[go: up one dir, main page]

JP3536699B2 - Compound semiconductor vapor phase epitaxial growth method - Google Patents

Compound semiconductor vapor phase epitaxial growth method

Info

Publication number
JP3536699B2
JP3536699B2 JP00375999A JP375999A JP3536699B2 JP 3536699 B2 JP3536699 B2 JP 3536699B2 JP 00375999 A JP00375999 A JP 00375999A JP 375999 A JP375999 A JP 375999A JP 3536699 B2 JP3536699 B2 JP 3536699B2
Authority
JP
Japan
Prior art keywords
gas
vapor phase
compound semiconductor
epitaxial growth
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00375999A
Other languages
Japanese (ja)
Other versions
JP2000208423A (en
Inventor
忠厳 土屋
和人 高野
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP00375999A priority Critical patent/JP3536699B2/en
Publication of JP2000208423A publication Critical patent/JP2000208423A/en
Application granted granted Critical
Publication of JP3536699B2 publication Critical patent/JP3536699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2層以上の異種の
半導体層からなる化合物半導体結晶の気相エピタキシャ
ル成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vapor-phase epitaxial growth of a compound semiconductor crystal comprising two or more heterogeneous semiconductor layers.

【0002】[0002]

【従来の技術】化合物半導体を用いた種々のデバイス用
エピタキシャルウェハは、種類の異なるエピタキシャル
層を多層に積層してその特性を発揮する。異種の半導体
を連続して製膜する際に、異種の半導体の界面付近で元
素が混合し、いわゆる組成遷移層が形成される。これ
は、どのような半導体デバイスにおいても特性劣化の原
因となりうる。
2. Description of the Related Art An epitaxial wafer for various devices using a compound semiconductor exhibits its characteristics by stacking different types of epitaxial layers in multiple layers. When a heterogeneous semiconductor is continuously formed, elements are mixed near an interface between the heterogeneous semiconductors, and a so-called composition transition layer is formed. This can cause characteristic deterioration in any semiconductor device.

【0003】このような組成遷移層が形成される要因の
一つに、気相エピタキシャル成長方法においてはガス置
換の不完全さが挙げられる。異種の半導体を同じ装置内
で製膜する関係上、エピタキシャル成長装置は多くの配
管やバルブ、制御用圧力計、流量計を持ち、このため、
装置内には極力抑えたとしてもなおかつ若干のガス滞留
部分が残る。この部分に直前の成長層の原料が残ってい
ると、次の層の成長開始時に、この滞留部分から徐々に
ガスが流れ出し、2層の界面に組成遷移層を形成してし
まう。
One of the factors for forming such a composition transition layer is incomplete gas replacement in the vapor phase epitaxial growth method. Due to the fact that different types of semiconductors are formed in the same equipment, epitaxial growth equipment has many pipes, valves, control pressure gauges, and flow meters.
Even if it is suppressed as much as possible, some gas stagnation remains in the apparatus. If the raw material of the immediately preceding growth layer remains in this portion, the gas gradually flows out of the stagnant portion at the start of the growth of the next layer, and a composition transition layer is formed at the interface between the two layers.

【0004】このため、通常ガスを切り替える際に、原
料となるガスの一部もしくは全てを流さずにキャリアガ
スを流す、いわゆる成長中断を設けている。成長中断中
は製膜は停止し、ガスの置換が進む。この技術によっ
て、組成遷移層を1分子層以下に抑えることが可能とな
っている。
For this reason, when switching the normal gas, a so-called growth interruption is provided, in which a carrier gas is flowed without flowing a part or all of the raw material gas. During the growth interruption, the film formation is stopped, and the replacement of gas proceeds. This technology makes it possible to suppress the composition transition layer to one molecular layer or less.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術の成長中
断は、ガスの置換の点で優れた効果を発揮するが、他
方、成長後の表面が成長中断中はキャリアガスに曝され
た。キャリアガスに曝された表面は変化するため、通常
は成長中断の時間や温度を検討して最適化を図ってい
る。
The above-described prior art growth interruption has an excellent effect in terms of gas replacement, but the surface after growth has been exposed to a carrier gas during the growth interruption. Since the surface exposed to the carrier gas changes, optimization is usually made by examining the time and temperature of the growth interruption.

