[go: up one dir, main page]

JP3539548B2 - Manufacturing method of high tensile hot rolled steel sheet for processing - Google Patents

Manufacturing method of high tensile hot rolled steel sheet for processing Download PDF

Info

Publication number
JP3539548B2
JP3539548B2 JP26550999A JP26550999A JP3539548B2 JP 3539548 B2 JP3539548 B2 JP 3539548B2 JP 26550999 A JP26550999 A JP 26550999A JP 26550999 A JP26550999 A JP 26550999A JP 3539548 B2 JP3539548 B2 JP 3539548B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
dynamic recrystallization
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26550999A
Other languages
Japanese (ja)
Other versions
JP2001089811A (en
Inventor
英子 安原
伸隆 黒澤
章男 登坂
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP26550999A priority Critical patent/JP3539548B2/en
Publication of JP2001089811A publication Critical patent/JP2001089811A/en
Application granted granted Critical
Publication of JP3539548B2 publication Critical patent/JP3539548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用、家電用、機械構造用、建築用等の使途に適用して有利な熱延鋼板に係り、とくに熱延のままで超微細粒を有し、高強度で、かつ延性、強度−伸びバランス、穴拡げ加工性および溶接部耐疲労特性に優れた熱延鋼板に関する。本発明における鋼板は、鋼板、鋼帯を含むものとする。
【0002】
【従来の技術】
近年、自動車産業界においては、自動車の燃費向上対策の1つとして、車体の軽量化に対する要求が高い。車体の軽量化のためには、薄肉化を可能とする、高強度化した高張力熱延鋼板の使用が指向されている。しかし、一般的に、高強度化に伴い、延性等が低下するため、加工性が劣化する。このため、高強度化に伴う延性、耐疲労特性などの劣化を抑え、加工性に優れた高張力熱延鋼板が要望されていた。また、このような高張力熱延鋼板は、アーク溶接が施されることが多く、そのため、溶接熱影響部の耐疲労特性が高いことも要求されている。
【0003】
加工性に優れた高張力鋼板として、フェライトを主相とし、マルテンサイト、べイナイト等を第2相とする複合組織鋼板(デュアルフェーズ鋼板)が提案されている。このデュアルフェーズ鋼板は、強度−伸びバランスが優れ高加工性を有し、自動車用部品に好適であるが、穴拡げ加工性に劣るという問題を残していた。
【0004】
そこで、上記した問題を解決する方法として、例えば、特開平10-8138 号公報には、Mn:1.0 wt%以下、Ti:0.05〜0.30wt%、あるいはTiの全部または1部に代え、その2倍量のNbを含有する鋼スラブを950 〜1100℃の温度に加熱し、1パス当たりの圧下率が20%以上となる圧延を少なくとも2回以上行い、仕上圧延温度がAr3変態点以上となる熱間圧延を施した後、20℃/s 以上の冷却速度で冷却し、350 〜550 ℃で巻き取り、フェライトと相当量の残留オーステナイトとからなる超微細粒組織を有する高張力熱延鋼板の製造方法が開示されている。特開平10−8138号公報に記載された技術では、フェライト結晶粒径を3.6 〜10μm 程度に細粒化するとともにオーステナイトを5〜20%残留させることにより、加工性に優れると共に、穴拡げ性が向上するとしている。
【0005】
また、特開平10-280050 号公報には、C:0.03〜0.2 wt%、Ti:0.2 wt%以下でかつN、Sと結合していない有効Ti量が0.05wt%以上を含む組成のスラブをAr3 〜950 ℃で粗圧延を終了する工程と、粗圧延された粗バーに対し、Ti×Cの関数として定義される特定範囲の温度に再加熱する再加熱処理を施す工程と、再加熱処理された粗バーをAr3変態点以上の温度で仕上げ圧延を行い、550 〜650 ℃で巻き取る工程とを有する、プレス成形性に優れた高強度熱延鋼板の製造方法が開示されている。特開平10-280050 号公報に記載された技術では、粗圧延された粗バーに再加熱処理を施すことにより、一旦歪誘起析出したTiC を再固溶させ、その後仕上げ圧延中あるいは圧延後冷却中に微細に再析出させることができ、、添加したTiを微細化、析出強化に有効に寄与させ、Tiを多量に添加することなく、高強度かつ高靱性を図れるとしている。
【0006】
また、特開平11-92859号公報には、C:0.03〜0.2 wt%、Si:1.0 〜2.5wt %、Mn:0.7 〜3.0wt %、Ti:0.05〜0.3wt %、を含み、成分パラメータPmpが1499未満となるように合金元素を含有する組成の鋼を、低温で加熱する工程と、950 〜1100℃で1パスあたり圧下量を20%以上とする圧下を1回以上加える第1段階の圧延工程と、700 〜950 ℃未満の温度範囲で5 ℃/s 以上の冷却速度で冷却しながら1パス当たりの圧下量が20%以上で累積圧下率が50%以上の圧延を施す第2段階の圧延工程と、その後に20℃/s 以上の冷却速度で600 ℃以下まで冷却する工程とを有するポリゴナルフェライト分率70%以上、フェライト粒径2μm 未満である微細組織を有する高張力熱延鋼板の製造方法が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平10−8138号公報に記載された方法で製造された鋼板では、穴拡げ性には優れるものの、延性等の機械的特性の異方性が大きくなる。さらに、相当量の残留オーステナイトを鋼板全体にわたりほぼ同一比率で存在させることは、現状の技術ではまだ困難であり、歩留まりが低下するという問題が残されていた。また、特開平10-280050 号公報に記載された技術で製造された鋼板では、自動車メーカーから要望されている、より一層高レベルの特性を満たすまでには至っておらず、更なる強度−伸びバランスの向上が必要であるという問題があった。また、特開平11-92859号公報に記載された方法で製造された鋼板は、延性、強度−伸びバランス、穴拡げ加工性に優れているものの、溶接部の疲労特性が何ら考慮されていないという問題が残されていた。
【0008】
本発明は、上記した従来技術の問題を有利に解決し、高強度で、伸びの異方性が少なく、加工性に優れ、強度−伸びバランスおよび穴拡げ加工性に優れ、とくに溶接部耐疲労特性に優れた高張力熱延鋼板を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、鋭意研究を重ねた結果、平均フェライト粒径5μm 以下、好ましくは3.5 μm 以下とするフェライト粒の微細化・均一化と、TiC の微細析出とを組合せることにより、高強度で、かつ強度−伸びバランスおよびおよび強度−穴拡げバランスが良好で溶接部耐疲労特性に優れた高張力熱延鋼板を製造できるという知見を得た。本発明者らは、フェライト粒径の微細化・均一化のためには、仕上げ圧延および粗圧延において動的再結晶を利用してはじめて、オーステナイト粒の微細化・均一化ができ、その後のフェライトの微細化・等軸化を達成できること、また、粗圧延と仕上げ圧延間にシートバーの再加熱処理を行うことにより、微細フェライト中に微細TiC が析出した組織を形成でき、これにより高強度でかつ良好な加工性を確保でき、さらに溶接時の結晶粒粗大化を抑制して溶接部の耐疲労特性を飛躍的に改善できることを新たに見出した。
【0010】
本発明は、上記した知見に基づき、さらに検討を加え完成されたものである。
すなわち、本発明は、量%で、C:0.03〜0.30%、Si:2.0 %以下、Mn:3.0 %以下、P:0.5 %以下、S:0.005 %以下、Al:0.2 %以下、Ti:0.03〜0.30%を含み、かつTi含有量が次(1)式
Ti≧(0.0026/C)+0.02 ………(1)
(ここに、Ti、C:各元素の含有量(量%))
を満足し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、1150℃以下の温度に再加熱するか、あるいは1150℃以下の温度になってから、(動的再結晶温度域の下限温度)+ 80 ℃以下の動的再結晶温度低温域での圧下パスを4パス以上とし、動的再結晶温度低温域での最終パス圧下率を15〜30%、圧延終了温度RDTを(Ar3変態点)〜950 ℃の範囲の温度とする粗圧延を施しシートバーとし、ついで該シートバーに900 〜1000℃の範囲の温度に加熱する再加熱を施したのち、(動的再結晶温度域の下限温度)+ 80 ℃以下の動的再結晶温度低温域での圧下パスを4パス以上、動的再結晶温度低温域での最終パス圧下率を15〜30%とし、圧延終了温度FDTを(Ar3変態点+30℃)〜(Ar3変態点+100 ℃)の範囲の温度とする仕上げ圧延を施し、該仕上げ圧延終了後、2sec 以内に冷却を開始し、30℃/s以上の冷却速度で600 ℃まで冷却し、350 〜600 ℃で巻き取ることを特徴とする加工用高張力鋼板の製造方法である。
【0011】
また、本発明では、前記組成に加えて、さらに量%で、Nb:0.3 %以下、V:0.3 %以下のうちから選ばれた1種または2種を含有する組成とするのが好ましく、また、本発明では、前記各組成に加えて、さらに量%で、Cr:1.0 %以下、Cu:1.0 %以下、Mo:1.0 %以下、Ni:1.0 %以下のうちから選ばれた1種または2種以上を含有する組成としてもよく、また、本発明では、前記各組成に加えて、さらに量%で、Ca、REM 、Bのうちから選ばれた1種または2種以上を合計で0.005 %以下含有する組成としてもよい。
【0012】
【発明の実施の形態】
まず、本発明に使用する鋼素材の組成限定の理由について説明する。なお、以下、組成における量%は単に%と記す。
C:0.03〜0.30%
Cは、安価な強化成分であり、所望の鋼板強度に応じ必要量を含有させる。C含有量が0.03%未満では、結晶粒が粗大化し、本発明で目標とするフェライトの平均粒径5μm 以下、好ましくは3.5 μm 以下を達成できなくなる。また、C含有量が0.30%を超えると、加工性が劣化するとともに溶接性も劣化する。このため、Cは0.03〜0.30%の範囲とする。より好ましくは、0.05〜0.20%の範囲である。
【0013】
Si:2.0 %以下
Siは、固溶強化成分として強度−伸びバランスを改善しつつ強度上昇に有効に寄与する。しかし、過剰な含有は、延性や表面性状を劣化させる。このため、Siは2.0 %以下とする。なお、好ましくは0.3 〜1.5 %である。
Mn:3.0 %以下
Mnは、Ar3 変態点を低下させる作用を通じ結晶粒の微細化に寄与し、強度−伸びバランスを高める作用を有する。さらに、有害な固溶SをMnS として無害化する作用を有する。しかし、多量の含有は鋼を硬質化し、却って強度−伸びバランスを劣化させる。このようなことから、Mnは3.0 %以下とする。なお、より好ましくは0.05%以上、さらに好ましくは0.5 〜2.0 %である。
【0014】
P:0.5 %以下
Pは、強化成分として有用であり、所望の鋼板強度に応じ含有することができるが、過剰の含有は、Pが粒界に偏析し脆化の原因となる。このため、Pは0.5 %以下とする。なお、過剰な低減はコスト高となることもあり、好ましくは0.001 〜0.2 %、より好ましくは0.005 〜0.2 %である。
【0015】
S:0.005 %以下
Sは、MnS 等の非金属介在物を形成し、延性を低下させ、穴拡げ加工性を劣化させるため、できるだけ低減するのが望ましい。穴拡げ加工性の観点からは0.005 %まで許容できる。このため、Sは0.005 %以下に限定した。なお、好ましくは0.0015%以下である。
【0016】
Al:0.2 %以下
Alは、脱酸剤として作用するとともに、結晶粒を微細化する元素であるが、0.2 %を超える含有は、酸化物系介在物を増加させ清浄度が低下し、表面欠陥を増加させる。このため、Alは0.2 %以下に限定した。なお、好ましくは0.005 〜0.07%である。
【0017】
Ti:0.03〜0.3 %
Tiは、本発明において非常に重要な元素であり、まず鋼素材(スラブ)加熱段階でTiC として存在して、初期オーステナイト粒を微細化し、それ以降の熱間圧延過程での動的再結晶を誘起させるために有効に作用する。また、TiC として微細フェライト中に微細に析出することにより、高強度で、加工性および溶接部耐疲労特性を向上させる。このような作用を発揮させるためには、少なくとも0.03%以上の含有が必要であるが、0.3 %を超えて含有しても、効果が飽和し含有量に見合う効果が期待できない。このため、Tiは0.03〜0.3 %の範囲とするのが望ましい。なお、より好ましくは0.05〜0.20%である。
【0018】
Ti含有量は、上記した範囲内で、かつ次(1)式
Ti≧(0.0026/C)+0.02 ………(1)
(ここに、Ti、C:各元素の含有量(量%))
を満足する。Ti含有量が(1)式を満足しない場合には、シートバーを900 〜1000℃の範囲に再加熱する際にTi量が不足し、再加熱処理時のTiの再固溶量が不足し、そのためTiC の微細析出が不十分となり、仕上圧延過程での動的再結晶の誘起が不十分となり、粒の微細化が達成できない。
【0019】
Nb:0.3 %以下、V:0.3 %以下から選ばれた1種または2種
Nb、Vは、いずれも炭窒化物を形成し、熱間圧延加熱段階での初期オーステナイト粒を微細化する作用を有しており、必要に応じ、Tiと重畳して含有することにより、さらに動的再結晶の発生に有効に作用する。しかし、0.3 %を超えて多量に含有しても効果が飽和し含有量に見合う効果が期待できない。このため、Nb、Vとも0.3 %以下とするのが望ましい。
【0020】
Cu:1.0 %以下、Mo:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下のうちから選ばれた1種または2種以上
Cu、Mo、Ni、Crは、いずれも強化成分として、必要に応じ、含有することができるが、多量の含有は却って強度−伸びバランスを劣化させる。このため、Cu、Mo、Ni、Crは、いずれも1.0 %以下とするのが望ましい。なお、上記した作用効果を十分に発揮するためには、少なくとも0.01%以上含有させるのが好ましい。
【0021】
Ca、REM 、Bのうちから選ばれた1種または2種以上を合計で0.005 %以下
Ca、REM 、Bは、いずれも硫化物も形状制御や粒界強度の上昇を通じ加工性を改善する効果を有しており、必要に応じ含有させることができる。しかし、過剰な含有は、清浄度や再結晶性に悪影響を及ぼす恐れがあるため、合計で0.005 %以下とするのが望ましい。
【0022】
本発明に使用する鋼素材は、上記した組成以外は、残部Feおよび不可避的不純物からなる。
上記した組成範囲に調整した溶鋼を、連続鋳造または造塊−分塊圧延により鋼素材とし、この鋼素材に粗圧延および仕上げ圧延からなる熱間圧延を施し熱延鋼板とする。
【0023】
熱間圧延は、鋼素材を、一旦冷却したのち再加熱する再加熱圧延としても、直送圧延やホットチャージローリングとしてもよい。また、薄スラブ連続鋳造法のような、連続鋳造されたスラグを直接熱間圧延してもよい。再加熱する場合には、初期オーステナイト粒を微細化するために、1150℃以下に加熱するのが望ましい。また、直送圧延する場合も、1150℃以下まで冷却したのち圧延を開始するのが動的再結晶を促進するために好ましい。1150℃を超える温度では、その後の圧延において結晶粒が粗大化し、動的再結晶が生じにくくなる。
【0024】
上記した温度の鋼素材に、まず粗圧延を施しシートバーとする。本発明における粗圧延は、動的再結晶温度低温域での圧下パスを4パス以上とし、動的再結晶温度低温域での最終パス圧下率を15〜30%、圧延終了温度RDTを(Ar3変態点)〜950 ℃の範囲の温度とする動的再結晶温度域における圧延とする。これにより、オーステナイト粒の微細化と均一化が達成される。
【0025】
本発明でいう動的再結晶温度低温域は、温度、歪が独立して制御できる測定装置(例えば、富士電波工機製「加工フォーマスター」)により、圧延条件をシミュレーションすることにより得られる歪−応力の関係から予め測定した動的再結晶温度より決定するものとする。動的再結晶温度は、鋼組成、加熱温度、圧下率、圧下配分等で変化するが、850 〜1100℃の温度範囲内で、通常250 〜100 ℃の幅で存在するといわれている。なお、動的再結晶温度域の温度幅は、1パス当たりの圧下率が高いほど、拡大する。ところで、組織微細化の点からは、動的再結晶温度域のできるだけ低い温度域での圧延が、結晶粒微細化、およびγ→α変態の変態サイトが増加し有利である。本発明では、動的再結晶温度低温域を、動的再結晶温度域の下限温度近傍の温度域、すなわち(動的再結晶温度域の下限温度)+80℃以下、好ましくは50℃以下とする。
【0026】
動的再結晶温度低温域で繰り返し圧下を施すことにより、オーステナイト粒が微細化され、しかも比較的低温で動的再結晶を起こさせる回数が多くなるほどオーステナイト粒の微細化が進行するため、少なくとも4パス以上で、しかも連続する4パス以上で圧下するのが好ましい。4パス未満では、オーステナイト粒の微細化の程度が小さい。
【0027】
また、動的再結晶温度低温域での圧下率は、動的再結晶が生ずる範囲であれば特に限定されるものではないが、動的再結晶温度低温域での最終圧下を除き、1パス当たり4〜20%、好ましくは20%未満とするのが望ましい。1パス当たりの圧下率が4%未満では、動的再結晶が生じない。一方、1パス当たりの圧下率が20%を超えると、機械的特性、とくに伸びの異方性が高くなる。なお、動的再結晶温度低温域での累積圧下量は60%以上とするのが好ましい。累積圧下量が60%未満では、オステナイト粒の微細化の程度が小さく、その後のフェライト粒の微細化を達成できにくくなる。
【0028】
また、本発明では、動的再結晶温度低温域での最終圧下は、圧下率15〜30%とする。圧下率が15%未満では、圧下による微細化の効果は少なく、一方、30%を超えても微細化の増加程度は少なく、却って動的再結晶の不均一によるオーステナイト粒径の不均一が生じ、結晶粒が微細・均一化しにくくなり、材質異方性が増大する。
【0029】
また、本発明では、粗圧延の圧延終了温度RDTを(Ar3変態点)〜950 ℃の範囲の温度とする。圧延終了温度RDTがAr3変態点未満では、γ→α変態が生じ、その後の仕上げ圧延において動的再結晶が生じにくく、そのため結晶粒は微細であるが不均一な組織となり、加工性、とくに穴拡げ加工性が劣化する。粗圧延の圧延終了温度が950 ℃を超えると、その後の冷却でオーステナイト粒の成長が生じ微細オーステナイト粒とすることができないという不具合がある。
【0030】
ついで、粗圧延を経たシートバーに900 〜1000℃の範囲の温度に加熱する再加熱処理を施す。
シートバーへの再加熱処理が、溶接部の耐疲労特性におよぼす影響について本発明者らが行った実験結果について説明する。
上記した化学成分範囲の鋼素材、加熱温度、動的再結晶温度域での圧延条件を種々変化し、さらにシートバー再加熱処理(加熱温度:900 〜1000℃)の有無により2.5 〜10μm の範囲の平均フェライト粒径を有する熱延鋼板とした。これら熱延鋼板からアーク溶接継手を作成し、溶接部の疲労特性を調査した。
【0031】
なお、疲労特性はシェンク式平面曲げ疲労試験機によりJIS Z 2275の規定に準拠して行い、107 回疲労限強度を求め疲労強度(σw )とした。疲労特性は、疲労強度σw と引張強さTSの比、σw /TSで評価した。σw /TSが大きなほど耐疲労特性が良好である。
その結果を図1に示す。
【0032】
図1から平均フェライト粒径を5μm 以下、好ましくは3.5 μm 以下で、さらにシートバーの再加熱処理を施すことにより、σw /TSが高く耐疲労特性の優れた鋼板となることがわかる。平均フェライト粒径5μm 以下ではσw /TSが0.5 以上さらに平均フェライト粒径を3.5 μm 以下とすることによりσw /TSが0.55以上と安定して高い耐疲労特性を得ることができる。
【0033】
このような再加熱処理が必要とされる理由は次のように推定される。
再加熱処理により、一旦粗圧延時に歪誘起析出により析出したTiC の一部を再固溶させる。再加熱温度が900 ℃未満では、TiC の溶解が生じなく、一方、1000℃を超えるとオーステナイト粒の粒成長が生じるため、再加熱処理の温度は900 〜1000℃の範囲に限定した。また、再加熱処理の保持時間はとくに限定されないが、1〜100 sec とするのが好ましい。なお、再加熱処理は、粗圧延と仕上げ圧延の間に行うが、圧延ライン上に配設した誘導加熱装置で加熱するのが好ましい。
【0034】
再加熱処理を施されたシートバーは、ついで仕上げ圧延を施される。
仕上げ圧延は、粗圧延と同様に、動的再結晶温度低温域での圧延とし、動的再結晶温度低温域で少なくとも4パス以上の繰り返し圧下を施す。繰り返し圧下は、連続する4パス以上で圧下するのが好ましい。4パス未満では、オーステナイト粒の微細化の程度が小さく、平均フェライト粒径5μm 以下、好ましくは3.5 μm 以下の微細化を達成しにくい。
【0035】
また、動的再結晶温度低温域での圧下率は、動的再結晶が生ずる範囲であれば特に限定されるものではないが、動的再結晶温度低温域での最終圧下を除き、1パス当たり4〜20%、好ましくは20%未満とするのが望ましい。1パス当たりの圧下率が4%未満では、動的再結晶が生じない。一方、1パス当たりの圧下率が20%を超えると、機械的特性、とくに伸びの異方性が高くなる。なお、動的再結晶温度低温域での最終圧下は、第2相の微細化を図るため、圧下率15〜30%とするのが好ましい。圧下率が15%未満では、圧下による微細化の効果は少なく、一方、30%を超えても微細化の増加程度は少なく、圧延荷重が増加するうえ却って結晶粒の展伸により伸び等の材質異方性が増大する。
【0036】
また、本発明では、仕上げ圧延の圧延終了温度FDTを(Ar3変態点+30℃)〜(Ar3変態点+100 ℃)の範囲の温度とする。圧延終了温度FDTが(Ar3変態点+30℃)未満では、不均一組織となりやすく、加工性、とくに穴拡げ加工性が低下する。一方、圧延終了温度FDTが(Ar3変態点+100 ℃)を超えると、オーステナイト粒の成長が生じフェライト粒の微細化が達成できない。このため、仕上げ圧延の圧延終了温度FDTを(Ar3変態点+30℃)〜(Ar3変態点+100 ℃)の範囲の温度とした。
【0037】
なお、粗、仕上げ圧延の熱間圧延時においては、潤滑を施しつつ圧下を行ってもよいことはいうまでもない。また、動的再結晶温度低温域での圧延以外の圧延条件はとくに限定されない。
仕上げ圧延終了後、2sec 以内に冷却を開始し、30℃/s以上の冷却速度で600 ℃まで冷却し、350 〜600 ℃で巻き取る。
【0038】
上記した条件で仕上げ圧延を終了した熱延鋼板においては、この時点でのオーステナイト粒はほぼ等軸の結晶粒となっており、熱間圧延終了後直ちに冷却する直近急冷を行えば、γ→α変態の変態核が多く、フェライト粒の粒成長が抑制され組織が微細化される。このため、圧延終了後2sec 以内、好ましくは1sec 以内に冷却を開始するのが好ましい。冷却開始が圧延終了後2sec を超えると、γ→α変態核のサイトが減少し、フェライト(α)粒の粒成長が起こり、5μm 以下、好ましくは3.5 μm 以下のフェライト粒を得ることが困難となる。
【0039】
また、冷却速度は30℃/sec 以上とする。冷却速度が30℃/sec 未満では、フェライト粒の粒成長が生じ、微細化が達成できないうえ、第2相を微細にすることが難しくなる。
仕上げ圧延終了後、600 ℃まで急冷することにより、巻き取りまでにTi系析出物の析出が促進されフェライトが析出強化される。また、γ→α変態が促進されフェライト粒の微細化が促進される。なお、急冷停止後の平均冷却速度は25℃/s以下とするのが好ましい。
【0040】
冷却された熱延鋼板は、直ちにコイルに巻き取るのが好ましい。巻取温度は、350 〜600 ℃とする。巻取温度が350 ℃未満では、鋼板強度が高くなり、巻き取り後の鋼板形状が安定しなくなる。一方、巻取温度が600 ℃を超えると、TiC が粗大化し強度増加量が少なくなる。なお、巻取温度は好ましくは500 ℃以下である。
【0041】
なお、第2相が凝集状に存在することは材質の異方性を低減する上で好ましくなく、島状(第2相の粒径以下の間隔で他の第2相が存在する比率が20%以下)に分布していることが好ましい。上記熱延条件により、島状の第2相分布を得ることができる。
本発明の方法により製造される熱延鋼板の組織は、フェライトを主相とし、パーライト、べイナイト、マルテンサイト、残留オーステナイトから選ばれた1種または2種以上からなる第2相を有している。主相のフェライトの平均粒径は5 μm 以下、好ましくは3.5 μm 以下である。フェライトの平均粒径が5μm を超えると、延性、靱性の向上が少なくなる。なお、第2相の平均粒径は6.0 μm 以下が好ましい。
【0042】
なお、本発明については、フェライト、第2相の平均粒径は、常法に従い、圧延方向断面における平均粒径とする。
【0043】
【実施例】
表1に示す組成を有する溶鋼を、連続鋳造法によりスラブ(鋼素材)とした。これらスラブを表2に示す種々の条件で加熱、粗圧延、再加熱、仕上げ圧延、圧延後冷却を行って熱間圧延鋼板(板厚1.8 〜2.6 mm)とした。なお、鋼板No.23 は、潤滑圧延を実施した。
【0044】
得られたこれらの鋼板について、組織、引張特性、穴拡げ加工性、溶接部の疲労特性を調査した。
組織は、鋼板の圧延方向断面について、光学顕微鏡あるいは電子顕微鏡を用いて、フェライトの粒径および第2相の組織、粒径を測定した。
また、引張特性は、鋼板の各方向(圧延方向、圧延方向から45°方向、圧延方向から90°方向)についてJIS 5号試験片により引張特性(降伏点YS、引張強さTS、伸びEl)を測定した。各方向の伸びから、伸びの異方性ΔEl(={El0 +El90−2 El45 }/2を算出した。ここで、El0 は圧延方向、El90は圧延方向から90°方向、El45は圧延方向から45°方向の伸びである。
【0045】
また、穴拡げ加工性は、日本鉄鋼連盟規格JFST 1001 に準じて、鋼板に10mmφ(D0 )の打抜き穴を加工したのち、頂角60°の円錐ポンチで押し広げる加工を施し、割れが板厚を貫通した直後の穴径Dを求め、λ={(D−D0 )/D0 }×100 %から求められるλ値で評価した。また、溶接部の疲労特性は、各鋼板をギャップ0で突き合わせ、アーク溶接したのち、ビード肉盛部を削除し疲労試験片とした。なお、アーク溶接はMAG溶接とし、電流:200 A、電圧:25V、シールドガス:Ar−20%CO2 、溶接速度:1m/min の条件で行った。
【0046】
疲労試験は、JIS Z 2275の規格に準じて、シェンク式平面曲げ疲労試験機により実施した。疲労強度σw は10 7 回疲労限強度とし、σw /TSで耐疲労特性を評価した。
これらの結果を表3に示す。
【0047】
【表1】

Figure 0003539548
【0048】
【表2】
Figure 0003539548
【0049】
【表3】
Figure 0003539548
【0050】
【表4】
Figure 0003539548
【0051】
【表5】
Figure 0003539548
【0052】
本発明例の鋼板は、いずれもフェライトの平均粒径が3.5 μm 以下で、ΔElが−4.0 以下と異方性が小さく、またλも110 %以上と高い穴拡げ加工性を有している。TS×El値が22000MPa・%以上、TS×λ値が80000MPa・%以上と高く、強度−伸びバランス、強度−穴拡げバランスに優れ加工性に優れた高張力熱延鋼板となっている。また、σw /TSが0.55以上と溶接部の耐疲労特性に優れた鋼板となっている。
【0053】
これに対し、再加熱処理を行わない本発明の範囲を外れる比較例(鋼板No. 3、No.16 、No.18 、No.22 、No.24 、No.26 、No.28 、No.30 )およびRDTが本発明の範囲を外れる比較例(鋼板No.4 )では、引張強さTSが低く、さらにTS×El値、TS×λ値が低くなって、加工性が劣化している。また、溶接部の疲労特性では、σw /TSが0.50以下であり耐疲労特性が低下している。
【0054】
また、熱延条件が本発明の範囲を外れる比較例(鋼板No. 1、No. 5〜No. 14、No. 36)では、伸びElの異方性が大きく、さらにTS×El値、TS×λ値が低くなって、加工性が劣化している。さらに、溶接部の疲労特性では、σw /TSが0.50以下と耐疲労特性が低下している。
また、組成が本発明の範囲を外れる比較例(鋼板No.31 〜No.35 )では、伸びElの異方性が大きく、さらにTS×El値、TS×λ値が低くなって、加工性が劣化している。また、溶接部の疲労特性ではσw /TSが0.50以下で耐疲労特性が低下している。
【0055】
【発明の効果】
本発明によれば、超微細粒を有し、高強度で良好な機械的特性を具備し、かつ強度−伸びバランス、穴拡げ加工性および溶接部の耐疲労特性に優れた、加工性用高張力熱延鋼板を安価に製造でき、産業上の格段の効果を奏する。
【図面の簡単な説明】
【図1】耐疲労特性に及ぼす平均フェライト粒径、シートバー再加熱の影響を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-rolled steel sheet that is advantageous for use in automobiles, home appliances, mechanical structures, construction, and the like, and particularly has ultra-fine grains as hot-rolled, has high strength, and is ductile. The present invention relates to a hot-rolled steel sheet excellent in strength, elongation-elongation balance, hole expandability, and fatigue resistance at a weld. The steel sheet in the present invention includes a steel sheet and a steel strip.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in the automobile industry, there is a high demand for reducing the weight of a vehicle body as one of measures for improving fuel efficiency of an automobile. In order to reduce the weight of a vehicle body, the use of a high-strength, high-strength hot-rolled steel sheet that enables a reduction in thickness has been aimed at. However, in general, the ductility and the like are reduced as the strength is increased, so that the workability is deteriorated. For this reason, there has been a demand for a high-strength hot-rolled steel sheet that suppresses deterioration in ductility and fatigue resistance due to the increase in strength and has excellent workability. In addition, such high-tensile hot-rolled steel sheets are often subjected to arc welding, and therefore, it is also required that the welding heat-affected zone has high fatigue resistance.
[0003]
As a high-strength steel sheet excellent in workability, a composite structure steel sheet (dual-phase steel sheet) having ferrite as a main phase and martensite, bainite or the like as a second phase has been proposed. This dual-phase steel sheet has excellent strength-elongation balance and high workability, and is suitable for automotive parts, but has a problem that it is inferior in hole expandability.
[0004]
Therefore, as a method for solving the above-mentioned problem, for example, Japanese Patent Application Laid-Open No. 10-8138 discloses that Mn: 1.0 wt% or less, Ti: 0.05 to 0.30 wt%, or all or one part of Ti, the volumes of steel slabs containing Nb was heated to a temperature of 950 C. to 1100 ° C., and 1 rolling reduction per pass is performed at least twice a rolling of 20% or more, the finish rolling temperature is Ar 3 transformation point or more High-tensile hot-rolled steel sheet having an ultrafine grain structure consisting of ferrite and a considerable amount of retained austenite Is disclosed. According to the technique described in Japanese Patent Application Laid-Open No. 10-8138, the ferrite crystal grain size is reduced to about 3.6 to 10 μm and austenite is left in an amount of 5 to 20%. It is said to improve.
[0005]
Japanese Patent Application Laid-Open No. 10-280050 discloses a slab having a composition in which C: 0.03 to 0.2 wt%, Ti: 0.2 wt% or less, and an effective Ti amount not bonded to N and S containing 0.05 wt% or more. A step of ending the rough rolling at Ar 3 to 950 ° C., a step of performing a reheating treatment on the coarsely-rolled coarse bar to a temperature in a specific range defined as a function of Ti × C, and a step of reheating. A method for producing a high-strength hot-rolled steel sheet excellent in press formability, comprising a step of subjecting a treated rough bar to a finish rolling at a temperature not lower than the Ar 3 transformation point and winding it at 550 to 650 ° C. . In the technique described in Japanese Patent Application Laid-Open No. H10-280050, by subjecting a coarsely-rolled coarse bar to reheating treatment, TiC that has once been strain-induced precipitated is re-dissolved, and then during finish rolling or cooling after rolling. It can be re-precipitated finely and effectively contributes to refinement and precipitation strengthening of added Ti, and can achieve high strength and toughness without adding a large amount of Ti.
[0006]
Japanese Patent Application Laid-Open No. H11-92859 discloses that C: 0.03 to 0.2 wt%, Si: 1.0 to 2.5 wt%, Mn: 0.7 to 3.0 wt%, and Ti: 0.05 to 0.3 wt%. a step of heating a steel having a composition containing an alloying element so that the mp is less than 1499 at a low temperature, and applying a reduction at least once at a temperature of 950 to 1100 ° C. and a reduction of 20% or more per pass at a first stage. And rolling at a rolling rate of 20% or more and a cumulative rolling reduction of 50% or more per pass while cooling at a cooling rate of 5 ° C./s or more in a temperature range of 700 to 950 ° C. High tensile heat having a microstructure with a polygonal ferrite fraction of 70% or more and a ferrite grain size of less than 2 μm, comprising a rolling process of two stages and a subsequent process of cooling to 600 ° C. or less at a cooling rate of 20 ° C./s or more. A method for manufacturing a rolled steel sheet is disclosed.
[0007]
[Problems to be solved by the invention]
However, although the steel sheet manufactured by the method described in Japanese Patent Application Laid-Open No. 10-8138 is excellent in hole expandability, mechanical properties such as ductility have large anisotropy. Furthermore, it is still difficult with the current technology to cause a considerable amount of retained austenite to be present at substantially the same ratio throughout the steel sheet, and the problem that the yield is reduced remains. Further, the steel sheet manufactured by the technique described in Japanese Patent Application Laid-Open No. 10-280050 has not yet reached the higher level of characteristics required by automobile manufacturers, and has a further strength-elongation balance. There was a problem that the improvement was necessary. Further, although the steel sheet manufactured by the method described in JP-A-11-92859 is excellent in ductility, strength-elongation balance, and hole expandability, the fatigue properties of the weld are not considered at all. The problem remained.
[0008]
The present invention advantageously solves the above-mentioned problems of the prior art, and has high strength, low elongation anisotropy, excellent workability, excellent strength-elongation balance and hole expandability, and particularly, fatigue resistance to welds. It is an object of the present invention to provide a high-strength hot-rolled steel sheet having excellent properties.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, as a result, the ferrite grains having an average ferrite grain size of 5 μm or less, preferably 3.5 μm or less have been refined and homogenized, and the fine precipitation of TiC has It has been found that a combination of the above can produce a high-strength hot-rolled steel sheet having a high strength, a good strength-elongation balance and a good strength-hole expansion balance, and excellent weld fatigue resistance characteristics. The present inventors have found that the use of dynamic recrystallization in the finish rolling and the rough rolling can reduce the size and uniformity of the austenite grains, and then reduce the ferrite size. By performing reheating treatment of the sheet bar between rough rolling and finish rolling, it is possible to form a structure in which fine TiC is precipitated in fine ferrite, thereby achieving high strength. In addition, the present inventors have newly found that good workability can be ensured, and that the coarsening of grains during welding can be suppressed and the fatigue resistance of the welded portion can be dramatically improved.
[0010]
The present invention has been completed based on the above findings, and further studied.
That is, the present invention is a mass%, C: 0.03~0.30%, Si : 2.0% or less, Mn: 3.0% or less, P: 0.5% or less, S: 0.005% or less, Al: 0.2% or less, Ti: Contain 0.03-0.30% and the Ti content is the following formula (1)
Ti ≧ (0.0026 / C) +0.02 ……… (1)
(Here, Ti, C: the content of each element (mass%))
The steel material having the composition consisting of the balance of Fe and unavoidable impurities is reheated to a temperature of 1150 ° C or less, or after the temperature reaches 1150 ° C or less, the lower limit of the dynamic recrystallization temperature range temperature) + 80 ° C. or less of the rolling path of a dynamic recrystallization temperature low temperature region and four passes or more, a final pass reduction ratio in the dynamic recrystallization temperature low temperature region 15% to 30%, the rolling end temperature RDT ( (Ar 3 transformation point) Rough rolling is performed at a temperature in the range of 950950 ° C. to form a sheet bar, and the sheet bar is reheated to a temperature in the range of 900 to 1000 ° C., and then (dynamic recrystallization) the temperature range of the lower limit temperature) + 80 ° C. the following rolling path in a dynamic recrystallization temperature low temperature region 4 passes or more, a final pass reduction ratio in the dynamic recrystallization temperature low temperature region and 15% to 30%, the finish rolling Finish pressure at which the temperature FDT is in the range of (Ar 3 transformation point + 30 ° C) to (Ar 3 transformation point + 100 ° C) After the finish rolling, cooling is started within 2 seconds, cooled to 600 ° C. at a cooling rate of 30 ° C./s or more, and wound at 350 to 600 ° C. Is a manufacturing method.
[0011]
Further, in the present invention, in addition to the composition, further mass%, Nb: 0.3% or less, V: is preferably a composition containing one or two selected from among 0.3% or less, further, in the present invention, in addition to the respective compositions, further mass%, Cr: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, Ni: 1 kind selected from among 1.0% or less or it may be a composition containing two or more, also, in the present invention, the total in addition to the respective compositions, further mass%, Ca, REM, selected from among the B 1 alone, or two or more kinds of The content may be 0.005% or less.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reason for limiting the composition of the steel material used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: 0.03 to 0.30%
C is an inexpensive reinforcing component, and contains a necessary amount according to the desired steel sheet strength. If the C content is less than 0.03%, the crystal grains become coarse, and it becomes impossible to achieve the average ferrite grain size of 5 μm or less, preferably 3.5 μm or less, which is the target of the present invention. Further, when the C content exceeds 0.30%, workability is deteriorated and weldability is also deteriorated. For this reason, C is set in the range of 0.03 to 0.30%. More preferably, it is in the range of 0.05 to 0.20%.
[0013]
Si: 2.0% or less
Si effectively contributes to the increase in strength while improving the strength-elongation balance as a solid solution strengthening component. However, an excessive content deteriorates ductility and surface properties. Therefore, the content of Si is set to 2.0% or less. Incidentally, the content is preferably 0.3 to 1.5%.
Mn: 3.0% or less
Mn contributes to the refinement of crystal grains through the action of lowering the Ar 3 transformation point, and has the action of increasing the strength-elongation balance. Further, it has a function of detoxifying harmful dissolved S as MnS. However, a large amount hardens the steel and rather degrades the strength-elongation balance. Therefore, Mn is set to 3.0% or less. The content is more preferably 0.05% or more, and still more preferably 0.5 to 2.0%.
[0014]
P: 0.5% or less P is useful as a strengthening component and can be contained according to the desired strength of the steel sheet. However, excessive P causes P to segregate at grain boundaries and cause embrittlement. Therefore, P is set to 0.5% or less. Note that excessive reduction may increase the cost, and is preferably 0.001 to 0.2%, more preferably 0.005 to 0.2%.
[0015]
S: 0.005% or less S forms non-metallic inclusions such as MnS, reduces ductility, and deteriorates hole expanding workability. Therefore, it is desirable to reduce S as much as possible. From the viewpoint of hole expanding workability, up to 0.005% is acceptable. Therefore, S is limited to 0.005% or less. In addition, it is preferably 0.0015% or less.
[0016]
Al: 0.2% or less
Al is an element that acts as a deoxidizing agent and refines crystal grains. However, if it exceeds 0.2%, oxide inclusions increase, the cleanliness decreases, and surface defects increase. For this reason, Al was limited to 0.2% or less. The content is preferably 0.005 to 0.07%.
[0017]
Ti: 0.03-0.3%
Ti is a very important element in the present invention. First, it is present as TiC in a steel material (slab) heating stage to refine initial austenite grains and to perform dynamic recrystallization in the subsequent hot rolling process. It works effectively to induce. In addition, by precipitating finely as TiC in fine ferrite, it has high strength and improves workability and fatigue resistance of a welded portion. In order to exert such an effect, the content must be at least 0.03% or more. However, if the content exceeds 0.3%, the effect is saturated and an effect corresponding to the content cannot be expected. For this reason, Ti is desirably in the range of 0.03 to 0.3%. In addition, more preferably, it is 0.05 to 0.20%.
[0018]
The Ti content is within the above range and the following equation (1)
Ti ≧ (0.0026 / C) +0.02 ……… (1)
(Here, Ti, C: the content of each element (mass%))
To be satisfied. If the Ti content does not satisfy the expression (1), the amount of Ti is insufficient when the sheet bar is reheated to a temperature in the range of 900 to 1000 ° C, and the amount of re-dissolved Ti in the reheating treatment is insufficient. Therefore, the fine precipitation of TiC becomes insufficient, and the induction of dynamic recrystallization in the finish rolling process becomes insufficient, so that grain refinement cannot be achieved.
[0019]
Nb: One or two selected from 0.3% or less, V: 0.3% or less
Both Nb and V form a carbonitride and have an action of refining the initial austenite grains in the hot rolling heating step, and if necessary, by overlapping with Ti, containing Effectively affects dynamic recrystallization. However, even if it is contained in a large amount exceeding 0.3%, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, it is desirable that both Nb and V be 0.3% or less.
[0020]
One or more selected from Cu: 1.0% or less, Mo: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less
Any of Cu, Mo, Ni, and Cr can be contained as a strengthening component, if necessary. However, a large amount thereof rather deteriorates the strength-elongation balance. For this reason, it is desirable that Cu, Mo, Ni, and Cr all be 1.0% or less. In order to sufficiently exhibit the above-mentioned effects, it is preferable to contain at least 0.01% or more.
[0021]
0.005% or less in total of one or more selected from Ca, REM and B
Ca, REM, and B all have the effect of improving workability by controlling shape and increasing grain boundary strength, and sulfides can be contained as necessary. However, excessive content may adversely affect cleanliness and recrystallization, so that the total content is desirably 0.005% or less.
[0022]
The steel material used in the present invention is composed of the balance Fe and unavoidable impurities, except for the composition described above.
The molten steel adjusted to the above composition range is made into a steel material by continuous casting or ingot-bulking rolling, and the steel material is subjected to hot rolling including rough rolling and finish rolling to obtain a hot-rolled steel sheet.
[0023]
The hot rolling may be reheating rolling in which the steel material is cooled and then reheated, or may be direct rolling or hot charge rolling. In addition, a continuously cast slag such as a thin slab continuous casting method may be directly hot-rolled. In the case of reheating, it is desirable to heat to 1150 ° C. or less in order to make the initial austenite grains fine. Also, in the case of direct rolling, it is preferable to start rolling after cooling to 1150 ° C. or lower in order to promote dynamic recrystallization. At a temperature exceeding 1150 ° C., the crystal grains become coarse in the subsequent rolling, and dynamic recrystallization hardly occurs.
[0024]
First, rough rolling is performed on a steel material having the above-mentioned temperature to obtain a sheet bar. In the rough rolling in the present invention, the rolling pass in the dynamic recrystallization temperature low temperature range is set to 4 or more, the final pass rolling reduction in the dynamic recrystallization temperature low temperature range is 15 to 30%, and the rolling end temperature RDT is (Ar (3 transformation point) Rolling is performed in the dynamic recrystallization temperature range of 950 ° C. Thereby, the refinement and uniformization of the austenite grains are achieved.
[0025]
The low temperature range of the dynamic recrystallization temperature referred to in the present invention is a strain obtained by simulating rolling conditions by a measuring device (for example, “Processing for Master” manufactured by Fuji Denki Koki Co., Ltd.) capable of controlling temperature and strain independently. It is determined from the dynamic recrystallization temperature measured in advance from the relation of stress. The dynamic recrystallization temperature varies depending on the steel composition, heating temperature, reduction ratio, reduction distribution, etc., and is said to exist within a temperature range of 850 to 1100 ° C., usually in a range of 250 to 100 ° C. The temperature width of the dynamic recrystallization temperature range increases as the rolling reduction per pass increases. By the way, from the viewpoint of microstructural refinement, rolling at a temperature range as low as possible in the dynamic recrystallization temperature range is advantageous because the crystal grain refinement and the number of transformation sites of γ → α transformation increase. In the present invention, the dynamic recrystallization temperature low temperature range, a temperature range of minimum temperature near the dynamic recrystallization temperature region, i.e. (lower limit temperature of dynamic recrystallization temperature region) + 80 ° C. or less, preferably 50 ° C. or less .
[0026]
By repeatedly subjecting the austenite grains to the dynamic recrystallization temperature in a low temperature range, the austenite grains are refined, and the austenite grains are refined as the number of times of dynamic recrystallization at a relatively low temperature increases. It is preferable to reduce the pressure in at least four passes and in four or more consecutive passes. With less than four passes, the degree of austenite grain refinement is small.
[0027]
Further, reduction rate of the dynamic recrystallization temperature low temperature region is not particularly limited as long as the resulting dynamic recrystallization, except for the final reduction of the dynamic recrystallization temperature low temperature region, the first pass It is desirable that the content be 4 to 20%, preferably less than 20%. When the rolling reduction per pass is less than 4%, dynamic recrystallization does not occur. On the other hand, if the rolling reduction per pass exceeds 20%, the mechanical properties, particularly the anisotropy of elongation, increase. It is preferable that the cumulative rolling reduction in the low temperature range of the dynamic recrystallization temperature is 60% or more. The cumulative reduction ratio is less than 60%, the degree of miniaturization of O over austenite grains are small, hardly achieved subsequent ferrite grain refinement.
[0028]
In the present invention, the final reduction in the low temperature region of the dynamic recrystallization temperature is set to a reduction ratio of 15 to 30%. If the rolling reduction is less than 15%, the effect of the reduction by the reduction is small, while if it exceeds 30%, the degree of increase in the reduction is small, and on the contrary, the austenite grain size becomes uneven due to the uneven dynamic recrystallization. In addition, it is difficult to make the crystal grains fine and uniform, and the material anisotropy increases.
[0029]
In the present invention, the rolling end temperature RDT of the rough rolling is a temperature in the range of (Ar 3 transformation point) to 950 ° C. If the rolling end temperature RDT is lower than the Ar 3 transformation point, γ → α transformation occurs, and dynamic recrystallization hardly occurs in the subsequent finish rolling, so that the crystal grains have a fine but non-uniform structure, and workability, particularly Hole spreadability deteriorates. If the rolling end temperature of the rough rolling exceeds 950 ° C., there is a problem that austenite grains grow in the subsequent cooling and fine austenite grains cannot be formed.
[0030]
Next, the sheet bar having been subjected to the rough rolling is subjected to a reheating treatment in which the sheet bar is heated to a temperature in the range of 900 to 1000 ° C.
The effect of the reheating treatment on the sheet bar on the fatigue resistance of the welded portion will be described with reference to the results of an experiment performed by the present inventors.
The steel material having the above-mentioned chemical composition range is subjected to various changes in the rolling conditions in the heating temperature and the dynamic recrystallization temperature range, and furthermore, depending on the presence or absence of the sheet bar reheating treatment (heating temperature: 900 to 1000 ° C.), the steel material has a thickness of 2.5 to 10 μm. A hot-rolled steel sheet having an average ferrite grain size in the range was obtained. Arc welded joints were made from these hot rolled steel sheets and the fatigue properties of the welds were investigated.
[0031]
Incidentally, the fatigue characteristics was performed in compliance with the provisions of JIS Z 2275 by Schenk plane bending fatigue tester, it was fatigue strength sought 10 7 times fatigue limit strength (.sigma.w). The fatigue properties were evaluated by the ratio of fatigue strength σw to tensile strength TS, σw / TS. The larger the σw / TS, the better the fatigue resistance.
The result is shown in FIG.
[0032]
