JP3536976B2 - Light emitting element - Google Patents
Light emitting elementInfo
- Publication number
- JP3536976B2 JP3536976B2 JP2000231545A JP2000231545A JP3536976B2 JP 3536976 B2 JP3536976 B2 JP 3536976B2 JP 2000231545 A JP2000231545 A JP 2000231545A JP 2000231545 A JP2000231545 A JP 2000231545A JP 3536976 B2 JP3536976 B2 JP 3536976B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light
- light extraction
- light emitting
- extraction layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/1012—Auxiliary members for bump connectors, e.g. spacers
- H01L2224/10122—Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
- H01L2224/10125—Reinforcing structures
- H01L2224/10126—Bump collar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01039—Yttrium [Y]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10329—Gallium arsenide [GaAs]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Wire Bonding (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は発光素子及びその
製造方法に関する。The present invention relates to a light emitting device and a method for manufacturing the same.
【0002】[0002]
【従来の技術】(AlxGa1−x)yIn1−yP
(但し、0≦x,y≦1かつx+y=1)混晶(以下、
単にAlGaInP混晶あるいはAlGaInPと記載
する)により発光層部が形成された発光素子は、薄いA
lGaInP活性層を、それよりもバンドギャップの大
きいn型AlGaInPクラッド層とp型AlGaIn
Pクラッド層とによりサンドイッチ状に挟んだダブルへ
テロ構造を採用することにより、高輝度の素子を実現で
きる。しかしながら、発光層部の材料及び構造は、長年
にわたる進歩の結果、発光層部における光電変換効率は
理論上の限界に次第に近づきつつある。従って、一層高
輝度の素子を得ようとした場合、素子からの光取出し効
率が極めて重要となる。BACKGROUND OF THE INVENTION (Al x Ga 1-x) y In 1-y P
(However, 0 ≦ x, y ≦ 1 and x + y = 1)
A light-emitting element in which a light-emitting layer is formed of AlGaInP mixed crystal or AlGaInP) has a thin A
The 1GaInP active layer is composed of an n-type AlGaInP cladding layer having a larger band gap and a p-type AlGaIn
By employing a double hetero structure sandwiched between the P cladding layer and the P cladding layer, a high-luminance element can be realized. However, as a result of many years of progress in the material and structure of the light emitting layer portion, the photoelectric conversion efficiency in the light emitting layer portion is gradually approaching the theoretical limit. Therefore, when an element with higher luminance is to be obtained, the light extraction efficiency from the element is extremely important.
【0003】光取出し効率を向上させる方法としては、
AlGaInP混晶からなるクラッド層よりも低屈折率
の透光性半導体層を、光取出層として発光層部に接して
形成する方法が提案されている。これにより、発光層部
内から漏出しようとする光が、自身の表面での全反射に
より内側に戻ってしまう現象が緩和され、光取出効率を
向上させることができる。従来、このような光取出層と
しては、AlGaInP混晶の発光層部で発光する緑色
〜赤色の波長(おおむね550nm〜650nm)に対
して良好な透光性を有することから、GaPやAlGa
As混晶といった化合物半導体が使用されてきた。[0003] As a method for improving the light extraction efficiency,
A method has been proposed in which a light-transmitting semiconductor layer having a lower refractive index than a cladding layer made of AlGaInP mixed crystal is formed as a light extraction layer in contact with a light-emitting layer portion. This alleviates the phenomenon that the light that is about to leak from the light emitting layer portion returns to the inside due to the total reflection on the surface of the light emitting layer portion, and the light extraction efficiency can be improved. Conventionally, such a light extraction layer has good translucency with respect to green to red wavelengths (approximately 550 nm to 650 nm) emitted from the light-emitting layer portion of the AlGaInP mixed crystal, and thus has a good light transmission property.
Compound semiconductors such as As mixed crystals have been used.
【0004】[0004]
【発明が解決しようとする課題】AlGaAs混晶は、
AlGaInP混晶と格子整合するので成長炉内で一貫
成長する事は可能であるが、前述の発光波長帯において
は屈折率が3.3〜3.4(例えば発光波長600nm
において約3.4)と大きいため、全反射の臨界角度が
小さくなり、光取出効率を大幅に改善することは困難で
ある。The AlGaAs mixed crystal is
Since it is lattice-matched with the AlGaInP mixed crystal, it is possible to perform consistent growth in a growth furnace, but in the above-mentioned emission wavelength band, the refractive index is 3.3 to 3.4 (for example, emission wavelength 600 nm).
, About 3.4), the critical angle of total reflection becomes small, and it is difficult to greatly improve the light extraction efficiency.
【0005】ここで、全反射の臨界角度θcは、空気中
での光取出の場合、光取出層を構成する化合物半導体の
屈折率をn1、空気の屈折率をn2として、
θc=Sin−1(n2/n1)‥‥
で表される。空気の屈折率は近似的に真空の屈折率(=
1)に等しいとみなすことができるので、これを用いれ
ば、
θc=Sin−1(1/n1)‥‥
と表すことができる。[0005] Here, the critical angle θc of total reflection is as follows: when light is extracted in the air, the refractive index of the compound semiconductor constituting the light extraction layer is n 1 , and the refractive index of the air is n 2 , θc = Sin −1 (n 2 / n 1 )}. The refractive index of air is approximately the refractive index of vacuum (=
Since it can be regarded as equal to 1), by using this, it can be expressed as θc = Sin −1 (1 / n 1 ) ‥‥.
【0006】屈折率n1=3.4のAlGaAs混晶の
場合、全反射の臨界角度θc=17°となる。この場
合、図8に示すように、全反射の臨界角度θc=17°
よりも小さい角度内、すなわち界面に対して垂直に近い
角度で界面に到達した光のみが空気中に放出される(図
8(a))。そしてθc=17°よりも大きな角度で界
面に到達した光は全反射してしまい、結晶内部に反射し
て吸収されてしまう(図8(b))。In the case of an AlGaAs mixed crystal having a refractive index n 1 = 3.4, the critical angle θc of total reflection is 17 °. In this case, as shown in FIG. 8, the critical angle of total reflection θc = 17 °
Only light that reaches the interface within an angle smaller than that, that is, at an angle close to perpendicular to the interface, is emitted into the air (FIG. 8A). Then, light reaching the interface at an angle larger than θc = 17 ° is totally reflected, reflected inside the crystal and absorbed (FIG. 8B).
【0007】また、上記の波長帯における透光性を十分
に確保するためには、AlAs混晶比を相当高めなけれ
ばならない。しかしながら、高AlAs混晶比のAlG
aAs混晶は非常に酸化され易いため、高AlAs混晶
比のAlGaAs光取出層を用いたAlGaInP系発
光素子を屋外で通電発光して使用すると、AlGaAs
光取出層の酸化に伴い、発光輝度の劣化さらには破壊を
引き起こすという問題がある。Further, in order to sufficiently secure the light transmittance in the above-mentioned wavelength band, the AlAs mixed crystal ratio must be considerably increased. However, a high AlAs mixed crystal AlG
Since an aAs mixed crystal is very easily oxidized, when an AlGaInP-based light emitting device using an AlGaAs light extraction layer having a high AlAs mixed crystal ratio is used by conducting and emitting light outdoors, an AlGaAs
There is a problem in that the luminescence of the light extraction layer is caused to cause deterioration of light emission luminance and further damage.
【0008】一方、GaPはAlを含有しないため、寿
命特性に悪影響を与える恐れはない。しかし、屈折率は
AlGaAs混晶より多少小さい程度であり(例えば発
光波長600nmにおいて約3.35)、光取出効率を
大幅に改善できるほど全反射を抑制する効果は有してい
ない。On the other hand, since GaP does not contain Al, there is no possibility of adversely affecting the life characteristics. However, the refractive index is slightly smaller than that of the AlGaAs mixed crystal (for example, about 3.35 at an emission wavelength of 600 nm), and does not have the effect of suppressing total reflection so as to greatly improve the light extraction efficiency.
【0009】本発明は、従来のGaPやAlGaAs混
晶よりも屈折率のさらに小さい透光性の化合物半導体層
を光取出層として使用することにより、光取出効率を大
幅に改善した発光素子と、その製造方法とを提供するこ
とにある。According to the present invention, there is provided a light emitting device in which the light extraction efficiency is greatly improved by using a light transmitting compound semiconductor layer having a smaller refractive index than that of a conventional GaP or AlGaAs mixed crystal as a light extraction layer. And a method of manufacturing the same.
【0010】[0010]
【課題を解決するための手段及び作用・効果】上記の課
題を解決するために、本発明の発光素子は、各々(Al
xGa1−x)yIn1−yP(但し、0≦x,y≦1
かつx+y=1)混晶にて構成される第一導電型クラッ
ド層、活性層及び第二導電型クラッド層が積層されたダ
ブルへテロ構造を発光層部として有し、かつ該発光層部
の少なくとも片側に、550nm以上650nm以下の
波長帯の光に対する屈折率が3.2以下である化合物半
導体からなる光取出層が形成されていることを特徴とす
る。Means for Solving the Problems and Actions / Effects In order to solve the above-mentioned problems, the light emitting device of the present invention comprises (Al)
x Ga 1-x ) y In 1-y P (where 0 ≦ x, y ≦ 1
And x + y = 1) having, as a light emitting layer portion, a double hetero structure in which a first conductivity type clad layer, an active layer, and a second conductivity type clad layer composed of a mixed crystal are laminated, and A light extraction layer made of a compound semiconductor having a refractive index of 3.2 or less for light in a wavelength band of 550 nm or more and 650 nm or less is formed on at least one side.
【0011】上記ダブルへテロ構造層を有する発光層部
からの、緑色〜赤色の発光波長帯(550nm以上65
0nm以下)の光に対し、従来のGaPやAlGaAs
混晶よりも小さい屈折率、具体的には屈折率が3.2以
下である透光性の化合物半導体からなる光取出層を形成
することにより、GaPやAlGaAs混晶を用いた場
合よりも全反射の臨界角度を大きくすることができ、発
光素子の光取出効率を大幅に改善することができる。光
取出層を構成する化合物半導体は、具体的には、ZnS
e、ZnS、ZnTe及びCdSのいずれかとすること
ができる。A green-red emission wavelength band (550 nm or more and 65 nm or more) from the emission layer portion having the double heterostructure layer.
0 nm or less) for conventional GaP or AlGaAs.
By forming a light extraction layer made of a light-transmitting compound semiconductor having a refractive index smaller than that of the mixed crystal, specifically, a refractive index of 3.2 or less, it is possible to obtain a more complete structure than when using a GaP or AlGaAs mixed crystal. The critical angle of reflection can be increased, and the light extraction efficiency of the light emitting element can be greatly improved. The compound semiconductor constituting the light extraction layer is specifically ZnS
e, ZnS, ZnTe, and CdS.
【0012】表1に、ZnSe、ZnS、ZnTe及び
CdSの各化合物半導体の屈折率と、式により計算さ
れる臨界角度θcの値を、GaPやAlGaAs混晶の
値と比較して示している。ただし、表中、括弧を付与して
いない値はドーパントを添加しない単結晶試料を用いた
実測値であり、括弧を付与した値は、その実測値から補
間法により求めた計算値である。上記4つの化合物の屈
折率は、550nm以上650nm以下の全波長帯にお
いて、いずれも3.2以下の値となっており、臨界角度
θcは、例えばGaPの値と比較して8〜50%程度も
向上していることがわかる。すなわち、本発明の発光素
子においては、臨界角度が増大した分だけ全反射による
損失が生じ難くなり、光取出層としてGaPやAlGa
As混晶を用いた場合よりも、光取出効率を大きくする
ことができる。また、いずれの化合物もAlを積極的に
は含有しないので、発光素子の寿命特性も良好である。Table 1 shows the refractive index of each compound semiconductor of ZnSe, ZnS, ZnTe and CdS, and the value of the critical angle θc calculated by the formula in comparison with the values of GaP and AlGaAs mixed crystals. However, in the table, values without parentheses are measured values using a single crystal sample to which no dopant is added, and values with parentheses are calculated values obtained by interpolation from the measured values. The refractive index of the above four compounds is 3.2 or less in all wavelength ranges of 550 nm to 650 nm, and the critical angle θc is, for example, about 8 to 50% as compared with the value of GaP. It can also be seen that is also improved. That is, in the light emitting device of the present invention, the loss due to total reflection is less likely to occur due to the increase in the critical angle, and GaP or AlGa is used as the light extraction layer.
The light extraction efficiency can be increased as compared with the case where the As mixed crystal is used. In addition, since none of the compounds positively contains Al, the life characteristics of the light emitting element are good.
【0013】[0013]
【表1】 [Table 1]
【0014】なお、化合物半導体単結晶の屈折率は、ド
ーパント添加量により若干変動するが、電流拡散層を兼
ねた光取出層として機能させるために通常採用される添
加量の範囲(例えば1×1017atoms/cm3〜
5×1018atoms/cm3)では、ドーパントを
添加しない場合の屈折率を基準として、その変動幅は5
%以内である。従って、少なくともZnSe、ZnS、
ZnTe及びCdSの4種については、550〜650
nmの波長帯において、ドーパント添加量によらず3.
2以下の値となることに変わりはない。The refractive index of the compound semiconductor single crystal slightly varies depending on the amount of dopant added. However, the range of the amount of addition usually employed to function as a light extraction layer also serving as a current diffusion layer (for example, 1 × 10 4 17 atoms / cm 3 ~
At 5 × 10 18 atoms / cm 3 ), the fluctuation range is 5 based on the refractive index when no dopant is added.
%. Therefore, at least ZnSe, ZnS,
For the four kinds of ZnTe and CdS, 550 to 650
2. In the wavelength band of nm, regardless of the amount of dopant added.
The value is still 2 or less.
【0015】次に、光取出層を形成する化合物半導体
は、発光層部からの発光波長に対応したフォトンエネル
ギーよりも大きいバンドギャップエネルギーを有するも
のを使用することが、光取出層における光吸収を抑制し
て光取出効率を向上させる上で望ましい。また、バンド
ギャップエネルギーの絶対値の観点からは、該バンドギ
ャップエネルギーが2.2eV以上の化合物半導体を選
択することが望ましい。これにより、光取出層におい
て、前記ダブルへテロ構造を有する発光層部からの、緑
色〜赤色の波長帯(550nm以上650nm以下)の
発光に対する吸収が生じにくくなり、該吸収に由来する
発光効率の低下を効果的に抑制することができる。前述
のZnSe、ZnS、ZnTe及びCdSのバンドギャ
ップエネルギー値は、表1に示す通りであり、いずれも
2.2eV以上3.6eV以下の範囲にある。ただし、
光取出層をZnTeで構成する場合、ZnTeにおける
550nm〜560nm付近の光に対する透過率は低い
ので、発光波長が570nm以上650nm以下のAl
GaInP混晶にて構成される発光層部を有する発光素
子に適用することがより好ましい。570nm以上65
0nm以下の波長帯の光に対するZnTeの透過率はほ
ぼ100%である。この場合、AlGaInP混晶の混
晶比(前述のx、yの値)は、発光波長が570nm以
上650nm以下となるように適宜調整される。Next, as the compound semiconductor forming the light extraction layer, a compound semiconductor having a band gap energy larger than the photon energy corresponding to the emission wavelength from the light emission layer portion is used to reduce the light absorption in the light extraction layer. It is desirable in order to suppress and improve the light extraction efficiency. From the viewpoint of the absolute value of the band gap energy, it is desirable to select a compound semiconductor having the band gap energy of 2.2 eV or more. This makes it difficult for the light extraction layer to absorb light in the green-red wavelength band (550 nm or more and 650 nm or less) from the light emitting layer portion having the double hetero structure, thereby reducing the luminous efficiency due to the absorption. The decrease can be effectively suppressed. The band gap energy values of ZnSe, ZnS, ZnTe, and CdS described above are as shown in Table 1, and all are in the range of 2.2 eV to 3.6 eV. However,
When the light extraction layer is made of ZnTe, the transmittance of ZnTe to light in the vicinity of 550 nm to 560 nm is low, so that the emission wavelength of Al is 570 nm to 650 nm.
More preferably, the present invention is applied to a light emitting element having a light emitting layer portion composed of a GaInP mixed crystal. 570 nm or more 65
The transmittance of ZnTe for light in a wavelength band of 0 nm or less is almost 100%. In this case, the mixed crystal ratio (the values of x and y described above) of the AlGaInP mixed crystal is appropriately adjusted so that the emission wavelength is 570 nm or more and 650 nm or less.
【0016】また、これらの化合物半導体は導電性も良
好であることから、該化合物半導体にて構成された光取
出層を介して電極端子をワイヤボンディングし通電する
ことができる。すなわち、光取出層としてGaPやAl
GaAs混晶を用いた従来の発光ダイオード素子と同様
の工程にてワイヤボンディングを行なうことが可能であ
り、既存の製造ラインを変えることなくそのまま利用し
て製造ができる利点もある。In addition, since these compound semiconductors have good conductivity, the electrode terminals can be wire-bonded through a light extraction layer made of the compound semiconductor to conduct electricity. That is, GaP or Al is used as the light extraction layer.
Wire bonding can be performed in the same process as that of a conventional light emitting diode element using a GaAs mixed crystal, and there is also an advantage that the production can be performed by using the existing production line without changing it.
【0017】光取出層を、ZnSe、ZnS、ZnTe
及びCdSのいずれかからなる化合物半導体にて構成す
る場合、上記本発明の発光素子は、以下に示す本発明の
発光素子の製造方法により製造することができる。すな
わち、該方法は、(AlxGa1−x)yIn1−yP
(但し、0≦x,y≦1かつx+y=1)混晶と格子整
合する化合物半導体単結晶基板上に、各々(AlxGa
1−x)yIn1−yP(但し、0≦x,y≦1かつx
+y=1)混晶にて構成される第一導電型クラッド層、
活性層及び第二導電型クラッド層が積層されたダブルへ
テロ構造の主表面と、ZnSe、ZnS、ZnTe及び
CdSのいずれかからなる単結晶基板の主表面とを接合
することを特徴とする。The light extraction layer is made of ZnSe, ZnS, ZnTe.
When the light emitting device of the present invention is composed of a compound semiconductor composed of any one of CdS and CdS, the light emitting device of the present invention can be manufactured by the following method for manufacturing a light emitting device of the present invention. That is, the method, (Al x Ga 1-x ) y In 1-y P
(However, 0 ≦ x, y ≦ 1 and x + y = 1) On the compound semiconductor single crystal substrate lattice-matched with the mixed crystal, (Al x Ga
1-x ) y In 1-y P (where 0 ≦ x, y ≦ 1 and x
+ Y = 1) a first conductivity type clad layer composed of a mixed crystal,
The main surface of the double hetero structure in which the active layer and the second conductivity type clad layer are stacked and the main surface of a single crystal substrate made of any of ZnSe, ZnS, ZnTe and CdS are joined.
【0018】光取出層を構成する上記の化合物半導体
は、いずれもダブルへテロ構造を構成するAlGaIn
P混晶とは格子不整合系であるため、該AlGaInP
混晶上に直接エピタキシャル成長させることができな
い。そこで、これら化合物半導体からなる単結晶基板の
主表面を、ダブルへテロ構造の主表面に接合して素子形
成する方法が有効である。The above-mentioned compound semiconductors forming the light extraction layer are all AlGaIn forming a double hetero structure.
Since the P mixed crystal is a lattice mismatched system, the AlGaInP
Epitaxial growth cannot be performed directly on the mixed crystal. Therefore, it is effective to form a device by joining the main surface of a single crystal substrate made of such a compound semiconductor to the main surface of a double hetero structure.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施の形態を添付
の図面を参照して説明する。図1は、本発明の一実施形
態である発光素子100を示す概念図である。発光素子
100は、発光層部24の第一主表面17側に第一の光
取出層10と第一電極14とがこの順序にて形成されて
いる。また、発光層部24の第二主表面18側に第二の
光取出層13と第二電極15とがこの順序にて形成され
ている。第一電極14は、第一の光取出層10の、表面
の一部のみを覆う形にて形成されている。また、第二電
極15は、第二の光取出層13の、表面の一部のみを覆
う形にて形成されている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a conceptual diagram showing a light emitting device 100 according to one embodiment of the present invention. In the light emitting device 100, the first light extraction layer 10 and the first electrode 14 are formed in this order on the first main surface 17 side of the light emitting layer portion 24. The second light extraction layer 13 and the second electrode 15 are formed in this order on the second main surface 18 side of the light emitting layer portion 24. The first electrode 14 is formed so as to cover only a part of the surface of the first light extraction layer 10. The second electrode 15 is formed so as to cover only a part of the surface of the second light extraction layer 13.
【0020】発光層部24は、各々AlGaInP混晶
とされるとともに、第一電極14側に位置する第一導電
型クラッド層6、第二電極15側に位置する第二導電型
クラッド層4、及び第一導電型クラッド層6と第二導電
型クラッド層4との間に位置する活性層5からなるダブ
ルへテロ構造とされている。具体的には、ノンドープの
AlGaInP混晶からなる活性層5を、p型AlGa
InPクラッド層6とn型AlGaInPクラッド層4
とにより挟んだ構造となっている。AlGaInP混晶
は直接遷移型で大きなバンドギャップを有する半導体で
あり、活性層5の両側に形成されるクラッド層6,4と
のバンドギャップ差に起因したエネルギー障壁により、
注入されたホールと電子とが狭い活性層5中に閉じ込め
られて効率よく再結合するので、非常に高い発光効率を
実現できる。さらに、活性層5の組成調整により、緑色
から赤色領域(発光波長が550nm以上650nm以
下)にかけて広範囲の発光波長を実現することができ
る。図1の発光素子100では、第一電極14側にp型
AlGaInPクラッド層6が配置されており、第二電
極15側にn型AlGaInPクラッド層4が配置され
ている。従って、通電極性は第一電極14側が正であ
る。The light emitting layer portion 24 is made of AlGaInP mixed crystal, and the first conductivity type cladding layer 6 located on the first electrode 14 side, the second conductivity type cladding layer 4 located on the second electrode 15 side, And a double heterostructure comprising an active layer 5 located between the first conductivity type cladding layer 6 and the second conductivity type cladding layer 4. Specifically, the active layer 5 made of a non-doped AlGaInP mixed crystal is formed by p-type AlGaInP.
InP cladding layer 6 and n-type AlGaInP cladding layer 4
It is a structure sandwiched between. The AlGaInP mixed crystal is a direct transition type semiconductor having a large band gap, and has an energy barrier caused by a band gap difference between the cladding layers 6 and 4 formed on both sides of the active layer 5.
Since the injected holes and electrons are confined in the narrow active layer 5 and efficiently recombine, very high luminous efficiency can be realized. Further, by adjusting the composition of the active layer 5, it is possible to realize a wide range of emission wavelengths from green to red (emission wavelength of 550 nm to 650 nm). In the light emitting device 100 of FIG. 1, the p-type AlGaInP cladding layer 6 is disposed on the first electrode 14 side, and the n-type AlGaInP cladding layer 4 is disposed on the second electrode 15 side. Therefore, the current supply polarity is positive on the first electrode 14 side.
【0021】次に、第一及び第二の光取出層10,13
は、550nm以上650nm以下の波長帯の可視光に
対する屈折率が3.2以下である透光性の化合物半導
体、具体的にはZnSe、ZnS、ZnTe及びCdS
のいずれかからなる単結晶層として構成されている。こ
のうち、第一の光取出層10は窒素(N)等の不純物を
1×1018atoms/cm3〜5×1018ato
ms/cm3程度の高濃度にドーピングすることによ
り、導電性がp型とされ、第二の光取出層13はアルミ
ニウム(Al)等の不純物を1×1018atoms/
cm3〜5×101 8atoms/cm3程度の高濃度
にドーピングすることにより、導電性がn型とされてい
る。Next, the first and second light extraction layers 10, 13
Is a translucent compound semiconductor having a refractive index of 3.2 or less for visible light in a wavelength band of 550 nm or more and 650 nm or less, specifically, ZnSe, ZnS, ZnTe, and CdS.
As a single crystal layer. Among these, the first light extraction layer 10 contains impurities such as nitrogen (N) in an amount of 1 × 10 18 atoms / cm 3 to 5 × 10 18 atoms.
By doping at a high concentration of about ms / cm 3 , the conductivity becomes p-type, and the second light extraction layer 13 contains impurities such as aluminum (Al) at 1 × 10 18 atoms / cm 3.
by doping a high concentration of cm 3, ~5 × 10 1 8 atoms / cm 3, conductivity is n-type.
【0022】なお、AlGaInP混晶の屈折率は混晶
比によっても異なるが3.3〜3.8程度である。他
方、光取出層10,13を構成する上記の化合物半導体
単結晶の屈折率は、表1に示す通り、発光層部24を構
成するAlGaInP混晶よりも明らかに小さい2.3
以上3.2以下の範囲の値を有する。これにより、光取
出層10,13は、発光素子100の配置される周囲の
雰囲気形成媒体(例えば空気)と、各々が接合されるA
lGaInP混晶からなるクラッド層6,4の間にそれ
ぞれ介在し、両者の中間の屈折率を有することによっ
て、発光層部24からの光Lの全反射による損失を軽減
し、ひいては光取出効率を向上させる役割を果たす。本
実施形態では、光取出層10,13をZnTe単結晶層
として構成している。The refractive index of the AlGaInP mixed crystal varies depending on the mixed crystal ratio, but is about 3.3 to 3.8. On the other hand, as shown in Table 1, the refractive index of the compound semiconductor single crystal constituting the light extraction layers 10 and 13 is clearly smaller than that of the AlGaInP mixed crystal constituting the light emitting layer section 2.3.
It has a value in the range of not less than 3.2 and not more than 3.2. As a result, the light extraction layers 10 and 13 are connected to the surrounding atmosphere forming medium (for example, air) where the light emitting element 100 is arranged, and are connected to each other.
By being interposed between the cladding layers 6 and 4 made of 1GaInP mixed crystal and having an intermediate refractive index between them, the loss due to the total reflection of the light L from the light emitting layer portion 24 is reduced, and the light extraction efficiency is reduced. Play a role to improve. In the present embodiment, the light extraction layers 10 and 13 are configured as ZnTe single crystal layers.
【0023】また、光取出層10,13を構成する上記
化合物半導体は導電性が高く、その表面の一部のみを覆
う電極14,15を介して通電される電流を、発光層部
24に対し面内方向に均一になるように電流を拡散する
電流拡散層の役割も果たしている。The compound semiconductors constituting the light extraction layers 10 and 13 have high conductivity, and apply a current flowing through the electrodes 14 and 15 covering only a part of the surface to the light emitting layer portion 24. It also plays the role of a current spreading layer that spreads current so as to be uniform in the in-plane direction.
【0024】なお、第一電極14と第二電極15とは、
例えばAuあるいはAu合金からなる層として構成でき
る。これら電極14,15と、光取出層10,13との
間には、図2に示すように接触抵抗を下げる目的で、高
濃度にドープした化合物半導体の薄膜(例えばGaAs
層:以下、コンタクト層という)14a,15aを形成
することもできる。しかしながら、光取出層10,13
を構成するZnSe、ZnS、ZnTeあるいはCdS
は、AuあるいはAu合金とのオーミック接合性が良好
であり、図1のように、電極14,15を光取出層1
0,13に直接接して形成することも可能である。例え
ば、光取出層をGaPやAlGaAs混晶にて構成する
従来の発光素子では、AuあるいはAu合金にて構成さ
れる電極との間に、上記のようなコンタクト層を挿入す
ることが動作電圧を下げる上で不可欠であったが、Zn
Se、ZnS、ZnTeあるいはCdSを使用すると、
コンタクト層を省略できる利点が生ずる。The first electrode 14 and the second electrode 15 are
For example, it can be configured as a layer made of Au or an Au alloy. As shown in FIG. 2, between the electrodes 14 and 15 and the light extraction layers 10 and 13, a thin film of a highly doped compound semiconductor (for example, GaAs) is used in order to reduce the contact resistance.
Layers: hereinafter referred to as contact layers) 14a and 15a can also be formed. However, the light extraction layers 10, 13
Of ZnSe, ZnS, ZnTe or CdS
Has good ohmic bonding with Au or an Au alloy, and as shown in FIG.
It is also possible to form it directly in contact with 0,13. For example, in a conventional light emitting device in which the light extraction layer is made of GaP or AlGaAs mixed crystal, inserting the above contact layer between the light emitting layer and an electrode made of Au or an Au alloy reduces the operating voltage. Indispensable for lowering, Zn
When Se, ZnS, ZnTe or CdS is used,
There is an advantage that the contact layer can be omitted.
【0025】なお、図1の発光素子100において、各
層の厚さの実例として以下のような数値を例示できる:
第一の光取出層(p型ZnTe層)10=300μm、
p型AlGaInPクラッド層6=1μm、AlGaI
nP活性層5=0.6μm、n型AlGaInPクラッ
ド層4=1μm、第二の光取出層(n型ZnTe層)1
3=300μm。In the light emitting device 100 of FIG. 1, the following numerical values can be exemplified as examples of the thickness of each layer:
First light extraction layer (p-type ZnTe layer) 10 = 300 μm,
p-type AlGaInP cladding layer 6 = 1 μm, AlGaI
nP active layer 5 = 0.6 μm, n-type AlGaInP cladding layer 4 = 1 μm, second light extraction layer (n-type ZnTe layer) 1
3 = 300 μm.
【0026】以下、図1の発光素子100の製造方法に
ついて説明する。まず、図3(a)に示すように、Al
GaInP混晶と格子整合する化合物半導体単結晶基板
であるGaAs単結晶基板1の第一主表面1aに、n型
GaAsバッファ層2を例えば0.5μm、さらにn型
AlAs層からなる剥離層3を例えば0.5μmエピタ
キシャル成長させる。次いで、発光層部24として、1
μmのn型AlGaInPクラッド層4、0.6μmの
AlGaInP活性層(ノンドープ)5、及び1μmの
p型AlGaInPクラッド層6を、この順序にエピタ
キシャル成長させる。その後、さらにp型GaAs層か
らなるエッチストップ層7を例えば5nm、n型AlI
nP層からなるキャップ層8を例えば0.3μmエピタ
キシャル成長させる。キャップ層8は、成長したエピキ
ャピタル層に水素が混入してドーパントを不活性化する
のを防ぐために形成される。これら各層のエピタキシャ
ル成長は、有機金属気相エピタキシャル成長(Metalorg
anic Vapor Phase Epitaxy:MOVPE)法により行な
うことができる。Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described. First, as shown in FIG.
On a first main surface 1a of a GaAs single crystal substrate 1 which is a compound semiconductor single crystal substrate lattice-matched with a GaInP mixed crystal, an n-type GaAs buffer layer 2 of, for example, 0.5 μm and a release layer 3 of an n-type AlAs layer are formed. For example, a 0.5 μm epitaxial growth is performed. Next, as the light emitting layer portion 24, 1
A μm n-type AlGaInP cladding layer 4, a 0.6 μm AlGaInP active layer (non-doped) 5, and a 1 μm p-type AlGaInP cladding layer 6 are epitaxially grown in this order. Thereafter, an etch stop layer 7 made of a p-type GaAs layer is further formed to a thickness of, for example, 5 nm,
The cap layer 8 made of an nP layer is epitaxially grown, for example, by 0.3 μm. The cap layer 8 is formed to prevent the incorporation of hydrogen into the grown epicapital layer to inactivate the dopant. The epitaxial growth of each of these layers is performed by metalorganic vapor phase epitaxial growth (Metalorg
anic Vapor Phase Epitaxy (MOVPE) method.
【0027】上記の成長後、図3(b)に示すように、
キャップ層8を塩酸で剥離し、さらにエッチング液とし
て硫酸/過酸化水素水(H2SO4/H2O2/H
2O)を用い、例えば50℃にて2秒間エッチングする
ことにより、エッチストップ層7を剥離する。以下、こ
の処理を終えた状態の積層体を基板付DHウェーハ9と
称する。After the above growth, as shown in FIG.
The cap layer 8 is peeled off with hydrochloric acid, and sulfuric acid / hydrogen peroxide solution (H 2 SO 4 / H 2 O 2 / H) is used as an etchant.
The etch stop layer 7 is peeled off by, for example, etching at 50 ° C. for 2 seconds using 2O). Hereinafter, the laminated body after the completion of this processing is referred to as a DH wafer 9 with a substrate.
【0028】次に、光取出層形成用の単結晶基板である
p型ZnTe単結晶基板の第一主表面を、例えばNaO
H水溶液により表面処理する。その後、基板付DHウェ
ーハ9の第一主表面17に前記p型ZnTe単結晶基板
を貼り合わせ、圧迫して、所定の条件(例えば窒素雰囲
気下300℃にて5分間)にて熱処理することにより、
p型ZnTe単結晶基板をp型AlGaInPクラッド
層6の表面に接合し、第一の光取出層10となす。前記
のNaOH水溶液による表面処理は、p型ZnTe単結
晶基板を貼り合わせる際の貼り付き力を増強させる効果
を有する。以下、この状態の積層体を基板付ZnTe/
DHウェーハ11と称する。Next, the first main surface of the p-type ZnTe single crystal substrate, which is a single crystal substrate for forming a light extraction layer, is
Surface treatment with H aqueous solution. Thereafter, the p-type ZnTe single crystal substrate is bonded to the first main surface 17 of the DH wafer 9 with a substrate, pressed, and heat-treated under predetermined conditions (for example, at 300 ° C. for 5 minutes in a nitrogen atmosphere). ,
A p-type ZnTe single crystal substrate is bonded to the surface of the p-type AlGaInP cladding layer 6 to form a first light extraction layer 10. The surface treatment with the NaOH aqueous solution has the effect of increasing the sticking force when sticking a p-type ZnTe single crystal substrate. Hereinafter, the laminate in this state is referred to as ZnTe /
This is referred to as DH wafer 11.
【0029】そして、上記基板付ZnTe/DHウェー
ハ11を、例えば10%沸酸水溶液からなるエッチング
液に浸漬し、図4(a)に示すように、AlAs剥離層
3を選択エッチングすることにより、n型GaAs単結
晶基板1を、発光層部24とこれに接合された第一の光
取出層10との積層体から剥離する。以下、この処理を
行った状態の積層体をZnTe/DHウェーハ12と称
する。Then, the substrate-attached ZnTe / DH wafer 11 is immersed in an etching solution composed of, for example, a 10% aqueous solution of hydrofluoric acid, and the AlAs peeling layer 3 is selectively etched as shown in FIG. The n-type GaAs single crystal substrate 1 is peeled off from the stacked body of the light emitting layer portion 24 and the first light extraction layer 10 bonded thereto. Hereinafter, the laminated body in a state where this processing is performed is referred to as a ZnTe / DH wafer 12.
【0030】次に、別の光取出層形成用の単結晶基板で
あるn型ZnTe単結晶基板を、前述のNaOH水溶液
により同様に表面処理し、ZnTe/DHウェーハ12
の第二主表面18に貼り合せ、圧迫して、同様の条件に
て熱処理することにより、図4(b)に示すように、n
型ZnTe単結晶基板をn型AlGaInPクラッド層
4の表面に接合し、第二の光取出層13となす。Next, an n-type ZnTe single crystal substrate, which is another single crystal substrate for forming a light extraction layer, is similarly surface-treated with the above-described NaOH aqueous solution to form a ZnTe / DH wafer 12.
4A, and pressed and heat-treated under the same conditions as shown in FIG.
The type ZnTe single crystal substrate is joined to the surface of the n-type AlGaInP cladding layer 4 to form the second light extraction layer 13.
【0031】以上のようにして得られた積層体ウェーハ
は、第一の光取出層10側に第一電極14を、第二の光
取出層13側に第二電極15をそれぞれ形成してダイシ
ング後、その半導体チップを支持体に固着し、図1に示
すようにリード線14b,15bをワイヤボンディング
し、さらに図示しない樹脂封止をすることにより発光素
子100が得られる。The laminated wafer obtained as described above is formed by forming a first electrode 14 on the first light extraction layer 10 side and a second electrode 15 on the second light extraction layer 13 side, and dicing. After that, the semiconductor chip is fixed to a support, the lead wires 14b and 15b are wire-bonded as shown in FIG. 1, and furthermore, resin sealing (not shown) is performed to obtain the light emitting element 100.
【0032】なお、図5に示す発光素子50ように、ダ
ブルへテロ構造層からなる発光層部24には、その片側
にのみ光取出層10を接合してもよい。この場合は、n
型GaAs基板1は素子基板に流用され、その第二主表
面側に第二電極15が形成される。また、図6に示す発
光素子51のように、n型GaAs基板1と発光層部2
4との間に、例えば特開平7−66455号公報に開示
されている半導体多層膜や、あるいはAuないしAu合
金にて構成された金属層を反射層16として挿入するこ
とができる。これにより、発光層部24から直接光取出
層側に漏出する光Lに加え、反射層16での反射光L’
が加わるので、光取出効率を高めることができる。ま
た、全反射損失をさらに低減するために、特開平5−1
90893号公報に開示されているように、発光層部と
光取出層との界面を光取出方向に向けて凸状に湾曲させ
ることもできる。As in the light emitting device 50 shown in FIG. 5, the light extraction layer 10 may be joined to only one side of the light emitting layer portion 24 having a double hetero structure layer. In this case, n
The type GaAs substrate 1 is used as an element substrate, and a second electrode 15 is formed on the second main surface side. Further, as in a light emitting element 51 shown in FIG. 6, an n-type GaAs substrate 1 and a light emitting layer 2
For example, a semiconductor multilayer film disclosed in Japanese Patent Application Laid-Open No. 7-66455 or a metal layer made of Au or an Au alloy can be inserted as the reflection layer 16. Thereby, in addition to the light L leaking directly from the light emitting layer portion 24 to the light extraction layer side, the light L ′ reflected by the reflection layer 16
Is added, so that the light extraction efficiency can be increased. In order to further reduce the total reflection loss, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent Publication No. 90893, the interface between the light emitting layer portion and the light extraction layer may be curved in a convex shape in the light extraction direction.
【0033】以上説明した実施態様では、光取出層は、
ZnSe、ZnS、ZnTe及びCdSのいずれか1種
にて構成していたが、光取出層は、図7に示すように、
化合物半導体の種別の異なる複数層を積層したものとし
て形成することもできる。光取出層と周囲雰囲気の形成
媒体(空気等)との屈折率の差は、これが小さいほど光
取出層表面での全反射の臨界角度は大きくなり、光取出
層からの光取出効率は高くなる。単一の化合物半導体に
て光取出層を形成した場合は、使用する化合物半導体の
屈折率が小さいほど、この傾向は高くなる。しかしなが
ら、化合物半導体の屈折率が小さすぎると、発光層部と
光取出層との間の屈折率差が大きくなり、両者の界面で
の全反射が問題となる場合がある。そこで、図7に示す
ように、光取出層を形成する各層を、光取出層の表面側
に位置するものほど屈折率が小さくなるように配置する
ことで、発光層部と光取出層、光取出層を構成する各層
間、及び光取出層と周囲雰囲気との間の各界面における
相対的な屈折率差を縮小することができ、全反射をより
生じにくくすることができる。図7(a)は、ZnTe
層21上に、これよりも屈折率の小さいZnSe層22
を形成した2層構造の光取出層を形成した例であり、同
図(b)は、さらに屈折率の小さいCdS層23を積層
した3層構造の光取出層の例である。In the embodiment described above, the light extraction layer is
The light extraction layer was composed of any one of ZnSe, ZnS, ZnTe, and CdS, as shown in FIG.
It can also be formed as a laminate of a plurality of layers of different types of compound semiconductors. As for the difference in the refractive index between the light extraction layer and the surrounding medium (air, etc.), the smaller the difference, the greater the critical angle of total reflection on the surface of the light extraction layer, and the higher the light extraction efficiency from the light extraction layer. . When the light extraction layer is formed of a single compound semiconductor, this tendency increases as the refractive index of the compound semiconductor used decreases. However, if the refractive index of the compound semiconductor is too small, the refractive index difference between the light emitting layer portion and the light extraction layer becomes large, and total reflection at the interface between the two may become a problem. Therefore, as shown in FIG. 7, by arranging the layers forming the light extraction layer such that the refractive index becomes smaller as the layer located on the surface side of the light extraction layer, the light emitting layer portion, the light extraction layer, and the light The relative refractive index difference between each layer constituting the extraction layer and each interface between the light extraction layer and the surrounding atmosphere can be reduced, and total reflection can be made more difficult. FIG. 7A shows ZnTe
On the layer 21, a ZnSe layer 22 having a smaller refractive index
FIG. 2B is an example of a light extraction layer having a three-layer structure in which a CdS layer 23 having a smaller refractive index is stacked.
【図1】本発明の発光素子の一例を積層構造にて示す模
式図。FIG. 1 is a schematic view illustrating an example of a light-emitting element of the present invention in a stacked structure.
【図2】電極と光取出層との間にコンタクト層を挿入し
た変形例を示す模式図。FIG. 2 is a schematic view showing a modification in which a contact layer is inserted between an electrode and a light extraction layer.
【図3】図1の発光素子の製造工程を示す模式図。FIG. 3 is a schematic view showing a manufacturing process of the light emitting device of FIG.
【図4】図3に続く模式図。FIG. 4 is a schematic view following FIG. 3;
【図5】発光層部の第一主表面にのみ光取出層を形成し
た素子構造の例を示す模式図。FIG. 5 is a schematic view showing an example of an element structure in which a light extraction layer is formed only on a first main surface of a light emitting layer portion.
【図6】図5において、光取出層の第二主表面側に反射
層を挿入した素子構造の例を示す模式図。FIG. 6 is a schematic view showing an example of an element structure in which a reflection layer is inserted on the second main surface side of the light extraction layer in FIG.
【図7】光取出層を複数層に形成したいくつかの例を示
す模式図。FIG. 7 is a schematic view showing some examples in which a light extraction layer is formed in a plurality of layers.
【図8】発光層からの光入射角度と臨界角度θcとの関
係が、放出光強度の大小に影響を及ぼす様子を説明する
図。FIG. 8 is a diagram illustrating how the relationship between the incident angle of light from the light emitting layer and the critical angle θc affects the intensity of emitted light.
1 n型GaAs単結晶基板(成長用単結晶基板)
4 n型AlGaInPクラッド層(第二導電型クラッ
ド層)
5 AlGaInP活性層
6 p型AlGaInPクラッド層(第一導電型クラッ
ド層)
10 第一の光取出層
13 第二の光取出層
14 第一電極
15 第二電極
50,51,100 発光素子Reference Signs List 1 n-type GaAs single crystal substrate (single-crystal substrate for growth) 4 n-type AlGaInP cladding layer (second conductivity type cladding layer) 5 AlGaInP active layer 6 p-type AlGaInP cladding layer (first conductivity type cladding layer) 10 first Light extraction layer 13 Second light extraction layer 14 First electrode 15 Second electrode 50, 51, 100 Light emitting element
フロントページの続き (56)参考文献 特開 平7−38148(JP,A) 特開 平4−361572(JP,A) 特開 平9−74221(JP,A) 特開 平6−296040(JP,A) 特開 平5−275740(JP,A) 特開 平9−162500(JP,A) 特開 平11−8440(JP,A) 特開 昭56−42388(JP,A) 特開 昭61−96780(JP,A) 特開2001−15805(JP,A) 特開2001−44495(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/60 Continuation of the front page (56) References JP-A-7-38148 (JP, A) JP-A-4-361572 (JP, A) JP-A-9-74221 (JP, A) JP-A-6-296040 (JP) JP-A-5-275740 (JP, A) JP-A-9-162500 (JP, A) JP-A-11-8440 (JP, A) JP-A-56-42388 (JP, A) 61-96780 (JP, A) JP 2001-15805 (JP, A) JP 2001-44495 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 33/00 H01L 21 / 60
Claims (10)
P(但し、0≦x,y≦1かつx+y=1)混晶にて構
成される第一導電型クラッド層、活性層及び第二導電型
クラッド層が積層されたダブルへテロ構造を発光層部と
して有し、かつ該発光層部の少なくとも片側に、550
nm以上650nm以下の波長帯の光に対する屈折率が
3.2以下である化合物半導体からなる光取出層が、化
合物半導体の種別の異なる複数層が積層されたものとし
て形成されており、前記光取出層を構成する各層は、光
取出層表面側に位置するものほど屈折率が小さくなるよ
うに配置されていることを特徴とする発光素子。1. Each of (Al x Ga 1-x ) y In 1-y
P (where 0 ≦ x, y ≦ 1 and x + y = 1) a double hetero structure in which a first conductivity type clad layer, an active layer, and a second conductivity type clad layer composed of a mixed crystal are laminated is used as a light emitting layer. And 550 on at least one side of the light emitting layer portion.
A light extraction layer made of a compound semiconductor having a refractive index of 3.2 or less for light in a wavelength band of not less than 650 nm and
Assume that multiple layers of different compound semiconductor types are stacked
Are formed Te, layers constituting the light extraction layer, light
The closer to the extraction layer surface, the lower the refractive index
A light emitting device characterized by being arranged as follows .
は、前記発光層部からの発光波長に対応したフォトンエ
ネルギーよりも大きいバンドギャップエネルギーを有す
ることを特徴とする請求項1記載の発光素子。2. The light emitting device according to claim 1, wherein the compound semiconductor forming the light extraction layer has a band gap energy larger than a photon energy corresponding to an emission wavelength from the light emitting layer.
バンドギャップエネルギーは、2.2eV以上であるこ
とを特徴とする請求項2に記載の発光素子。3. The light emitting device according to claim 2, wherein a band gap energy of the compound semiconductor constituting the light extraction layer is 2.2 eV or more.
1種は、ZnSeであることを特徴とする請求項1ない
し3のいずれかに記載の発光素子。4. A compound semiconductor constituting the light extraction layer
One light-emitting element according to any one of claims 1 to 3, characterized in that a ZnSe.
1種は、ZnSであることを特徴とする請求項1ないし
3のいずれかに記載の発光素子。5. A compound semiconductor constituting the light extraction layer
One light-emitting element according to any one of claims 1 to 3, characterized in that a ZnS.
1種は、ZnTeであることを特徴とする請求項1ない
し3のいずれかに記載の発光素子。6. A compound semiconductor constituting the light extraction layer
One light-emitting element according to any one of claims 1 to 3, characterized in that a ZnTe.
1種は、CdSであることを特徴とする請求項1ないし
3のいずれかに記載の発光素子。7. A compound semiconductor constituting the light extraction layer
One light-emitting element according to any one of claims 1 to 3, characterized in that it is CdS.
が、ZnSe、ZnS、ZnTe及びCdSのいずれか
にて構成され、該最外層部分の表面に電極が直接接して
形成されることを特徴とする請求項1記載の発光素子。 8. At least an outermost layer portion of the light extraction layer
Is any of ZnSe, ZnS, ZnTe and CdS
The electrode is in direct contact with the surface of the outermost layer portion
The light emitting device according to claim 1 , wherein the light emitting device is formed.
P(但し、0≦x,y≦1かつx+y=1)混晶にて構
成される第一導電型クラッド層、活性層及び第二導電型
クラッド層が積層されたダブルへテロ構造を発光層部と
して有し、発光波長が570nm以上650nm以下と
なるように混晶比xおよびyが調整され、かつ該発光層
部の少なくとも片側に、570nm以上650nm以下
の波長帯の光に対する屈折率が2.9以上3.2以下で
あるZnTeの光取出層が形成されていることを特徴と
する発光素子。9. Each of (Al x Ga 1-x ) y In 1-y
P (however, 0 ≦ x, y ≦ 1 and x + y = 1)
First conductivity type clad layer to be formed, active layer and second conductivity type
The double hetero structure where the cladding layer is laminated
Having an emission wavelength of 570 nm or more and 650 nm or less.
The mixed crystal ratios x and y are adjusted so that
570 nm or more and 650 nm or less on at least one side of the part
The refractive index for light in the wavelength band of 2.9 or more and 3.2 or less
Light - emitting element you <br/> characterized in that the light extraction layer is ZnTe is formed.
光取出層が形成され、前記発光層部の第二主表面側に第
二の光取出層が形成されていることを特徴とする請求項
9記載の発光素子。 10. A first main surface side of said light emitting layer portion,
A light extraction layer is formed, and a second main surface side of the light emitting layer portion is
The second light extraction layer is formed.
9, wherein the light-emitting element.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000231545A JP3536976B2 (en) | 2000-07-31 | 2000-07-31 | Light emitting element |
TW090116939A TW497281B (en) | 2000-07-31 | 2001-07-11 | Light emitting device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000231545A JP3536976B2 (en) | 2000-07-31 | 2000-07-31 | Light emitting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002050793A JP2002050793A (en) | 2002-02-15 |
JP3536976B2 true JP3536976B2 (en) | 2004-06-14 |
Family
ID=18724371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000231545A Expired - Lifetime JP3536976B2 (en) | 2000-07-31 | 2000-07-31 | Light emitting element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3536976B2 (en) |
TW (1) | TW497281B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5005164B2 (en) | 2004-03-03 | 2012-08-22 | 株式会社ジャパンディスプレイイースト | LIGHT EMITTING ELEMENT, LIGHT EMITTING DISPLAY DEVICE AND LIGHTING DEVICE |
EP2270881B1 (en) * | 2008-04-30 | 2016-09-28 | LG Innotek Co., Ltd. | Light-emitting element and a production method therefor |
-
2000
- 2000-07-31 JP JP2000231545A patent/JP3536976B2/en not_active Expired - Lifetime
-
2001
- 2001-07-11 TW TW090116939A patent/TW497281B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2002050793A (en) | 2002-02-15 |
TW497281B (en) | 2002-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6169296B1 (en) | Light-emitting diode device | |
JP3698402B2 (en) | Light emitting diode | |
JP4004378B2 (en) | Semiconductor light emitting device | |
CN103430332B (en) | Light emitting diode and its manufacture method | |
JP3207773B2 (en) | Compound semiconductor light emitting device and method of manufacturing the same | |
US20110037049A1 (en) | Nitride semiconductor light-emitting device | |
US20020145147A1 (en) | Light emitting diode and manufacturing method thereof | |
KR20040010419A (en) | Semiconductor light emitting element | |
JP2004153241A (en) | Semiconductor light emitting device and method of manufacturing the same | |
JP2006066518A (en) | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device | |
JP2005005345A (en) | Semiconductor light emitting device, method for manufacturing the same, and semiconductor light emitting device | |
KR100897595B1 (en) | Light emitting diode comprising indium tin oxide transparent electrode direct contact layer and method of manufacturing same | |
CN111819702A (en) | an infrared light-emitting diode | |
JP3814151B2 (en) | Light emitting element | |
US20020055218A1 (en) | Light emitting diode and fabricating method thereof | |
JP3872398B2 (en) | Light emitting device manufacturing method and light emitting device | |
JPH0614564B2 (en) | Semiconductor light emitting element | |
JP4121551B2 (en) | Light emitting device manufacturing method and light emitting device | |
JPH04213878A (en) | Semiconductor light-emitting element | |
JP4174581B2 (en) | Method for manufacturing light emitting device | |
KR20060115751A (en) | Semiconductor light emitting device and manufacturing method thereof | |
WO2004097948A1 (en) | Light-emitting device and light-emitting device manufacturing method | |
JP2002344015A (en) | Nitride semiconductor light-emitting element | |
KR20120052656A (en) | Iii nitride semiconductor light emitting device | |
JP2004104088A (en) | Nitride semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040310 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |