[go: up one dir, main page]

JP3535933B2 - Fluorescence spectrometer - Google Patents

Fluorescence spectrometer

Info

Publication number
JP3535933B2
JP3535933B2 JP01569396A JP1569396A JP3535933B2 JP 3535933 B2 JP3535933 B2 JP 3535933B2 JP 01569396 A JP01569396 A JP 01569396A JP 1569396 A JP1569396 A JP 1569396A JP 3535933 B2 JP3535933 B2 JP 3535933B2
Authority
JP
Japan
Prior art keywords
excitation light
light
acousto
excitation
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01569396A
Other languages
Japanese (ja)
Other versions
JPH09210784A (en
Inventor
和宏 辻田
潤二 宮崎
Original Assignee
東京理化器械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京理化器械株式会社 filed Critical 東京理化器械株式会社
Priority to JP01569396A priority Critical patent/JP3535933B2/en
Publication of JPH09210784A publication Critical patent/JPH09210784A/en
Application granted granted Critical
Publication of JP3535933B2 publication Critical patent/JP3535933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検体に励起光を
照射しその励起により被検体から発せられた蛍光光を分
光して受光する蛍光分光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence spectroscope for irradiating a subject with excitation light and for spectrally receiving the fluorescent light emitted from the subject by the excitation.

【0002】[0002]

【従来の技術】生体自身や生体から採取したサンプルに
おける物質の分布を特定することは、生体の物質代謝の
メカニズムの解明、病変部の特定等に役立つ。このよう
な、生体や生体サンプル等の被検体における物質の分布
を識別するにあたり蛍光スペクトル情報を得ることは非
常に有効である。
2. Description of the Related Art Specifying the distribution of a substance in a living body itself or in a sample collected from the living body is useful for elucidating the mechanism of substance metabolism in the living body and for identifying a lesion. Obtaining fluorescence spectrum information is very effective in identifying the distribution of substances in a subject such as a living body or a biological sample.

【0003】[0003]

【発明が解決しようとする課題】蛍光スペクトル情報を
得るためには、被検体に励起光を照射して被検体を励起
する必要があり、この励起光としては蛍光光の被測定波
長帯域外の特定の波長を選択する必要がある。従来、特
定の波長の励起光を得るためにレーザ光源や色フィルタ
等が使用されているが、これらの場合励起光の波長は任
意に選択することはできず、波長のチューニングは不可
能である。
In order to obtain the fluorescence spectrum information, it is necessary to irradiate the subject with excitation light to excite the subject, and the excitation light is outside the wavelength band to be measured of the fluorescent light. It is necessary to select a specific wavelength. Conventionally, a laser light source, a color filter, or the like is used to obtain excitation light of a specific wavelength, but in these cases, the wavelength of the excitation light cannot be arbitrarily selected, and wavelength tuning is impossible. .

【0004】また、励起光の波長の選択性を向上させ波
長のチューニングを可能とするためにモノクロメータを
用いることが考えられるが、その場合、装置が大がかり
となるという問題がある。本発明は、上記事情に鑑み、
高速にかつ広い帯域に亘って励起光の波長をチューニン
グすることができ、かつコンパクトな蛍光分光装置を提
供することを目的とする。
Further, a monochromator may be used in order to improve the wavelength selectivity of the excitation light and enable the tuning of the wavelength, but in that case, there is a problem that the device becomes large in size. In view of the above circumstances, the present invention is
An object of the present invention is to provide a compact fluorescence spectroscopic device capable of tuning the wavelength of excitation light at high speed and over a wide band.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の蛍光分光装置は、 (1)被検体を励起させる励起光を含む光を発する励起
光源 (2)励起光による励起により被検体から発せられた蛍
光光を受光する受光器 (3)励起光源から発せられた光を入射しその光から励
起光を分離するとともに、被検体から発せられた蛍光光
を入射し波長選択自在に選択された波長の分光成分を抽
出する音響光学素子 (4)励起光源と、音響光学素子と、受光器との三者の
間に介在し、励起光源から発せられた光を音響光学素子
に導くとともに、音響光学素子により抽出された分光成
分を受光器に導く偏光ビームスプリッタ (5)励起光源から発せられた光から励起光を分離する
励起モードと、被検体から発せられた蛍光光から分光成
分を抽出する分光モードとに交互に切り換えて音響光学
素子を駆動する音響光学素子ドライバを備えたことを特
徴とする。
The fluorescence spectroscopic device of the present invention which achieves the above object comprises (1) an excitation light source that emits light including excitation light for exciting the subject (2) excitation from the subject by excitation light Light receiver for receiving the emitted fluorescent light (3) The light emitted from the excitation light source is made incident and the excitation light is separated from the light, and the fluorescent light emitted from the subject is made incident and the wavelength can be freely selected. Acousto-optical element (4) for extracting spectral components of different wavelengths, which is interposed between the excitation light source, the acousto-optical element, and the light receiver, and guides the light emitted from the excitation light source to the acousto-optical element, Polarization beam splitter (5) that guides the spectral components extracted by the acousto-optic element to the light receiver Excitation mode that separates the excitation light from the light emitted from the excitation light source and the spectral components from the fluorescent light emitted from the subject Spectroscopic mode It is characterized in that an acousto-optic device driver for driving the acousto-optic device by alternately switching between the mode and the mode is provided.

【0006】本発明の蛍光分光装置では、音響光学素子
への入射光の偏光方向に対しその出力光の偏光方向が回
転する性質を利用し、音響光学素子ドライバによる音響
光学素子の駆動を励起モードと分光モードとに時分割に
交互に切り換えることにより、音響光学素子とそのドラ
イバを、励起光源から発せられた光からの励起光の分離
と、被検体から発せられた蛍光の分光とに共用したた
め、励起光の波長の選択性が高まるとともにコンパクト
な装置が実現する。
In the fluorescence spectroscopic device of the present invention, the driving of the acousto-optic element by the acousto-optic element driver is performed in the excitation mode by utilizing the property that the polarization direction of the output light is rotated with respect to the polarization direction of the incident light to the acousto-optic element. Since the acousto-optic device and its driver are used to separate the excitation light from the light emitted from the excitation light source and to disperse the fluorescence emitted from the subject, by alternating the time division between In addition, the wavelength selectivity of the excitation light is enhanced and a compact device is realized.

【0007】ここで、上記本発明の蛍光分光装置におい
て、上記受光器が、配列された複数の受光素子を有する
ものであることが好ましい。この場合、被検体の複数点
の蛍光分光強度を同時に測定することができ、蛍光分光
画像を得ようとするとき、その蛍光分光画像を得る迄の
測定時間が短縮される。さらに、上記本発明の蛍光分光
装置において、励起光源と偏光ビームスプリッタとの間
に、励起光源から発せられた光の光路を規定するピンホ
ールを有し配置位置が自在に調整されるピンホール板を
備えることが好ましい。このピンホール板は、配置位置
の調整に加え、ピンホールの口径を変更自在に調整する
ことができるものであることがさらに好ましい。
Here, in the fluorescence spectroscopic apparatus of the present invention, it is preferable that the light receiver has a plurality of light receiving elements arranged. In this case, the fluorescence spectral intensities of a plurality of points of the subject can be measured at the same time, and when a fluorescence spectral image is to be obtained, the measurement time until the fluorescence spectral image is obtained is shortened. Further, in the above-mentioned fluorescence spectroscopic device of the present invention, a pinhole plate having a pinhole that defines an optical path of light emitted from the excitation light source between the excitation light source and the polarization beam splitter and the arrangement position is freely adjusted. Is preferably provided. It is more preferable that the pinhole plate be capable of adjusting the diameter of the pinhole in addition to adjusting the arrangement position.

【0008】このような配置位置(ないし配置位置に加
えピンホールの口径)の変更が自在なピンホール板を備
えると、被検体の狙った測定ポイントないし測定領域の
みに励起光を照射することができ、例えばその被検体の
測定ポイントないし測定領域近傍に自家蛍光物質が存在
する場合であっても、その測定ポイントないし測定領域
の蛍光の分光強度の測定が可能である。
If a pinhole plate whose arrangement position (or, in addition to the arrangement position and the diameter of the pinhole) can be freely changed is provided, the excitation light can be irradiated only to the measurement point or measurement region targeted by the subject. Even if, for example, an autofluorescent substance is present near the measurement point or measurement region of the subject, it is possible to measure the spectral intensity of fluorescence at the measurement point or measurement region.

【0009】さらに、上記本発明の蛍光分光装置におい
て、被検体に同一波長の励起光を照射して被検体から発
せられた蛍光光のある特定の波長の分光成分を受光する
過程が複数回繰返されるようにシーケンスを制御するシ
ーケンス制御手段を備えることが好ましい。このような
シーケンス制御手段を備えるとある1つの波長の励起光
での多重励、ある1つの波長での蛍光分光光の多重受光
が可能となり、高感度、高精度の測定が可能となる。
Further, in the fluorescence spectroscopic apparatus of the present invention, the process of irradiating the subject with excitation light of the same wavelength and receiving the spectral component of the fluorescent light emitted from the subject at a certain wavelength is repeated a plurality of times. It is preferable to provide a sequence control means for controlling the sequence as described above. If such a sequence control means is provided, it is possible to perform multiple excitation with excitation light of a certain wavelength and multiple reception of fluorescence spectroscopic light with a certain wavelength, and it is possible to perform highly sensitive and highly accurate measurement.