【0006】しかし、特に水素をキャリアガスとして使
用した場合は、成長中断により、表面に欠陥、さらには
表面の凹凸をもたらし、成長後には界面での組成ゆらぎ
として観測される。特に、中断前の成長膜がインジウム
を含む系の場合ではそれが著しいことが分かった。
However, particularly when hydrogen is used as a carrier gas, the growth is interrupted to cause defects on the surface and further irregularities on the surface, and after growth, it is observed as composition fluctuation at the interface. In particular, it was found that this was remarkable when the growth film before interruption was a system containing indium.

【0007】そこで、本発明の目的は、上記課題を解決
し、ガス置換に十分な成長中断時間をもってしても、異
種の半導体接合界面に結晶欠陥起因の組成ゆらぎ(組成
遷移層)を発生させない成長中断方法とした化合物半導
体気相エピタキシャル成長方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problem and to prevent a composition fluctuation (composition transition layer) due to crystal defects from occurring at an interface between different types of semiconductor junctions even when a growth interruption time sufficient for gas replacement is provided. An object of the present invention is to provide a compound semiconductor vapor phase epitaxial growth method used as a growth interruption method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の化合物半導体気相エピタキシャル成長方法
は、2層以上の異種の半導体層からなる化合物半導体結
晶を気相成長法によりエピタキシャル成長する方法であ
って、キャリアガスとして水素を使用し、かつ層間に成
長を中断してガス切り替えを行う方法において、インジ
ウム・ガリウム・ヒ素からなる第1の半導体層の成長
後、ガリウム・インジウム・リンからなる第2の半導体
層を成長する前の成長中断中に流すキャリアガスとし
て、水素を従とし不活性ガスを主とするガスを使用する
ものである(請求項1)。
Means for Solving the Problems To achieve the above object, a compound semiconductor vapor phase epitaxial growth method of the present invention is a method for epitaxially growing a compound semiconductor crystal comprising two or more different types of semiconductor layers by a vapor phase growth method. there are, using hydrogen as a carrier gas, and a method for performing gas switching interrupt the growth layers, indicator
After the growth of the first semiconductor layer of gallium, arsenide and arsenic, before the growth of the second semiconductor layer of gallium, indium, and phosphorus , the carrier gas flowing during the interruption of the growth is made of hydrogen and an inert gas. The main gas is used (claim 1).

【0009】前記不活性ガスとしては、窒素や希ガス、
又は窒素と希ガスの混合ガスを用いることができる(
求項2、3、4)。不活性ガスに混合する水素の濃度は
25%以下とするのが好ましい(請求項5)。前記気相
成長法としては有機金属気相成長法を用いることができ
る(請求項6)。
[0009] As the inert gas, nitrogen or a rare gas,
Or it may be used a mixed gas of nitrogen and a rare gas (請
Claims 2, 3, 4 ). The concentration of hydrogen to be mixed into the inert gas is preferably not more than 25% (claim 5). As the vapor deposition method can be used metal organic chemical vapor deposition (claim 6).

【0010】本発明の要点は、成長中断時に流すキャリ
アガスを不活性ガスを中心とした組成に改めた点にあ
る。
The gist of the present invention is that the carrier gas to be supplied when the growth is interrupted is changed to a composition mainly composed of an inert gas.

【0011】従来、キャリアガスとしては水素が用いら
れてきた。不活性ガスをキャリアガスとして成長する
と、特にアルミニウムを含む場合に酸素の混入が問題と
なる。しかし、アルミニウムを含まない系においても、
キャリアガスとして水素を用いるのが純度を増すために
半ば常識となっていた。
Conventionally, hydrogen has been used as a carrier gas. When growing using an inert gas as a carrier gas, mixing of oxygen becomes a problem particularly when aluminum is contained. However, even in systems that do not contain aluminum,
The use of hydrogen as a carrier gas has become common practice to increase purity.

【0012】しかし、成長中断中に水素をキャリアガス
として使用すると、結晶中の水素と化合し易い元素が水
素化物として脱離したり、あるいは反応炉内の上流部で
発生した水素化物が不純物として混入する可能性があ
る。また、これにより、成長中断中に成長表面に結晶欠
陥を作る可能性も高い。
However, if hydrogen is used as a carrier gas during the interruption of the growth, an element which easily combines with hydrogen in the crystal is desorbed as a hydride, or a hydride generated in an upstream portion of the reactor is mixed as an impurity. there's a possibility that. This also increases the possibility of forming crystal defects on the growth surface during growth interruption.

【0013】これに対して、本発明によりキャリアガス
を、水素を従とし不活性ガスを主とするガスにした場合
には、半導体の構成元素との化合物を形成し難くなり、
水素の場合よりも、表面との相互作用を抑えることがで
きる。その際、不活性ガスに混合する水素の濃度を25
%以下とすると、エピタキシャルウェハの電子移動度の
顕著な改善効果が得られる。
On the other hand, when the carrier gas is a gas mainly composed of hydrogen and an inert gas according to the present invention, it is difficult to form a compound with a constituent element of the semiconductor,
Interaction with the surface can be suppressed as compared with the case of hydrogen. At this time, the concentration of hydrogen mixed with the inert gas is 25
% Or less, a remarkable effect of improving the electron mobility of the epitaxial wafer can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を実施例
を中心に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described mainly with reference to examples.

【0015】図1に、本発明に従って成長しようとする
GaInP系エピタキシャルウェハの積層構造を示す。
これは、半絶縁性のガリウム・砒素(GaAs)基板1
上に膜厚0.5μmのun(アンドープ)型GaAsバ
ッファ層2を設け、その上にスードモフィック(Pseudo
morphic )状態で膜厚14nmのun型インジウム・ガリ
ウム・砒素(un型InGaAs)から成るチャネル層
3を設け、さらにその上に膜厚2nmのun型GaInP
のスペーサ層4を介して、膜厚38nmのn型GaInP
から成るキャリア供給層5を設けたもので、高電子移動
度トランジス(HEMT)用のエピタキシャルウェハと
して使用できるものである。
FIG. 1 shows a laminated structure of a GaInP-based epitaxial wafer to be grown according to the present invention.
This is a semi-insulating gallium arsenide (GaAs) substrate 1
An un (undoped) GaAs buffer layer 2 having a thickness of 0.5 μm is provided thereon, and a pseudomorphic (Pseudo
In a morphic state, a channel layer 3 made of un-type indium-gallium-arsenic (un-type InGaAs) having a thickness of 14 nm is provided, and a 2 nm-thick un-type GaInP is further formed thereon.
38 nm thick n-type GaInP through a spacer layer 4 of
Provided with a carrier supply layer 5 composed of a high electron mobility transistor (HEMT).

【0016】チャネル層3のun型InGaAsのIn
As組成比は15%、キャリア供給層5のスペーサ層4
のun型GaInPのGaP組成比は52%、キャリア
供給層5のn型GaInPのGaP組成比は52%であ
る。
The channel layer 3 of un-type InGaAs In
As composition ratio is 15%, spacer layer 4 of carrier supply layer 5
The GaP composition ratio of the un-type GaInP is 52%, and the GaP composition ratio of the n-type GaInP of the carrier supply layer 5 is 52%.

【0017】上記ガリウム・インジウム・リン(GaI
nP)とインジウム・ガリウム・ヒ素(InGaAs)
からなる選択ドープ構造(断面構造を図1に示す。)
を、有機金属気相エピタキシャル成長法(MOVPE
法)で作製した。成長条件は表1に示す通りである。
The above gallium, indium, phosphorus (GaI)
nP) and indium gallium arsenide (InGaAs)
(A cross-sectional structure is shown in FIG. 1)
By MOVPE
Method). The growth conditions are as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】キャリアガスは水素ガスとし、原料は、有
機金属原料にトリメチルガリウム、トリメチルアルミニ
ウム、トリメチルインジウム、トリエチルガリウムを使
用し、水素化物原料にアルシン、フォスフィン、ジシラ
ン使用した。成長圧力は約50Torr、成長温度は6
00℃とした。基板に用いた半絶縁性GaAsの面方位
は(100)とした。
The carrier gas was hydrogen gas, and the raw materials used were trimethylgallium, trimethylaluminum, trimethylindium and triethylgallium as the organic metal raw materials and arsine, phosphine and disilane as the hydride raw materials. The growth pressure is about 50 Torr and the growth temperature is 6
The temperature was set to 00 ° C. The plane orientation of the semi-insulating GaAs used for the substrate was (100).

【0020】半絶縁性のGaAs基板1上にun型Ga
Asバッファ層2、un型InGaAsチャネル層3、
un型GaInPスペーサ層4、及びn型GaInPか
ら成るキャリア供給層5を順次堆積させた。その際、G
aInPスペーサ層(第2の半導体層)4とInGaA
sチャネル層3(第1の半導体層)との界面では、30
〜600秒間成長を中断し、この間はキャリアガスとフ
ォスフィンを流した。フォスフィンは表面の保護のため
に毎分l.4リットル(l.4SLM)、キャリアガス
は水素を従とし不活性ガスを主とするガスを38.6S
LM流した。
On a semi-insulating GaAs substrate 1, an un-type Ga
As buffer layer 2, un-type InGaAs channel layer 3,
An un-type GaInP spacer layer 4 and a carrier supply layer 5 made of n-type GaInP were sequentially deposited. At that time, G
aInP spacer layer (second semiconductor layer) 4 and InGaAs
At the interface with the s channel layer 3 (first semiconductor layer), 30
The growth was interrupted for 600600 seconds, during which the carrier gas and phosphine were flowed. Phosphine is added at l.p.m. for surface protection. 4 liters (1.4 SLM), carrier gas is 38.6S, mainly hydrogen and inert gas
LM flow was performed.

【0021】ここで本発明の効果を明らかにするため、
上記のキャリアガスを、(1)水素のみ(従来例)、
(2)窒素20SLMと水素l8.6SLMの混合(実
施例1)、(3)窒素30SLMと水素8.6SLMの
混合(実施例2)、の3条件で比較した。
Here, in order to clarify the effect of the present invention,
(1) Only hydrogen (conventional example)
Comparison was made under three conditions: (2) a mixture of 20 SLM of nitrogen and l8.6 SLM of hydrogen (Example 1), and (3) a mixture of 30 SLM of nitrogen and 8.6 SLM of hydrogen (Example 2).

【0022】この選択ドープ構造では、GaInP/I
nGaAs界面の平担性や組成急峻性が、界面付近に蓄
積する2次元電子ガスの電気特性の差となって現れる。
表2に成長中断時間をl50秒としたときの作製したエ
ピタキシャルウェハ(InP/InGaAs選択ドープ
構造)のHall効果測定の結果を示す。ここでシート
キャリア濃度の表記方法として、1×1012をE+12
で示した。
In this selective doping structure, GaInP / I
The flatness and sharpness of the composition of the nGaAs interface appear as a difference in the electrical characteristics of the two-dimensional electron gas accumulated near the interface.
Table 2 shows the results of Hall effect measurement of the epitaxial wafer (InP / InGaAs selectively doped structure) manufactured when the growth interruption time was set to 150 seconds. Here, 1 × 10 12 is expressed as E + 12 as a notation method of the sheet carrier concentration.
Indicated by.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から分かるように、キャリアガスを
(1)の水素のみ(従来例)とした場合は、電子移動度
は6800cm2 /Vsであるが、(2)の窒素20SL
Mと水素l8.6SLMの混合(実施例1)とした場合
には電子移動度が7600cm2/Vsと増大し、更に
(3)の窒素30SLMと水素8.6SLMの混合(実
施例2)とした場合には電子移動度が10000cm2
Vsと増大している。しかも、この電子移動度の増大
は、シートキャリア濃度のほとんど増大なしに得られて
いる。
As can be seen from Table 2, when only (1) hydrogen (conventional example) is used as the carrier gas, the electron mobility is 6800 cm 2 / Vs, but (2) nitrogen 20SL is used.
When the mixture of M and hydrogen (18.6 SLM) was used (Example 1), the electron mobility increased to 7600 cm 2 / Vs, and the mixture of (3) 30 SLM of nitrogen and 8.6 SLM of hydrogen (Example 2). In this case, the electron mobility is 10,000 cm 2 /
Vs. Moreover, this increase in electron mobility is obtained with almost no increase in the sheet carrier concentration.

【0025】このことから、キャリアガスに窒素を主と
するガスを使用することによって、シートキャリア濃度
を変えずに、著しく電子移動度を改善できることが分か
る。即ち、この技術をGaInP/InGaAs系スー
ドモフィックHEMTエピタキシャルウェハに適用する
ことにより、優れた特性のHEMTが実現できる。
From this, it can be seen that by using a gas mainly containing nitrogen as the carrier gas, the electron mobility can be remarkably improved without changing the sheet carrier concentration. That is, by applying this technology to a GaInP / InGaAs pseudomorphic HEMT epitaxial wafer, a HEMT having excellent characteristics can be realized.

【0026】なお、中断時間による差を調べたが、上記
に比べて無視できる差でしかなかった。
When the difference due to the interruption time was examined, the difference was negligible compared to the above.

【0027】不活性ガスに混合する水素濃度について調
べたところ、上記実施例1及び実施例2の場合で約50
%の水素濃度とした時には特性が十分でなく、23%の
時には顕著な効果を得た。電子移動度を十分に改善する
ためには水素濃度を25%以下とすることがよい。
When the concentration of hydrogen mixed with the inert gas was examined, about 50% was obtained in the case of the first and second embodiments.
When the hydrogen concentration was 23%, the characteristics were not sufficient. At 23%, a remarkable effect was obtained. In order to sufficiently improve the electron mobility, the hydrogen concentration is preferably set to 25% or less.

【0028】上記実施例1、2では窒素のみ取り扱って
いるが、アルゴン、へリウムなどの希ガスも上記の化合
物半導体と反応しないことはよく知られており、窒素の
代替えガスとして使えることは明白である。
Although only nitrogen is dealt with in Examples 1 and 2, it is well known that noble gases such as argon and helium do not react with the above compound semiconductors, and it is clear that they can be used as a substitute gas for nitrogen. It is.

【0029】<他の実施例,変形例>本発明の成長方法
は、上記GaInP/InGaAs系ウェハのGaIn
Pのスペーサ層4及びキャリア供給層5の代わりに、A
lGaAs(AlAs混晶比0.28)のスペーサ層4
及びキャリア供給層5を用いた選択ドープ構造を作成す
る場合においても、同様に適用することができる。この
AlGaAs/InGaAs選択ドープ構造を持つエピ
タキシャルウェハの場合について、上記と同様にして得
られたもののホール効果測定の結果を表3に示す。
<Other Embodiments and Modifications> The growth method of the present invention is directed to the GaInP / InGaAs-based
Instead of the P spacer layer 4 and the carrier supply layer 5, A
spacer layer 4 of lGaAs (AlAs mixed crystal ratio 0.28)
The same applies to the case where a selective doping structure using the carrier supply layer 5 is formed. Table 3 shows the results of Hall effect measurement of the epitaxial wafer having the AlGaAs / InGaAs selective doping structure, which was obtained in the same manner as described above.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から分かるように、キャリアガスを
(1)の水素のみ(従来例)とした場合は、電子移動度
は20000cm2 /Vsであり、(2)の窒素20SL
Mと水素l8.6SLMの混合(比較例)とした場合も
電子移動度が1600cm2 /Vsであるが、(3)の窒
素30SLMと水素8.6SLMの混合(実施例3)と
した場合には電子移動度が24000cm2 /Vsと増大
している。従って、本発明の成長方法は、このAlGa
As/InGaAs系ウェハの場合についても有効であ
る。
As can be seen from Table 3, when only (1) hydrogen (conventional example) is used as the carrier gas, the electron mobility is 20,000 cm 2 / Vs, and (2) nitrogen 20SL is used.
The electron mobility is also 1600 cm 2 / Vs when a mixture of M and hydrogen (18.6 SLM) is used (comparative example). However, when a mixture of nitrogen (30 SLM) and hydrogen (8.6 SLM) is used in (3) (Example 3). Has an increased electron mobility of 24000 cm 2 / Vs. Therefore, the growth method of the present invention
This is also effective for the case of an As / InGaAs-based wafer.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
成長中断時に流すキャリアガスを不活性ガスを中心とし
た組成、即ち水素を従とし不活性ガスを主とするガスに
改めているため、ガス置換に十分な成長中断時間をもっ
てしても、キャリアガスが半導体の構成元素と化合物を
形成してしまうことが行われ難くなり、水素の場合より
も表面との相互作用を抑え、異種の半導体接合界面に結
晶欠陥起因の組成ゆらぎが発生するのをなくすことがで
きる。
As described above, according to the present invention,
Since the carrier gas flowing at the time of the growth interruption is changed to a composition mainly composed of an inert gas, that is, a gas mainly composed of an inert gas with hydrogen as a slave, even if the carrier interruption gas has a sufficient growth interruption time for gas replacement, the carrier gas is not changed. It is difficult to form a compound with a constituent element of a semiconductor, suppresses interaction with the surface more than in the case of hydrogen, and eliminates the occurrence of composition fluctuation due to crystal defects at the interface between different types of semiconductor junctions. Can be.

【0033】従って、この技術を例えばGaInP/I
nGaAs系スードモフィックHEMTエピタキシャル
ウェハに適用することにより、成長中断中に成長表面に
結晶欠陥が作られるのを阻止し、従来より移動度を増大
させた優れた特性のHEMTを実現することができる。
Therefore, this technique can be applied to, for example, GaInP / I
By applying the present invention to an nGaAs-based pseudomorphic HEMT epitaxial wafer, it is possible to prevent a crystal defect from being formed on a growth surface during a growth interruption, and to realize a HEMT having excellent characteristics with increased mobility as compared with the related art. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成長方法を適用して成長しようとする
エピタキシャルウェハの断面構造を示した図である。
FIG. 1 is a diagram showing a cross-sectional structure of an epitaxial wafer to be grown by applying the growth method of the present invention.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 un型GaAsバッファ層 3 un型InGaAsチャネル層 4 un型GaInPスペーサ層 5 n型GaInPキャリア供給層 1 Semi-insulating GaAs substrate 2 un-type GaAs buffer layer 3 un-type InGaAs channel layer 4 un-type GaInP spacer layer 5 n-type GaInP carrier supply layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C30B 29/40 502 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 C30B 29/40 502

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2層以上の異種の半導体層からなる化合物
半導体結晶を気相成長法によりエピタキシャル成長する
方法であって、キャリアガスとして水素を使用し、かつ
層間に成長を中断してガス切り替えを行う方法におい
て、インジウム・ガリウム・ヒ素からなる第1の半導体
層の成長後、ガリウム・インジウム・リンからなる第2
の半導体層を成長する前の成長中断中に流すキャリアガ
スとして、水素を従とし不活性ガスを主とするガスを使
用することを特徴とする化合物半導体気相エピタキシャ
ル成長方法。
1. A method for epitaxially growing a compound semiconductor crystal comprising two or more heterogeneous semiconductor layers by vapor phase epitaxy, wherein hydrogen is used as a carrier gas, and growth is interrupted between layers to switch the gas. The method comprises the steps of: growing a first semiconductor layer of indium gallium arsenide; and growing a second semiconductor layer of gallium indium phosphorus .
A compound semiconductor vapor phase epitaxial growth method, characterized in that a gas mainly composed of hydrogen and an inert gas is used as a carrier gas flowing during the growth interruption before growing the semiconductor layer.
【請求項2】前記不活性ガスとして、窒素を用いたこと
を特徴とする請求項1記載の化合物半導体気相エピタキ
シャル成長方法。
2. The compound semiconductor vapor phase epitaxial growth method according to claim 1 , wherein nitrogen is used as said inert gas.
【請求項3】前記不活性ガスとして、希ガスを用いたこ
とを特徴とする請求項1記載の化合物半導体気相エピタ
キシャル成長方法。
3. The compound semiconductor vapor phase epitaxial growth method according to claim 1 , wherein a rare gas is used as said inert gas.
【請求項4】前記不活性ガスとして、窒素と希ガスの混
合ガスを用いたことを特徴とする請求項1記載の化合物
半導体気相エピタキシャル成長方法。
4. The compound semiconductor vapor phase epitaxial growth method according to claim 1 , wherein a mixed gas of nitrogen and a rare gas is used as said inert gas.
【請求項5】前記不活性ガスに混合する水素の濃度を2
5%以下とすることを特徴とする請求項1、2、3又は
記載の化合物半導体気相エピタキシャル成長方法。
5. The method according to claim 1, wherein the concentration of hydrogen mixed with said inert gas is 2
5. The method according to claim 1 , wherein the content is 5% or less.
4 compound semiconductor vapor phase epitaxial growth method according.
【請求項6】前記気相成長法として有機金属気相成長法
を用いることを特徴とする請求項1、2、3、4又は5
記載の化合物半導体気相エピタキシャル成長方法。
6. A claim which comprises using a metal organic chemical vapor deposition as the vapor deposition method 1, 2, 3, 4 or 5
The compound semiconductor vapor phase epitaxial growth method according to the above.
JP00375999A 1999-01-11 1999-01-11 Compound semiconductor vapor phase epitaxial growth method Expired - Fee Related JP3536699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00375999A JP3536699B2 (en) 1999-01-11 1999-01-11 Compound semiconductor vapor phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00375999A JP3536699B2 (en) 1999-01-11 1999-01-11 Compound semiconductor vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JP2000208423A JP2000208423A (en) 2000-07-28
JP3536699B2 true JP3536699B2 (en) 2004-06-14

Family

ID=11566116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00375999A Expired - Fee Related JP3536699B2 (en) 1999-01-11 1999-01-11 Compound semiconductor vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JP3536699B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605331B2 (en) * 2001-03-02 2011-01-05 住友電気工業株式会社 Epiwafer growth method and growth apparatus
US7968362B2 (en) 2001-03-27 2011-06-28 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US7180100B2 (en) 2001-03-27 2007-02-20 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US6765232B2 (en) 2001-03-27 2004-07-20 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
JP2012119429A (en) * 2010-11-30 2012-06-21 Sanken Electric Co Ltd Method of manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP2000208423A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
EP0390552B1 (en) Method of manufacturing compound semiconductor thin film
JP3189061B2 (en) Method for manufacturing compound semiconductor device
US5834362A (en) Method of making a device having a heteroepitaxial substrate
JP3224437B2 (en) III-V compound semiconductor device
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
US20180277639A1 (en) Nucleation layer for growth of iii-nitride structures
JPH08293505A (en) Compound semiconductor device and manufacturing method thereof
US6462361B1 (en) GaInP epitaxial stacking structure and fabrication method thereof, and a FET transistor using this structure
JP3536699B2 (en) Compound semiconductor vapor phase epitaxial growth method
JP3736322B2 (en) Vapor growth equipment
JPH05175150A (en) Compound semiconductor and manufacturing method thereof
US6188090B1 (en) Semiconductor device having a heteroepitaxial substrate
JP2956619B2 (en) Method for growing III-V compound semiconductor crystal
JP3109149B2 (en) Compound semiconductor crystal growth method
JP3487393B2 (en) Method of forming heteroepitaxial semiconductor substrate, compound semiconductor device having such heteroepitaxial semiconductor substrate, and method of manufacturing the same
EP0525297A2 (en) Method of growing doped crystal
JPH07335988A (en) Compd. semiconductor device and production process thereof
JP2010263198A (en) Semiconductor substrate manufacturing method and semiconductor substrate
JPH10284510A (en) Semiconductor substrate
JP3338911B2 (en) Semiconductor device and manufacturing method thereof
JPH06267867A (en) Crystal growing method of compound semiconductor and formation of ohmic contact using same
JP3271619B2 (en) Field effect transistor
JP3424315B2 (en) Vapor phase growth method of III-V compound mixed crystal semiconductor thin film
JPS63124408A (en) Crystal growth method of iii-v compound semiconductor
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees