[go: up one dir, main page]

JP3540605B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP3540605B2
JP3540605B2 JP15230198A JP15230198A JP3540605B2 JP 3540605 B2 JP3540605 B2 JP 3540605B2 JP 15230198 A JP15230198 A JP 15230198A JP 15230198 A JP15230198 A JP 15230198A JP 3540605 B2 JP3540605 B2 JP 3540605B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor layer
electrode
transparent substrate
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15230198A
Other languages
Japanese (ja)
Other versions
JPH11330559A (en
Inventor
邦生 竹内
浩司 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15230198A priority Critical patent/JP3540605B2/en
Publication of JPH11330559A publication Critical patent/JPH11330559A/en
Application granted granted Critical
Publication of JP3540605B2 publication Critical patent/JP3540605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/831Electrodes characterised by their shape
    • H10H20/8314Electrodes characterised by their shape extending at least partially onto an outer side surface of the bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は発光素子に関し、特にたとえば透明基板を用い透明基板側から光を出射させる発光素子に関する。
【0002】
【従来の技術】
従来、発光ダイオード等の発光素子は、発光層からの発光を基板と反対側の方向へ出射させる構造のものが一般的に用いられている。
【0003】
しかし、この構造では、半導体層上に形成された透光性電極やパッド電極が出射光を減少させてしまうという問題があった。
【0004】
この問題を解決するために、サファイア基板等の透明基板を用いた発光素子において、透明基板側から光を出射させる構造の発光素子が提案されている(特開平6−120562号)。
【0005】
この発光素子1は、図8(a)に示すように、透明基板2と、透明基板2上に形成されたn型半導体層3と、n型半導体層3上に形成されたp型半導体層4と、n型半導体層3上に形成されたn側電極5と、p型半導体層4上に形成されたp側電極6とを備える。
【0006】
この発光素子1では、n型半導体層3およびp型半導体層4から発せられた光は、透明基板2を透過して光出射方向Aの方向に出射される。
【0007】
【発明が解決しようとする課題】
しかし、上記従来技術では、発光素子1から出射される光が均一でないという問題があった。
【0008】
図8(b)に、透明基板2の光出射方向A側の一主面における位置と発光強度との関係を示す。図8(b)から明らかなように、従来の発光素子1では、n側電極5に対応する部分の発光強度が低下し、均一な発光強度が得られない。
【0009】
そのため、この発明の主たる目的は、発光素子全体に均一で高い発光強度が得られる発光素子を提供することである。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発光素子は、透明基板と、透明基板の一主面上に形成され少なくとも一導電型の半導体層および他の導電型の半導体層を透明基板側からこの順序で含む半導体層と、一導電型の半導体層に接続された第1電極と、他の導電型の半導体層上に形成された第2電極とを備える発光素子であって、透明基板の側面の一部と、一導電型の半導体層の側面のうち透明基板の側面に隣接する側面とが、一主面に対して一定の角度を有する略面一な斜面を形成し、該斜面上に第1電極を形成し、半導体層から発せられた光を第1電極で反射して透明基板を通過して出射させたことを特徴とする。
【0011】
請求項2に記載の発光素子は、請求項1に記載の発光素子において、第1電極が、第2電極を取り囲むように形成されていることを特徴とする。
【0012】
請求項3に記載の発光素子は、請求項1または2に記載の発光素子において、第2電極が、他の導電型の半導体層上の一部に形成されたパラジウムまたはニッケルの少なくともいずれか一方を含む金属膜と、他の導電型の半導体層および金属膜上に形成されたアルミニウム膜とを含むことを特徴とする。
【0013】
請求項1に記載の発光素子では、半導体層から発せられた光が、透明基板の一部と半導体層とによって形成された斜面上の第1電極によって反射される。従って、請求項1に記載の発光素子によれば、第1電極の部分でも発光強度が低下せず、また、第1電極によって光が閉じこめられるため、発光素子全体に均一で高い発光強度が得られる。
【0014】
請求項2に記載の発光素子では、第1電極が第2電極を取り囲むように形成されているため、第1電極および第2電極から半導体層に電流が均一に注入される。従って、請求項2に記載の発光素子によれば、均一な発光を得ることができる。
【0015】
請求項3に記載の発光素子では、第2電極がパラジウムまたはニッケルとアルミニウム膜とを含み、アルミニウム膜は高い反射率で半導体層から発せられた光を反射する。従って、請求項3に記載の発光素子によれば、発光素子全体に均一で高い発光強度が得られる。
【0016】
【発明の実施の形態】
以下、この発明の実施形態の一例について、図面を参照して説明する。
【0017】
この実施形態の発光素子10の平面図を図1(a)に、図1(a)のX−Yの位置での正面断面図を図1(b)に示す。
【0018】
図1を参照して、発光素子10は、透明基板12と、半導体層14と、p側電極16と、n側電極18とを含む。
【0019】
透明基板12側面の半導体層14側の一部と半導体層14の側面とは、透明基板12の一主面12aに対して一定の角度を有する略面一な斜面20を形成する。
【0020】
発光素子10はたとえば400μm角であり、斜面20は図1(b)での幅Lがたとえば25μmである。
【0021】
透明基板12は、たとえばサファイア基板等である。なお、透明基板12は、半導体層14から発せられる光の波長において、光吸収係数が小さいものであればよい。
【0022】
半導体層14は、透明基板12上に形成され、たとえば、透明基板12上に積層されるn型GaNコンタクト層22、InGaN発光層24およびp型GaNコンタクト層26を含む。各半導体層の層厚は、たとえばn型GaNコンタクト層22が4μm、InGaN発光層24が10nm、p型GaNコンタクト層26が0.3μmである。
【0023】
p側電極16は、p型GaNコンタクト層26上に形成される。p側電極16は、図2の模式断面図に示すように、p型GaNコンタクト層26上の一部に形成されたパラジウム(Pd)からなるコンタクト電極部16aと、コンタクト電極部16aおよびp型GaNコンタクト層26上に形成されたアルミニウム(Al)からなる反射電極部16bとを含む。コンタクト電極部16aは、たとえば複数の短冊状のPdで形成される。コンタクト電極部16aの膜厚はたとえば200nmであり、反射電極部16bの膜厚はたとえば500nmである。
【0024】
なお、p側電極16は、p側GaNコンタクト層26とオーミックに接続し、かつ反射率が高いものであればよい。たとえば、コンタクト電極部16aは、Ni、またはPdおよびNiの合金であってもよい。
【0025】
n側電極18は、斜面20のうちの透明基板12およびn型GaNコンタクト層22上に、p側電極16を取り囲むように形成される。n側電極18には金属薄膜が用いられるが、たとえば斜面20側からAl(膜厚6nm)、Si(膜厚2nm)、Ni(膜厚10nm)、Al(膜厚0.5μm)の順に積層された高反射率金属薄膜、あるいは斜面20側からTi(膜厚2nm)、Al(膜厚0.5μm)の順に積層された高反射率金属薄膜を用いることが好ましい。
【0026】
図3を参照して、この発光素子10の製造工程の一例を示す。
【0027】
まず、図3(a)に示すように、透明基板12上に、半導体層14および垂直断面が台形状であるマスク28をこの順序で形成する。半導体層14は、透明基板12上に順次積層されるn型GaNコンタクト層22、InGaN発光層24、p型GaNコンタクト層26を含む。
【0028】
半導体層14は、たとえば、原料ガスとしてトリメチルガリウム、トリメチルインジウムおよびアンモニアを用い、ドーピングガスとしてシランおよびシクロペンタジエニルマグネシウムを用いたMOCVD法等によって形成できる。
【0029】
垂直断面が台形状であるマスク28は、たとえば、p型GaNコンタクト層26上に膜厚30μmのAlを電子ビーム蒸着法で均一に蒸着した後、フォトリソ工程およびエッチング工程によって垂直断面が台形状になるように加工することによって形成できる。
【0030】
その後、図3(b)に示すように、マスク28、半導体層14および透明基板12を同時にエッチングして、断面V字状の凹部30を形成する。凹部30の内面は、斜面20となる。
【0031】
断面V字状の凹部30は、たとえば、マスク28と半導体層14と透明基板12とでエッチングレートが略等しくなるようにエッチングを行うことによって形成できる。たとえば、平行平板型ドライエッチング装置を用い、放電出力300W、圧力5Torr〜10Torr、エッチングガスとしてCF4ガスを用いた場合には、マスク28、半導体層14および透明基板12を略等しいエッチングレートでエッチングできる。
【0032】
その後、図3(c)に示すように、マスク28を除去した後、p型GaNコンタクト層26上にp側電極16を形成する。p側電極16の構造は図2に示したものである。このp側電極16は、p型GaNコンタクト層26上に短冊状のNiからなるコンタクト電極部16aを形成した後、p型GaNコンタクト層26およびコンタクト電極部16b上にAlからなる反射電極部16bを蒸着することによって形成できる。
【0033】
コンタクト電極部16aは、電子ビーム蒸着法でNi薄膜を斜面20およびp型GaNコンタクト層26上に蒸着した後、フォトリソ工程およびエッチング工程を用いて不要なNi薄膜を除去することによって形成できる。同様に、反射電極部16bも、Al薄膜を蒸着した後、フォトリソ工程およびエッチング工程を用いて不要なAl薄膜を除去することによって形成できる。
【0034】
その後、図3(d)に示すように、斜面20の透明基板12およびn型GaNコンタクト層22の部分にn側電極18を形成し、たとえば400μm角となるように素子ごとに分離する。
【0035】
n側電極18は、n側電極18を形成する部分を除いてフォトレジストを形成し、電子ビーム蒸着法でたとえばAl薄膜、Si薄膜、Ni薄膜、Al薄膜をこの順序で蒸着した後、リフトオフすることによって形成できる。
【0036】
素子ごとの分離は、たとえば、透明基板12にスクライバーによってスクライブラインを形成することによって、容易に行うことができる。
【0037】
このようにして、発光素子10が形成される。
【0038】
発光素子10の機能を、図4(a)に模式的に示す。
【0039】
図4(a)を参照して、この発光素子10では、InGaN発光層24から発せられた光は、透明基板12を通過して、またはp側電極16あるいはp側電極16およびn側電極18で反射して、光出射方向Aの方向に出射される。
【0040】
図4(b)に、透明基板12の光出射方向A側の一主面12b上における位置と発光強度との関係を示す。
【0041】
図4(b)から明らかなように、発光素子10によれば、n側電極18が形成されている部分に対応する位置でも発光強度の低下が小さい。従って、発光素子10によれば、図8に示した従来構造の発光素子1と異なり、均一な発光が得られる。
【0042】
また、発光素子10では、n側電極18が一主面12aに対して一定の角度で形成されるため、InGaN発光層24から発せられた光が側面に散逸するのを防止して光出射方向Aに閉じこめる効果を有する。従って、発光素子10によれば、高い発光強度が得られる。
【0043】
従って、発光素子10によれば、発光素子10の全体に均一で、かつ高い発光強度を有する発光素子を得ることができる。
【0044】
なお、図4(b)に示すように、透明基板12の一主面12aと斜面20とのなす角α(図4(a)参照)が70度の場合には、αが10度の場合よりも、均一で高い発光強度が得られる。
【0045】
一方、αを小さくすることによって、斜面20およびn側電極18を容易に形成することができ、n型GaNコンタクト層22とn側電極18との接触面積を大きくすることができる。特に、αを45度以下とした場合には、斜面20およびn側電極18を精度よく容易に形成することができる。
【0046】
従って、均一な発光強度が得られ、かつ容易に形成できる発光素子10を得るためには、αを30度ないし45度とすることが好ましい。
【0047】
さらに、発光素子10では、p側電極16の周囲をn側電極18が取り囲む構造となっているため、p側電極16およびn側電極18から半導体層14への電流の注入が均一に行われ、より均一な発光強度が得られる。
【0048】
また、この発明の発光素子10では、p側電極16として高反射率金属を用いているため、InGaN発光層24で発せられた光は、高い反射率で反射される。
【0049】
たとえば、図2に示したp側電極16の構造では、反射電極部16bに用いられるアルミニウムが高い反射率であるのでInGaN発光層24で発せられた光は、高い反射率で反射される。従って、発光素子10によれば、高い発光強度が得られる。
【0050】
なお、p側電極16は、図2の構造に限らず、図5(a)に示す構造でもよい。図5(a)に示すp側電極17は、p型GaNコンタクト層26上に形成されたPd薄膜からなるコンタクト電極部17aと、コンタクト電極部17a上に形成されたAlからなる反射電極部17bとを含む。コンタクト電極部17aには、Pdのかわりにニッケル(Ni)、またはPdとNiとの合金を用いてもよい。
【0051】
図5(a)に示したp側電極17の構造では、コンタクト電極部17aの膜厚を薄くすることによって、p側電極17の反射率を向上させることができる。図5(b)にコンタクト電極部17aと反射電極部17bの材料および膜厚を変化させた場合における、発光素子10の光出力の変化を示す。
【0052】
図5(b)中の光出力は、コンタクト電極部17aにPd(膜厚30nm)を用い、反射電極部17bにAu(膜厚200nm)を用いた場合の光出力を100としたときの相対値を示している。図5(b)から明らかなように、コンタクト電極部17aとして膜厚2nmのPdを用い、反射電極部17bとして膜厚200nmのAlを用いたときに、最も光出力が大きくなる。
【0053】
従って、図5(a)の構造を用いた発光素子10によれば、コンタクト電極部17aおよび反射電極部17bの材料および膜厚を変化させることによって、高い輝度が得られる。
【0054】
図6を参照して、この発光素子10の製造工程の他の一例を示す。この製造工程は、図3に示した製造工程と凹部30の形成方法が異なるものである。
【0055】
まず、図6(a)に示すように、透明基板12上に、半導体層14を形成した後、溝部32を形成する。半導体層14を形成する工程は、図3(a)で説明したものと同様であるので重複する説明は省略する。溝部32は、半導体層14の表面からの深さが例えば10μmであり、ダイシングソー等を用いて容易に形成することができる。
【0056】
その後、図6(b)に示すように、p型GaNコンタクト層26上に、垂直断面が台形状になるようにマスク28を形成する。マスク28を形成する工程は図3(a)で説明した工程と同様である。
【0057】
その後、マスク28、半導体層14および透明基板12をエッチングすることによって、図6(c)に示すように、断面V字状の凹部30を形成する。エッチング工程は、図3(b)で説明した工程と同様である。
【0058】
その後、図6(d)に示すように、マスク28を除去した後、p側電極16およびn側電極18を形成する。p側電極16およびn側電極18を形成する工程は、図3(c)および図3(d)で説明した工程と同様である。
【0059】
このようにして、発光素子10が形成される。
【0060】
図6に示した製造工程では、溝部32を形成することによって、凹部30を形成する場合のエッチング工程を短縮することができる。従って、図6に示した製造工程によれば、発光素子10の製造が容易である。
【0061】
図7に、この発明の発光素子10を、発光ダイオード40に用いる場合の一例を示す。
【0062】
発光ダイオード40は、発光素子10と、ステム42および44と、マウント台46と、絶縁部材48と、n側電極接続部材50と、導電性接着剤52と、金ワイヤ54と、透明樹脂(図示せず)とを備える。
【0063】
ステム42および44は、たとえば金属からなり、マウント台46と電気的に接続されている。
【0064】
マウント台46は、金属からなり、導電性接着剤52によって発光素子10のp側電極16と電気的に接続されている。
【0065】
n側電極接続部材50は、たとえば金属からなり、n側電極18に密着するように斜面58が形成されている。n側電極接続部材50は、絶縁部材48によってマウント台46と電気的に絶縁されており、導電性接着剤(図示せず)によってn側電極18と電気的に接続されている。n側電極接続部材50は、反射鏡としても機能する。
【0066】
ステム44は、金ワイヤ54によってn側電極接続部材50と電気的に接続されている。
【0067】
発光素子10は、通常の発光ダイオードと同様に、透明樹脂(図示せず)によってモールドされる。
【0068】
この発光ダイオード40では、発光素子10をマウント台46およびn側電極接続部材50に固定して電気的に接続する場合に、n側電極18と斜面58とによって発光素子10が所定の位置に固定される。従って、発光素子10を用いた発光ダイオード40によれば、発光素子10をマウント台46およびn側電極接続部材50に固定して電気的に接続する場合に、p側電極16とn側電極18とが短絡することを防止できるという特徴を有する。
【0069】
すなわち、従来の発光素子1(図8(a))を用いた発光ダイオードでは、発光素子1の位置決めが容易でなく、発光素子1を固定する際にn側電極5とp側電極6とが短絡しやすいという問題があったが、発光素子10を用いた発光ダイオード40によれば、p側電極16とn側電極18とが短絡しにくく、従来のものより歩留まりよく製造することができる。
【0070】
以上、この発明の実施形態について例を挙げて説明したが、上記実施形態はこの発明を用いた場合の一例にすぎず、この発明は上記実施形態に限定されるものではない。
【0071】
たとえば、上記実施形態で示した半導体層14は、発光素子として機能するものであればいかなる構造でもよい。たとえば、透明基板12とn型GaNコンタクト層22との間にGaNバッファ層等を形成してもよく、また、InGaN発光層26の両側にクラッド層等を形成してもよい。さらに、サファイ基板12上に形成する各半導体層の順序を逆にしてもよい。
【0072】
【発明の効果】
以上説明したように、この発明によれば、電極が透明基板の主面に対して一定の角度を有する斜面上に形成されるため、均一で高い発光強度の発光素子を得ることができる。
【0073】
また、斜面上に形成された電極が、他の電極を取り囲むように形成されるため、電流注入が均一に行われ、均一な発光強度の発光素子が得られる。
【0074】
さらに、半導体層上に形成する電極を高反射率金属とすることによって、高い発光強度の発光素子が得られる。
【図面の簡単な説明】
【図1】この発明の一実施形態を示す図であり、(a)は平面図、(b)は正面断面図である。
【図2】この発明の一実施形態におけるp側電極の構造の一例を示す断面図である。
【図3】この発明の一実施形態における発光素子の製造工程の一例を示す断面図である。
【図4】この発明の一実施形態における発光素子の機能を示す図解図である。
【図5】(a)はこの発明の一実施形態におけるp側電極の構造の他の一例を示す断面図であり、(b)はコンタクト電極部および反射電極部と光出力との関係を示す図である。
【図6】この発明の一実施形態における発光素子の製造工程の他の一例を示す断面図である。
【図7】この発明の一実施形態における発光素子を用いた発光ダイオードを示す正面断面図である。
【図8】従来の発光素子の構造と発光強度を示す図解図である。
【符号の説明】
10 発光素子
12 透明基板
12a 一主面
14 半導体層
16、17 p側電極
16a、17a コンタクト電極部
16b、17b 反射電極部
18 n側電極
20 斜面
22 n型GaNコンタクト層
24 InGaN発光層
26 p型GaNコンタクト層
28 マスク
30 凹部
32 溝部
40 発光ダイオード
46 マウント台
50 n側電極接続部材
A 光出射方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device, and more particularly, to a light emitting device that emits light from a transparent substrate side using, for example, a transparent substrate.
[0002]
[Prior art]
Conventionally, a light emitting element such as a light emitting diode generally has a structure in which light emitted from a light emitting layer is emitted in a direction opposite to a substrate.
[0003]
However, in this structure, there is a problem that the light transmitting electrode and the pad electrode formed on the semiconductor layer reduce the emitted light.
[0004]
In order to solve this problem, there has been proposed a light emitting device using a transparent substrate such as a sapphire substrate, which has a structure in which light is emitted from the transparent substrate side (Japanese Patent Laid-Open No. 6-120562).
[0005]
As shown in FIG. 8A, the light-emitting device 1 includes a transparent substrate 2, an n-type semiconductor layer 3 formed on the transparent substrate 2, and a p-type semiconductor layer formed on the n-type semiconductor layer 3. 4, an n-side electrode 5 formed on the n-type semiconductor layer 3, and a p-side electrode 6 formed on the p-type semiconductor layer 4.
[0006]
In the light emitting device 1, light emitted from the n-type semiconductor layer 3 and the p-type semiconductor layer 4 passes through the transparent substrate 2 and is emitted in the light emission direction A.
[0007]
[Problems to be solved by the invention]
However, in the above conventional technique, there is a problem that light emitted from the light emitting element 1 is not uniform.
[0008]
FIG. 8B shows the relationship between the position on one main surface of the transparent substrate 2 on the light emission direction A side and the light emission intensity. As is clear from FIG. 8B, in the conventional light emitting device 1, the light emission intensity at the portion corresponding to the n-side electrode 5 is reduced, and uniform light emission intensity cannot be obtained.
[0009]
Therefore, a main object of the present invention is to provide a light emitting element capable of obtaining uniform and high light emission intensity over the entire light emitting element.
[0010]
[Means for Solving the Problems]
In order to solve the above problem, the light emitting device according to claim 1, comprising a transparent substrate, a semiconductor layer of at least one conductivity type and a semiconductor layer of another conductivity type formed on one main surface of the transparent substrate. A light emitting element including a semiconductor layer included in this order from the side, a first electrode connected to the semiconductor layer of one conductivity type, and a second electrode formed on the semiconductor layer of another conductivity type, a portion of a side surface of the substrate, the side surface adjacent to the side surface of the transparent substrate of the side surfaces of the one conductivity type semiconductor layer, forming a substantially flush slope having a predetermined angle with respect to one main surface, wherein A first electrode is formed on the slope, and light emitted from the semiconductor layer is reflected by the first electrode and emitted through a transparent substrate .
[0011]
According to a second aspect of the present invention, in the light emitting element according to the first aspect, the first electrode is formed so as to surround the second electrode.
[0012]
According to a third aspect of the present invention, in the light emitting element according to the first or second aspect, the second electrode is at least one of palladium and nickel formed on a part of the semiconductor layer of another conductivity type. And a semiconductor film of another conductivity type and an aluminum film formed on the metal film.
[0013]
In the light emitting device according to the first aspect, light emitted from the semiconductor layer is reflected by the first electrode on the slope formed by a part of the transparent substrate and the semiconductor layer. Therefore, according to the light emitting device of the first aspect, the light emission intensity does not decrease even at the first electrode portion, and light is confined by the first electrode, so that a uniform and high light emission intensity can be obtained over the entire light emitting device. Can be
[0014]
In the light emitting device according to the second aspect, since the first electrode is formed so as to surround the second electrode, current is uniformly injected from the first electrode and the second electrode into the semiconductor layer. Therefore, according to the light emitting element of the second aspect, uniform light emission can be obtained.
[0015]
In the light emitting device according to the third aspect, the second electrode includes palladium or nickel and an aluminum film, and the aluminum film reflects light emitted from the semiconductor layer with high reflectance. Therefore, according to the light emitting device of the third aspect, a uniform and high emission intensity can be obtained over the entire light emitting device.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 1A is a plan view of the light emitting element 10 of this embodiment, and FIG. 1B is a front cross-sectional view taken along a line X-Y in FIG.
[0018]
Referring to FIG. 1, light emitting element 10 includes transparent substrate 12, semiconductor layer 14, p-side electrode 16, and n-side electrode 18.
[0019]
A part of the side surface of the transparent substrate 12 on the side of the semiconductor layer 14 and the side surface of the semiconductor layer 14 form a substantially flat slope 20 having a certain angle with respect to one main surface 12 a of the transparent substrate 12.
[0020]
The light emitting element 10 is 400 μm square, for example, and the slope 20 has a width L in FIG. 1B of 25 μm, for example.
[0021]
The transparent substrate 12 is, for example, a sapphire substrate or the like. Note that the transparent substrate 12 only needs to have a small light absorption coefficient at the wavelength of light emitted from the semiconductor layer 14.
[0022]
The semiconductor layer 14 is formed on the transparent substrate 12 and includes, for example, an n-type GaN contact layer 22, an InGaN light-emitting layer 24, and a p-type GaN contact layer 26 laminated on the transparent substrate 12. The thickness of each semiconductor layer is, for example, 4 μm for the n-type GaN contact layer 22, 10 nm for the InGaN light emitting layer 24, and 0.3 μm for the p-type GaN contact layer 26.
[0023]
The p-side electrode 16 is formed on the p-type GaN contact layer 26. As shown in the schematic cross-sectional view of FIG. 2, the p-side electrode 16 includes a contact electrode portion 16a made of palladium (Pd) formed on a part of the p-type GaN contact layer 26, and the contact electrode portion 16a and the p-type A reflective electrode portion 16b made of aluminum (Al) formed on the GaN contact layer 26. The contact electrode portion 16a is formed of, for example, a plurality of strips of Pd. The thickness of the contact electrode portion 16a is, for example, 200 nm, and the thickness of the reflective electrode portion 16b is, for example, 500 nm.
[0024]
It should be noted that the p-side electrode 16 only needs to be ohmicly connected to the p-side GaN contact layer 26 and have a high reflectance. For example, the contact electrode section 16a may be Ni or an alloy of Pd and Ni.
[0025]
The n-side electrode 18 is formed on the transparent substrate 12 and the n-type GaN contact layer 22 on the slope 20 so as to surround the p-side electrode 16. A metal thin film is used for the n-side electrode 18. For example, from the slope 20 side, Al (thickness 6 nm), Si (thickness 2 nm), Ni (thickness 10 nm), and Al (thickness 0.5 μm) are laminated in this order. It is preferable to use a high-reflectivity metal thin film that has been formed, or a high-reflectivity metal thin film in which Ti (thickness: 2 nm) and Al (thickness: 0.5 μm) are stacked in this order from the slope 20 side.
[0026]
Referring to FIG. 3, an example of a manufacturing process of the light emitting device 10 will be described.
[0027]
First, as shown in FIG. 3A, a semiconductor layer 14 and a mask 28 having a trapezoidal vertical cross section are formed on the transparent substrate 12 in this order. The semiconductor layer 14 includes an n-type GaN contact layer 22, an InGaN light-emitting layer 24, and a p-type GaN contact layer 26, which are sequentially stacked on the transparent substrate 12.
[0028]
The semiconductor layer 14 can be formed by, for example, MOCVD using trimethylgallium, trimethylindium, and ammonia as source gases and silane and cyclopentadienylmagnesium as doping gases.
[0029]
The mask 28 having a trapezoidal vertical cross section is formed, for example, by uniformly depositing 30 μm thick Al on the p-type GaN contact layer 26 by an electron beam evaporation method, and then forming the trapezoidal vertical cross section by a photolithography process and an etching process. It can be formed by processing as follows.
[0030]
Thereafter, as shown in FIG. 3B, the mask 28, the semiconductor layer 14, and the transparent substrate 12 are simultaneously etched to form a concave portion 30 having a V-shaped cross section. The inner surface of the recess 30 becomes the slope 20.
[0031]
The concave portion 30 having a V-shaped cross section can be formed, for example, by performing etching such that the etching rates of the mask 28, the semiconductor layer 14, and the transparent substrate 12 become substantially equal. For example, when a parallel plate type dry etching apparatus is used, discharge power is 300 W, pressure is 5 Torr to 10 Torr, and CF4 gas is used as an etching gas, the mask 28, the semiconductor layer 14, and the transparent substrate 12 can be etched at substantially the same etching rate. .
[0032]
Thereafter, as shown in FIG. 3C, after removing the mask 28, the p-side electrode 16 is formed on the p-type GaN contact layer 26. The structure of the p-side electrode 16 is as shown in FIG. The p-side electrode 16 is formed by forming a strip-shaped contact electrode portion 16a made of Ni on the p-type GaN contact layer 26, and then forming a reflective electrode portion 16b made of Al on the p-type GaN contact layer 26 and the contact electrode portion 16b. Can be formed by vapor deposition.
[0033]
The contact electrode portion 16a can be formed by depositing a Ni thin film on the slope 20 and the p-type GaN contact layer 26 by an electron beam evaporation method, and then removing an unnecessary Ni thin film using a photolithography process and an etching process. Similarly, the reflective electrode portion 16b can also be formed by depositing an Al thin film and then removing an unnecessary Al thin film using a photolithography process and an etching process.
[0034]
Thereafter, as shown in FIG. 3D, an n-side electrode 18 is formed on the inclined surface 20 on the transparent substrate 12 and the n-type GaN contact layer 22 and is separated into, for example, 400 μm square elements.
[0035]
The n-side electrode 18 is formed by forming a photoresist except for the portion where the n-side electrode 18 is formed, and after evaporating an Al thin film, a Si thin film, a Ni thin film, and an Al thin film in this order by an electron beam evaporation method, lifts off. Can be formed.
[0036]
Separation for each element can be easily performed by, for example, forming a scribe line on the transparent substrate 12 with a scriber.
[0037]
Thus, the light emitting element 10 is formed.
[0038]
The function of the light emitting element 10 is schematically shown in FIG.
[0039]
Referring to FIG. 4A, in the light emitting device 10, light emitted from the InGaN light emitting layer 24 passes through the transparent substrate 12, or the p-side electrode 16 or the p-side electrode 16 and the n-side electrode 18 And is emitted in the direction of light emission direction A.
[0040]
FIG. 4B shows the relationship between the position on the one main surface 12b of the transparent substrate 12 on the light emission direction A side and the light emission intensity.
[0041]
As is clear from FIG. 4B, according to the light emitting element 10, the decrease in the light emission intensity is small even at the position corresponding to the portion where the n-side electrode 18 is formed. Therefore, according to the light emitting element 10, unlike the light emitting element 1 having the conventional structure shown in FIG. 8, uniform light emission can be obtained.
[0042]
Further, in the light emitting element 10, the n-side electrode 18 is formed at a constant angle with respect to the one main surface 12a, so that the light emitted from the InGaN light emitting layer 24 is prevented from dissipating to the side surface and the light emission direction is reduced. A has the effect of trapping in A. Therefore, according to the light emitting element 10, high light emission intensity can be obtained.
[0043]
Therefore, according to the light emitting element 10, it is possible to obtain a light emitting element having high light emission intensity uniform over the entire light emitting element 10.
[0044]
As shown in FIG. 4 (b), when the angle α (see FIG. 4 (a)) between the one main surface 12a of the transparent substrate 12 and the inclined surface 20 is 70 degrees, the case where α is 10 degrees A more uniform and higher light emission intensity can be obtained.
[0045]
On the other hand, by decreasing α, the slope 20 and the n-side electrode 18 can be easily formed, and the contact area between the n-type GaN contact layer 22 and the n-side electrode 18 can be increased. In particular, when α is set to 45 degrees or less, the slope 20 and the n-side electrode 18 can be easily formed with high accuracy.
[0046]
Therefore, in order to obtain a light emitting device 10 that can obtain uniform light emission intensity and can be easily formed, α is preferably set to 30 degrees to 45 degrees.
[0047]
Furthermore, since the light emitting element 10 has a structure in which the n-side electrode 18 surrounds the periphery of the p-side electrode 16, current is uniformly injected from the p-side electrode 16 and the n-side electrode 18 to the semiconductor layer 14. And a more uniform emission intensity can be obtained.
[0048]
Further, in the light emitting device 10 of the present invention, since the high reflectance metal is used for the p-side electrode 16, light emitted from the InGaN light emitting layer 24 is reflected with a high reflectance.
[0049]
For example, in the structure of the p-side electrode 16 shown in FIG. 2, since the aluminum used for the reflective electrode portion 16b has a high reflectance, the light emitted from the InGaN light emitting layer 24 is reflected with a high reflectance. Therefore, according to the light emitting element 10, high light emission intensity can be obtained.
[0050]
The p-side electrode 16 is not limited to the structure shown in FIG. 2, but may have the structure shown in FIG. The p-side electrode 17 shown in FIG. 5A includes a contact electrode portion 17a made of a Pd thin film formed on the p-type GaN contact layer 26 and a reflective electrode portion 17b made of Al formed on the contact electrode portion 17a. And For the contact electrode portion 17a, nickel (Ni) or an alloy of Pd and Ni may be used instead of Pd.
[0051]
In the structure of the p-side electrode 17 shown in FIG. 5A, the reflectance of the p-side electrode 17 can be improved by reducing the thickness of the contact electrode portion 17a. FIG. 5B shows a change in the light output of the light emitting element 10 when the material and the film thickness of the contact electrode portion 17a and the reflective electrode portion 17b are changed.
[0052]
The light output in FIG. 5B is relative to 100 when the light output is 100 when Pd (thickness: 30 nm) is used for the contact electrode portion 17a and Au (thickness: 200 nm) is used for the reflective electrode portion 17b. Indicates the value. As is clear from FIG. 5B, the light output is maximized when Pd with a thickness of 2 nm is used as the contact electrode portion 17a and Al with a thickness of 200 nm is used as the reflective electrode portion 17b.
[0053]
Therefore, according to the light emitting device 10 using the structure of FIG. 5A, high luminance can be obtained by changing the material and the film thickness of the contact electrode portion 17a and the reflective electrode portion 17b.
[0054]
With reference to FIG. 6, another example of the manufacturing process of the light emitting device 10 is shown. This manufacturing process is different from the manufacturing process shown in FIG.
[0055]
First, as shown in FIG. 6A, a semiconductor layer 14 is formed on a transparent substrate 12, and then a groove 32 is formed. The process of forming the semiconductor layer 14 is the same as that described with reference to FIG. The groove 32 has a depth of, for example, 10 μm from the surface of the semiconductor layer 14 and can be easily formed using a dicing saw or the like.
[0056]
Thereafter, as shown in FIG. 6B, a mask 28 is formed on the p-type GaN contact layer 26 so that the vertical cross section becomes trapezoidal. The step of forming the mask 28 is the same as the step described with reference to FIG.
[0057]
Thereafter, the mask 28, the semiconductor layer 14, and the transparent substrate 12 are etched to form a concave portion 30 having a V-shaped cross section, as shown in FIG. The etching step is the same as the step described with reference to FIG.
[0058]
Thereafter, as shown in FIG. 6D, after removing the mask 28, the p-side electrode 16 and the n-side electrode 18 are formed. The step of forming the p-side electrode 16 and the n-side electrode 18 is the same as the step described with reference to FIGS. 3C and 3D.
[0059]
Thus, the light emitting element 10 is formed.
[0060]
In the manufacturing process shown in FIG. 6, by forming the groove 32, the etching process for forming the recess 30 can be shortened. Therefore, according to the manufacturing process shown in FIG. 6, the manufacture of the light emitting element 10 is easy.
[0061]
FIG. 7 shows an example in which the light emitting element 10 of the present invention is used for a light emitting diode 40.
[0062]
The light emitting diode 40 includes a light emitting element 10, stems 42 and 44, a mount base 46, an insulating member 48, an n-side electrode connecting member 50, a conductive adhesive 52, a gold wire 54, and a transparent resin (FIG. (Not shown).
[0063]
The stems 42 and 44 are made of, for example, metal and are electrically connected to a mount base 46.
[0064]
The mount base 46 is made of metal and is electrically connected to the p-side electrode 16 of the light emitting element 10 by a conductive adhesive 52.
[0065]
The n-side electrode connecting member 50 is made of, for example, a metal, and has a slope 58 formed so as to be in close contact with the n-side electrode 18. The n-side electrode connection member 50 is electrically insulated from the mount base 46 by an insulating member 48, and is electrically connected to the n-side electrode 18 by a conductive adhesive (not shown). The n-side electrode connection member 50 also functions as a reflecting mirror.
[0066]
The stem 44 is electrically connected to the n-side electrode connection member 50 by a gold wire 54.
[0067]
The light emitting element 10 is molded with a transparent resin (not shown), like a normal light emitting diode.
[0068]
In the light emitting diode 40, when the light emitting element 10 is fixed to the mount base 46 and the n-side electrode connecting member 50 to be electrically connected, the light emitting element 10 is fixed at a predetermined position by the n-side electrode 18 and the inclined surface 58. Is done. Therefore, according to the light emitting diode 40 using the light emitting element 10, when the light emitting element 10 is fixed to the mount base 46 and the n-side electrode connecting member 50 and electrically connected, the p-side electrode 16 and the n-side electrode 18 are connected. And that short circuit can be prevented.
[0069]
That is, in the light emitting diode using the conventional light emitting element 1 (FIG. 8A), the positioning of the light emitting element 1 is not easy, and when the light emitting element 1 is fixed, the n-side electrode 5 and the p-side electrode 6 are connected. Although there was a problem that short-circuit was easily caused, according to the light-emitting diode 40 using the light-emitting element 10, the short-circuit between the p-side electrode 16 and the n-side electrode 18 is difficult, and the production can be performed with higher yield than the conventional one.
[0070]
As described above, the embodiment of the present invention has been described by way of example. However, the above embodiment is merely an example when the present invention is used, and the present invention is not limited to the above embodiment.
[0071]
For example, the semiconductor layer 14 described in the above embodiment may have any structure as long as it functions as a light emitting element. For example, a GaN buffer layer or the like may be formed between the transparent substrate 12 and the n-type GaN contact layer 22, or a clad layer or the like may be formed on both sides of the InGaN light emitting layer. Further, the order of the respective semiconductor layers formed on the sapphire substrate 12 may be reversed.
[0072]
【The invention's effect】
As described above, according to the present invention, since the electrodes are formed on the slope having a certain angle with respect to the main surface of the transparent substrate, it is possible to obtain a light emitting element with uniform and high luminous intensity.
[0073]
Further, since the electrodes formed on the slope are formed so as to surround the other electrodes, current injection is performed uniformly, and a light-emitting element with uniform light emission intensity is obtained.
[0074]
Furthermore, a light-emitting element with high emission intensity can be obtained by using an electrode formed on a semiconductor layer with a metal having a high reflectance.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of the present invention, wherein (a) is a plan view and (b) is a front sectional view.
FIG. 2 is a cross-sectional view illustrating an example of a structure of a p-side electrode according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating an example of a manufacturing process of the light emitting device according to the embodiment of the present invention.
FIG. 4 is an illustrative view showing functions of a light emitting element in one embodiment of the present invention;
FIG. 5A is a cross-sectional view showing another example of the structure of the p-side electrode according to an embodiment of the present invention, and FIG. 5B shows the relationship between the contact electrode portion and the reflective electrode portion and the light output. FIG.
FIG. 6 is a cross-sectional view showing another example of the manufacturing process of the light emitting device in one embodiment of the present invention.
FIG. 7 is a front sectional view showing a light emitting diode using a light emitting element according to an embodiment of the present invention.
FIG. 8 is an illustrative view showing a structure and a light emission intensity of a conventional light emitting element.
[Explanation of symbols]
Reference Signs List 10 light emitting element 12 transparent substrate 12a one main surface 14 semiconductor layer 16, 17 p-side electrode 16a, 17a contact electrode portion 16b, 17b reflective electrode portion 18 n-side electrode 20 slope 22 n-type GaN contact layer 24 InGaN light-emitting layer 26 p-type GaN contact layer 28 mask 30 recess 32 groove 40 light emitting diode 46 mount base 50 n-side electrode connection member A light emission direction

Claims (3)

透明基板と、前記透明基板の一主面上に形成され少なくとも一導電型の半導体層および他の導電型の半導体層を前記透明基板側からこの順序で含む半導体層と、前記一導電型の半導体層に接続された第1電極と、前記他の導電型の半導体層上に形成された第2電極とを備える発光素子であって、
前記透明基板の側面の一部と、前記一導電型の半導体層の側面のうち前記透明基板の側面に隣接する側面とが、前記一主面に対して一定の角度を有する略面一な斜面を形成し、該斜面上に前記第1電極を形成し、前記半導体層から発せられた光を前記第1電極で反射して前記透明基板を通過して出射させたことを特徴とする発光素子。
A transparent substrate, a semiconductor layer formed on one main surface of the transparent substrate and including at least one conductive semiconductor layer and another conductive semiconductor layer in this order from the transparent substrate side, and the one conductive semiconductor A light emitting element comprising: a first electrode connected to a layer; and a second electrode formed on the other conductive semiconductor layer,
A part of the side surface of the transparent substrate and a side surface adjacent to the side surface of the transparent substrate among the side surfaces of the one conductivity type semiconductor layer have a substantially flat inclined surface having a certain angle with respect to the one main surface. Wherein the first electrode is formed on the slope, and light emitted from the semiconductor layer is reflected by the first electrode and emitted through the transparent substrate. .
前記第1電極が、前記第2電極を取り囲むように形成されていることを特徴とする、請求項1に記載の発光素子。The light emitting device according to claim 1, wherein the first electrode is formed to surround the second electrode. 前記第2電極が、前記他の導電型の半導体層上の一部に形成されたパラジウムまたはニッケルの少なくともいずれか一方を含む金属膜と、前記他の導電型の半導体層および前記金属膜上に形成されたアルミニウム膜とを含むことを特徴とする、請求項1または2に記載の発光素子。The second electrode is formed on a metal film containing at least one of palladium and nickel formed on a part of the other conductive type semiconductor layer, and on the other conductive type semiconductor layer and the metal film. The light emitting device according to claim 1, further comprising: an aluminum film formed.
JP15230198A 1998-05-15 1998-05-15 Light emitting element Expired - Lifetime JP3540605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15230198A JP3540605B2 (en) 1998-05-15 1998-05-15 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15230198A JP3540605B2 (en) 1998-05-15 1998-05-15 Light emitting element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004000095A Division JP3851313B2 (en) 2004-01-05 2004-01-05 Light emitting element

Publications (2)

Publication Number Publication Date
JPH11330559A JPH11330559A (en) 1999-11-30
JP3540605B2 true JP3540605B2 (en) 2004-07-07

Family

ID=15537539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15230198A Expired - Lifetime JP3540605B2 (en) 1998-05-15 1998-05-15 Light emitting element

Country Status (1)

Country Link
JP (1) JP3540605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939838B2 (en) * 2005-12-01 2011-05-10 Stanley Electric Co., Ltd. Semiconductor light emitting device with transparent substrate and reflective slope

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992334B1 (en) * 1999-12-22 2006-01-31 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for semiconductor devices
TWI289944B (en) * 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
EP1341991A4 (en) * 2000-11-17 2007-05-30 Emcore Corp LASER ISOLATED CHIP WITH TAPPED SIDE WALLS TO IMPROVE LIGHTING OUTPUT
JP2002246647A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP3912219B2 (en) * 2002-08-01 2007-05-09 日亜化学工業株式会社 Nitride semiconductor light emitting device
CN100358163C (en) 2002-08-01 2007-12-26 日亚化学工业株式会社 Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
JP3818297B2 (en) * 2003-05-27 2006-09-06 松下電工株式会社 Semiconductor light emitting device
KR100706473B1 (en) * 2003-07-18 2007-04-10 산요덴키가부시키가이샤 Light emitting diode
JP2005252086A (en) * 2004-03-05 2005-09-15 Sony Corp Manufacturing method for semiconductor light emitting device, semiconductor light emitting device, integrated semiconductor light emitting device, manufacturing process thereof, graphic display device, manufacturing process thereof, illuminating device and manufacturing process thereof
CN100524855C (en) * 2004-03-31 2009-08-05 日亚化学工业株式会社 Nitride semiconductor light emitting element
JP4632697B2 (en) 2004-06-18 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
US8174037B2 (en) * 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
KR100716646B1 (en) * 2005-11-04 2007-05-09 서울옵토디바이스주식회사 Light emitting device having an inclined light emitting surface and method of manufacturing same
KR100785451B1 (en) * 2006-03-30 2007-12-13 서울옵토디바이스주식회사 A light emitting device having a patterned transparent electrode layer and a method of manufacturing the same
JP2007173866A (en) * 2007-03-16 2007-07-05 Sumitomo Electric Ind Ltd Semiconductor light emitting device
JP5214175B2 (en) * 2007-06-08 2013-06-19 日亜化学工業株式会社 Nitride semiconductor light emitting device and method of manufacturing light emitting device
US8193543B2 (en) 2008-09-04 2012-06-05 3M Innovative Properties Company Monochromatic light source with high aspect ratio
WO2010027648A1 (en) 2008-09-04 2010-03-11 3M Innovative Properties Company I i-vi mqw vcsel on a heat sink optically pumped by a gan ld
WO2010027581A1 (en) 2008-09-04 2010-03-11 3M Innovative Properties Company Monochromatic light source
JP5272613B2 (en) * 2008-09-25 2013-08-28 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
JP5211996B2 (en) * 2008-09-30 2013-06-12 豊田合成株式会社 Light emitting device
JP5468571B2 (en) * 2011-06-21 2014-04-09 パナソニック株式会社 Semiconductor light emitting device
CN102368527A (en) * 2011-10-27 2012-03-07 华灿光电股份有限公司 Light emitting diode chip without wire bonding and preparation method thereof
US9502614B2 (en) * 2014-06-04 2016-11-22 Formosa Epitaxy Incorporation Light emitting diode chip, light emitting device, and wafer-level structure of light emitting diode
CN104332538A (en) * 2014-11-04 2015-02-04 迪源光电股份有限公司 Extension structure of light emitting diode (LED)
US11056614B2 (en) 2017-01-10 2021-07-06 PlayNitride Inc. Micro light-emitting diode chip
CN108288664A (en) * 2017-01-10 2018-07-17 英属开曼群岛商錼创科技股份有限公司 Micro-led chip
TWI607558B (en) 2017-01-10 2017-12-01 錼創科技股份有限公司 Miniature LED chip
JP2019145577A (en) * 2018-02-16 2019-08-29 京セラ株式会社 Semiconductor module and manufacturing method of semiconductor module
KR102760284B1 (en) * 2019-08-26 2025-02-03 엘지전자 주식회사 Display device using micro led and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136672B2 (en) * 1991-07-16 2001-02-19 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP3326545B2 (en) * 1994-09-30 2002-09-24 ローム株式会社 Semiconductor light emitting device
JPH1098211A (en) * 1996-09-19 1998-04-14 Toyoda Gosei Co Ltd Light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939838B2 (en) * 2005-12-01 2011-05-10 Stanley Electric Co., Ltd. Semiconductor light emitting device with transparent substrate and reflective slope

Also Published As

Publication number Publication date
JPH11330559A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP3540605B2 (en) Light emitting element
EP3767688B1 (en) Light emitting diode
JP5304662B2 (en) Light emitting element
JP4123830B2 (en) LED chip
KR100707955B1 (en) Light emitting diode and manufacturing method for the same
US9455378B2 (en) High efficiency light emitting diode and method for fabricating the same
CN100452447C (en) GaN group III-V family nitride light-emitting diode and its production method
EP1294028B1 (en) Semiconductor light-emitting device and manufacturing method thereof
JP2007536732A (en) Lift-off process for GaN film formed on SiC substrate and device manufactured by the method
JP2010080817A (en) Light-emitting element
JP2009004625A (en) Semiconductor light emitting device
JP2004079972A (en) Surface-emitting type light emitting element
JP3503439B2 (en) Nitride semiconductor device
JP2022516669A (en) Vertical structure blue light emitting diode and its manufacturing method
JP2004503096A (en) InGaN based light emitting diode chip and method of manufacturing the same
JPH10223930A (en) Semiconductor light emitting element
JP5298927B2 (en) Light emitting element
JP5277066B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4155847B2 (en) Multilayer light emitting diode element
JPH07335975A (en) Gallium nitride series compound semiconductor laser element
JP3851313B2 (en) Light emitting element
JP2019102492A (en) Semiconductor laser element and semiconductor laser device
JP2000077726A (en) Semiconductor element and manufacture thereof
JP2010161104A (en) Light emitting device and layered light emitting device
KR100729759B1 (en) Light emitting diodes and method for manufacturing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term