From FIG. 1, it can be seen that the steel sheet having an average ferrite grain size of 5 μm or less, preferably 3.5 μm or less, and further reheating the sheet bar, has a high σw / TS and excellent fatigue resistance. When the average ferrite particle size is 5 μm or less, σw / TS is 0.5 or more, and when the average ferrite particle size is 3.5 μm or less, σw / TS is 0.55 or more, so that high fatigue resistance can be obtained stably.
[0033]
The reason why such reheating treatment is required is presumed as follows.
By the reheating treatment, a part of the TiC once precipitated by the strain-induced precipitation during the rough rolling is re-dissolved. If the reheating temperature is lower than 900 ° C., the dissolution of TiC does not occur. On the other hand, if the reheating temperature exceeds 1000 ° C., austenite grains grow, so the reheating temperature is limited to the range of 900 to 1000 ° C. Further, the holding time of the reheating treatment is not particularly limited, but is preferably 1 to 100 sec. The reheating treatment is performed between the rough rolling and the finish rolling, but it is preferable that the reheating treatment is performed by an induction heating device provided on the rolling line.
[0034]
The sheet bar that has been subjected to the reheating treatment is then subjected to finish rolling.
The finish rolling is performed in a low dynamic recrystallization temperature range in the same manner as the rough rolling, and the rolling is repeated at least 4 passes or more in the low dynamic recrystallization temperature range. It is preferable that the rolling be repeated repeatedly in four or more passes. With less than 4 passes, the degree of refinement of the austenite grains is small, and it is difficult to achieve refinement with an average ferrite grain size of 5 μm or less, preferably 3.5 μm or less.
[0035]
Further, reduction rate of the dynamic recrystallization temperature low temperature region is not particularly limited as long as the resulting dynamic recrystallization, except for the final reduction of the dynamic recrystallization temperature low temperature region, the first pass It is desirable that the content be 4 to 20%, preferably less than 20%. When the rolling reduction per pass is less than 4%, dynamic recrystallization does not occur. On the other hand, if the rolling reduction per pass exceeds 20%, the mechanical properties, particularly the anisotropy of elongation, increase. The final reduction in the low temperature region of the dynamic recrystallization temperature is preferably set to a reduction ratio of 15 to 30% in order to miniaturize the second phase. If the rolling reduction is less than 15%, the effect of the fineness by rolling is small, but if it exceeds 30%, the increase in the fineness is small, and the rolling load increases. Anisotropy increases.
[0036]
In the present invention, the rolling end temperature FDT of the finish rolling is set to a temperature in the range of (Ar 3 transformation point + 30 ° C.) to (Ar 3 transformation point + 100 ° C.). If the rolling end temperature FDT is lower than (Ar 3 transformation point + 30 ° C.), a non-uniform structure is likely to occur, and workability, particularly hole expanding workability, is reduced. On the other hand, when the rolling end temperature FDT exceeds (Ar 3 transformation point + 100 ° C.), austenite grains grow and fine ferrite grains cannot be achieved. For this reason, the rolling end temperature FDT of the finish rolling is set to a temperature in the range of (Ar 3 transformation point + 30 ° C.) to (Ar 3 transformation point + 100 ° C.).
[0037]
In addition, at the time of hot rolling of rough and finish rolling, it goes without saying that rolling may be performed while lubricating. The rolling conditions other than the rolling in the low temperature range of the dynamic recrystallization temperature are not particularly limited.
After finish rolling, cooling is started within 2 seconds, cooled to 600 ° C at a cooling rate of 30 ° C / s or more, and wound up at 350 to 600 ° C.
[0038]
In the hot-rolled steel sheet that has been finish-rolled under the above conditions, the austenite grains at this point are almost equiaxed crystal grains, and if the latest quenching is performed immediately after the completion of hot rolling, γ → α Transformation nuclei of transformation are large, grain growth of ferrite grains is suppressed, and the structure is refined. Therefore, it is preferable to start cooling within 2 seconds, preferably within 1 second after the end of rolling. If the start of cooling exceeds 2 seconds after the end of rolling, the sites of the γ → α transformation nucleus decrease, and ferrite (α) grains grow, making it difficult to obtain ferrite grains of 5 μm or less, preferably 3.5 μm or less. Become.
[0039]
The cooling rate is 30 ° C./sec or more. If the cooling rate is less than 30 ° C./sec, ferrite grains grow, making it impossible to achieve finer grains and making it difficult to make the second phase finer.
By quenching to 600 ° C. after finish rolling, the precipitation of Ti-based precipitates is promoted before winding, and the precipitation of ferrite is strengthened. Further, the γ → α transformation is promoted, and the refinement of ferrite grains is promoted. The average cooling rate after the rapid cooling stop is preferably set to 25 ° C./s or less.
[0040]
It is preferable that the cooled hot-rolled steel sheet is immediately wound around a coil. The winding temperature is 350-600 ° C. If the winding temperature is lower than 350 ° C., the strength of the steel sheet increases, and the shape of the steel sheet after winding becomes unstable. On the other hand, if the winding temperature exceeds 600 ° C., TiC becomes coarse and the increase in strength is reduced. The winding temperature is preferably 500 ° C. or less.
[0041]
It is not preferable that the second phase is present in the form of agglomeration in order to reduce the anisotropy of the material. % Or less). Under the above hot rolling conditions, an island-like second phase distribution can be obtained.
The structure of the hot-rolled steel sheet produced by the method of the present invention has ferrite as a main phase and has a second phase composed of one or more selected from pearlite, bainite, martensite, and retained austenite. I have. The average grain size of the main phase ferrite is 5 μm or less, preferably 3.5 μm or less. When the average grain size of ferrite exceeds 5 μm, the improvement in ductility and toughness is reduced. The average particle size of the second phase is preferably 6.0 μm or less.
[0042]
In the present invention, the average particle size of the ferrite and the second phase is defined as the average particle size in the cross section in the rolling direction according to a conventional method.
[0043]
【Example】
Molten steel having the composition shown in Table 1 was used as a slab (steel material) by a continuous casting method. These slabs were heated, rough rolled, reheated, finished rolled, rolled and cooled under various conditions shown in Table 2 to obtain a hot rolled steel sheet (sheet thickness 1.8 to 2.6 mm). In addition, the lubrication rolling was implemented about the steel plate No. 23.
[0044]
About these obtained steel sheets, the structure, the tensile properties, the hole expandability, and the fatigue properties of the welded parts were investigated.
As for the microstructure, the grain size of ferrite and the microstructure and grain size of the second phase were measured for the cross section in the rolling direction of the steel sheet using an optical microscope or an electron microscope.
In addition, the tensile properties were determined by using JIS No. 5 test pieces in each direction (rolling direction, 45 ° direction from rolling direction, 90 ° direction from rolling direction) of the steel sheet (yield point YS, tensile strength TS, elongation El). Was measured. From the elongation in each direction, the anisotropy of elongation ΔEl (= {El 0 + El 90 −2 El 45 } / 2 was calculated. Here, El 0 is the rolling direction, El 90 is the 90 ° direction from the rolling direction, and El is El. 45 is elongation in the direction of 45 ° from the rolling direction.
[0045]
In addition, in accordance with the Japan Iron and Steel Federation Standard JFST 1001, the hole expansion processability is as follows: after punching a 10mmφ (D 0 ) punched hole in a steel plate, push it out with a conical punch with a vertex angle of 60 ° The hole diameter D immediately after penetrating the thickness was determined, and evaluated by the λ value obtained from λ = {(D−D 0 ) / D 0 } × 100%. Further, the fatigue characteristics of the welded portion were obtained by butt-joining the steel plates at a gap of 0 and performing arc welding, and then removing the bead overlay portion to obtain a fatigue test piece. The arc welding was performed by MAG welding under the following conditions: current: 200 A, voltage: 25 V, shielding gas: Ar-20% CO 2 , and welding speed: 1 m / min.
[0046]
The fatigue test was performed by a Schenk type plane bending fatigue tester according to the standard of JIS Z 2275. Fatigue strength .sigma.w was 10 7 times fatigue limit strength was evaluated fatigue resistance in .sigma.w / TS.
Table 3 shows the results.
[0047]
[Table 1]
Figure 0003539548
[0048]
[Table 2]
Figure 0003539548
[0049]
[Table 3]
Figure 0003539548
[0050]
[Table 4]
Figure 0003539548
[0051]
[Table 5]
Figure 0003539548
[0052]
Each of the steel sheets of the present invention has an average ferrite grain size of 3.5 μm or less, a low anisotropy of ΔEl of −4.0 or less, and a high hole expanding property of λ of 110% or more. The TS × El value is at least 22000 MPa ·% and the TS × λ value is as high as 80,000 MPa ·% or more. This is a high-tensile hot-rolled steel sheet having excellent strength-elongation balance, strength-hole expansion balance, and excellent workability. Further, σw / TS is 0.55 or more, and the steel sheet is excellent in the fatigue resistance property of the welded portion.
[0053]
In contrast, comparative examples (steel sheets No. 3, No. 16, No. 18, No. 22, No. 24, No. 26, No. 28, No. 30) and the comparative example (steel No. 4) in which the RDT is out of the range of the present invention, the tensile strength TS is low, the TS × El value and the TS × λ value are low, and the workability is deteriorated. . In the fatigue characteristics of the welded portion, σw / TS is 0.50 or less, and the fatigue resistance characteristics are reduced.
[0054]
Further, in the comparative examples (steel sheets No. 1, No. 5 to No. 14, No. 36) in which the hot rolling conditions are out of the range of the present invention, the anisotropy of the elongation El is large, and the TS × El value, TS × λ value is low and workability is degraded. Further, regarding the fatigue characteristics of the welded portion, the σw / TS is 0.50 or less, and the fatigue resistance characteristics are reduced.
In the comparative examples (steel sheets No. 31 to No. 35) in which the composition is out of the range of the present invention, the anisotropy of the elongation El is large, and the TS × El value and the TS × λ value are low, so that the workability is low. Has deteriorated. Further, in the fatigue characteristics of the welded portion, when σw / TS is 0.50 or less, the fatigue resistance characteristics are deteriorated.
[0055]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it has ultra-fine grains, has high strength and good mechanical properties, and is excellent in strength-elongation balance, hole expansion workability, and fatigue resistance of a welded part. High-strength hot-rolled steel sheet can be manufactured at low cost, and it has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of average ferrite grain size and sheet bar reheating on fatigue resistance.

Claims (4)

量%で、
C:0.03〜0.30%、 Si:2.0 %以下、
Mn:3.0 %以下、 P:0.5 %以下、
S:0.005 %以下、 Al:0.2 %以下、
Ti:0.03〜0.30%
を含み、かつTi含有量が下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、1150℃以下の温度に再加熱するか、あるいは1150℃以下の温度になってから、(動的再結晶温度域の下限温度)+ 80 ℃以下の動的再結晶温度低温域での圧下パスを4パス以上とし、動的再結晶温度低温域での最終パス圧下率を15〜30%、圧延終了温度RDTを(Ar3変態点)〜950 ℃の範囲の温度とする粗圧延を施しシートバーとし、ついで該シートバーに900 〜1000℃の範囲の温度に加熱する再加熱を施したのち、(動的再結晶温度域の下限温度)+ 80 ℃以下の動的再結晶温度低温域での圧下パスを4パス以上、動的再結晶温度低温域での最終パス圧下率を15〜30%とし、圧延終了温度FDTを(Ar3変態点+30℃)〜(Ar3変態点+100 ℃)の範囲の温度とする仕上げ圧延を施し、該仕上げ圧延終了後、2sec 以内に冷却を開始し、30℃/s以上の冷却速度で600 ℃まで冷却し、350 〜600 ℃で巻き取ることを特徴とする加工用高張力鋼板の製造方法。

Ti≧(0.0026/C)+0.02 ………(1)
ここに、Ti、C:各元素の含有量(量%)
In mass%,
C: 0.03 to 0.30%, Si: 2.0% or less,
Mn: 3.0% or less, P: 0.5% or less,
S: 0.005% or less, Al: 0.2% or less,
Ti: 0.03-0.30%
Containing steel and having a Ti content satisfying the following equation (1) and having a composition consisting of a balance of Fe and unavoidable impurities, is reheated to a temperature of 1150 ° C or less, or a temperature of 1150 ° C or less from now, the (lower limit temperature of dynamic recrystallization temperature region) + 80 ° C. or less of the rolling path of a dynamic recrystallization temperature low temperature region and four passes or more, final pass reduction in the dynamic recrystallization temperature low temperature region The sheet bar is subjected to rough rolling with a reduction rate of 15 to 30% and a rolling end temperature RDT in the range of (Ar 3 transformation point) to 950 ° C., and the sheet bar is heated to a temperature in the range of 900 to 1000 ° C. to then subjected to reheating, (dynamic recrystallization temperature region of lower temperature) + 80 ° C. or less of the rolling path of a dynamic recrystallization temperature low temperature region 4 passes or more, in the dynamic recrystallization temperature low temperature region the final pass reduction ratio is 15 to 30% of the rolling end temperature FDT (Ar 3 transformation point + 30 ℃) ~ (Ar 3 transformation point Finish rolling at a temperature in the range of 100 ° C.), cooling is started within 2 seconds after the finish rolling, cooled to 600 ° C. at a cooling rate of 30 ° C./s or more, and wound up at 350 to 600 ° C. A method for producing a high-tensile steel sheet for processing, characterized in that:
Record
Ti ≧ (0.0026 / C) +0.02 ……… (1)
Here, Ti, C: the content of each element (mass%)
前記組成に加えて、さらに量%で、Nb:0.3 %以下、V:0.3 %以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1に記載の加工用高張力鋼板の製造方法。In addition to the composition, further mass%, Nb: 0.3% or less, V: Claim 1, characterized in that a composition containing one kind or two kinds selected from among 0.3% or less Manufacturing method of high-strength steel sheet for processing. 前記組成に加えて、さらに量%で、Cr:1.0 %以下、Cu:1.0 %以下、Mo:1.0 %以下、Ni:1.0 %以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の加工用高張力鋼板の製造方法。In addition to the composition, further mass%, Cr: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, Ni: containing one or more members selected from among 1.0% or less The method for producing a high-strength steel sheet for processing according to claim 1, wherein the composition is a composition. 前記組成に加えて、さらに量%で、Ca、REM 、Bのうちから選ばれた1種または2種以上を合計で0.005 %以下含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の加工用高張力鋼板の製造方法。In addition to the composition, further mass%, Ca, REM, claims 1, characterized in that the one or composition containing 0.005% or less in total of two or more species selected from among B 3 The method for producing a high-tensile steel sheet for processing according to any one of the above.
JP26550999A 1999-09-20 1999-09-20 Manufacturing method of high tensile hot rolled steel sheet for processing Expired - Fee Related JP3539548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26550999A JP3539548B2 (en) 1999-09-20 1999-09-20 Manufacturing method of high tensile hot rolled steel sheet for processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26550999A JP3539548B2 (en) 1999-09-20 1999-09-20 Manufacturing method of high tensile hot rolled steel sheet for processing

Publications (2)

Publication Number Publication Date
JP2001089811A JP2001089811A (en) 2001-04-03
JP3539548B2 true JP3539548B2 (en) 2004-07-07

Family

ID=17418160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26550999A Expired - Fee Related JP3539548B2 (en) 1999-09-20 1999-09-20 Manufacturing method of high tensile hot rolled steel sheet for processing

Country Status (1)

Country Link
JP (1) JP3539548B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649868B2 (en) * 2003-04-21 2011-03-16 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
CN100592385C (en) * 2004-08-06 2010-02-24 摩托罗拉公司 Method and system for performing speech recognition on multi-language name
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US7442268B2 (en) 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US7959747B2 (en) 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
EP1979496A1 (en) * 2006-01-26 2008-10-15 ARVEDI, Giovanni Strip of hot rolled micro-alloyed steel for obtaining finished pieces by cold pressing and shearing
JP4736853B2 (en) * 2006-02-28 2011-07-27 Jfeスチール株式会社 Precipitation strengthened high strength steel sheet and method for producing the same
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP4941003B2 (en) * 2007-02-28 2012-05-30 Jfeスチール株式会社 Hot-rolled steel sheet for die quench and method for producing the same
CA2701903C (en) 2007-10-10 2017-02-28 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5326709B2 (en) * 2008-04-03 2013-10-30 新日鐵住金株式会社 Low yield ratio type high burring high strength hot rolled steel sheet and method for producing the same
KR101536845B1 (en) * 2011-03-28 2015-07-14 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and production method therefor
TWI457447B (en) * 2011-04-13 2014-10-21 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet with excellent natural
CN102212762B (en) * 2011-05-09 2012-12-19 武汉钢铁(集团)公司 Nuclear container steel with tensile strength of more than 690MPa level and production method
WO2012161248A1 (en) 2011-05-25 2012-11-29 新日鐵住金株式会社 Hot-rolled steel sheet and process for producing same
KR101267715B1 (en) * 2011-07-28 2013-05-27 현대제철 주식회사 Hot-rolled steel sheet, method of manufacturing the hot-rolled steel sheet and method of manufacturing oil tubular country goods using the hot-rolled steel sheet
KR101267624B1 (en) * 2011-07-28 2013-05-27 현대제철 주식회사 Structural steel and method of manufacturing the structural steel
JP5316634B2 (en) * 2011-12-19 2013-10-16 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
KR101500048B1 (en) * 2012-12-27 2015-03-06 주식회사 포스코 Method for manufacturing steel sheet having superior resistance to corrosion by sulfuric acid
MX2015014099A (en) * 2013-05-14 2015-12-15 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and production method therefor.
EP3000905B1 (en) 2013-05-21 2019-10-30 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof
JP6123551B2 (en) * 2013-07-31 2017-05-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in fatigue resistance and shape freezing property after slit processing and manufacturing method thereof
JP6701954B2 (en) * 2016-05-20 2020-05-27 日本製鉄株式会社 High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same
CN111809030B (en) * 2020-07-17 2023-01-24 安徽工业大学 Tissue refining method suitable for rolling thick plate and extra-thick plate with low compression ratio

Also Published As

Publication number Publication date
JP2001089811A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3539548B2 (en) Manufacturing method of high tensile hot rolled steel sheet for processing
KR100543828B1 (en) Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
US20090223607A1 (en) Method for manufacturing a high strength steel sheet
JP3551064B2 (en) Ultra fine grain hot rolled steel sheet excellent in impact resistance and method for producing the same
CN113302315A (en) Hot-rolled steel sheet and welded joint, and method for producing same
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP2004315857A (en) High strength hot rolled steel sheet excellent in punching workability and method for producing the same
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP2000290748A (en) Hot rolled steel sheet for working excellent in notch fatigue resistance and its production
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JP2006089804A (en) Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
JPH1180890A (en) High strength hot rolled steel plate and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JPH1088231A (en) Production of thick high tensile strength steel plate excellent in toughness and weldability
JP3276259B2 (en) High strength hot rolled steel sheet with good resistance weldability and method for producing the same
JPH11172376A (en) High strength electric resistance welded tube excellent in liquid pressure bulging formability and its production
JP7244715B2 (en) Hot-rolled steel sheet with excellent durability and its manufacturing method
JPH09184045A (en) Extremely thin hot rolled steel sheet excellent in impact resistance and its production
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3533844B2 (en) ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees