[go: up one dir, main page]

JP3527950B2 - Electromagnet for FFAG accelerator - Google Patents

Electromagnet for FFAG accelerator

Info

Publication number
JP3527950B2
JP3527950B2 JP2001334461A JP2001334461A JP3527950B2 JP 3527950 B2 JP3527950 B2 JP 3527950B2 JP 2001334461 A JP2001334461 A JP 2001334461A JP 2001334461 A JP2001334461 A JP 2001334461A JP 3527950 B2 JP3527950 B2 JP 3527950B2
Authority
JP
Japan
Prior art keywords
magnet
electromagnet
accelerator
diverging
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001334461A
Other languages
Japanese (ja)
Other versions
JP2003142299A (en
Inventor
森  義治
Original Assignee
高エネルギー加速器研究機構長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高エネルギー加速器研究機構長 filed Critical 高エネルギー加速器研究機構長
Priority to JP2001334461A priority Critical patent/JP3527950B2/en
Publication of JP2003142299A publication Critical patent/JP2003142299A/en
Application granted granted Critical
Publication of JP3527950B2 publication Critical patent/JP3527950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Particle Accelerators (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、FFAG加速器
用電磁石に関し、特にFFAG加速器において、ビーム
の入射、取り出しを容易にすると共に、ビームの集束・
発散磁場強度の制御を容易ならしめようとするものであ
る。この発明に係るFFAG加速器は、原子力工学の分
野を始めとして、医学や半導体、さらにはバイオ、情
報、環境などの各種分野に適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnet for an FFAG accelerator, and more particularly to an FFAG accelerator for facilitating the incidence and extraction of a beam and focusing and focusing the beam.
It aims to facilitate control of the divergent magnetic field strength. The FFAG accelerator according to the present invention is applied to various fields such as medicine, semiconductors, biotechnology, information, and environment, including the field of nuclear engineering.

【0002】[0002]

【従来の技術】近年、新しい核エネルギーの生成法とし
て、加速器駆動による未臨界原子炉を用いたエネルギー
増幅系が注目されている。この方式では、従来の加速器
における電力効率に比べると、一桁以上の飛躍的なエネ
ルギー効率が必要とされる。
2. Description of the Related Art In recent years, as a new nuclear energy generation method, an energy amplification system using an accelerator-driven subcritical reactor has attracted attention. Compared with the power efficiency of conventional accelerators, this method requires a dramatic energy efficiency of one digit or more.

【0003】このような要求に応え得る加速器として有
力視されているのが、固定磁場強集束型シンクロトロン
(Fixed Field Altemating Gradient Synchrotron :以
下、FFAG加速器という)である。このFFAG加速
器は、高効率なだけでなく、高繰り返し加速が可能とい
う、優れた特徴を有している。
A fixed field strong focusing type synchrotron (hereinafter, referred to as FFAG accelerator) is regarded as a promising accelerator capable of meeting such demands. This FFAG accelerator has an excellent feature that not only high efficiency but also high repetitive acceleration is possible.

【0004】図1に、ラジアル・セクター型のFFAG
加速器の構造を模式図で示す。ラジアル・セクター型で
は、磁場の符号が違う磁場を交互に並べることによっ
て、強集束を実現するもので、図中、番号1が集束磁石
(F)、2が集束磁石1の両側に設けられた発散磁石
(D)であり、この例ではかようなDFDを1セルとす
る加速器用電磁石が8個設けられている。なお、同図で
は、加速器の下側半分しか示していないが、その上側に
も、同じ構造のものが、各磁石が正対する形で存在して
いる。そして、各電磁石の外周側および内周側にはそれ
ぞれリターンヨーク3,4が設けられていて、集束磁石
1および発散磁石2で発生させたフラックスはそれぞ
れ、これらリターンヨーク3,4を介して正・逆の磁気
回路を構成する仕組みになっている。また、5は、高周
波(RF)加速装置であり、FFAG加速器一台当た
り、数台が加速器用電磁石の間に配置される。
FIG. 1 shows a radial sector type FFAG.
The structure of the accelerator is shown in a schematic diagram. The radial sector type realizes strong focusing by alternately arranging magnetic fields having different magnetic field signs. In the figure, numeral 1 is a focusing magnet (F), and 2 is provided on both sides of the focusing magnet 1. It is a diverging magnet (D), and in this example, eight accelerator electromagnets having such a DFD as one cell are provided. Although only the lower half of the accelerator is shown in the same figure, the magnets of the same structure are also present on the upper side of the accelerator so that the magnets face each other. The return yokes 3 and 4 are provided on the outer peripheral side and the inner peripheral side of each electromagnet, respectively, and the fluxes generated by the focusing magnet 1 and the diverging magnet 2 are positively passed through these return yokes 3 and 4, respectively.・ It is a mechanism that constitutes a reverse magnetic circuit. Further, 5 is a radio frequency (RF) accelerator, and several units are arranged between the accelerator electromagnets per FFAG accelerator.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
FFAG加速器用電磁石は、上記したようなリターンヨ
ークを有する構造になっていることから、ビームの入射
および取り出しが困難なところに問題を残していた。ま
た、FFAG加速器用の電磁石としては、一層の小型化
および超伝導化が要求されているが、従来の電磁石では
かような要求に対しても対応が難しいという問題を抱え
ていた。
However, since the conventional FFAG accelerator electromagnet has the structure having the return yoke as described above, there remains a problem in that it is difficult to enter and extract the beam. . Further, further miniaturization and superconductivity are required for the electromagnet for the FFAG accelerator, but the conventional electromagnet has a problem that it is difficult to meet such a requirement.

【0006】この発明は、上記の現状に鑑み開発された
もので、ビームの入射、取り出しが容易なだけでなく、
小型化および超伝導化が可能で、しかも収束・発散磁場
強度の制御も容易なFFAG加速器用電磁石を提案する
ことを目的とする。
The present invention has been developed in view of the above-mentioned situation, and not only is it easy to enter and extract a beam,
It is an object of the present invention to propose an electromagnet for an FFAG accelerator, which can be downsized and made superconducting, and whose converging / diverging magnetic field strength can be easily controlled.

【0007】[0007]

【課題を解決するための手段】さて、発明者は、上記の
目的を達成すべく鋭意研究を重ねた結果、FFAG加速
器におけるビーム軌道保持用磁場の形状が正・逆交番磁
場であることに注目し、集束磁石で発生させたフラック
スを、リターンヨークを介さずに直接、発散磁石に戻す
磁気回路とすることにより、リターンヨークを省略する
ことができ、かくしてビームの入射、取り出しが容易に
なることの知見を得た。また、上記の構造にすれば、電
磁石用コイルは、中央の集束磁石にのみに設けるだけで
も良く、逆磁場部はリターンフラックスとすることがで
きるので、磁石の小型化が可能になるだけでなく、超伝
導化も可能となることの知見を得た。さらに、逆磁場部
のみに磁気抵抗を小さくするヨークを設けることによっ
て、収束・発散磁場強度の制御も容易になることの知見
を得た。この発明は、上記の知見に立脚するものであ
る。
As a result of intensive studies to achieve the above object, the inventor has noticed that the shape of the beam orbit holding magnetic field in the FFAG accelerator is a positive / reverse alternating magnetic field. However, by using a magnetic circuit that directly returns the flux generated by the focusing magnet to the diverging magnet without passing through the return yoke, the return yoke can be omitted, thus facilitating beam incidence and extraction. I got the knowledge of. Further, with the above structure, the electromagnet coil may be provided only in the central focusing magnet, and the reverse magnetic field portion can serve as the return flux, so that not only the magnet can be downsized. We have obtained the knowledge that superconductivity is possible. Furthermore, it was found that the control of the converging / diverging magnetic field strength can be facilitated by providing a yoke for reducing the magnetic resistance only in the reverse magnetic field section. The present invention is based on the above findings.

【0008】すなわち、この発明の要旨構成は次のとお
りである。 1.集束磁石を挟んで両側に発散磁石をそなえるFFA
G加速器用電磁石において、集束磁石で発生させたフラ
ックスを、直接、発散磁石に戻す、正・逆磁場の閉じた
磁気回路を形成すると共に、発散磁石の両端部の一方ま
たは両方に、逆磁場部の磁場抵抗を小さくするためのシ
ャントヨークを設けたことを特徴とするFFAG加速器
用電磁石。
That is, the gist of the present invention is as follows. 1. FFA with divergent magnets on both sides of the focusing magnet
In the electromagnet for the G accelerator, the flux generated by the focusing magnet is directly returned to the diverging magnet to form a closed magnetic circuit of forward and reverse magnetic fields, and one end of the diverging magnet is
Or both, a system for reducing the magnetic field resistance of the reverse magnetic field section.
An electromagnet for an FFAG accelerator, which is provided with a shunt yoke .

【0009】2.上記1において、電磁石用コイルを中
央の集束磁石のみに設け、逆磁場部である発散磁石はリ
ターンフラックスとすることを特徴とするFFAG加速
器用電磁石。
2. In the above-mentioned item 1, the FFAG accelerator electromagnet, wherein the electromagnet coil is provided only in the central focusing magnet, and the divergent magnet that is an inverse magnetic field portion serves as a return flux.

【0010】[0010]

【0011】3.上記1または2において、集束磁石を
構成する電磁石が超伝導磁石であることを特徴とするF
FAG加速器用電磁石。
3. In the above 1 or 2 , the electromagnet forming the focusing magnet is a superconducting magnet.
Electromagnet for FAG accelerator.

【0012】[0012]

【発明の実施の形態】以下、この発明を図面に従い具体
的に説明する。図2に、FFAG加速器において従来用
いられてきた電磁石を斜視図で示す。かような従来の電
磁石では、集束磁石1および発散磁石2で発生させたフ
ラックスはそれぞれ、同図に矢印で示したように、リタ
ーンヨーク3,4を介して磁気回路を構成する仕組みに
なっていて、かかるリターンヨーク3,4は必須のもと
とされていた。しかしながら、このようなリターンヨー
ク3,4が存在すると、図1に破線で示したように、ビ
ームの入射および取り出しは、かようなリターンヨーク
3,4を避けて行わなければなかったことから、その実
施は極めて難しかったのである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. FIG. 2 is a perspective view showing an electromagnet conventionally used in the FFAG accelerator. In such a conventional electromagnet, the fluxes generated by the focusing magnet 1 and the diverging magnet 2 are configured to form a magnetic circuit via return yokes 3 and 4, respectively, as indicated by arrows in the figure. Therefore, the return yokes 3 and 4 are considered to be essential. However, if such return yokes 3 and 4 are present, as shown by the broken line in FIG. 1, the incidence and extraction of the beam have to be performed while avoiding such return yokes 3 and 4, The implementation was extremely difficult.

【0013】次に、図3(a) に、リターンヨークを省略
したFFAG加速器用電磁石を、また図3(b) には、
の発明に従うFFAG加速器用電磁石を、それぞれ斜視
面で示す。同図(b) は、この発明に従い発散磁石2の両
端部にシャントヨーク6を設けた場合である。なお、図
中番号7,8はそれぞれ、集束磁石および発散磁石用の
コイルである。図3(a) に示したところにおいて、集束
磁石1および発散磁石2で発生させたフラックスはそれ
ぞれ、発散磁石2および集束磁石1に直接戻す、いわゆ
る正・逆磁場の閉じた磁気回路を形成する。従って、従
来、不可欠とされたリターンヨークは必要ない。
Next, in FIG. 3A , the return yoke is omitted.
The FFAG accelerator electromagnet and, also in FIG. 3 (b), a FFAG accelerator electromagnet according to the present invention, shown respectively perspective plane. FIG. 2B shows a case where shunt yokes 6 are provided at both ends of the diverging magnet 2 according to the present invention . The numbers 7 and 8 in the figure are coils for the focusing magnet and the diverging magnet, respectively. As shown in FIG. 3 (a), the fluxes generated by the focusing magnet 1 and the diverging magnet 2 are directly returned to the diverging magnet 2 and the focusing magnet 1 to form a so-called closed magnetic circuit of forward and reverse magnetic fields. . Therefore, the return yoke which has been conventionally indispensable is not necessary.

【0014】ところで、図3(a) の構造では、逆磁場部
のフラックスの調整ができない。しかしながら、この点
については、同図(b) に示したように、発散磁石2の両
端部の少なくとも一方にシャントヨーク6を設け、リタ
ーンフラックスの一部をこのシャントヨーク6に流すよ
うにすれば、逆磁場部の発散磁場強度の大きさの調整も
自在にできるようになる。
By the way, in the structure of FIG. 3A, the flux of the reverse magnetic field portion cannot be adjusted. However, regarding this point, if a shunt yoke 6 is provided on at least one of both ends of the divergent magnet 2 and a part of the return flux is made to flow to this shunt yoke 6 as shown in FIG. Also, it becomes possible to freely adjust the magnitude of the divergent magnetic field strength of the reverse magnetic field section.

【0015】かくして、FFAG加速器用電磁石を、
(b) に示したような構造にすれば、図4に破線に示す
ように、ビームの入射および取り出しがどの位置からで
もできるようになり、その結果、従来に比べてビームの
入射および取り出しが格段に容易になる。
Thus, the electromagnet for the FFAG accelerator is shown in FIG.
With the structure shown in Fig. 3 (b) , as shown by the broken line in Fig. 4, the beam can be incident and extracted from any position. As a result, the beam can be incident and extracted as compared with the conventional case. Is much easier.

【0016】さらに、従来は、このようなリターンヨー
クが必要であったことから、その小型化および超伝導化
が難しかった。しかしながら、図3 (b) に示したような
この発明に従う電磁石では、かようなリターンヨークが
必要なく、さらに電磁石用コイルは中央部の集束磁石の
みに設け、逆磁場部である発散磁石はリターンフラック
スで構成する構造とすることができるので、小型化およ
び超伝導化も容易となる。
Further, in the past, since such a return yoke was required, it was difficult to reduce its size and superconductivity. However, the electromagnet according to the present invention as shown in FIG. 3 (b) does not need such a return yoke, and the electromagnet coil is provided only on the focusing magnet in the central portion, and the diverging magnet which is the reverse magnetic field portion does not return. Since the structure can be made of flux, miniaturization and superconductivity are facilitated.

【0017】このように、この発明の電磁石では、基本
的磁場が一つのコイルで形成できるので、構造が極めて
簡単となる利点もある。すなわち、正磁場をつくる電磁
石でもって、同時に逆磁場をつくることができ、FFA
G加速器にとっての基本構造である収束・発散の磁場構
成に適合させることが可能となる。
As described above, in the electromagnet of the present invention, since the basic magnetic field can be formed by one coil, there is also an advantage that the structure is extremely simple. That is, an electromagnet that creates a positive magnetic field can simultaneously create a reverse magnetic field.
It becomes possible to adapt to the converging / diverging magnetic field configuration, which is the basic structure for the G accelerator.

【0018】なお、参考のために、図5に、この発明に
従うFFAG加速器用電磁石の全体を斜視面で示す。こ
の例は、集束磁石および発散磁石のそれぞれが、電磁石
用のコイルを有し、かつ発散磁石の両端部にシャントヨ
ークを設けた場合である。なお、図中、IF は集束コイ
ル電流、ID は発散コイル電流、そしてBF は集束磁
場、BD は発散磁場(逆磁場)である。
For reference, FIG. 5 shows a perspective view of the entire electromagnet for FFAG accelerator according to the present invention. In this example, each of the focusing magnet and the diverging magnet has a coil for an electromagnet, and shunt yokes are provided at both ends of the diverging magnet. In the figure, I F is a focusing coil current, I D is a diverging coil current, B F is a focusing magnetic field, and B D is a diverging magnetic field (reverse magnetic field).

【0019】[0019]

【発明の効果】かくして、この発明によれば、ビームの
入射、取り出しが容易なだけでなく、小型化および超伝
導化が可能で、しかも収束・発散磁場強度の制御も容易
なFFAG加速器用電磁石を得ることができる。
As described above, according to the present invention, the electromagnet for the FFAG accelerator not only can easily enter and extract the beam, but also can be downsized and made superconducting, and can easily control the converging / diverging magnetic field strength. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のFFAG加速器の模式図である。FIG. 1 is a schematic diagram of a conventional FFAG accelerator.

【図2】従来のFFAG加速器用電磁石の模式図であ
る。
FIG. 2 is a schematic diagram of a conventional FFAG accelerator electromagnet.

【図3】この発明に従うFFAG加速器用電磁石の模式
図である。
FIG. 3 is a schematic diagram of an electromagnet for an FFAG accelerator according to the present invention.

【図4】この発明に従うFFAG加速器の模式図であ
る。
FIG. 4 is a schematic diagram of an FFAG accelerator according to the present invention.

【図5】この発明に従うFFAG加速器用電磁石の全体
を示す斜視図である。
FIG. 5 is a perspective view showing the entire electromagnet for FFAG accelerator according to the present invention.

【符号の説明】[Explanation of symbols]

1 集束磁石(F) 2 発散磁石(D) 3 外周側リターンヨーク 4 内周側リターンヨーク 5 高周波(RF)加速装置 6 シャントヨーク 7 集束磁石用のコイル 8 発散磁石用のコイル 1 Focusing magnet (F) 2 Divergent magnet (D) 3 outer return yoke 4 Inner circumference return yoke 5 Radio Frequency (RF) Accelerator 6 shunt yoke 7 Coil for focusing magnet 8 Coil for divergent magnet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05H 13/08 H05H 13/08 (58)調査した分野(Int.Cl.7,DB名) H05H 13/00 G21C 1/00 H01F 7/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI H05H 13/08 H05H 13/08 (58) Fields investigated (Int.Cl. 7 , DB name) H05H 13/00 G21C 1/00 H01F 7/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】集束磁石を挟んで両側に発散磁石をそなえ
るFFAG加速器用電磁石において、集束磁石および発
散磁石で発生させたフラックスを、直接、発散磁石およ
び集束磁石に戻す、正・逆磁場の閉じた磁気回路を形成
すると共に、発散磁石の両端部の一方または両方に、逆
磁場部の磁場抵抗を小さくするためのシャントヨークを
設けたことを特徴とするFFAG加速器用電磁石。
1. An electromagnet for an FFAG accelerator having a diverging magnet on both sides of a focusing magnet, wherein the flux generated by the focusing magnet and the diverging magnet is directly returned to the diverging magnet and the focusing magnet to close the forward and reverse magnetic fields. To form a magnetic circuit , and to reverse one or both ends of the diverging magnet.
A shunt yoke to reduce the magnetic field resistance of the magnetic field
An electromagnet for an FFAG accelerator, which is characterized by being provided .
【請求項2】請求項1において、電磁石用コイルを中央
の集束磁石のみに設け、逆磁場部である発散磁石はリタ
ーンフラックスとすることを特徴とするFFAG加速器
用電磁石。
2. The electromagnet for an FFAG accelerator according to claim 1, wherein the electromagnet coil is provided only in the central focusing magnet, and the divergent magnet serving as a reverse magnetic field portion serves as a return flux.
【請求項3】請求項1または2において、集束磁石を構
成する電磁石が超伝導磁石であることを特徴とするFF
AG加速器用電磁石。
3. The FF according to claim 1, wherein the electromagnet forming the focusing magnet is a superconducting magnet.
Electromagnet for AG accelerator.
JP2001334461A 2001-10-31 2001-10-31 Electromagnet for FFAG accelerator Expired - Lifetime JP3527950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334461A JP3527950B2 (en) 2001-10-31 2001-10-31 Electromagnet for FFAG accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334461A JP3527950B2 (en) 2001-10-31 2001-10-31 Electromagnet for FFAG accelerator

Publications (2)

Publication Number Publication Date
JP2003142299A JP2003142299A (en) 2003-05-16
JP3527950B2 true JP3527950B2 (en) 2004-05-17

Family

ID=19149584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334461A Expired - Lifetime JP3527950B2 (en) 2001-10-31 2001-10-31 Electromagnet for FFAG accelerator

Country Status (1)

Country Link
JP (1) JP3527950B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943284A (en) * 2002-10-25 2007-04-04 独立行政法人科学技术振兴机构 Electron accelerator and radiotherapy apparatus using same
CN103228093A (en) * 2013-04-20 2013-07-31 胡明建 Design method of superconductor focusing synchrocyclotron
CN114828380B (en) * 2022-05-20 2024-09-27 中国原子能科学研究院 Multi-magnetic loop fan-shaped magnet for improving axial focusing force

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本原子力学会 2001年(第39回)春の学会 要旨集,日本,社団法人 日本原子力学会,2001年 3月27日,第1分冊,120

Also Published As

Publication number Publication date
JP2003142299A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
US6057655A (en) Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
JPS61294800A (en) Magnetic field device for charged particle acceleration or storage equipment
US5798679A (en) Magnetic flux bending devices
WO1999021197A1 (en) Single dipole permanent magnet structure with linear gradient magnetic field intensity
JPH06132119A (en) Superconductive magnet
US3433705A (en) Stellarator having multipole magnets
JP3527950B2 (en) Electromagnet for FFAG accelerator
JP3028039B2 (en) Hollow plate-shaped laminated conductor superconducting magnet
Juchno et al. Conceptual design of superbend and hardbend magnets for advance light source upgrade project
JP7356934B2 (en) Superconducting magnet device and bending electromagnet device
Ishibashi et al. Winding design study of superconducting 10 T dipoles for a synchrotron
Prestemon et al. Design of a ${\rm Nb} _ {3}{\rm Sn} $ Magnet for a 4th Generation ECR Ion Source
Halbach Permanent multipole magnets with adjustable strength
Martovetsky et al. Focusing Magnets for HIF based on Racetracks
Caspi et al. A superconducting quadrupole magnet array for a heavy ion fusion driver
Tsoupas et al. The Electromagnetic Design of the X/Y line Combined Function Magnets
Magnets WF ermi National Accelerator Laboratory
JP2935082B2 (en) Normal conducting magnet type electron storage ring
Green et al. Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source
CA2227228C (en) Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
Novitski et al. Conceptual designs of dipole magnet for muon collider storage ring
Adachi Design of magnets and power supplies of 3 GeV Booster for Japan Hadron Project
Zeller et al. Superferric magnets for the proposed international accelerator facility at GSI
Dahl et al. Performance of initial full-length RHIC dipoles
Heinz Applications of superconductivity in high-energy physics

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

R150 Certificate of patent or registration of utility model

Ref document number: 3527950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term