JP3537100B2 - Method and apparatus for controlling ammonia injection amount in denitration apparatus - Google Patents
Method and apparatus for controlling ammonia injection amount in denitration apparatusInfo
- Publication number
- JP3537100B2 JP3537100B2 JP23344293A JP23344293A JP3537100B2 JP 3537100 B2 JP3537100 B2 JP 3537100B2 JP 23344293 A JP23344293 A JP 23344293A JP 23344293 A JP23344293 A JP 23344293A JP 3537100 B2 JP3537100 B2 JP 3537100B2
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- amount
- concentration
- flow rate
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、脱硝装置のアンモニア
注入量制御方法および装置に係り、特に急速負荷変化時
においても排ガス中の窒素酸化物を効率よく低減するの
に好適な、脱硝装置のアンモニア注入量制御方法および
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the amount of injected ammonia in a denitration apparatus, and more particularly to a method and apparatus for controlling the amount of nitrogen oxides in exhaust gas efficiently even at a rapid load change. The present invention relates to a method and apparatus for controlling an amount of injected ammonia.
【0002】[0002]
【従来の技術】従来の脱硝装置用アンモニア注入制御方
式は、図2に示すように、処理ガス流量計1の出力信号
と入口NOX 濃度計2の出力信号を乗算器7aで乗算し
て、入口NOX 量信号21とする。一方、入口NOX 濃
度計2の出力信号および出口NOX 濃度設定器3の出力
信号より、引算器8aおよび割算器9より必要脱硝率信
号10を演算し、この信号を関数発生器11に入力し
て、NOX 量に対して必要なアンモニアモル比信号13
を演算する。Conventional denitration apparatus for ammonia injection control system, as shown in FIG. 2, by multiplying the processing gas flowmeter 1 of the output signal and the inlet NO X concentration meter 2 of the output signal at the multiplier 7a, The inlet NO X amount signal 21 is used. On the other hand, the output signal of the inlet NO X concentration meter 2 and the output signal from the outlet NO X concentration setting device 3, and calculates the required denitrification rate signal 10 from subtractor 8a and divider 9, the function generator of this signal 11 enter the ammonia necessary for the amount of NO X molar ratio signal 13
Is calculated.
【0003】出口NOX 濃度設定器3の出力信号と出口
NOX 濃度計4の出力信号との間の偏差信号を引算器8
bで求め、調節計12aで信号処理して、フィードバッ
クモル比信号15を演算する。加算器14aでは、必要
モル比信号13とフィードバックモル比信号15を加算
して、全モル比信号16とし、乗算器7bで、入口NO
X 量信号21と乗算して、必要アンモニア流量信号22
とする。次に、負荷要求信号5を微分器17および2階
微分器18で演算処理した信号を加算器14bに入力
し、加算器14bでは、これらの信号と前述の必要アン
モニア流量信号22とを加算して、アンモニア流量要求
信号19を演算する。このアンモニア流量要求信号19
とアンモニア流量計6の出力信号の偏差を引算器8cで
求め、調節計12bで信号処理してアンモニア流量調整
弁20を開閉することにより、脱硝装置出口NOX 濃度
を設定値近傍に維持していた。A difference signal between the output signal of the outlet NO X concentration setting device 3 and the output signal of the outlet NO X concentration meter 4 is subtracted by a subtractor 8.
b, and the signal is processed by the controller 12a to calculate the feedback molar ratio signal 15. The adder 14a adds the required molar ratio signal 13 and the feedback molar ratio signal 15 to obtain a total molar ratio signal 16, and the multiplier 7b uses the input NO.
The required ammonia flow signal 22 is multiplied by the X amount signal 21.
And Next, a signal obtained by subjecting the load request signal 5 to arithmetic processing by the differentiator 17 and the second-order differentiator 18 is input to an adder 14b, and the adder 14b adds these signals to the necessary ammonia flow signal 22 described above. Then, the ammonia flow request signal 19 is calculated. This ammonia flow request signal 19
And the deviation of the ammonia flow meter 6 output signal determined by the subtractor 8c, by opening and closing the ammonia flow control valve 20 to the signal processing by the controllers 12b, maintaining the denitration apparatus outlet NO X concentration near the set value I was
【0004】この制御方式は、基本的には、入口NOX
量に対する先行値、出口濃度設定値との偏差によるフィ
ードバック補正、および負荷要求信号に対する動的先行
値より、アンモニア注入量を決定する方式である。な
お、動的先行値は、アンモニア注入量の変化に対する脱
硝反応のおくれ(通常数10分)を補償するために設け
られている。[0004] This control method basically includes an inlet NO X
In this method, the ammonia injection amount is determined from a preceding value for the amount, feedback correction based on a deviation from the outlet concentration set value, and a dynamic preceding value for the load request signal. The dynamic leading value is provided to compensate for the denitration reaction (usually several tens of minutes) caused by a change in the ammonia injection amount.
【0005】最近においては、プラントの高速負荷変化
率運用に伴なって、脱硝負荷の変動が急激になってきた
こと、一方、出口NOX 濃度の設定値が従来よりも小さ
くなってきたことのため、従来の制御方式では、高速負
荷変動時において、出口NO X 濃度を設定値近傍に維持
しようとすると、大量のアンモニアが注入されるため、
脱硝装置からリークするアンモニア濃度数値が、出口N
OX 濃度の設定数値を越えてしまうことになる。通常、
リークアンモニア濃度は、出口NOX 濃度設定値以下に
維持する必要があるが、従来の制御方式では、このリー
クアンモニアの濃度に対する配慮はあるものの、高速負
荷変化および出口NOX 濃度設定値の低下に対しては、
十分な制御性を確保するという配慮がなされていなかっ
た。Recently, high-speed load change of a plant
Fluctuations in the denitration load have become more rapid with the operation of the rate
On the other hand, exit NOXDensity setting is smaller than before
With the conventional control method, high-speed load
At the time of load change, exit NO XConcentration maintained near set value
If you try, a large amount of ammonia will be injected,
The value of the ammonia concentration leaking from the denitration device
OXThe density setting value will be exceeded. Normal,
The leak ammonia concentration is measured at the outlet NOXBelow the density setting
This must be maintained, but with conventional control methods
Although there is consideration for ammonia concentration,
Load change and exit NOXFor a decrease in the density setting,
Consideration has not been given to ensure sufficient controllability
Was.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術は、脱硝
負荷が急激に変化した場合においても、出口NOX 濃度
およびリークアンモニア濃度を低い値(1 ppm程度)に
維持するという点について配慮がされておらず、出口N
OX 濃度を設定値以下に抑えようとすると、リークアン
モニア濃度が設定値を越えてしまい、逆にリークアンモ
ニア濃度を設定値以下に抑えようとすると、出口NOX
濃度が設定値を越えてしまうという問題があった。[0007] The above prior art, even when the denitration load changes rapidly, the consideration for the points of maintaining the outlet NO X concentration and the leak ammonia concentration to a low value (about 1 ppm) Not exit N
When the O X concentration when you suppress below the set value, will leak ammonia concentration exceeds the set value, and you suppress leakage of ammonia concentration below the set value in the opposite, outlet NO X
There is a problem that the density exceeds the set value.
【0007】本発明の目的は、高速負荷変動時において
も、脱硝装置出口のNOX 濃度およびリークアンモニア
濃度を低濃度に維持できる、脱硝装置のアンモニア注入
量制御方法および装置を提供することにある。An object of the present invention, even during fast load variations, can maintain a NO X concentration and the leak ammonia concentration of the denitration device outlet to a low concentration to provide an ammonia injection amount control method and apparatus for denitration system .
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。
(1)装置入口から窒素酸化物(NOX )を含有する排
ガスを導入するとともに排ガス中にアンモニアを注入し
て装置内に設けた脱硝触媒によって前記NOX を接触還
元した後、装置出口から排出する脱硝装置へのアンモニ
ア注入量制御方法において、導入した被処理排ガス流量
と入口NOX 濃度から入口NOX 量を求める工程と、入
口NOX 濃度と出口NOX 濃度に基づきNOX 量に対す
る必要アンモニアモル比を求める工程と、前記入口NO
X 量と必要アンモニアモル比から必要アンモニア流量を
求める工程と、現在の処理ガス流量と脱硝率を用いて現
在の触媒吸着アンモニア量を演算する工程と、n分後に
予想される処理ガス流量と必要脱硝率からn分後に必要
となる触媒吸着アンモニア量を演算する工程と、この両
者の吸着アンモニア量の偏差に基づいて前記必要アンモ
ニア流量を補正してアンモニア流量要求信号を求める工
程と、このアンモニア流量要求信号と現在のアンモニア
注入量の偏差に基づいてアンモニア流量制御装置を操作
する工程とを備えたことを特徴とする脱硝装置のアンモ
ニア注入量制御方法。
(2)装置入口からNOX を含有する排ガスを導入する
とともに排ガス中にアンモニアを注入して装置内に設け
た脱硝触媒によって前記NOX を接触還元した後、装置
出口から排出する脱硝装置へのアンモニア注入量制御装
置において、導入した処理排ガス流量と入口NOX 濃度
とから入口NOX 量を算出する乗算器と、入口NOX 濃
度と出口NOX 濃度設定値に基づきNOX 量に対する必
要アンモニアモル比を算出する手段と、出口NOX 濃度
設定値と実際の出口NOX 濃度との偏差値および前記必
要アンモニアモル比に基づき全モル比信号を算出する手
段と、前記入口NOX 量と全モル比信号とから必要アン
モニア流量信号を算出する手段と、現在の処理ガス流量
と脱硝率とから現在の触媒吸着アンモニア量を算出する
演算器と、n分後に予想される処理ガス流量と必要脱硝
率からn分後に必要となる触媒吸着アンモニア量を算出
する演算器と、この両者の吸着アンモニア量の偏差値と
前記必要アンモニア流量信号と現在の注入アンモニア流
量とに基づいてアンモニア注入量を制御する手段とを備
えたことを特徴とする脱硝装置へのアンモニア注入量制
御装置。The invention claimed in the present application to achieve the above object is as follows. (1) An exhaust gas containing nitrogen oxides (NO x ) is introduced from the inlet of the device, ammonia is injected into the exhaust gas, and the NO x is catalytically reduced by a denitration catalyst provided in the device, and then discharged from the outlet of the device. In the method for controlling the amount of ammonia injected into a denitration apparatus, a step of obtaining an inlet NO X amount from an introduced exhaust gas flow rate and an inlet NO X concentration, and a step of calculating a required ammonia for the NO X amount based on the inlet NO X concentration and the outlet NO X concentration. A step of determining a molar ratio;
A step of calculating the required ammonia flow rate from the X amount and the required ammonia molar ratio, a step of calculating the current amount of catalyst-adsorbed ammonia using the current processing gas flow rate and the denitration rate, and a processing gas flow rate expected after n minutes Calculating the amount of catalyst-adsorbed ammonia required n minutes after the denitration rate, correcting the required ammonia flow based on the difference between the amounts of the adsorbed ammonia, and obtaining an ammonia flow request signal; A step of operating the ammonia flow control device based on a deviation between the request signal and the current ammonia injection amount. (2) After the catalytic reduction of the NO X by the denitration catalyst disposed in the injection to the equipment ammonia in the exhaust gas is introduced to the exhaust gas containing NO X from the device inlet to the denitration apparatus for discharging from the apparatus outlet In the ammonia injection amount control device, a multiplier for calculating the inlet NO X amount from the introduced treated exhaust gas flow rate and the inlet NO X concentration, and a required ammonia mole ratio for the NO X amount based on the inlet NO X concentration and the outlet NO X concentration set value. means for calculating a ratio, and means for calculating the total molar ratio signal based on the deviation value and the required ammonia molar ratio of the actual outlet NO X concentration and the outlet NO X concentration setting, the inlet amount of NO X and the total mole A means for calculating a required ammonia flow rate signal from the ratio signal, a calculator for calculating the current amount of catalyst-adsorbed ammonia from the current processing gas flow rate and the denitration rate, and a prediction after n minutes A calculator for calculating the amount of catalyst-adsorbed ammonia required after n minutes from the processing gas flow rate and the required denitration rate, based on the deviation value of the adsorbed ammonia quantity of both, the required ammonia flow rate signal, and the current injected ammonia flow rate Means for controlling the amount of injected ammonia to the denitration apparatus.
【0009】[0009]
【作用】処理ガス量、脱硝率および触媒吸着アンモニア
量の間には、定まった因果関係がある。そこで、オンラ
インで計測できる処理ガス量および脱硝率より現在の触
媒吸着アンモニア量が求まる。次に注入アンモニア量に
対して、触媒吸着アンモニア量の変化には大きな応答お
くれがあるので、運転条件を予測してn分後に必要とな
る触媒吸着アンモニア量を求める。この両者の触媒吸着
アンモニア量の差に対応して、早めに注入アンモニア量
を増減させてやれば、n分後には、触媒吸着アンモニア
量が必要な値の近傍に維持できるので、脱硝装置出口の
NOX 濃度を目標値の近傍に維持できる。There is a fixed causal relationship between the amount of treated gas, the denitration rate and the amount of ammonia adsorbed on the catalyst. Therefore, the current amount of ammonia adsorbed on the catalyst can be obtained from the amount of the processing gas and the denitration rate that can be measured online. Next, since there is a large response delay in the change in the amount of the catalyst-adsorbed ammonia with respect to the amount of the injected ammonia, the operating conditions are predicted and the amount of the catalyst-adsorbed ammonia necessary after n minutes is obtained. If the amount of injected ammonia is increased or decreased as soon as possible in response to the difference between the two amounts of ammonia adsorbed on the catalyst, the amount of ammonia adsorbed on the catalyst can be maintained at a value close to the required value after n minutes. the NO X concentration can be maintained in the vicinity of the target value.
【0010】[0010]
【実施例】本願発明になる脱硝装置のアンモニア注入量
制御方式の具体的実施例を図1に示す。本制御方式は、
必要な脱硝率を得るための必要モル比信号13、出口N
OX 濃度計3の出力信号によるフィードバックモル比信
号15および吸着アンモニア濃度差による補正信号28
によりアンモニア注入量を決定するものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a specific embodiment of an ammonia injection amount control method for a denitration apparatus according to the present invention. This control method
Required molar ratio signal 13 to obtain required denitration rate, outlet N
O X densitometer third output signal by the feedback molar ratio signal 15 and the adsorbed ammonia density difference by the correction signal 28
Is used to determine the amount of injected ammonia.
【0011】このうち、必要モル比信号13およびフィ
ードバックモル比信号15の求め方については、図2に
よってすでに説明した従来の制御方式と同様であり、現
在およびn分後の触媒吸着アンモニア濃度を演算し、こ
の両者の濃度差に対応して、アンモニア注入量を補正す
るところに本願発明の特徴がある。吸着アンモニア濃度
演算器23においては、以下の関係を用いて、吸着アン
モニア濃度を演算する。The method of obtaining the required molar ratio signal 13 and the feedback molar ratio signal 15 is the same as that of the conventional control method already described with reference to FIG. 2, and calculates the present and n minutes after the catalyst adsorption ammonia concentration. The feature of the present invention lies in that the amount of injected ammonia is corrected in accordance with the difference between the two concentrations. The adsorbed ammonia concentration calculator 23 calculates the adsorbed ammonia concentration using the following relationship.
【0012】[0012]
【数1】
Q=k・Gg ・f(η) ……(1)
ここに、Q:アンモニアの吸着量、k:定数、Gg :処
理ガス量、η:脱硝率、f(η):脱硝率によって定ま
る無次元数。したがって、吸着アンモニア濃度演算器2
3aでは、オンラインで計測できる脱硝率信号29と処
理ガス流量計1の出力信号から、(1)式を用いて、吸
着アンモニア濃度信号26が求められる。Q = k · G g · f (η) (1) where, Q: adsorbed amount of ammonia, k: constant, G g : treated gas amount, η: denitration rate, f (η) : Dimensionless number determined by the denitration rate. Therefore, the adsorption ammonia concentration calculator 2
In step 3a, the adsorbed ammonia concentration signal 26 is obtained from the denitration rate signal 29 that can be measured online and the output signal of the processing gas flow meter 1 using equation (1).
【0013】次に、負荷要求信号5より、微分器17、
係数器24および加算器14cを用いて、n分後の負荷
要求信号31を求める。この信号31より、関数発生器
11bを用いて、n分後の入口NOX 濃度信号32を求
め、出口NOX 濃度設定器3の出力信号、引算器8eお
よび割算器9bを用いて、n分後の必要脱硝率信号30
が求まる。Next, based on the load request signal 5, the differentiator 17,
The load request signal 31 after n minutes is obtained by using the coefficient unit 24 and the adder 14c. From this signal 31, an inlet NO X concentration signal 32 after n minutes is obtained using the function generator 11b, and an output signal of the outlet NO X concentration setter 3, a subtracter 8e and a divider 9b are used. Required denitration rate signal 30 after n minutes
Is found.
【0014】さらに、処理ガス量予測演算器25では、
n分後の負荷要求信号31と係数器24の出力信号を用
いて、n分後の処理ガス量信号33を求める。なお、n
分後の負荷要求信号の予測は、負荷要求信号の微分値に
基づく線形予測であるが、処理ガス量予測演算器25に
おいては、以下の演算によりn分後の処理ガス量信号3
3を求める。Further, in the processing gas amount predicting calculator 25,
The processing gas amount signal 33 after n minutes is obtained by using the load request signal 31 after n minutes and the output signal of the coefficient unit 24. Note that n
Although the prediction of the load request signal after minutes is linear prediction based on the differential value of the load request signal, the processing gas amount prediction calculator 25 calculates the processing gas amount signal 3 after n minutes by the following operation.
Ask for 3.
【0015】[0015]
【数2】 (Equation 2)
【0016】ここに、MWD:負荷要求信号、t:現在
の時刻、n:n分。(2)式において、右辺第1項は、
静特性に基づく処理ガス量であり、負荷要求信号から決
定される。右辺第2項は、オーバ/アンダファイヤリン
グに対応するものであり、負荷変化率によって決定す
る。このようにして、吸着アンモニア濃度演算器23a
および23bを用いて、現在の吸着アンモニア濃度信号
26およびn分後の吸着アンモニア濃度予測信号27が
求まり、この濃度差を引算器8dで求め、調節計12c
で信号処理し、吸着アンモニア濃度差による補正信号2
8として、加算器14bに入力する。加算器14bで
は、必要モル比信号13およびフィードバックモル比信
号15から求まる必要アンモニア流量信号22と吸着ア
ンモニア濃度差による補正信号28を加算して、アンモ
ニア流量要求信号19とし、アンモニア流量計6の出力
信号との偏差を引算器8cで求め、調節計12bで信号
処理して、アンモニア流量調整弁20を開閉することに
より、脱硝装置へのアンモニア注入量を調節する。Here, MWD: load request signal, t: current time, n: n minutes. In the equation (2), the first term on the right side is
This is a processing gas amount based on static characteristics, and is determined from a load request signal. The second term on the right side corresponds to over / under firing, and is determined by the load change rate. In this way, the adsorption ammonia concentration calculator 23a
And 23b, a current adsorption ammonia concentration signal 26 and an adsorption ammonia concentration prediction signal 27 after n minutes are obtained, and this concentration difference is obtained by the subtractor 8d, and the controller 12c
, And a correction signal 2 based on the difference in the concentration of adsorbed ammonia
As 8 is input to the adder 14b. The adder 14b adds the required ammonia flow signal 22 obtained from the required molar ratio signal 13 and the feedback molar ratio signal 15 and the correction signal 28 based on the difference in the concentration of adsorbed ammonia to obtain an ammonia flow request signal 19, and outputs the ammonia flow request signal 19. The deviation from the signal is obtained by the subtractor 8c, the signal is processed by the controller 12b, and the ammonia flow control valve 20 is opened and closed to adjust the amount of ammonia injected into the denitration apparatus.
【0017】本制御方式では、(1)式からわかるよう
に、脱硝率は、処理ガス量が決まれば、吸着アンモニア
濃度に依存するが、これは、アンモニア注入量と、NO
X との反応によって消費されるアンモニア量とのバラン
スでほぼ定まり、大きな体積容量効果とも重なり、大き
な時間おくれを伴なう。そこで、このおくれに対応する
n分後の状態を予測して、早めにアンモニア注入量を補
正することにより、必要な吸着アンモニア濃度を確保す
るものである。In this control method, as can be seen from equation (1), the denitration rate depends on the concentration of adsorbed ammonia when the amount of processing gas is determined.
It is almost determined by the balance with the amount of ammonia consumed by the reaction with X , overlaps with the large volume capacity effect, and involves a large time delay. Therefore, the state after n minutes corresponding to the delay is predicted, and the required ammonia concentration is ensured by correcting the ammonia injection amount early.
【0018】このように、本実施例においては、触媒吸
着アンモニア濃度を必要な値に維持できるので、高速負
荷変化時においても、脱硝装置出口のNOX 濃度を目標
値近傍に維持できるとともに、リークアンモニア濃度を
低い値に抑えることができる。[0018] Thus, in the present embodiment, since the catalyst adsorbed ammonia concentration can be maintained to the required value, even during fast load changes, it is possible to maintain the concentration of NO X denitrator exit the vicinity of the target value, the leak The ammonia concentration can be suppressed to a low value.
【0019】[0019]
【発明の効果】本発明によれば、脱硝性能を支配する触
媒の吸着アンモニア濃度をオンラインで演算できるの
で、現在の吸着アンモニア濃度およびn分後に必要とな
る吸着アンモニア濃度を求め、この濃度差に応じて脱硝
装置へのアンモニア注入量を増減することにより、高速
負荷変動時においても、吸着アンモニア濃度の応答おく
れに対応して、早めにアンモニアの注入量を補正してい
るので、脱硝装置出口NO X 濃度を目標値に維持するの
に必要な吸着アンモニア濃度が得られる。According to the present invention, the touch controlling the denitration performance is obtained.
Can calculate the concentration of adsorbed ammonia on the medium online
It is necessary after the current concentration of adsorbed ammonia and n minutes.
The concentration of adsorbed ammonia, and then denitrate according to this concentration difference.
By increasing or decreasing the amount of ammonia injected into the device, high speed
Even when the load fluctuates, the response of the concentration of adsorbed ammonia
In response to this, the injection amount of ammonia was corrected early.
Therefore, NOx at the denitration device exit XTo keep the concentration at the target value
To obtain the required concentration of adsorbed ammonia.
【0020】このようにして、常に脱硝反応に必要なア
ンモニアを過不足なく供給できるので、高速負荷変動時
においても、脱硝装置出口NOX 濃度を目標値近傍に維
持できるとともに、脱硝装置出口のリークアンモニア濃
度を低減できるという効果がある。[0020] Thus, since always supplied without excess or shortage of ammonia required for denitration reaction, even during fast load change, it is possible to maintain a denitrator outlet NO X concentration near the target value, the leak of the denitration device outlet There is an effect that the ammonia concentration can be reduced.
【図1】本発明になる脱硝装置のアンモニア注入量制御
方法の一実施例を示す制御系統図。FIG. 1 is a control system diagram showing an embodiment of a method for controlling an ammonia injection amount of a denitration apparatus according to the present invention.
【図2】従来のアンモニア注入量制御方法を示す制御系
統図。FIG. 2 is a control system diagram showing a conventional ammonia injection amount control method.
1…ガス流量計、2…入口NOX 濃度計、3…出口NO
X 濃度設定器、4…出口NOX 濃度計、5…負荷要求信
号、6…アンモニア流量計、10…必要脱硝率信号、1
2…調節計、13…必要モル比信号、15…フィードバ
ックモル比信号、16…全モル比信号、19…アンモニ
ア流量要求信号、21…入口NOX 量信号、22…必要
アンモニア流量信号、23a、23b…吸着アンモニア
濃度演算器、25…処理ガス量予測演算器、26…現在
の吸着アンモニア濃度信号、27…n分後の吸着アンモ
ニア濃度予測信号、28…吸着アンモニア濃度差による
補正信号、29…脱硝率信号、30…n分後の必要脱硝
率信号、31…n分後の負荷要求信号、32…n分後の
入口NOX 濃度信号、33…n分後の処理ガス量信号。1 ... gas flowmeter, 2 ... inlet NO X concentration meter, 3 ... outlet NO
X concentration setting unit, 4 ... outlet NO X concentration meter, 5 ... load demand signal, 6 ... ammonia flow meter, 10 ... required denitrification rate signal, 1
2: Controller, 13: Required molar ratio signal, 15: Feedback molar ratio signal, 16: Total molar ratio signal, 19: Ammonia flow rate request signal, 21: Inlet NO X amount signal, 22: Required ammonia flow signal, 23a, 23b: adsorbed ammonia concentration calculator, 25: processing gas amount prediction calculator, 26: current adsorbed ammonia concentration signal, 27 ... adsorbed ammonia concentration prediction signal after n minutes, 28 ... correction signal based on difference in adsorbed ammonia concentration, 29 ... denitration ratio signal, required denitration rate signal after 30 ... n min, a load request signal after 31 ... n min, inlet NO X concentration signal after 32 ... n min, 33 ... n min after treatment gas amount signal.
Claims (2)
有する排ガスを導入するとともに排ガス中にアンモニア
を注入して装置内に設けた脱硝触媒によって前記NOX
を接触還元した後、装置出口から排出する脱硝装置への
アンモニア注入量制御方法において、導入した被処理排
ガス流量と入口NOX 濃度から入口NOX 量を求める工
程と、入口NOX 濃度と出口NOX 濃度に基づきNOX
量に対する必要アンモニアモル比を求める工程と、前記
入口NOX 量と必要アンモニアモル比から必要アンモニ
ア流量を求める工程と、現在の処理ガス流量と脱硝率を
用いて現在の触媒吸着アンモニア量を演算する工程と、
n分後に予想される処理ガス流量と必要脱硝率からn分
後に必要となる触媒吸着アンモニア量を演算する工程
と、この両者の吸着アンモニア量の偏差に基づいて前記
必要アンモニア流量を補正してアンモニア流量要求信号
を求める工程と、このアンモニア流量要求信号と現在の
アンモニア注入量の偏差に基づいてアンモニア流量制御
装置を操作する工程とを備えたことを特徴とする脱硝装
置のアンモニア注入量制御方法。[Claim 1, wherein the denitration catalyst disposed in the apparatus by injecting ammonia into the exhaust gas is introduced to the exhaust gas containing nitrogen oxides from the device inlet (NO X) NO X
After catalytic reduction, the ammonia injection rate control method for denitration device for discharging from the apparatus outlet, a step of the treated flue gas flow rate and inlet NO X concentrations introduced Request inlet amount of NO X, the inlet NO X concentration and outlet NO NO X based on X concentration
A step of determining the necessary ammonia molar ratio to the amount, calculates the current catalyst adsorbed ammonia amount using the step of obtaining the required flow rate of ammonia, the current processing gas flow rate and denitrification rate from the inlet amount of NO X and the required ammonia mole ratio Process and
calculating a required amount of catalyst-adsorbed ammonia after n minutes from the process gas flow rate expected after n minutes and the required denitration rate; and correcting the required ammonia flow rate based on the difference between the two amounts of adsorbed ammonia. A method for controlling an ammonia injection amount of a denitration apparatus, comprising: a step of obtaining a flow rate request signal; and a step of operating an ammonia flow rate control device based on a deviation between the ammonia flow request signal and a current ammonia injection amount.
導入するとともに排ガス中にアンモニアを注入して装置
内に設けた脱硝触媒によって前記NOX を接触還元した
後、装置出口から排出する脱硝装置へのアンモニア注入
量制御装置において、導入した被処理排ガス流量と入口
NOX 濃度とから入口NOX 量を算出する乗算器と、入
口NOX 濃度と出口NOX 濃度設定値に基づきNOX 量
に対する必要アンモニアモル比を算出する手段と、出口
NOX 濃度設定値と実際の出口NOX 濃度との偏差値お
よび前記必要アンモニアモル比に基づき全モル比信号を
算出する手段と、前記入口NOX 量と全モル比信号とか
ら必要アンモニア流量信号を算出する手段と、現在の処
理ガス流量と脱硝率とから現在の触媒吸着アンモニア量
を算出する演算器と、n分後に予想される処理ガス流量
と必要脱硝率からn分後に必要となる触媒吸着アンモニ
ア量を算出する演算器と、この両者の吸着アンモニア量
の偏差値と前記必要アンモニア流量信号と現在の注入ア
ンモニア流量とに基づいてアンモニア注入量を制御する
手段とを備えたことを特徴とする脱硝装置へのアンモニ
ア注入量制御装置。2. After catalytic reduction of the NO X by the denitration catalyst disposed in the apparatus by injecting ammonia into the exhaust gas is introduced to the exhaust gas containing the device inlet NO X, denitrator for discharging from the apparatus outlet in the ammonia injection rate control device to, for the multiplier and, the amount of NO X based on the inlet NO X concentration and the outlet NO X concentration setting for calculating the inlet amount of NO X from the treated flue gas flow rate and inlet NO X concentrations introduced A means for calculating a required ammonia molar ratio; a means for calculating a total molar ratio signal based on a deviation value between an outlet NO X concentration set value and an actual outlet NO X concentration and the required ammonia molar ratio; and an inlet NO X amount Means for calculating a required ammonia flow rate signal from the total molar ratio signal, a calculator for calculating the current amount of catalyst-adsorbed ammonia from the current processing gas flow rate and the denitration rate, A calculator for calculating the amount of catalyst-adsorbed ammonia required n minutes after the expected processing gas flow rate and the required denitration rate, a deviation value of the adsorbed ammonia amounts of both, the required ammonia flow signal, and the current injected ammonia flow rate Control means for controlling the amount of ammonia injection based on the above conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23344293A JP3537100B2 (en) | 1993-09-20 | 1993-09-20 | Method and apparatus for controlling ammonia injection amount in denitration apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23344293A JP3537100B2 (en) | 1993-09-20 | 1993-09-20 | Method and apparatus for controlling ammonia injection amount in denitration apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0788331A JPH0788331A (en) | 1995-04-04 |
JP3537100B2 true JP3537100B2 (en) | 2004-06-14 |
Family
ID=16955112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23344293A Expired - Lifetime JP3537100B2 (en) | 1993-09-20 | 1993-09-20 | Method and apparatus for controlling ammonia injection amount in denitration apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3537100B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219337A (en) * | 2001-01-30 | 2002-08-06 | Babcock Hitachi Kk | Control method and device of denitration device |
JP4989738B2 (en) | 2010-02-09 | 2012-08-01 | 本田技研工業株式会社 | Exhaust gas purification device for internal combustion engine |
-
1993
- 1993-09-20 JP JP23344293A patent/JP3537100B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0788331A (en) | 1995-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4792696B2 (en) | Denitration control method, denitration control device and program thereof | |
US20170167341A1 (en) | System and method for emission control in power plants | |
JP3537100B2 (en) | Method and apparatus for controlling ammonia injection amount in denitration apparatus | |
Matsumura et al. | Improvement of de-NOx device control performance using a software sensor | |
JP3565607B2 (en) | Method and apparatus for controlling amount of ammonia injection into denitration device | |
JP3410555B2 (en) | Ammonia injection amount control device for denitration equipment | |
JPH08168639A (en) | Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst | |
JPH09187625A (en) | Device and method for controlling injection of ammonia into stack gas denitrating equipment | |
JP2635643B2 (en) | Denitration control device for gas turbine plant | |
JP3694802B2 (en) | Nonlinear optimum state feedback control method and apparatus | |
JP3546319B2 (en) | Apparatus and method for controlling flue gas denitration | |
JP2003010645A (en) | Method and apparatus for controlling ammonia injection amount to nitrogen oxide removal apparatus and ammonia injection amount correcting apparatus to be employed therefor | |
JPH06335A (en) | Controller for injected quantity of ammonia | |
JPS6312650B2 (en) | ||
JP3915142B2 (en) | Method and apparatus for controlling ammonia injection amount of denitration apparatus | |
JP3568614B2 (en) | Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas | |
JP3308149B2 (en) | Sensor calibrator and process control device using sensor calibrator | |
JP3009190B2 (en) | Control method and control device for wet exhaust gas desulfurization device | |
JP2809411B2 (en) | Slurry circulation control system for wet flue gas desulfurization unit | |
JP2004154693A (en) | Method and apparatus for treating exhaust gas | |
JPH0411248B2 (en) | ||
JPH07328389A (en) | Ammonia injection amount control method and apparatus of denitration apparatus | |
JP3611026B2 (en) | Smoke removal equipment | |
JP2695654B2 (en) | Control device for ammonia gas injection volume | |
JP2633599B2 (en) | Ammonia injection amount control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040315 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |