concentration of the chitosan solution soot and the concentration of didecyldimethylammonium chloride in the oil bath were changed stepwise to obtain an acrylic fiber containing chitosan and didecyldimethylammonium chloride. As in Example 1, the coefficient of static friction between the fibers and the fibers and the antibacterial properties were evaluated.
The raw cotton with a chitosan content of 2.48% and a didecyldimethylammonium chloride content of 2.96% (Comparative Example 6) has a large amount of chitosan adhesion to the spinning drying roller and spinning process, and it is not possible to obtain a spun yarn. It was.
[0050]
(Comparative Example 8)
The same operation as in Example 11 was carried out except that the treatment was performed in an oil bath composed of a polyoxyethylene concentration of 0.2% and a didecyldimethylammonium chloride concentration of 0.2% as a surfactant without using a chitosan solution soot. An acrylic fiber having a single fiber fineness of 3 denier was obtained. In the same manner as in Example 1, the measured coefficient of static friction between the fibers was 0.446.
[0051]
After the fiber was operated in the same manner as in Example 1 to obtain a dyed spun yarn, the antibacterial properties before and after washing 10 times were evaluated.
[0052]
(Example 15)
30% acrylic fiber obtained in Example 11 and 70% cotton were mixed to prepare a spun yarn. After cationic dyeing under the same conditions as in Example 1, the antibacterial properties before and after washing 10 times were evaluated to be 3.1 and 2.4, respectively.
[0053]
(Example 16)
In Example 11, the quaternary ammonium salt and the surfactant in the oil bath were used except that the concentration of dihydroxyethyl decylethylammonium chloride was 0.3% and the concentration of polyoxyethylene (degree of polymerization 200) was 0.3%. In the same manner as in Example 11, an acrylic fiber was obtained. The chitosan content in the raw cotton was 0.1%, and the dihydroxyethyldecylethylammonium chloride content was 0.29%. The coefficient of static friction between fibers was 0.334, the antibacterial property was 4.26 before washing, and 3.5 after 10 washings.
[0054]
(Example 17)
In Example 11, the quaternary ammonium salt and the surfactant in the oil bath were N-hydroxyethyl N, N-dimethyl N-stearylamidoethylammonium ethyl sulfonate at a concentration of 0.4%, ethylene oxide propylene oxide block polyether. An acrylic fiber was obtained in the same manner as in Example 11 except that the concentration of ethylene oxide / propylene oxide = 40/60, molecular weight 5000 was 0.2%. The chitosan content in the raw cotton was 0.1%, and the content of N-hydroxyethyl N, N-dimethyl N-stearylamidoethylammonium ethyl sulfonate was 0.40%. The coefficient of static friction between the fibers was 0.298, the antibacterial property was 3.2 before washing, and 2.3 after 10 washings.
[0055]
(Example 18)
In Example 11, chitosan (Kyowa Technos Co., Ltd. Flownack C) concentration in the oil bath was set to 0.1%, acetic acid concentration to 0.05%, didecyldimethylammonium chloride concentration to 0.35%, Further, the acrylic fiber was treated in the same manner as in Example 11 except that the concentration of ethylene oxide / propylene oxide block polyether (ethylene oxide / propylene oxide = 40/60, molecular weight 5000) in the process oil agent treated soot was 0.2%. Obtained. The chitosan content was 0.1% and the dihydroxyethyl decylethylammonium chloride content was 0.32%. The coefficient of static friction between the fibers was 0.295, the antibacterial property was 5.0 before washing, and 4.8 after 10 washings.
[0056]
(Comparative Example 9)
In Example 11, an acrylic fiber was obtained in the same manner as in Example 11 except that the surfactant in the oil bath had a polyoxyethylene (degree of polymerization of 200) concentration of 0.5% and no quaternary ammonium salt was added. It was. The chitosan content was 0.09%. However, the coefficient of static friction between the fibers was 0.410, and there was much sticking of the raw cotton, and it was not possible to obtain a spun yarn.
[0057]
(Example 19)
In Example 11, acrylic fibers were obtained in the same manner as in Example 11 except that the quaternary ammonium salt in the oil bath was adjusted to a didecyldimethylammonium adipate concentration of 0.4%. The chitosan content was 0.1% and the didecyldimethylammonium adipate content was 0.39%. The coefficient of static friction between the fibers was 0.287, and the antibacterial properties were 4.8 before washing and 4.4 after 10 washings.
[0058]
(Example 20)
In Example 11, an acrylic fiber was obtained in the same manner as in Example 11 except that the quaternary ammonium salt in the oil bath was adjusted to a didecyldimethylammonium gluconate concentration of 0.5%. The chitosan content was 0.1% and the didecyldimethylammonium gluconate content was 0.47%. The coefficient of static friction between the fibers was 0.269, the antibacterial property was 5.2 before washing, and 4.5 after 10 washings.
[0059]
[Table 1]
[0060]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the acrylic fiber with which antibacterial performance does not fall with respect to the process which textiles receive after-processes, such as dyeing | staining of a fiber, a bleaching, and washing | cleaning and an iron, is used. Moreover, since it has a softness | flexibility, when using the fiber of this invention 70% or more in a final fiber product, the usage-amount of the softening processing agent used at a final finishing process can be reduced significantly. Moreover, according to the manufacturing method of this invention, the said fiber can be manufactured efficiently.
Claims (6)
[R1R2(CH3)2N]+X-
(但し、R1、R2は炭素数8〜18の同一又は異なるアルキル基、X-はハロゲンイオン、有機酸アニオン又はオキソ酸イオンを示す。)
である請求項1記載の抗菌性アクリル繊維。Quaternary ammonium salts are of the general formula
[R 1 R 2 (CH 3 ) 2 N] + X −
(However, R 1 and R 2 are the same or different alkyl groups having 8 to 18 carbon atoms, and X − represents a halogen ion, an organic acid anion or an oxo acid ion.)
The antibacterial acrylic fiber according to claim 1.
[R1R2(CH3)2N]+X-
(但し、R1、R2は炭素数8〜18の同一又は異なるアルキル基、X-はハロゲンイオン、有機酸アニオン又はオキソ酸イオンを示す。)
である請求項4記載の抗菌性アクリル繊維の製造方法。Quaternary ammonium salts are of the general formula
[R 1 R 2 (CH 3 ) 2 N] + X −
(However, R 1 and R 2 are the same or different alkyl groups having 8 to 18 carbon atoms, and X − represents a halogen ion, an organic acid anion or an oxo acid ion.)
The method for producing an antibacterial acrylic fiber according to claim 4.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1997179863A JP3544825B6 (en) | 1996-09-17 | 1997-07-04 | Antibacterial acrylic fiber and method for producing the same |
CNB2004100325936A CN1276147C (en) | 1996-09-17 | 1997-08-06 | Preparation method of acrylonitrile fiber containing deacetyl chitin |
CNB971987823A CN1168861C (en) | 1996-09-17 | 1997-08-06 | Chitosan-containing acrylic fibers and process for preparing the same |
GB9905546A GB2339717B (en) | 1996-09-17 | 1997-08-06 | Chitosan-containing acrylic fibers and process for preparing the same |
PCT/JP1997/002725 WO1998012369A1 (en) | 1996-09-17 | 1997-08-06 | Chitosan-containing acrylic fibers and process for preparing the same |
KR10-1999-7002195A KR100441358B1 (en) | 1996-09-17 | 1997-08-06 | Chitosan-containing acrylic fibers and process for preparing the same |
TW086111551A TW369571B (en) | 1996-09-17 | 1997-08-08 | Chitosan-containing acrylonitrile fibers and process |
US09/271,272 US6551705B1 (en) | 1996-09-17 | 1999-03-17 | Chitosan-containing acrylic fibers and process for preparing the same |
US09/605,707 US6524508B1 (en) | 1996-09-17 | 2000-06-27 | Process of making chitosan-containing acrylic fibers |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-245137 | 1996-09-17 | ||
JP1996245137 | 1996-09-17 | ||
JP24513796 | 1996-09-17 | ||
JP1997179863A JP3544825B6 (en) | 1996-09-17 | 1997-07-04 | Antibacterial acrylic fiber and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH10158978A JPH10158978A (en) | 1998-06-16 |
JP3544825B2 JP3544825B2 (en) | 2004-07-21 |
JP3544825B6 true JP3544825B6 (en) | 2005-01-26 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100441358B1 (en) | Chitosan-containing acrylic fibers and process for preparing the same | |
JP2003505617A (en) | Antibacterial fiber base with low harmful odor and skin irritation effect | |
JP2842564B2 (en) | Antibacterial viscose rayon and method for producing the same | |
CN107326656A (en) | A kind of antibacterial window curtain fabric and preparation method thereof | |
JP6280414B2 (en) | Antibacterial fabric | |
RU2402655C2 (en) | Method for production of antimicrobial silver-containing fibre based on natural polymer | |
JP2006225785A (en) | Blended yarn and antimicrobial woven or knitted fabric using the same | |
JP2000314035A (en) | Antimicrobial textile product | |
JP3544825B6 (en) | Antibacterial acrylic fiber and method for producing the same | |
JP3286180B2 (en) | Antibacterial acrylic fiber and method for producing the same | |
JP3544825B2 (en) | Antimicrobial acrylic fiber and method for producing same | |
JPH02160915A (en) | Antimicrobial acrylic synthetic fiber and production thereof | |
JP3949773B2 (en) | Antibacterial fiber | |
JP2000073280A (en) | Antimicrobial acrylic fiber and its production | |
JP3450137B2 (en) | Chitosan-containing fiber and method for producing the same | |
JP2983306B2 (en) | Method for producing antibacterial deodorant fiber | |
JPH11335202A (en) | Antimicrobial treatment agent and production of antimicrobial fiber structure | |
JPH06235116A (en) | Antimicrobial fiber and web | |
JPS59179807A (en) | Antimicrobial viscose corporate fiber and its manufacturing method | |
JPH10280277A (en) | Antimicrobial acrylic fiber and its production | |
JP3228382B2 (en) | Acrylic fiber having antibacterial and antifungal properties and method for producing the same | |
JP2628496B2 (en) | Antibacterial acrylic synthetic fiber | |
JPH0544165A (en) | Antibacterial, mildew-proofing and deodorizing filament and nonwoven fabric | |
JP2849754B2 (en) | Method for producing bactericidal acrylic fiber | |
JP2000314083A (en) | Antimicrobial acrylonitrile-based fiber and its production |