【0010】また、本発明の蛍光分光装置において、励
起光源と偏光ビームスプリッタとの間に介在し、励起光
源から発せられた光を入射して、その入射光のうち、偏
光ビームスプリッタにより音響光学素子に導びかれる偏
光成分を偏光ビームスプリッタに向けて射出する偏光素
子を備えることが好ましく、また上記本発明の蛍光分光
装置において、偏光ビームスプリッタの、励起光源から
発せられ偏光ビームスプリッタに入射した光のうち音響
光学素子に導びかれる有効成分を除く無効成分が射出さ
れる面が、その面で反射した無効成分が受光器に入射す
るのを避けるようにその無効成分の光路に対し斜めに形
成されてなることも好ましい態様である。
Further, in the fluorescence spectrometer of the present invention, the light emitted from the excitation light source is interposed between the excitation light source and the polarization beam splitter, and out of the incident light, the polarization beam splitter causes acousto-optics. It is preferable to include a polarizing element that emits the polarized component guided to the element toward the polarizing beam splitter. Further, in the fluorescence spectroscopic device of the present invention, the polarizing beam splitter emits from the excitation light source and enters the polarizing beam splitter. Of the light, the surface from which the ineffective component excluding the effective component guided to the acousto-optic element is emitted is oblique to the optical path of the ineffective component so that the ineffective component reflected by the surface is prevented from entering the light receiver. It is also a preferable embodiment that it is formed.

【0011】上記のように、偏光素子を備え、あるいは
偏光ビームスプリッタの面を斜めに形成すると、励起光
源から発した光のうち励起光として使用されない無効成
分が受光器に入射する率が低減され、S/Nのよい測定
が可能となる。
As described above, when the polarizing element is provided or the surface of the polarization beam splitter is formed obliquely, the ratio of the ineffective component of the light emitted from the excitation light source that is not used as the excitation light to the photodetector is reduced. , S / N can be measured well.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の蛍光分光装置の一実施形態
を示す構成図である。励起光源1は広い波長域の光を発
する白色光源であり、励起光源1から発せられた光1a
はピンホール板2のピンホール2aを通過し、さらに液
晶シャッタ3、絞り4、レンズ5を経由して偏光ビーム
スプリッタ6に入射する。励起光源1から発せられ偏光
ビームスプリッタ6に入射した光のうち、この図1の紙
面に平行な方向に偏光したP偏光成分は偏光ビームスプ
リッタ6の反射面6aで反射され音響光学素子7に入射
する。尚、励起光源1から発せられ偏光ビームスプリッ
タ6にに入射した光のうち、図1の紙面に垂直な方向に
偏光したS偏光成分は、反射面6aをそのまま通過し有
効な光路から外れる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing an embodiment of a fluorescence spectroscopy apparatus of the present invention. The excitation light source 1 is a white light source that emits light in a wide wavelength range, and the light 1 a emitted from the excitation light source 1
Passes through the pinhole 2a of the pinhole plate 2 and further enters the polarization beam splitter 6 via the liquid crystal shutter 3, the diaphragm 4 and the lens 5. Of the light emitted from the excitation light source 1 and incident on the polarization beam splitter 6, the P-polarized component polarized in the direction parallel to the paper surface of FIG. 1 is reflected by the reflection surface 6 a of the polarization beam splitter 6 and incident on the acousto-optic element 7. To do. Of the light emitted from the excitation light source 1 and incident on the polarization beam splitter 6, the S-polarized component polarized in the direction perpendicular to the paper surface of FIG. 1 passes through the reflecting surface 6a as it is and deviates from the effective optical path.

【0013】音響光学素子7は、音響光学素子ドライバ
8により駆動される。この音響光学素子ドライバ8は、
パーソナルコンピュータ9により、その駆動周波数が切
替自在に制御される。ここでは、励起光源1から発せら
れ偏光ビームスプリッタ6の反射面6aで反射した光
(P偏光成分)の中から、被検体を励起するための励起
光を分離するモード(励起モード)と、図示しない被検
体で発せられた蛍光光30aを分光して分光光30bを
得るモード(分光モード)とで異なる駆動制御がなされ
る。
The acousto-optic element 7 is driven by an acousto-optic element driver 8. This acousto-optic element driver 8
The driving frequency of the personal computer 9 is switchably controlled. Here, a mode (excitation mode) for separating the excitation light for exciting the object from the light (P-polarized component) emitted from the excitation light source 1 and reflected by the reflection surface 6a of the polarization beam splitter 6, Different drive control is performed in a mode (spectral mode) in which the fluorescent light 30a emitted from the subject is dispersed to obtain the spectral light 30b.

【0014】音響光学素子7が励起モードで駆動されて
いるとき、音響光学素子7では、励起光源1から発せら
れ偏光ビームスプリッタ6の反射面6aで反射して音響
光学素子7に入射した光の中から、その音響光学系7の
駆動周波数で定まる波長の励起光1bが分離されて射出
される。このとき、この音響光学素子7への入射光(P
偏光)の偏光面が回転し、この音響光学素子7からはS
偏光としての励起光1bが射出される。この、音響光学
素子7から射出される励起光1bの波長は音響光学素子
7を駆動する駆動信号の周波数で決まるため、この周波
数を調整することにより、励起光1bを任意の波長に高
速にチューニングすることができる。
When the acousto-optic element 7 is driven in the excitation mode, in the acousto-optic element 7, the light emitted from the excitation light source 1 and reflected by the reflection surface 6a of the polarization beam splitter 6 and incident on the acousto-optic element 7 is reflected. From inside, the excitation light 1b having a wavelength determined by the drive frequency of the acousto-optic system 7 is separated and emitted. At this time, the incident light (P
The plane of polarization of (polarized light) rotates, and S
Excitation light 1b as polarized light is emitted. The wavelength of the excitation light 1b emitted from the acousto-optic element 7 is determined by the frequency of the drive signal for driving the acousto-optic element 7. Therefore, by adjusting this frequency, the excitation light 1b is tuned to an arbitrary wavelength at high speed. can do.

【0015】音響光学素子7から射出された励起光1b
は、図示しない対物光学系を経由して、図示しない被検
体の、ピンホール2aの位置に対応する測定領域を照射
する。したがってピンホール2aの位置や口径を変化さ
せると被検体上の任意の位置、任意の面積の領域を測定
領域とすることができる。被検体は、この励起光1bの
照射を受けて励起され蛍光光30aを発する。この被検
体から発せられた蛍光光30aは、図示しない対物光学
系に導かれて音響光学素子7に入射し、この音響光学素
子7の内部に被検体の測定領域の中間像31を形成す
る。この音響光学素子7が分光モードで駆動されている
とき、音響光学素子7に入射した蛍光光30aのうち
の、音響光学素子7の駆動周波数により定まる波長の分
光成分30b(S偏光成分)が抽出され、偏光ビームス
プリッタ6に入射する。
Excitation light 1b emitted from the acousto-optic element 7
Irradiates a measurement region corresponding to the position of the pinhole 2a of the subject (not shown) via an objective optical system (not shown). Therefore, if the position or diameter of the pinhole 2a is changed, an arbitrary position on the subject and a region having an arbitrary area can be used as the measurement region. The subject is excited by the irradiation of the excitation light 1b and emits fluorescent light 30a. The fluorescent light 30a emitted from the subject is guided to an objective optical system (not shown) and is incident on the acoustooptic device 7, and an intermediate image 31 of the measurement region of the subject is formed inside the acoustooptic device 7. When the acousto-optic element 7 is driven in the spectroscopic mode, the spectral component 30b (S-polarized component) having a wavelength determined by the driving frequency of the acousto-optic element 7 is extracted from the fluorescent light 30a incident on the acousto-optic element 7. Then, it is incident on the polarization beam splitter 6.

【0016】この偏光ビームスプリッタ6に入射した分
光成分30bはS偏光であるためこの偏光ビームスプリ
ッタ6を透過し、レンズ系10を経由して受光器11に
より受光される。レンズ系10は、音響光学素子7の内
部に形成された被検体の測定領域の中間像31を受光器
11の受光面上に結像するように焦点距離等が定められ
ており、また、受光器11は、多数の受光素子が二次元
的に配列されたCCDセンサであり、したがって受光器
11では、被検体の測定領域から発せられた蛍光光30
aの分光成分30による、その測定領域内の光量分布を
表わす受光信号が得られる。この受光信号はAD変換器
12によりディジタルの画像信号に変換されてメモリ1
3に一旦格納される。
Since the spectral component 30b that has entered the polarization beam splitter 6 is S-polarized, it passes through the polarization beam splitter 6 and is received by the light receiver 11 via the lens system 10. The lens system 10 has a focal length and the like so as to form an intermediate image 31 of the measurement region of the subject formed inside the acousto-optic element 7 on the light receiving surface of the light receiver 11, and also receives light. The device 11 is a CCD sensor in which a large number of light receiving elements are arranged two-dimensionally. Therefore, in the light receiving device 11, the fluorescence light 30 emitted from the measurement region of the subject is detected.
A light receiving signal representing the light amount distribution in the measurement area is obtained by the spectral component 30 of a. This received light signal is converted into a digital image signal by the AD converter 12 and is stored in the memory 1
Once stored in 3.

【0017】分光モードにおいて、パーソナルコンピュ
ータ9は、音響光学素子ドライバ8に、音響光学素子7
の駆動信号の周波数を変更するように指令を出すと、こ
れに応じて音響光学素子7の駆動信号の周波数が変更さ
れる。すると、今度は、蛍光光30aの、変更後の駆動
用周波数に対応した波長の分光成分30bが抽出されて
受光器11で受光され、被検体の測定領域の、その変更
後の波長の分光成分30bによる画像が得られる。
In the spectroscopic mode, the personal computer 9 causes the acousto-optic device driver 8 and the acousto-optic device 7 to operate.
When a command is issued to change the frequency of the drive signal of, the frequency of the drive signal of the acousto-optic element 7 is changed accordingly. Then, this time, the spectral component 30b of the fluorescent light 30a having a wavelength corresponding to the changed driving frequency is extracted and received by the light receiver 11, and the spectral component of the changed wavelength of the measurement region of the subject is detected. An image according to 30b is obtained.

【0018】以上のようにしてメモリ13に格納され
た、各分光成分30bにより得られた画像信号は、画像
処理装置14で適切に画像処理されてパーソナルコンピ
ュータ9に送られ、そのパーソナルコンピュータ9の画
面9a上に、画像やその処理結果が表示される。図2
は、励起モードと分光モードとの切り換えのタイミング
の一例を示すタイミングチャートである。
The image signal obtained by each of the spectral components 30b stored in the memory 13 as described above is appropriately image-processed by the image processing device 14 and sent to the personal computer 9, and the personal computer 9 outputs the image signal. The image and the processing result thereof are displayed on the screen 9a. Figure 2
FIG. 4 is a timing chart showing an example of the timing of switching between the excitation mode and the spectroscopic mode.

【0019】(a)に示すように、励起モードと分光モ
ードとに交互に切り換えられ、音響光学素子7は、励起
モードでは励起光源1から発せられた光から所定の波長
の励起光が分離されるように駆動され、分光モードでは
被検体から発せられた蛍光光の中から所定の分光成分が
抽出されるように駆動される。ここでは音響光学素子7
では、多数回に亘って、ある1つの波長の励起光で被検
体が励起され、その励起により被検体から発した蛍光の
うちのある1つの波長の分光成分が抽出される。
As shown in (a), the excitation mode and the spectroscopic mode are alternately switched, and in the excitation mode, the excitation light of the predetermined wavelength is separated from the light emitted from the excitation light source 1 in the excitation mode. In the spectroscopic mode, the spectroscopic component is extracted from the fluorescent light emitted from the subject. Here, the acousto-optic device 7
Then, the subject is excited with excitation light of a certain wavelength over many times, and the spectral component of a certain wavelength of the fluorescence emitted from the subject by the excitation is extracted.

【0020】励起モードにおいては、(b)に示すよう
に、液晶シャッタ3が開き、励起光源1からの光1aが
液晶シャッタ3を通過し、音響光学素子7で励起光1b
が分離されて、被検体がその励起光1bにより励起され
る。また、受光器(CCDセンサ)11では、(c)に
示すように、分光モードのときのみ受光ゲートが開いて
蛍光の分光成分が受光される。ここでは上述のように、
多数回に亘って同一波長の分光成分が繰り返し受光され
る。受光器(CCDセンサ)11では、同一波長の分光
成分が多数回繰り返し受光された後、(d)に示すよう
に、それら多数回の受光にわたって受光器(CCDセン
サ)11の各素子毎に積算された信号がその受光器(C
CDセンサ)11から読み出され、AD変換されてメモ
リ13に送られる。以上のシーケンスが、蛍光光30a
の、各波長の分光成分について行なわれる。このよう
に、被検体を繰り返し励起して同一波長の分光成分を繰
り返し受光することにより、高感度、高精度の測定が可
能となる。
In the excitation mode, as shown in (b), the liquid crystal shutter 3 is opened, the light 1a from the excitation light source 1 passes through the liquid crystal shutter 3, and the acousto-optical element 7 excites the excitation light 1b.
Are separated and the subject is excited by the excitation light 1b. Further, in the light receiver (CCD sensor) 11, as shown in (c), the light receiving gate is opened only in the spectral mode, and the spectral component of fluorescence is received. Here, as mentioned above,
The spectral components of the same wavelength are repeatedly received over many times. In the light receiver (CCD sensor) 11, after the spectral components of the same wavelength are repeatedly received, as shown in (d), each element of the light receiver (CCD sensor) 11 is integrated over the many times of light reception. The received signal is the receiver (C
It is read from the CD sensor 11 and is AD-converted and sent to the memory 13. The above sequence is the fluorescent light 30a.
Of the spectral component of each wavelength. As described above, by repeatedly exciting the subject and repeatedly receiving the spectral components of the same wavelength, it is possible to perform highly sensitive and highly accurate measurement.

【0021】尚、図1,図2を参照して説明した実施形
態においては、液晶シャッタが用いられているが、液晶
シャッタに代えて機械式シャタ等を備えてもよいことは
もちろんである。図3は、本発明の蛍光分光装置のもう
1つの実施形態の、図1に示す実施形態との相違部分を
示す模式図である。
Although the liquid crystal shutter is used in the embodiments described with reference to FIGS. 1 and 2, it goes without saying that a mechanical shutter or the like may be provided instead of the liquid crystal shutter. FIG. 3 is a schematic view showing another part of the fluorescence spectroscopic device of the present invention, which is different from the embodiment shown in FIG.

【0022】図1に示す励起光源1から発せられた光
は、ピンホール2等を経た後、図1に示す偏光ビームス
プリッタ6に代えて配置される、図4に示す偏光ビーム
スプリッタ61に入射するが、その入射経路上に、偏光
板70が、P偏光成分のみを透過させる向きに配置され
ている。したがって偏光ビームスプリッタ61の入射光
は、そのほとんど(P偏光成分)が反射角61aで反射
されて図1に示す音響光学素子7に向かう。ただし、偏
光板70を透過する光の中には僅かながらS偏光成分も
含まれており、この僅かながら含まれているS偏光成分
のほとんどは反射面61aを透過し面61bから射出さ
れ有効な光路から外れるが、そのS偏光成分のさらに一
部は面61bで反射する。このとき面61bが、図1に
示すようにS偏光成分の光路に対し垂直であると、この
面で反射したS偏光成分は反射面61aで反射して受光
器11(図1参照)に入射し、S/Nを低下させる原因
となるが、この図3に示す偏光ビームスプリッタ61
は、面61bが斜めに形成されているため、その面61
bで反射したS偏光成分は図示のように受光器11に向
かう光路から逸れる。この逸れた光は絞り71で遮ら
れ、受光器11には入射せず、したがって、偏光板70
を備えたことと相まってS/Nのよい測定が可能とな
る。
The light emitted from the excitation light source 1 shown in FIG. 1 passes through the pinhole 2 and the like, and then enters the polarization beam splitter 61 shown in FIG. 4, which is arranged in place of the polarization beam splitter 6 shown in FIG. However, the polarizing plate 70 is arranged on the incident path in a direction in which only the P-polarized component is transmitted. Therefore, most of the incident light of the polarization beam splitter 61 (P-polarized component) is reflected at the reflection angle 61a and goes to the acousto-optic element 7 shown in FIG. However, a small amount of S-polarized light component is also included in the light transmitted through the polarizing plate 70, and most of the slightly included S-polarized light component is transmitted through the reflecting surface 61a and is emitted from the surface 61b to be effective. Although deviated from the optical path, a part of the S-polarized component is reflected by the surface 61b. At this time, if the surface 61b is perpendicular to the optical path of the S-polarized component as shown in FIG. 1, the S-polarized component reflected by this surface is reflected by the reflecting surface 61a and is incident on the light receiver 11 (see FIG. 1). However, this causes a decrease in S / N. However, the polarization beam splitter 61 shown in FIG.
, The surface 61b is formed obliquely.
The S-polarized component reflected at b deviates from the optical path toward the light receiver 11 as shown in the figure. This diverted light is blocked by the diaphragm 71 and does not enter the light receiver 11, and therefore the polarizing plate 70
With the provision of the above, it becomes possible to measure S / N well.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
音響光学素子を用いて励起光の分離を行なっているため
励起光の波長を広い帯域に亘って高速にチューニングす
ることができ、かつ励起光の分離と蛍光光の分光とを同
一の音響光学素子を用いて行なっているためコンパクト
な装置として構成される。
As described above, according to the present invention,
Since the excitation light is separated using the acousto-optic element, the wavelength of the excitation light can be tuned at a high speed over a wide band, and the separation of the excitation light and the spectrum of the fluorescence light are the same. It is configured as a compact device because it is performed using.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光分光装置の一実施形態を示す構成
図である。
FIG. 1 is a configuration diagram showing an embodiment of a fluorescence spectrometer of the present invention.

【図2】励起モードと分光モードとの切り換えのタイミ
ングの一例を示すタイミングチャートである。
FIG. 2 is a timing chart showing an example of the timing of switching between the excitation mode and the spectroscopic mode.

【図3】本発明の蛍光分光装置のもう1つの実施形態
の、図1に示す実施形態との相違部分を示す模式図であ
る。
FIG. 3 is a schematic diagram showing another part of the fluorescence spectroscopic device of the present invention, which is different from the embodiment shown in FIG. 1.

【符号の説明】[Explanation of symbols]

1 励起光源 2 ピンホール板 2a ピンホール 3 液晶シャッタ 4 絞り 5 レンズ 6 偏光ビームスプリッタ 7 音響光学素子 8 音響光学素子ドライバ 9 パーソナルコンピュータ 10 レンズ系 11 受光器 12 AD変換器 13 メモリ 14 画像処理装置 61 偏光ビームスプリッタ 70 偏光板 71 絞り 1 Excitation light source 2 pinhole plate 2a pinhole 3 LCD shutter 4 aperture 5 lenses 6 Polarizing beam splitter 7 Acousto-optic element 8 Acousto-optic element driver 9 personal computer 10 lens system 11 Light receiver 12 AD converter 13 memory 14 Image processing device 61 Polarizing beam splitter 70 Polarizer 71 Aperture

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−350816(JP,A) 特開 平6−94526(JP,A) 特開 平8−271410(JP,A) 特開 平5−231938(JP,A) C.D.Tran and R.J. Furlan,”Spectroflu orometer Based on AOTF for Rapid Sca nning and Multicom ponent Sample Anal yses”,Anal. Chem., 1993年 7月 1日,Vol.65, N o.13,pp.1675−1681 (58)調査した分野(Int.Cl.7,DB名) G01J 3/00 - 3/52 G01N 21/62 - 21/74 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-350816 (JP, A) JP-A-6-94526 (JP, A) JP-A-8-271410 (JP, A) JP-A-5- 231938 (JP, A) C.I. D. Tran and R.D. J. Furlan, "Spectrofluorometer Based on AOTF for Rapid Scanning and Multicomponent Sample Samples", Anal. Chem. , July 1, 1993, Vol. 65, No. 13, pp. 1675-1681 (58) Fields surveyed (Int.Cl. 7 , DB name) G01J 3/00-3/52 G01N 21/62-21/74 JISST file (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検体を励起させる励起光を含む光を発
する励起光源、 前記励起光による励起により被検体から発せられた蛍光
光を受光する受光器、 前記励起光源から発せられた光を入射し該光から励起光
を分離するとともに、被検体から発せられた蛍光光を入
射し波長選択自在に選択された波長の分光成分を抽出す
る音響光学素子、 前記励起光源と、前記音響光学素子と、前記受光器との
三者の間に介在し、前記励起光源から発せられた光を前
記音響光学素子に導くとともに、前記音響光学素子によ
り抽出された前記分光成分を前記受光器に導く偏光ビー
ムスプリッタ、および前記励起光源から発せられた光か
ら前記励起光を分離する励起モードと、被検体から発せ
られた蛍光光から前記分光成分を抽出する分光モードと
に交互に切り換えて前記音響光学素子を駆動する音響光
学素子ドライバを備えたことを特徴とする蛍光分光装
置。
1. An excitation light source that emits light including excitation light that excites a subject, a light receiver that receives fluorescent light emitted from the subject by excitation by the excitation light, and the light emitted from the excitation light source is incident. Then, while separating the excitation light from the light, an acousto-optical element for entering the fluorescent light emitted from the subject and extracting the spectral component of the wavelength selected wavelength selectably, the excitation light source, and the acousto-optical element , A polarized beam which is interposed between the photoreceiver and the light guide and guides the light emitted from the excitation light source to the acousto-optic device and guides the spectral component extracted by the acousto-optic device to the photoreceiver. A splitter, and an excitation mode for separating the excitation light from the light emitted from the excitation light source, and a spectroscopic mode for extracting the spectral component from the fluorescent light emitted from the subject are alternately switched. A fluorescence spectroscopic device comprising an acousto-optic device driver for driving the acousto-optic device.
【請求項2】 前記受光器が、配列された複数の受光素
子を有するものであることを特徴とする請求項1記載の
蛍光分光装置。
2. The fluorescence spectroscopic apparatus according to claim 1, wherein the light receiver has a plurality of light receiving elements arranged therein.
【請求項3】 前記励起光源と前記偏光ビームスプリッ
タとの間に、該励起光源から発せられた光の光路を規定
するピンホールを有し配置位置が自在に調整されるピン
ホール板を備えたことを特徴とする請求項1記載の蛍光
分光装置。
3. A pinhole plate is provided between the excitation light source and the polarization beam splitter to define an optical path of light emitted from the excitation light source, and a pinhole plate whose arrangement position is freely adjusted is provided. The fluorescence spectroscopic device according to claim 1, wherein:
【請求項4】 被検体に同一波長の励起光を照射して被
検体から発せられた蛍光光の同一波長の分光成分を受光
する過程が複数回繰返されるようにシーケンスを制御す
るシーケンス制御手段を備えたことを特徴とする請求項
1記載の蛍光分光装置。
4. Sequence control means for controlling the sequence so that the process of irradiating the subject with excitation light of the same wavelength and receiving the spectral component of the same wavelength of the fluorescent light emitted from the subject is repeated a plurality of times. The fluorescence spectroscope according to claim 1, further comprising:
【請求項5】 前記励起光源と前記偏光ビームスプリッ
タとの間に介在し、該励起光源から発せられた光を入射
して、該光のうち、該偏光ビームスプリッタにより前記
音響光学素子に導びかれる偏光成分を該偏光ビームスプ
リッタに向けて射出する偏光素子を備えたことを特徴と
する請求項1記載の蛍光分光装置。
5. The light emitted from the excitation light source is incident between the excitation light source and the polarization beam splitter, and the light is guided to the acoustooptic device by the polarization beam splitter. The fluorescence spectroscopic apparatus according to claim 1, further comprising a polarizing element that emits the polarized component to be emitted toward the polarizing beam splitter.
【請求項6】 前記偏光ビームスプリッタの、前記励起
光源から発せられ該偏光ビームスプリッタに入射した光
のうち前記音響光学素子に導びかれる有効成分を除く無
効成分が射出される面が、該面で反射した無効成分が前
記受光器に入射するのを避けるように該無効成分の光路
に対し斜めに形成されてなることを特徴とする請求項1
記載の蛍光分光装置。
6. The surface of the polarization beam splitter from which the ineffective component excluding the effective component guided to the acousto-optic element of the light emitted from the excitation light source and incident on the polarization beam splitter is emitted is the surface. 2. The ineffective component reflected by the optical receiver is formed obliquely with respect to the optical path of the ineffective component so as to avoid entering the optical receiver.
The fluorescence spectroscopic device described.
JP01569396A 1996-01-31 1996-01-31 Fluorescence spectrometer Expired - Fee Related JP3535933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01569396A JP3535933B2 (en) 1996-01-31 1996-01-31 Fluorescence spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01569396A JP3535933B2 (en) 1996-01-31 1996-01-31 Fluorescence spectrometer

Publications (2)

Publication Number Publication Date
JPH09210784A JPH09210784A (en) 1997-08-15
JP3535933B2 true JP3535933B2 (en) 2004-06-07

Family

ID=11895856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01569396A Expired - Fee Related JP3535933B2 (en) 1996-01-31 1996-01-31 Fluorescence spectrometer

Country Status (1)

Country Link
JP (1) JP3535933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038562B2 (en) * 2001-08-22 2012-10-03 株式会社四国総合研究所 Diffraction light separation device and spectral time-resolved measurement method
JP4869562B2 (en) * 2004-03-26 2012-02-08 オリンパス株式会社 Scanning confocal microscope
JP2018132308A (en) * 2017-02-13 2018-08-23 東レエンジニアリング株式会社 Spectroscopy measurement device and device for estimating emission wavelength of light emitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.D.Tran and R.J.Furlan,"Spectrofluorometer Based on AOTF for Rapid Scanning and Multicomponent Sample Analyses",Anal. Chem.,1993年 7月 1日,Vol.65, No.13,pp.1675−1681

Also Published As

Publication number Publication date
JPH09210784A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US7593158B2 (en) Method and apparatus for the examination of specimens
US9285575B2 (en) Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping
US4407008A (en) Method and apparatus for light-induced scanning-microscope display of specimen parameters and of their distribution
US7564541B2 (en) System for obtaining images in bright field and crossed polarization modes and chemical images in raman, luminescence and absorption modes
US6965431B2 (en) Integrated tunable optical sensor (ITOS) system
JP5092104B2 (en) Spectrometer and spectroscopic method
US7046359B2 (en) System and method for dynamic chemical imaging
EP1405049B1 (en) System and method for polarization coherent anti-stokes raman scattering microscopy
US20100309464A1 (en) Raman Chemical Imaging of Threat Agents Using Pulsed Laser Excitation and Time-Gated Detection
JP4899648B2 (en) Spectrum observation method and spectrum observation system
US20040257576A1 (en) Device and method for optical measurement of chemical and/or biological samples
US11604144B2 (en) Total internal reflection enabled wide-field Coherent anti-Stokes Raman scattering microscopy
JP3535933B2 (en) Fluorescence spectrometer
US7119898B2 (en) Method for the detection of fluorescent light
EP1192431A1 (en) Fluorescence measuring device
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
JP2003177329A (en) Scanning laser microscope
JP2520665B2 (en) Fluorescence microspectrometer
JP2003065955A (en) Method and apparatus for measuring at least one from among emission parameter, fluorescence parameter and absorption parameter of sample
JP2002014043A (en) Multicolor analyzer for microscope, and multicolor analysis method using microscope
US6870613B1 (en) Simultaneous recording of multispectral fluorescence signatures
US20230003577A1 (en) Cellphone-based raman spectrometer system for the detection and identification of chemical and biological molecules
Höhl et al. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy
US7920259B2 (en) Arrangement for an optical system for polarization-dependent, time-resolved optical spectroscopy, optical measurement systems and method for the polarization-dependent spectroscopic analysis of measurement light
JPH03239928A (en) Multichannel fluorescence spectral diffraction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees