[go: up one dir, main page]

JP3526517B2 - High frequency measurement board - Google Patents

High frequency measurement board

Info

Publication number
JP3526517B2
JP3526517B2 JP25317397A JP25317397A JP3526517B2 JP 3526517 B2 JP3526517 B2 JP 3526517B2 JP 25317397 A JP25317397 A JP 25317397A JP 25317397 A JP25317397 A JP 25317397A JP 3526517 B2 JP3526517 B2 JP 3526517B2
Authority
JP
Japan
Prior art keywords
radial
conductor
frequency
shaped
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25317397A
Other languages
Japanese (ja)
Other versions
JPH1194911A (en
Inventor
武宏 奥道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25317397A priority Critical patent/JP3526517B2/en
Publication of JPH1194911A publication Critical patent/JPH1194911A/en
Application granted granted Critical
Publication of JP3526517B2 publication Critical patent/JP3526517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロストリップ
線路を用いた半導体素子や半導体素子収納用パッケージ
・回路基板のマイクロ波帯あるいはミリ波帯といった高
周波における電気的特性の測定に使用される高周波測定
用基板に関し、特に測定可能な周波数帯域を改善した広
帯域低損失な高周波測定用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency measurement used for measuring electrical characteristics of a semiconductor device using a microstrip line, a semiconductor device housing package, or a circuit board at a high frequency band such as a microwave band or a millimeter wave band. More specifically, the present invention relates to a wide-band, low-loss high-frequency measurement substrate with an improved measurable frequency band.

【0002】[0002]

【従来の技術】マイクロ波帯あるいはミリ波帯といった
高周波帯域における半導体素子や半導体素子収納用パッ
ケージ・回路基板の電気的特性の測定評価においては、
測定器側には、コプレーナ線路との接触により高確度測
定を可能としたウェハプローブが用いられる。一方、高
周波信号を用いる無線通信機器用等の高速ディジタル回
路や高周波回路もしくは高周波用半導体素子やそれを収
容する高周波用半導体素子収納用パッケージ等の被測定
物側の入出力部分の伝送線路はマイクロストリップ線路
が一般的である。このために、ウェハプローブを用いた
高周波における電気的特性の測定にはウェハプローブの
コプレーナ線路と被測定物のマイクロストリップ線路と
の接続を行なう線路変換部を設ける必要があり、この線
路変換部には被測定物の特性を高確度に抽出するために
低損失に高周波信号の伝送を行なうことが要求される。
2. Description of the Related Art In measuring and evaluating the electrical characteristics of a semiconductor element or a package / circuit board for storing a semiconductor element in a high frequency band such as a microwave band or a millimeter wave band,
On the measuring instrument side, a wafer probe is used which enables high-accuracy measurement by contact with the coplanar line. On the other hand, the transmission line of the input / output part on the DUT side such as a high-speed digital circuit for a wireless communication device using a high-frequency signal or a high-frequency circuit or a high-frequency semiconductor element or a high-frequency semiconductor element housing package that accommodates it is a micro Strip lines are common. For this reason, it is necessary to provide a line conversion unit for connecting the coplanar line of the wafer probe and the microstrip line of the DUT in order to measure the electrical characteristics at a high frequency using the wafer probe. Requires high-frequency signal transmission with low loss in order to extract the characteristics of the device under test with high accuracy.

【0003】従来、この線路変換部の構造としては、一
般にはコプレーナ線路部の信号導体幅ならびにグランド
導体幅はウェハプローブのヘッドが要求する寸法に対応
するように適切に設計され、その一端とマイクロストリ
ップ線路の一端とを相互の信号導体幅が滑らかに変化す
るように接続しており、コプレーナ線路の接地(グラン
ド)導体はマイクロストリップ線路の裏面の接地導体と
スルーホールあるいはビアホールといった貫通導体を介
して接続する構成であった。
Conventionally, as the structure of the line converting portion, generally, the signal conductor width and the ground conductor width of the coplanar line portion are appropriately designed so as to correspond to the size required by the head of the wafer probe, and one end thereof and a micro One end of the strip line is connected so that the mutual signal conductor width changes smoothly, and the ground (ground) conductor of the coplanar line is connected to the ground conductor on the back surface of the microstrip line and a through conductor such as a through hole or via hole. It was configured to connect.

【0004】例えば、図12に従来の線路変換部の構造の
例を平面図で示すように、比誘電率9.6 の誘電体基板1
の裏面のほぼ全面に導体膜を被着形成して接地導体と
し、マイクロストリップ線路部の信号導体2の幅を190
μm、コプレーナ線路部の信号導体3の幅を160 μm、
コプレーナ線路部の信号導体3と接地導体4および4’
との間隔を135 μmとし、コプレーナ線路部の接地導体
4・4’を貫通導体である各々直径150 μmのスルーホ
ール5および5’を介して裏面の接地導体と電気的に接
続した構造のものが用いられる。そして、このようにス
ルーホールパッド構造としたコプレーナ線路部の接地導
体を全く同一形状でマイクロストリップ線路部を介して
鏡像対称に対向させたものの電気的特性を測定により抽
出すると、図13に線図で示すような周波数特性が得られ
る。
For example, as shown in a plan view of an example of a structure of a conventional line conversion portion in FIG. 12, a dielectric substrate 1 having a relative permittivity of 9.6.
A conductor film is formed on almost the entire back surface of the substrate to form a ground conductor, and the width of the signal conductor 2 in the microstrip line section is set to 190.
μm, the width of the signal conductor 3 in the coplanar line portion is 160 μm,
Signal conductor 3 and ground conductors 4 and 4'of the coplanar line section
And the ground conductors 4 and 4'of the coplanar line section are electrically connected to the ground conductor on the rear surface through through holes 5 and 5'each having a diameter of 150 μm and are through conductors. Is used. Then, when the ground conductors of the coplanar line portion having the through-hole pad structure are made to have the same shape and are mirror-symmetrically opposed to each other through the microstrip line portion, the electrical characteristics are extracted by measurement, and the diagram is shown in FIG. The frequency characteristic as shown by is obtained.

【0005】図13において、横軸は周波数(単位:GH
z)、縦軸は入力した信号の内の伝送された量の評価指
標としての透過係数(単位:dB)を示しており、特性
曲線は透過係数の周波数特性を示している。この結果か
ら、周波数が高くなるに従って透過係数が小さくなり、
信号の透過量が減少することが分かる。
In FIG. 13, the horizontal axis represents frequency (unit: GH
z), the vertical axis represents the transmission coefficient (unit: dB) as an evaluation index of the transmitted amount of the input signal, and the characteristic curve represents the frequency characteristic of the transmission coefficient. From this result, the transmission coefficient decreases as the frequency increases,
It can be seen that the amount of signal transmission decreases.

【0006】また、上記のようにスルーホールあるいは
ビアホールといった貫通導体を介さずにコプレーナ線路
とマイクロストリップ線路を線路変換して高周波測定用
基板として構成したものに、実用新案登録第2507797 号
「マイクロストリップライン回路測定治具」がある。同
号公報によれば、図14に平面図で示すように、その測定
治具(測定用基板)10は、裏面に地導体を有する誘電体
基板11上のマイクロストリップ線路12の先端をステップ
状またはテーパ状に形成してその幅をプローブヘッド13
の中心導体幅に一致させて接続し、また、その先端近傍
に半円状または半円に近い扇形のラジアルスタブ14によ
る等価的グランドを形成してプローブヘッド13の2つの
グランドラインの導体に対応させ、かつラジアルスタブ
14のスタブ半径を測定周波数の下限の約1/2波長の実
効長とする構成であった。
[0006] Further, as described above, a utility model registration No. 2507797 "Microstrip" is used in which a coplanar line and a microstrip line are line-converted without using a through conductor such as a through hole or a via hole to constitute a high frequency measurement substrate. There is a line circuit measurement jig. According to the publication, as shown in a plan view in FIG. 14, the measuring jig (measuring substrate) 10 has a step-like end of a microstrip line 12 on a dielectric substrate 11 having a ground conductor on the back surface. Alternatively, the probe head 13 may be formed in a tapered shape and its width
Corresponding to the center conductor width of the probe head. Also, an equivalent ground is formed by a radial stub 14 in the shape of a semi-circle or a semi-circle near the tip to correspond to the conductors of the two ground lines of the probe head 13. Let and radial stub
The configuration was such that the stub radius of 14 was an effective length of about 1/2 wavelength of the lower limit of the measurement frequency.

【0007】そして、このような構成によれば、プロー
ブヘッド13と測定治具10の結合にリボンボンディングや
上記貫通導体のように変動する要素での接地導体間の接
続手段が介在しないので測定データの良好な再現性が得
られるというものである。
Further, according to such a configuration, since the bonding means between the ground conductors such as ribbon bonding and the variable element such as the above-mentioned through conductor does not intervene in the coupling between the probe head 13 and the measurement jig 10, the measurement data That is, good reproducibility of is obtained.

【0008】この半円状または扇形のラジアルスタブ14
による等価的グランドの原理は、高周波回路における一
般的なラジアルスタブの現象と等価であるといえる。
This semicircular or fan-shaped radial stub 14
It can be said that the principle of the equivalent ground by is equivalent to the general phenomenon of radial stub in a high frequency circuit.

【0009】すなわち、この内容はIEEE TRANSACTIONS
ON MICROWAVE THEORY AND TECHNIQUES, VOL.36, NO.7,
JULY 1988 " A Coplanar Probe to Microstrip Transit
ion" に基づくと、図15に平面図で示したような形状の
ラジアルスタブ15のリアクタンス値Xは、このラジアル
スタブ15が形成されている基板の厚みhとラジアルスタ
ブ15の内径r1 と外径r2 ・ラジアルの中心角θ・ラジ
アルを径方向へ伝搬する場合の実効比誘電率εre・自由
空間波長λ0 として次式で表される。
That is, this content is IEEE TRANSACTIONS
ON MICROWAVE THEORY AND TECHNIQUES, VOL.36, NO.7,
JULY 1988 "A Coplanar Probe to Microstrip Transit
Based on “ion”, the reactance value X of the radial stub 15 having the shape shown in the plan view of FIG. 15 is calculated by calculating the thickness h of the substrate on which the radial stub 15 is formed, the inner diameter r 1 of the radial stub 15, and the outer diameter. Radius r 2 · Radial central angle θ · Effective relative permittivity ε re when propagating radial in the radial direction · Free space wavelength λ 0

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【数2】 [Equation 2]

【0012】[0012]

【数3】 [Equation 3]

【0013】[0013]

【数4】 [Equation 4]

【0014】[0014]

【数5】 [Equation 5]

【0015】ここで、Ji (x)およびNi (x)はi
次のベッセル関数である。
Where J i (x) and N i (x) are i
Here is the Bessel function

【0016】このような原理でラジアルスタブは高周波
における動作が完全反射状態に近くなって等価的なグラ
ンドとみなせるという効果があることから高周波測定用
基板における等価的グランドとしての応用が可能であ
り、実用新案登録第2507797 号のラジアルスタブ14はそ
のような効果を用いているものである。
On the basis of such a principle, the radial stub has an effect that it can be regarded as an equivalent ground because the operation at high frequency is close to a perfect reflection state, so that it can be applied as an equivalent ground on a high frequency measuring substrate. The radial stub 14 of utility model registration No. 2507797 uses such an effect.

【0017】次に、このようなラジアルスタブによる高
周波測定用基板の特性を抽出する。
Next, the characteristics of the high-frequency measuring substrate formed by such radial stubs are extracted.

【0018】図9はラジアルスタブを用いた従来の高周
波測定用基板の例を示す平面図であり、比誘電率9.6 の
誘電体基板21の裏面のほぼ全面に接地導体としての金属
膜を被着形成し、表面にマイクロストリップ線路の信号
導体22・コプレーナ線路の信号導体23および23’を形成
し、コプレーナ線路の接地導体24および24’を信号導体
23・23’から135 μmの間隔を設けて設置し、接地導体
24および24’はそれぞれ内径215 μm・外径580 μm・
中心角230 °の扇形のラジアルスタブとして形成してい
る。この高周波用基板の電気的特性を測定により抽出す
ると、図10および図11にそれぞれ線図で示す結果が得ら
れた。
FIG. 9 is a plan view showing an example of a conventional substrate for high frequency measurement using a radial stub. A metal film as a ground conductor is deposited on almost the entire back surface of a dielectric substrate 21 having a relative permittivity of 9.6. The signal conductor 22 of the microstrip line and the signal conductors 23 and 23 'of the coplanar line are formed on the surface, and the ground conductors 24 and 24' of the coplanar line are formed.
Installed at a distance of 135 μm from 23 ・ 23 'and ground conductor
24 and 24 'each have an inner diameter of 215 μm and an outer diameter of 580 μm
It is formed as a fan-shaped radial stub with a central angle of 230 °. When the electrical characteristics of this high frequency substrate were extracted by measurement, the results shown in the diagrams of FIGS. 10 and 11 were obtained.

【0019】図10において、横軸は周波数(単位:GH
z)、縦軸は入力した信号の内の反射された量の評価指
標としての反射係数(単位:dB)を示しており、特性
曲線の内の実線はシミュレーションの結果を、破線は実
測値をそれぞれ示している。
In FIG. 10, the horizontal axis represents frequency (unit: GH
z), the vertical axis represents the reflection coefficient (unit: dB) as an evaluation index of the reflected amount in the input signal, the solid line in the characteristic curve represents the simulation result, and the broken line represents the measured value. Shown respectively.

【0020】また、図11において、横軸は周波数(単
位:GHz)、縦軸は入力した信号の内の伝送された量
の評価指標としての透過係数(単位:dB)を示してお
り、特性曲線の内の実線はシミュレーションの結果を、
破線は実測値をそれぞれ示している。これらの結果か
ら、ラジアルスタブを等価的なグランドとして用いるこ
とにより、低損失な透過周波数帯域特性を有する高周波
測定用基板が得られることが分かる。
Further, in FIG. 11, the horizontal axis represents the frequency (unit: GHz), and the vertical axis represents the transmission coefficient (unit: dB) as an evaluation index of the transmitted amount of the input signal. The solid line in the curve shows the simulation result,
The broken lines indicate the measured values. From these results, it can be seen that by using the radial stub as an equivalent ground, a high frequency measurement substrate having a low loss transmission frequency band characteristic can be obtained.

【0021】[0021]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の高周波測定用基板においては、図12に示し
たようなスルーホールやビアホール等の貫通導体を用い
たものの場合には、マイクロ波帯さらにはミリ波帯とい
う高い周波数帯域において貫通導体のインダクタンス成
分によりグランドが不安定となってしまう結果、特性イ
ンピーダンスの不連続が生じ、入射信号に対して反射が
増大し、高周波信号の透過量が減少するという問題点が
あった。また、貫通導体の加工工程が必要であるために
高周波測定用基板の高精度な製造が困難であるという問
題点もあった。
However, in the conventional substrate for high frequency measurement as described above, when a through conductor such as a through hole or a via hole as shown in FIG. Furthermore, as a result of the ground component becoming unstable due to the inductance component of the through conductor in the high frequency band of the millimeter wave band, discontinuity of the characteristic impedance occurs, reflection increases with respect to the incident signal, and the amount of transmission of the high frequency signal increases. There was a problem of decrease. In addition, there is a problem that it is difficult to manufacture the high frequency measurement substrate with high accuracy because the through conductor processing step is required.

【0022】また、図14や図9に示したように半円状ま
たは扇形のラジアルスタブによる等価的グランドを用い
た場合には、半円状または扇形の径方向の略中心位置の
周方向の長さが1波長の実効長に相当する周波数におい
て、周方向の電荷分布が半円状または扇形の周方向の端
部と中間部とで密度が高くなるという定在的分布となる
結果、共振が生じてしまうという問題点があった。この
ためにこの共振周波数近傍においては等価的グランドの
効果はほとんど生じなくなり、それによって特性インピ
ーダンスが不連続となる結果、入射信号に対して反射が
増大し、高周波信号の透過量が減少してしまうという問
題点があった。さらに、この共振周波数が低損失の透過
周波数帯域内あるいはその近傍の周波数となる場合に
は、測定可能な周波数帯域の狭帯域化という悪影響を及
ぼすという問題点もあった。
Further, as shown in FIG. 14 and FIG. 9, when an equivalent gland with a semi-circular or fan-shaped radial stub is used, the semi-circular or fan-shaped radial gland has a circumferential center of a substantially central position. At a frequency whose length corresponds to the effective length of one wavelength, the charge distribution in the circumferential direction becomes a standing distribution in which the density becomes higher at the end portions and the intermediate portion in the semicircular or fan-shaped circumferential direction, resulting in resonance. There was a problem that was caused. For this reason, the effect of the equivalent ground hardly occurs in the vicinity of this resonance frequency, and as a result, the characteristic impedance becomes discontinuous, so that the reflection with respect to the incident signal increases and the transmission amount of the high frequency signal decreases. There was a problem. Further, when the resonance frequency is a frequency in or near the low-frequency transmission frequency band, there is a problem that the measurable frequency band is narrowed.

【0023】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、ラジアルスタブ
を等価的なグランドとして用いた高周波測定用基板にお
いて、ラジアルスタブの共振周波数を低周波側へ移動さ
せることにより低損失透過周波数帯域を広帯域化した高
周波測定用基板を提供することにある。
The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a high-frequency measurement substrate using a radial stub as an equivalent ground so that the resonance frequency of the radial stub is on the low frequency side. The purpose of the present invention is to provide a substrate for high frequency measurement in which the low-loss transmission frequency band is widened by moving to low temperature.

【0024】[0024]

【課題を解決するための手段】本発明の請求項1に係る
高周波測定用基板は、誘電体基板の下面の略全面に接地
導体が形成され、上面にマイクロストリップ線路の信号
導体と該信号導体の先端近傍に設けた略ラジアルスタブ
形状の等価的接地導体とが形成されて成り、前記信号導
体と等価的接地導体とにそれぞれコプレーナ線路構造の
ウェハプローブの信号導体と接地導体とを電気的に接続
させる高周波測定用基板であって、前記等価的接地導体
は、中心を共有して略円弧状に配された、径方向の長さ
が異なる複数のラジアル形状導体と、この複数のラジア
ル形状導体間を電気的に接続する接続導体とから成るこ
とを特徴とするものである。
According to a first aspect of the present invention, there is provided a high frequency measuring substrate in which a ground conductor is formed on substantially the entire lower surface of a dielectric substrate, and a signal conductor of a microstrip line and the signal conductor are provided on the upper surface. A substantially radial stub-shaped equivalent ground conductor provided in the vicinity of the tip of each of the signal conductors and the ground conductor are electrically connected to the signal conductor and the equivalent ground conductor, respectively. A high-frequency measurement substrate to be connected, wherein the equivalent grounding conductor is a plurality of radial-shaped conductors having different radial lengths and arranged in a substantially arcuate shape sharing a center and having a plurality of radial-shaped conductors. It is characterized by comprising a connecting conductor for electrically connecting between the two.

【0025】また、本発明の請求項2に係る高周波測定
用基板は、請求項1に係る高周波測定用基板において、
前記接続導体の径方向の長さを、最も短い径方向長さを
有する前記ラジアル形状導体の前記径方向長さの半分以
下としたことを特徴とするものである。
A high frequency measuring substrate according to claim 2 of the present invention is the high frequency measuring substrate according to claim 1, wherein
It is characterized in that the radial length of the connection conductor is not more than half of the radial length of the radial conductor having the shortest radial length.

【0026】また、本発明の請求項3に係る高周波測定
用基板は、請求項1または請求項2に係る高周波測定用
基板において、前記複数のラジアル形状導体は、中央に
位置する中央ラジアル形状導体と、この中央ラジアル形
状導体の両側に配され、中心角が前記中央ラジアル形状
導体の中心角の略2分の1である外側ラジアル形状導体
とから成ることを特徴とするものである。
A high frequency measuring board according to a third aspect of the present invention is the high frequency measuring board according to the first or second aspect, wherein the plurality of radial conductors are located in a central radial conductor. And outer radial-shaped conductors which are arranged on both sides of the central radial-shaped conductor and whose central angle is approximately one half of the central angle of the central radial-shaped conductor.

【0027】[0027]

【発明の実施の形態】本発明の請求項1に係る高周波測
定用基板によれば、誘電体基板の下面の略全面に接地導
体が形成され、上面にマイクロストリップ線路の信号導
体とこの信号導体の先端近傍に設けた略ラジアルスタブ
形状の等価的接地導体とが形成されて成り、前記信号導
体と等価的接地導体とにそれぞれコプレーナ線路構造の
ウェハプローブの信号導体と接地導体とを電気的に接続
させる高周波測定用基板であって、前記等価的接地導体
は、中心を共有して略円弧状に配された、径方向の長さ
が異なる複数のラジアル形状導体と、この複数のラジア
ル形状導体間を電気的に接続する接続導体とから成るこ
とにより、略ラジアルスタブ形状の等価的接地導体にお
ける半円形・扇形または扇面形の周方向の定在的な電荷
密度分布が、単一のラジアル形状導体で構成した場合と
比較してより低周波側の周波数で生じることとなる。そ
のため、従来のようにラジアルスタブ形状の等価的接地
導体において半円形または扇形の径方向の略中心位置の
周方向の長さが1波長の実効長に相当する周波数が低損
失な透過周波数帯域内の周波数となる場合に周方向の電
荷分布が半円形または扇形の周方向の端部と中間部とで
密度が高くなるという定在的分布となって共振が生じて
しまう場合と比較して、共振周波数を低損失な透過周波
数帯域の低周波側へ移動することができる。その結果、
低損失な透過周波数帯域が広がることとなるので、広帯
域に低損失な特性を有する高周波測定用基板となる。
According to the first aspect of the present invention, there is provided a ground conductor formed on substantially the entire lower surface of a dielectric substrate, and a signal conductor of a microstrip line and the signal conductor on the upper surface. A substantially radial stub-shaped equivalent ground conductor provided in the vicinity of the tip of each of the signal conductors and the ground conductor are electrically connected to the signal conductor and the equivalent ground conductor, respectively. A high-frequency measurement substrate to be connected, wherein the equivalent grounding conductor is a plurality of radial-shaped conductors having different radial lengths and arranged in a substantially arcuate shape sharing a center and having a plurality of radial-shaped conductors. By including the connecting conductors that electrically connect between them, the semi-circular, fan-shaped, or fan-shaped, circumferential, standing charge density distribution in a substantially radial stub-shaped equivalent ground conductor becomes uniform. And thus in comparison with the case of a configuration using a radial shaped conductor occur at frequencies of a lower frequency side. Therefore, in a radial stub-shaped equivalent grounding conductor as in the conventional case, a semicircular or fan-shaped radial center has a circumferential length at a substantially central position corresponding to an effective length of one wavelength. When the frequency becomes, the charge distribution in the circumferential direction becomes a standing distribution in which the density becomes high at the end portions and the intermediate portion in the semicircular or fan-shaped circumferential direction, and compared with the case where resonance occurs, The resonance frequency can be moved to the low frequency side of the low loss transmission frequency band. as a result,
Since the low-loss transmission frequency band is widened, the high-frequency measurement substrate has a wide-band, low-loss characteristic.

【0028】また、本発明の請求項2に係る高周波測定
用基板によれば、請求項1に係る高周波測定用基板にお
いて、前記接続導体の径方向の長さを、最も短い径方向
長さを有するラジアル形状導体のその径方向長さの半分
以下としたことにより、略ラジアルスタブ形状の等価的
接地導体における半円形・扇形または扇面形の周方向の
定在的な電荷密度分布が、単一のラジアル形状導体で構
成した場合と比較してより低周波側の周波数で生じるこ
ととなる。そのため、従来のようにラジアルスタブ形状
の等価的接地導体において半円形または扇形の径方向の
略中心位置の周方向の長さが1波長の実効長に相当する
周波数が低損失な透過周波数帯域内の周波数となる場合
に周方向の電荷分布が半円形または扇形の周方向の端部
と中間部とで密度が高くなるという定在的分布となって
共振が生じてしまう場合と比較して、共振周波数を低損
失な透過周波数帯域の低周波側へ移動することができ
る。
According to a second aspect of the present invention, there is provided the high frequency measurement substrate according to the first aspect, wherein the radial length of the connecting conductor is the shortest radial length. By setting the radial-shaped conductor to have half or less of its radial length, the semi-circular, fan-shaped or fan-shaped circumferential charge density distribution in a substantially radial stub-shaped equivalent ground conductor becomes uniform. It occurs at a frequency on the lower frequency side as compared with the case where the radial conductor is used. Therefore, in a radial stub-shaped equivalent grounding conductor as in the conventional case, a semicircular or fan-shaped radial center has a circumferential length at a substantially central position corresponding to an effective length of one wavelength. When the frequency becomes, the charge distribution in the circumferential direction becomes a standing distribution in which the density becomes high at the end portions and the intermediate portion in the semicircular or fan-shaped circumferential direction, and compared with the case where resonance occurs, The resonance frequency can be moved to the low frequency side of the low loss transmission frequency band.

【0029】その結果、低損失な透過周波数帯域が広が
ることとなるので、広帯域に低損失な特性を有する高周
波測定用基板となる。
As a result, a low-loss transmission frequency band is widened, so that a high-frequency measurement substrate having a low-loss characteristic in a wide band is obtained.

【0030】また、本発明の請求項3に係る高周波測定
用基板によれば、請求項1または請求項2に係る高周波
測定用基板において、複数のラジアル形状導体が、中央
に位置する中央ラジアル形状導体と、この中央ラジアル
形状導体の両側に配され、中心角が前記中央ラジアル形
状導体の中心角の略2分の1である外側ラジアル形状導
体とから成るものとしたことより、略ラジアルスタブ形
状の等価的接地導体における半円形・扇形または扇面形
の周方向の定在的な電荷密度分布が、単一のラジアル形
状導体で構成した場合と比較してより低周波側の周波数
で生じることとなる。そのため、従来のようにラジアル
スタブ形状の等価的接地導体において半円形または扇形
の径方向の略中心位置の周方向の長さが1波長の実効長
に相当する周波数が低損失な透過周波数帯域内の周波数
となる場合に周方向の電荷分布が半円形または扇形の周
方向の端部と中間部とで密度が高くなるという定在的分
布となって共振が生じてしまう場合と比較して、共振周
波数を低損失な透過周波数帯域の低周波側へ移動するこ
とができる。その結果、低損失な透過周波数帯域が広が
ることとなるので、広帯域に低損失な特性を有する高周
波測定用基板となる。
According to a third aspect of the present invention, there is provided a high frequency measuring substrate according to the first or second aspect, wherein a plurality of radial conductors are located in a central radial shape. Since the conductor and the outer radial conductor arranged on both sides of the central radial conductor and having a central angle of about ½ of the central angle of the central radial conductor, a substantially radial stub shape The semi-circular, fan-shaped or fan-shaped circumferential charge density distribution in the equivalent ground conductor of is generated at a frequency on the lower frequency side compared to the case where it is composed of a single radial-shaped conductor. Become. Therefore, in a radial stub-shaped equivalent grounding conductor as in the conventional case, a semicircular or fan-shaped radial center has a circumferential length at a substantially central position corresponding to an effective length of one wavelength. When the frequency becomes, the charge distribution in the circumferential direction becomes a standing distribution in which the density becomes high at the end portions and the intermediate portion in the semicircular or fan-shaped circumferential direction, and compared with the case where resonance occurs, The resonance frequency can be moved to the low frequency side of the low loss transmission frequency band. As a result, the low-loss transmission frequency band is widened, so that the high-frequency measurement substrate has a wide-band, low-loss characteristic.

【0031】なお、上記の本発明の高周波測定用基板の
各構成において、それぞれ複数のラジアル形状導体の中
心角を少なくとも2種類からなるものとすることによ
り、あるいは接続導体により複数のラジアル形状導体の
内周部を接続することにより、もしくは接続導体により
複数のラジアル形状導体の外周部を接続することによ
り、本発明の高周波測定用基板における上記の作用効果
がより有効に奏されるものとなる。
In each of the above-mentioned high-frequency measurement substrates of the present invention, the plurality of radial-shaped conductors each have a central angle of at least two types, or the connecting conductors form a plurality of radial-shaped conductors. By connecting the inner peripheral portion or connecting the outer peripheral portions of the plurality of radial-shaped conductors by the connecting conductor, the above-described operational effects of the high-frequency measuring substrate of the present invention can be more effectively exhibited.

【0032】以下、図面に基づいて本発明を詳細に説明
する。図1は本発明の高周波測定用基板の実施の形態の
一例を示す平面図である。図1において、31は裏面(下
面)の略全面に接地導体を被着形成した誘電体基板であ
り、32は誘電体基板31の表面(上面)に形成されたマイ
クロストリップ線路の信号導体である。33はコプレーナ
線路部の信号導体であり、マイクロストリップ線路の信
号導体32とは電気的に接続されて信号導体32の先端とな
っていて、コプレーナ線路構造のウェハプローブ(図示
せず)の信号導体をマイクロストリップ線路の信号導体
32に接触させて電気的に接続させる部分に相当する。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a plan view showing an example of an embodiment of a high frequency measuring substrate of the present invention. In FIG. 1, 31 is a dielectric substrate in which a ground conductor is formed on substantially the entire back surface (lower surface), and 32 is a signal conductor of a microstrip line formed on the front surface (upper surface) of the dielectric substrate 31. . Reference numeral 33 denotes a signal conductor of the coplanar line portion, which is electrically connected to the signal conductor 32 of the microstrip line and forms the tip of the signal conductor 32, and is a signal conductor of a wafer probe (not shown) having a coplanar line structure. The signal conductor of the microstrip line
It corresponds to the part that contacts 32 and is electrically connected.

【0033】34・34’・34”はラジアル形状導体であ
り、それぞれマイクロストリップ線路の信号導体32の先
端近傍に中心を共有して略円弧状に配設した略半円形・
扇形または扇面形の導体パターンにより形成されてい
る。本例においてはラジアル形状導体34・34’・34”の
うち中央に位置する中央ラジアル形状導体34’の径方向
の長さをその両側に配された外側ラジアル形状導体34・
34”よりも長くし、さらに、外側ラジアル形状導体34・
34”の中心角を中央ラジアル形状導体34’の中心角の略
1/2としている。
34, 34 ', 34 "are radial conductors, each of which has a substantially semicircular shape and is arranged in a generally arcuate shape with the center shared in the vicinity of the tip of the signal conductor 32 of the microstrip line.
It is formed of a fan-shaped or fan-shaped conductor pattern. In this example, of the radial conductors 34, 34 ', 34 ", the radial length of the central radial conductor 34' located at the center is the outer radial conductor 34.
Longer than 34 ", and also has a radially outer conductor 34.
The central angle of 34 "is approximately 1/2 of the central angle of the central radial conductor 34 '.

【0034】また、35・35’はこれら複数のラジアル形
状導体34・34’・34”間を電気的に接続する接続導体で
あり、それぞれラジアル形状導体34・34’・34”と同様
の導体により径方向の長さをラジアル形状導体34・34’
・34”の径方向の長さより短くしたものとして形成され
ていて、本例においては接続導体35・35’の径方向の長
さをラジアル形状導体34・34”の径方向長さの2分の1
以下とし、ラジアル形状導体34・34’・34”の内周部を
接続するものとしている。
Reference numerals 35, 35 'are connection conductors for electrically connecting the plurality of radial-shaped conductors 34, 34', 34 ", respectively, and conductors similar to the radial-shaped conductors 34, 34 ', 34", respectively. Radial-shaped conductor 34.34 '
It is formed to be shorter than the radial length of 34 ", and in this example, the radial length of the connecting conductors 35/35 'is 2 minutes of the radial length of the radial conductor 34/34". Of 1
In the following, the inner peripheral portions of the radial conductors 34, 34 ', 34 "are connected.

【0035】これら複数のラジアル形状導体34・34’・
34”および接続導体35・35’により略ラジアルスタブ形
状の等価的接地導体36が形成されており、この等価的接
地導体36の形状・寸法・位置等は従来のラジアルスタブ
と同様に設定され、所望の高周波的な特性を満たすよう
にマイクロストリップ線路の信号導体32の先端形状に合
わせて両端部を延長する等して適宜設定される。
These plural radial-shaped conductors 34, 34 ',
34 ″ and the connecting conductors 35 and 35 ′ form an equivalent ground conductor 36 having a substantially radial stub shape, and the shape, size, position, etc. of the equivalent ground conductor 36 are set in the same manner as a conventional radial stub. It is appropriately set by extending both ends in accordance with the tip shape of the signal conductor 32 of the microstrip line so as to satisfy desired high-frequency characteristics.

【0036】なお、ラジアル形状導体34・34’・34”お
よび接続導体35・35’の寸法や形状・位置等は、高周波
的に悪影響を与えずかつ透過周波数帯域よりも低周波側
の周波数で定在的な電荷密度分布が生じるように適宜設
定すればよく、例えば、裏面の接地導体との高周波的な
結合を極力強く(多く)することによって広帯域となる
ために、各ラジアル形状導体34・34’・34”の中心角
(ラジアル角)を大きくとるため、接続導体35・35’の
周方向の長さは径方向の長さよりも短くするようにす
る。
The dimensions, shapes, positions, etc. of the radial conductors 34, 34 ', 34 "and the connecting conductors 35, 35' do not adversely affect the high frequency and are at frequencies lower than the transmission frequency band. It may be appropriately set so that a stationary charge density distribution is generated. For example, since the high-frequency coupling with the ground conductor on the back surface is made as strong (as many) as possible to obtain a wide band, each radial-shaped conductor 34. In order to make the central angle (radial angle) of 34 '・ 34 "large, the circumferential length of the connecting conductors 35 ・ 35' should be shorter than the radial length.

【0037】このように、複数のラジアル形状導体34・
34’・34”を設け、各々のラジアル形状導体34・34’・
34”間を接続導体35・35’で電気的に接続して等価的接
地導体36を構成することで、単一の等価的接地導体のみ
で構成した場合と比較してラジアルの周方向の端から端
までを流れる電流の経路が長くなるのでその経路が1波
長に相当する周波数が低くなり、ラジアルスタブ上の電
荷密度分布が定在分布となる周波数が低周波側へ移動す
ることとなる。ただし、電荷密度分布が定在分布となる
ので、各々の等価的接地導体の中心角は単一の等価的接
地導体において電流密度が高い箇所で分離しているよう
に設けるのが最も効果的である。
As described above, the plurality of radial-shaped conductors 34.
34 '・ 34 "are provided, and each radial shape conductor 34 ・ 34' ・
By electrically connecting 34 "between the connecting conductors 35 and 35 'to form the equivalent ground conductor 36, the radial end in the circumferential direction can be compared with the case where only a single equivalent ground conductor is formed. Since the path of the current flowing from to the end becomes long, the frequency corresponding to one wavelength of the path becomes low, and the frequency at which the charge density distribution on the radial stub becomes a stationary distribution moves to the low frequency side. However, since the charge density distribution is a standing distribution, it is most effective to set the center angle of each equivalent ground conductor so that it is separated at a location where the current density is high in a single equivalent ground conductor. is there.

【0038】また、図2は本発明の高周波測定用基板の
実施の形態の他の例を示す平面図である。図2におい
て、41は裏面(下面)の略全面に接地導体を被着形成し
た誘電体基板であり、42は誘電体基板41の表面(上面)
に形成されたマイクロストリップ線路の信号導体であ
る。43はコプレーナ線路部の信号導体であり、マイクロ
ストリップ線路の信号導体42とは電気的に接続されて信
号導体42の先端となっていて、コプレーナ線路構造のウ
ェハプローブ(図示せず)の信号導体をマイクロストリ
ップ線路の信号導体42に接触させて電気的に接続させる
部分に相当する。
FIG. 2 is a plan view showing another example of the embodiment of the high frequency measuring substrate of the present invention. In FIG. 2, reference numeral 41 is a dielectric substrate in which a ground conductor is formed on substantially the entire back surface (lower surface), and 42 is the front surface (upper surface) of the dielectric substrate 41.
It is a signal conductor of a microstrip line formed in. Reference numeral 43 denotes a signal conductor of the coplanar line portion, which is electrically connected to the signal conductor 42 of the microstrip line and forms the tip of the signal conductor 42, and is a signal conductor of a wafer probe (not shown) having a coplanar line structure. Corresponds to a portion for contacting and electrically connecting to the signal conductor 42 of the microstrip line.

【0039】44・44’・44”はラジアル形状導体であ
り、それぞれマイクロストリップ線路の信号導体32の先
端近傍に中心を共有して略円弧状に配設した略半円形・
扇形または扇面形の導体パターンにより形成されてい
る。本例においてはラジアル形状導体44・44’・44”の
うち中央に位置する中央ラジアル形状導体44’の径方向
の長さをその両側に配された外側ラジアル形状導体44・
44”よりも短くし、さらに、外側ラジアル形状導体44・
44”の中心角を中央ラジアル形状導体44’の中心角の略
1/2としている。
Reference numerals 44, 44 ', and 44 "are radial conductors, each of which is a semicircular shape having a substantially arcuate shape with the center shared in the vicinity of the tip of the signal conductor 32 of the microstrip line.
It is formed of a fan-shaped or fan-shaped conductor pattern. In this example, of the radial conductors 44, 44 ', 44 ", the outer radial conductors 44, 44', 44 ', which are the radial lengths of the central radial conductor 44' located at the center, are arranged on both sides thereof.
Shorter than 44 ", and further radial outer shape conductor 44 ・
The central angle of 44 "is approximately 1/2 of the central angle of the central radial conductor 44 '.

【0040】また、45・45’はこれら複数のラジアル形
状導体44・44’・44”間を電気的に接続する接続導体で
あり、それぞれラジアル形状導体44・44’・44”と同様
の導体により径方向の長さをラジアル形状導体44・44’
・44”の径方向の長さより短くしたものとして形成され
ていて、本例においては接続導体45・45’の径方向の長
さをラジアル形状導体44’の径方向長さの2分の1以下
とし、ラジアル形状導体44・44’・44”の内周部を接続
するものとしている。
Further, 45 and 45 'are connection conductors for electrically connecting the plurality of radial-shaped conductors 44, 44', and 44 ", and conductors similar to the radial-shaped conductors 44, 44 ', and 44", respectively. Radial-shaped conductor 44 ・ 44 '
Formed to be shorter than the radial length of 44 ", and in this example, the radial length of the connecting conductors 45 and 45 'is one half of the radial length of the radial conductor 44'. In the following, the inner peripheral portions of the radial conductors 44, 44 ', 44 "are connected.

【0041】そして、これら複数のラジアル形状導体44
・44’・44”および接続導体45・45’により略ラジアル
スタブ形状の等価的接地導体46が形成されている。
Then, the plurality of radial-shaped conductors 44
-44'-44 "and the connecting conductors 45-45 'form an equivalent ground conductor 46 having a substantially radial stub shape.

【0042】また、図3は本発明の高周波測定用基板の
実施の形態のさらに他の例を示す平面図である。図3に
おいて、51は下面の略全面に接地導体を被着形成した誘
電体基板であり、52は誘電体基板51の上面に形成された
マイクロストリップ線路の信号導体、53はコプレーナ線
路部の信号導体であり、マイクロストリップ線路の信号
導体52とは電気的に接続されて信号導体52の先端となっ
ていて、コプレーナ線路構造のウェハプローブ(図示せ
ず)の信号導体をマイクロストリップ線路の信号導体52
に接触させて電気的に接続させる部分に相当する。
FIG. 3 is a plan view showing still another example of the embodiment of the high frequency measuring substrate of the present invention. In FIG. 3, reference numeral 51 is a dielectric substrate in which a ground conductor is formed on substantially the entire lower surface, 52 is a signal conductor of a microstrip line formed on the upper surface of the dielectric substrate 51, and 53 is a signal of a coplanar line portion. A conductor, which is electrically connected to the signal conductor 52 of the microstrip line and serves as the tip of the signal conductor 52. The signal conductor of the wafer probe (not shown) having the coplanar line structure is connected to the signal conductor of the microstrip line. 52
Corresponds to a portion that is brought into contact with and electrically connected.

【0043】54・54’・54”はラジアル形状導体であ
り、それぞれマイクロストリップ線路の信号導体32の先
端近傍に中心を共有して略円弧状に配設した略半円形・
扇形または扇面形の導体パターンにより形成されてい
る。本例においてはラジアル形状導体54・54’・54”の
うち中央に位置する中央ラジアル形状導体54’の径方向
の長さをその両側に配された外側ラジアル形状導体54・
54”よりも短くし、さらに、外側ラジアル形状導体54・
54”の中心角を中央ラジアル形状導体54’の中心角の略
1/2としている。
Reference numerals 54, 54 ', 54 "are radial conductors, each of which has a substantially semicircular shape and is arranged in a generally arcuate shape with a common center in the vicinity of the tip of the signal conductor 32 of the microstrip line.
It is formed of a fan-shaped or fan-shaped conductor pattern. In this example, the radial length of the central radial conductor 54 'located in the center of the radial conductors 54, 54', 54 "is the outer radial conductor 54
Shorter than 54 ", and also has a radially outer conductor 54.
The central angle of 54 "is approximately 1/2 of the central angle of the central radial conductor 54 '.

【0044】また、55・55’はこれら複数のラジアル形
状導体54・54’・54”間を電気的に接続する接続導体で
あり、それぞれラジアル形状導体54・54’・54”と同様
の導体により径方向の長さをラジアル形状導体54・54’
・54”の径方向の長さより短くしたものとして形成され
ていて、本例においては接続導体55・55’の径方向の長
さをラジアル形状導体54’の径方向長さの2分の1以下
とし、ラジアル形状導体54・54’・54”の外周部を接続
するものとしている。
Further, 55.55 'are connection conductors for electrically connecting the plurality of radial-shaped conductors 54, 54', 54 ", and conductors similar to the radial-shaped conductors 54, 54 ', 54", respectively. Radial-shaped conductor 54 ・ 54 '
Formed to be shorter than the radial length of 54 ", and in this example, the radial length of the connecting conductors 55, 55 'is one half of the radial length of the radial conductor 54'. In the following, the outer peripheral portions of the radial conductors 54, 54 ', 54 "are connected.

【0045】そして、これら複数のラジアル形状導体54
・54’・54”および接続導体55・55’により略ラジアル
スタブ形状の等価的接地導体56が形成されている。
Then, the plurality of radial-shaped conductors 54
54 'and 54' and the connecting conductors 55 and 55 'form an equivalent ground conductor 56 having a substantially radial stub shape.

【0046】[0046]

【実施例】次に、本発明の高周波測定用基板について具
体例を説明する。 〔例1〕まず、比較例として従来技術による高周波測定
用基板を得るために、図7に平面図で示した従来の高周
波測定用基板を作製した。図7において、61は下面の略
全面に接地導体を被着形成した誘電体基板であり、62は
誘電体基板61の上面に形成されたマイクロストリップ線
路の信号導体、63はコプレーナ線路部の信号導体であ
り、64はマイクロストリップ線路の信号導体62の先端近
傍に設けた、半円形または扇形のラジアルスタブ形状の
導体パターンにより形成された等価的接地導体である。
EXAMPLES Next, specific examples of the high frequency measurement substrate of the present invention will be described. Example 1 First, as a comparative example, in order to obtain a high-frequency measurement substrate according to the related art, a conventional high-frequency measurement substrate shown in a plan view in FIG. 7 was manufactured. In FIG. 7, reference numeral 61 is a dielectric substrate having a ground conductor deposited on substantially the entire lower surface thereof, 62 is a signal conductor of a microstrip line formed on the upper surface of the dielectric substrate 61, and 63 is a signal of a coplanar line portion. Reference numeral 64 is a conductor, and 64 is an equivalent ground conductor provided in the vicinity of the tip of the signal conductor 62 of the microstrip line and formed by a semi-circular or fan-shaped radial stub-shaped conductor pattern.

【0047】図7に示すように、比誘電率9.6 で厚み20
0 μmのアルミナセラミックスから成る誘電体基板61に
対して裏面のほぼ全面にCr/Cu/Ni/Auから成
る金属膜を被着形成した。また、誘電体基板61の上面に
マイクロストリップ線路の信号導体62を導体幅190 μm
として形成し、その先端にコプレーナ線路部63を導体幅
160 μm・信号導体と接地金属との間隔を135 μmとし
て形成し、マイクロストリップ線路の信号導体62の先端
と電気的に接続した。さらに、コプレーナ線路部の信号
導体63(マイクロストリップ線路の信号導体62の先端)
の近傍に信号導体の幅方向の中点を中心として、内径21
5 μm・外径580 μm・中心角230 °の扇形のラジアル
スタブを等価的接地導体64として形成することにより、
従来の高周波測定用基板の試料Aを作製した。
As shown in FIG. 7, the relative permittivity is 9.6 and the thickness is 20.
A metal film made of Cr / Cu / Ni / Au was adhered and formed on almost the entire back surface of a dielectric substrate 61 made of 0 μm alumina ceramics. In addition, a signal conductor 62 of a microstrip line is formed on the upper surface of the dielectric substrate 61 with a conductor width of 190 μm.
And the coplanar line portion 63 at the tip of the conductor width.
The distance between the signal conductor and the ground metal was set to 135 μm and electrically connected to the tip of the signal conductor 62 of the microstrip line. Furthermore, the signal conductor 63 of the coplanar line portion (the tip of the signal conductor 62 of the microstrip line)
With the inner diameter 21
By forming a fan-shaped radial stub with an outer diameter of 580 μm and a central angle of 230 ° as the equivalent ground conductor 64,
A sample A of a conventional substrate for high frequency measurement was prepared.

【0048】次に、その他は上記の試料Aと同様にし
て、図1に示すように、扇面形のラジアル形状導体34・
34’・34”の中心角を、中央ラジアル形状導体34’のそ
れを110 °、外側ラジアル形状導体34・34”のそれを55
°とし、また径方向長さを、中央ラジアル形状導体34’
のそれを415 μm(内径215 μm・外径630 μm)、外
側ラジアル形状導体34・34”のそれを365 μm(内径21
5 μm・外径580 μm)とした。また、これら各ラジア
ル形状導体間に5°の空隙が形成されるように、各々の
ラジアル形状導体34・34’・34”の内周部を接続するよ
うに径方向の長さが20μm、周方向の長さがほぼ20μm
の接続導体35・35’により電気的に接続して、本発明の
高周波測定用基板の試料Bを作製した。
Next, as in the case of the sample A above, the others are the same as in FIG. 1, as shown in FIG.
The central angle of 34 '· 34 ”is that of the central radial shape conductor 34' is 110 °, that of the outer radial shape conductor 34 · 34” is 55 °.
And the radial length of the central radial conductor 34 '.
It is 415 μm (inner diameter 215 μm, outer diameter 630 μm), and that of outer radial shape conductor 34/34 ″ is 365 μm (inner diameter 21
5 μm and outer diameter 580 μm). Also, the radial length is 20 μm and the circumference is 20 μm so as to connect the inner peripheral portions of the radial-shaped conductors 34, 34 ′, 34 ″ so that a 5 ° gap is formed between these radial-shaped conductors. Direction length is about 20 μm
The connection conductors 35 and 35 'were electrically connected to prepare a sample B of the high frequency measurement substrate of the present invention.

【0049】そして、これら試料Aおよび試料Bについ
て、電磁界シミュレーションによりマイクロストリップ
線路のコプレーナ線路に接続しない端部から、コプレー
ナ線路のマイクロストリップ線路に接続しない端部への
周波数に応じた特性を抽出し、抽出した特性から、入力
した信号の内の伝送された量の評価指標として透過係数
(S21)を周波数に対する伝送特性として求めた。
Then, with respect to these sample A and sample B, the characteristics corresponding to the frequency from the end of the microstrip line that is not connected to the coplanar line to the end of the coplanar line that is not connected to the microstrip line are extracted by electromagnetic field simulation. Then, from the extracted characteristics, a transmission coefficient (S 21 ) was obtained as a transmission characteristic with respect to frequency as an evaluation index of the transmitted amount of the input signal.

【0050】これらの結果のうち試料AのS21を図8に
線図で示す。なお、図8において横軸は周波数(単位:
GHz)、縦軸は透過量(単位:dB)を、特性曲線は
透過係数S21の周波数特性を表している。
Of these results, S 21 of sample A is shown diagrammatically in FIG. In FIG. 8, the horizontal axis represents frequency (unit:
GHz), the vertical axis represents the amount of transmission (unit: dB), and the characteristic curve represents the frequency characteristic of the transmission coefficient S 21 .

【0051】また、試料Aと試料Bの伝送特性の比較と
して、図4に両者の透過係数S21の周波数特性を線図で
示す。図4においても横軸は周波数(単位:GHz)、
縦軸は透過量(単位:dB)を表しており、試料BのS
21を実線の特性曲線で、試料AのS21を破線の特性曲線
で示している。
Further, as a comparison of the transmission characteristics of the sample A and the sample B, the frequency characteristics of the transmission coefficient S 21 of both are shown in a diagram in FIG. Also in FIG. 4, the horizontal axis represents frequency (unit: GHz),
The vertical axis represents the transmission amount (unit: dB), and S of sample B
21 is shown by a solid line characteristic curve, and S 21 of the sample A is shown by a broken line characteristic curve.

【0052】これらより分かるように本発明の高周波測
定用基板である試料Bは、等価的接地導体を複数のラジ
アル形状導体を接続導体で接続して形成したことによっ
て、従来の高周波測定用基板である試料Aのように単一
のラジアル形状の等価的接地導体により構成した場合と
比較して共振周波数が低周波側へ移動することとなるた
めに低損失周波数帯域の低周波数側が広がることとな
り、良好な広帯域低損失透過特性を有している。
As can be seen from the above, the sample B, which is the high-frequency measuring substrate of the present invention, is a conventional high-frequency measuring substrate because the equivalent ground conductor is formed by connecting a plurality of radial-shaped conductors with connecting conductors. As compared with the case where a single radial-shaped equivalent ground conductor is used as in sample A, the resonance frequency moves to the low frequency side, so the low frequency side of the low loss frequency band expands. It has good broadband low loss transmission characteristics.

【0053】これにより、本発明の高周波測定用基板に
よれば、等価的接地導体を複数のラジアル形状導体を接
続導体により電気的に接続したものとしたことによっ
て、共振周波数が低周波側へ移動することとなり、良好
な広帯域低損失透過特性を有する高周波測定用基板とな
ることが確認できた。
Thus, according to the high-frequency measuring board of the present invention, the equivalent ground conductor is electrically connected to the plurality of radial-shaped conductors by the connecting conductors, whereby the resonance frequency shifts to the low frequency side. Therefore, it was confirmed that the substrate for high frequency measurement has a good wide band low loss transmission characteristic.

【0054】〔例2〕〔例1〕の試料Aと同様にして、
図2に示すように、扇面形の複数のラジアル形状導体44
・44’・44”の中心角を、中央ラジアル形状導体44’の
それを110 °、外側ラジアル形状導体44・44”のそれを
55°とし、また径方向長さを、中央ラジアル形状導体4
4’のそれを365 μm(内径215 μm・外径580 μ
m)、外側ラジアル形状導体44・44”のそれを415 μm
(内径215 μm・外径630 μm)とした。また、これら
各ラジアル形状導体間に5°の空隙が形成されるよう
に、各々のラジアル形状導体44・44’・44”の内周部を
接続するように径方向の長さが20μm、周方向の長さが
ほぼ20μmの接続導体45・45’により電気的に接続し
て、本発明の高周波測定用基板の試料Cを作製した。
Example 2 In the same manner as the sample A of [Example 1],
As shown in FIG. 2, a plurality of fan-shaped radial conductors 44
・ The central angle of 44 '・ 44 "is 110 ° of that of the central radial conductor 44', and that of the outer radial conductor 44 ・ 44" is 110 °.
55 ° and the radial length is the center radial shape conductor 4
4'of 365 μm (inner diameter 215 μm, outer diameter 580 μm
m), that of the outer radial conductor 44.44 "is 415 μm
(Inner diameter 215 μm, outer diameter 630 μm). In addition, the radial length is 20 μm and the circumference is 20 μm so as to connect the inner peripheral portions of the radial conductors 44, 44 ′, and 44 ″ so that a 5 ° gap is formed between these radial conductors. Electrical connection was made with the connecting conductors 45 and 45 ′ having a length in the direction of approximately 20 μm to prepare a sample C of the high frequency measurement substrate of the present invention.

【0055】そして、これら試料Aおよび試料Cについ
て〔例1〕と同様に特性を抽出し、抽出した特性から、
入力した信号の内の伝送された量の評価指標として透過
係数(S21)を周波数に対する伝送特性として求めた。
Then, the characteristics of these sample A and sample C were extracted in the same manner as in [Example 1], and from the extracted characteristics,
A transmission coefficient (S 21 ) was obtained as a transmission characteristic with respect to frequency as an evaluation index of the transmitted amount of the input signal.

【0056】これらの結果について、図5に試料Aと試
料Cの特性の比較を線図で示す。図5においても横軸は
周波数(単位:GHz)、縦軸は透過量(単位:dB)
を表しており、試料CのS21を実線の特性曲線で、試料
AのS21を破線の特性曲線で示している。
Regarding these results, FIG. 5 shows a comparison of the characteristics of Sample A and Sample C in a diagram. Also in FIG. 5, the horizontal axis represents frequency (unit: GHz) and the vertical axis represents transmission amount (unit: dB).
S 21 of Sample C is shown by a solid line characteristic curve, and S 21 of Sample A is shown by a broken line characteristic curve.

【0057】これらより分かるように本発明の高周波測
定用基板である試料Cは、等価的接地導体を複数のラジ
アル形状導体を接続導体により電気的に接続して形成し
たことによって、従来の高周波測定用基板である試料A
のように単一のラジアル形状の等価的接地導体により構
成した場合と比較して共振周波数が低周波側へ移動する
こととなるために低損失周波数帯域の低周波数側が広が
ることとなり、良好な広帯域低損失透過特性を有してい
る。
As can be seen from the above, the sample C, which is the high-frequency measurement substrate of the present invention, is formed by electrically connecting an equivalent grounding conductor with a plurality of radial-shaped conductors by connecting conductors, and thus the conventional high-frequency measurement is performed. Sample A which is the substrate
The resonance frequency moves to the low frequency side as compared with the case where a single radial-shaped equivalent grounding conductor is used, as shown in Fig. 4, so that the low frequency side of the low loss frequency band is widened and a good wide band is obtained. It has low loss transmission characteristics.

【0058】また、試料Cによれば、試料Bと比較する
と電荷密度分布の生じる経路の長さの違いによりやや高
周波側で共振しており、複数のラジアル形状導体の形状
・寸法によって共振周波数の移動量を所望の値に設定す
ることができることも確認できた。
In comparison with Sample B, Sample C resonates on the high frequency side due to the difference in the length of the path in which the charge density distribution occurs, and the resonance frequency varies depending on the shapes and dimensions of the plurality of radial conductors. It was also confirmed that the movement amount can be set to a desired value.

【0059】これにより、本発明の高周波測定用基板に
よれば、等価的接地導体を複数のラジアル形状導体を接
続導体により電気的に接続したものとしたことによっ
て、共振周波数が低周波側へ移動することとなり、良好
な広帯域低損失透過特性を有する高周波測定用基板とな
ることが確認できた。
Thus, according to the high-frequency measuring board of the present invention, the equivalent ground conductor is electrically connected to the plurality of radial-shaped conductors by the connecting conductors, whereby the resonance frequency shifts to the lower frequency side. Therefore, it was confirmed that the substrate for high frequency measurement has a good wide band low loss transmission characteristic.

【0060】〔例3〕〔例1〕の試料Aと同様にして、
図3に示すように、扇面形の複数のラジアル形状導体54
・54’・54”の中心角を、中央ラジアル形状導体54’の
それを110 °、外側ラジアル形状導体54・54”のそれを
55°とし、また径方向長さを、中央ラジアル形状導体5
4’のそれを365 μm(内径265 μm・外径630 μ
m)、外側ラジアル形状導体54・54”のそれを415 μm
(内径215 μm・外径630 μm)とした。また、これら
各ラジアル形状導体間に5°の空隙が形成されるよう
に、各々のラジアル形状導体54・54’・54”の外周部を
接続するように径方向の長さが20μm、周方向の長さが
ほぼ20μmの接続導体55・55’により電気的に接続し
て、本発明の高周波測定用基板の試料Dを作製した。
Example 3 In the same manner as the sample A of [Example 1],
As shown in FIG. 3, a plurality of fan-shaped radial conductors 54
・ The central angle of 54 '・ 54 "is 110 ° of that of the central radial shape conductor 54', and that of the outer radial shape conductor 54 ・ 54" is
55 ° and the radial length is 5
4'of 365 μm (inner diameter 265 μm, outer diameter 630 μm
m), that of the outer radial shaped conductor 54.54 "is 415 μm
(Inner diameter 215 μm, outer diameter 630 μm). In addition, the radial length is 20 μm so that the outer circumferences of the radial conductors 54, 54 ′, 54 ″ are connected so that a 5 ° gap is formed between these radial conductors. Was electrically connected by the connecting conductors 55 and 55 ′ having a length of about 20 μm to prepare a sample D of the high frequency measurement substrate of the present invention.

【0061】そして、これら試料Aおよび試料Dについ
て〔例1〕と同様に特性を抽出し、抽出した特性から、
入力した信号の内の伝送された量の評価指標として透過
係数(S21)を周波数に対する伝送特性として求めた。
Then, the characteristics of these sample A and sample D were extracted in the same manner as in [Example 1], and from the extracted characteristics,
A transmission coefficient (S 21 ) was obtained as a transmission characteristic with respect to frequency as an evaluation index of the transmitted amount of the input signal.

【0062】これらの結果について、図6に試料Aと試
料Dの特性の比較を線図で示す。図6においても横軸は
周波数(単位:GHz)、縦軸は透過量(単位:dB)
を表しており、試料DのS21を実線の特性曲線で、試料
AのS21を破線の特性曲線で示している。
Regarding these results, FIG. 6 shows a comparison of the characteristics of the sample A and the sample D by a diagram. Also in FIG. 6, the horizontal axis represents frequency (unit: GHz), and the vertical axis represents transmission amount (unit: dB).
S 21 of Sample D is shown by a solid characteristic curve, and S 21 of Sample A is shown by a broken characteristic curve.

【0063】これらより分かるように本発明の高周波測
定用基板である試料Dは、等価的接地導体を複数のラジ
アル形状導体を接続導体により電気的に接続して形成し
たことによって、従来の高周波測定用基板である試料A
のように単一のラジアル形状の等価的接地導体により構
成した場合と比較して共振周波数が低周波側へ移動する
こととなるために低損失周波数帯域の低周波数側が広が
ることとなり、良好な広帯域低損失透過特性を有してい
る。
As can be seen from the above, the sample D, which is the high frequency measurement substrate of the present invention, is formed by electrically connecting an equivalent grounding conductor with a plurality of radial-shaped conductors by connecting conductors, and thus the conventional high frequency measurement is performed. Sample A which is the substrate
The resonance frequency moves to the low frequency side as compared with the case where a single radial-shaped equivalent grounding conductor is used, as shown in Fig. 4, so that the low frequency side of the low loss frequency band is widened and a good wide band is obtained. It has low loss transmission characteristics.

【0064】特に、試料Dの形状によれば、電荷密度分
布が生じる経路が最も長くなるため電荷分布に大きな変
化が生じる形状であることから、共振周波数を極めて効
果的に低周波側に移動させることができた。
In particular, according to the shape of the sample D, since the path in which the charge density distribution is generated is the longest, the charge distribution is greatly changed. Therefore, the resonance frequency is extremely effectively moved to the low frequency side. I was able to.

【0065】これにより、本発明の高周波測定用基板に
よれば、等価的接地導体を複数のラジアル形状導体を接
続導体により電気的に接続したものとしたことによっ
て、共振周波数が低周波側へ移動することとなり、良好
な広帯域低損失透過特性を有する高周波測定用基板とな
ることが確認できた。
Thus, according to the high frequency measurement board of the present invention, the equivalent ground conductor is electrically connected to the plurality of radial-shaped conductors by the connection conductors, so that the resonance frequency shifts to the low frequency side. Therefore, it was confirmed that the substrate for high frequency measurement has a good wide band low loss transmission characteristic.

【0066】なお、以上はあくまで本発明の実施の形態
の例示であって、本発明はこれらに限定されるものでは
なく、本発明の要旨を逸脱しない範囲で種々の変更や改
良を加えることは何ら差し支えない。
The above is merely an example of the embodiments of the present invention, and the present invention is not limited to these, and various changes and improvements may be made without departing from the gist of the present invention. No problem.

【0067】[0067]

【発明の効果】以上のように、本発明の請求項1に係る
高周波測定用基板によれば、等価的接地導体を、中心を
共有して略円弧状に配された、径方向の長さが異なる複
数のラジアル形状導体と、この複数のラジアル形状導体
間を電気的に接続する接続導体とから成るものとしたこ
とにより、略ラジアルスタブ形状の等価的接地導体にお
ける半円形・扇形または扇面形の周方向の定在的な電荷
密度分布が、単一のラジアル形状導体で構成した場合と
比較してより低周波側の周波数で生じることとなるた
め、従来のようにラジアルスタブ形状の等価的接地導体
において半円形または扇形の径方向の略中心位置の周方
向の長さが1波長の実効長に相当する周波数が低損失な
透過周波数帯域内の周波数となる場合に周方向の電荷分
布が半円形または扇形の周方向の端部と中間部とで密度
が高くなるという定在的分布となって共振が生じてしま
う場合と比較して、共振周波数を低損失な透過周波数帯
域の低周波側へ移動することができ、その結果、低損失
な透過周波数帯域が広がることとなるので、広帯域に低
損失な特性を有する高周波測定用基板とすることができ
た。
As described above, according to the high frequency measurement board of the first aspect of the present invention, the equivalent ground conductor is arranged in a substantially arcuate shape with the center shared, and has a radial length. Since it is composed of a plurality of radial-shaped conductors with different values and a connection conductor that electrically connects the plurality of radial-shaped conductors, the semi-circular / fan-shaped or fan-shaped Since the static charge density distribution in the circumferential direction of the is generated at a frequency on the lower frequency side compared to the case where it is composed of a single radial-shaped conductor, the equivalent radial stub shape When the frequency in which the length in the circumferential direction of the semicircular or fan-shaped substantially central position in the radial direction of the ground conductor corresponds to the effective length of one wavelength is a frequency within the low-loss transmission frequency band, the charge distribution in the circumferential direction is Half circle or fan The resonance frequency is moved to the low frequency side of the low-loss transmission frequency band, as compared with the case where resonance occurs due to a standing distribution in which the density becomes high at the circumferential end and the middle part. As a result, the low-loss transmission frequency band is widened, so that a high-frequency measurement substrate having low-bandwidth characteristics can be obtained.

【0068】また、本発明の請求項2に係る高周波測定
用基板によれば、請求項1に係る高周波測定用基板にお
いて、前記接続導体の径方向の長さを、最も短い径方向
長さを有するラジアル形状導体のその径方向長さの半分
以下としたことにより、略ラジアルスタブ形状の等価的
接地導体における半円形・扇形または扇面形の周方向の
定在的な電荷密度分布が、単一のラジアル形状導体で構
成した場合と比較してより低周波側の周波数で生じるこ
ととなるため、共振周波数を低損失な透過周波数帯域の
低周波側へより効果的に移動することができ、その結
果、低損失な透過周波数帯域が広がることとなるので、
広帯域に低損失な特性を有する高周波測定用基板とする
ことができた。
According to a second aspect of the present invention, there is provided the high frequency measuring substrate according to the first aspect, wherein the radial length of the connecting conductor is the shortest radial length. By setting the radial-shaped conductor to have half or less of its radial length, the semi-circular, fan-shaped or fan-shaped circumferential charge density distribution in a substantially radial stub-shaped equivalent ground conductor becomes uniform. Since it occurs at a frequency on the lower frequency side as compared with the case where it is configured with the radial shape conductor of, the resonance frequency can be more effectively moved to the lower frequency side of the transmission frequency band with low loss. As a result, the low-loss transmission frequency band is expanded, so
It was possible to obtain a substrate for high frequency measurement, which has low loss characteristics in a wide band.

【0069】また、本発明の請求項3に係る高周波測定
用基板によれば、請求項1または請求項2に係る高周波
測定用基板において、複数のラジアル形状導体が、中央
に位置する中央ラジアル形状導体と、この中央ラジアル
形状導体の両側に配され、中心角が前記中央ラジアル形
状導体の中心角の略2分の1である外側ラジアル形状導
体とから成るものとしたことより、略ラジアルスタブ形
状の等価的接地導体における半円形・扇形または扇面形
の周方向の定在的な電荷密度分布が、単一のラジアル形
状導体で構成した場合と比較してより低周波側の周波数
で生じることとなるため、共振周波数を低損失な透過周
波数帯域の低周波側へさらに効果的に移動することがで
き、その結果、低損失な透過周波数帯域が広がることと
なるので、広帯域に低損失な特性を有する高周波測定用
基板とすることができた。
According to a third aspect of the present invention, there is provided a high frequency measurement substrate according to the first or second aspect, wherein a plurality of radial conductors are located in a central radial shape. Since the conductor and the outer radial conductor arranged on both sides of the central radial conductor and having a central angle of about ½ of the central angle of the central radial conductor, a substantially radial stub shape The semi-circular, fan-shaped or fan-shaped circumferential charge density distribution in the equivalent ground conductor of is generated at a frequency on the lower frequency side compared to the case where it is composed of a single radial-shaped conductor. Therefore, the resonance frequency can be more effectively moved to the low frequency side of the low-loss transmission frequency band, and as a result, the low-loss transmission frequency band is expanded, so that the wide band It could be a substrate for high-frequency measuring with low loss characteristics.

【0070】また、本発明の高周波測定用基板によれ
ば、スルーホールやビアホール等の貫通導体を用いた従
来の高周波測定用基板の場合のように高精度な基板加工
工程を必要としないために、高精度な測定が可能な高周
波測定用基板を容易かつ安価に提供できるものとなる。
Further, according to the high frequency measuring substrate of the present invention, there is no need for a highly accurate substrate processing step unlike the case of the conventional high frequency measuring substrate using through conductors such as through holes and via holes. Therefore, it becomes possible to easily and inexpensively provide a high-frequency measurement substrate capable of highly accurate measurement.

【0071】以上により、本発明によれば、ラジアルス
タブを等価的なグランドとして用いた高周波測定用基板
において、ラジアルスタブの共振周波数を低周波側へ移
動させることにより低損失透過周波数帯域を広帯域化し
た高周波測定用基板を提供することができた。
As described above, according to the present invention, in the high frequency measurement board using the radial stub as an equivalent ground, the resonance frequency of the radial stub is moved to the low frequency side to widen the low loss transmission frequency band. It was possible to provide the high frequency measurement substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高周波測定用基板の実施の形態の一例
を示す平面図である。
FIG. 1 is a plan view showing an example of an embodiment of a high frequency measurement substrate of the present invention.

【図2】本発明の高周波測定用基板の実施の形態の他の
例を示す平面図である。
FIG. 2 is a plan view showing another example of the embodiment of the high frequency measurement substrate of the present invention.

【図3】本発明の高周波測定用基板の実施の形態のさら
に他の例を示す平面図である。
FIG. 3 is a plan view showing still another example of the embodiment of the high frequency measurement substrate of the present invention.

【図4】高周波測定用基板における周波数に対する透過
特性を示す線図である。
FIG. 4 is a diagram showing transmission characteristics with respect to frequency in a high-frequency measurement substrate.

【図5】高周波測定用基板における周波数に対する透過
特性を示す線図である。
FIG. 5 is a diagram showing transmission characteristics with respect to frequency in a high-frequency measurement substrate.

【図6】高周波測定用基板における周波数に対する透過
特性を示す線図である。
FIG. 6 is a diagram showing transmission characteristics with respect to frequency in a high-frequency measurement substrate.

【図7】比較例としての従来の高周波測定用基板の例を
示す平面図である。
FIG. 7 is a plan view showing an example of a conventional high-frequency measurement substrate as a comparative example.

【図8】高周波測定用基板における周波数に対する透過
特性を示す線図である。
FIG. 8 is a diagram showing transmission characteristics with respect to frequency in a high-frequency measurement substrate.

【図9】従来の高周波測定用基板の例を示す平面図であ
る。
FIG. 9 is a plan view showing an example of a conventional high-frequency measurement substrate.

【図10】高周波測定用基板における周波数に対する反
射特性を示す線図である。
FIG. 10 is a diagram showing a reflection characteristic with respect to frequency in a high frequency measurement substrate.

【図11】高周波測定用基板における周波数に対する透
過特性を示す線図である。
FIG. 11 is a diagram showing transmission characteristics with respect to frequency in a high frequency measurement substrate.

【図12】従来の高周波測定用基板の例を示す平面図で
ある。
FIG. 12 is a plan view showing an example of a conventional high-frequency measurement substrate.

【図13】高周波測定用基板における周波数に対する透
過特性を示す線図である。
FIG. 13 is a diagram showing transmission characteristics with respect to frequency in a high-frequency measurement substrate.

【図14】従来の高周波測定用基板の例を示す平面図で
ある。
FIG. 14 is a plan view showing an example of a conventional high frequency measurement substrate.

【図15】ラジアルスタブの例を示す平面図である。FIG. 15 is a plan view showing an example of a radial stub.

【符号の説明】[Explanation of symbols]

31、41、51・・・・・・・・・・誘電体基板 32、42、52・・・・・・・・・・信号導体 34、34”、44、44”、54、54”・・・ラジアル形状導体
(外側ラジアル形状導体) 34’、44’、54’、・・・・・・・・ラジアル形状導体
(中央ラジアル形状導体) 35、35’、45、45’、55、55’・・・接続導体 36、46、56・・・・・・・・・・・・等価的接地導体
31, 41, 51 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Dielectric substrates 32, 42, 52 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Signal conductors 34, 34 ″, 44, 44 ″, 54, 54 ″ ・..Radial shaped conductors (outer radial shaped conductors) 34 ', 44', 54 ', ... Radial shaped conductors (center radial shaped conductors) 35, 35', 45, 45 ', 55, 55 '... Connection conductors 36, 46, 56 .................. Equivalent ground conductors

フロントページの続き (51)Int.Cl.7 識別記号 FI H01P 1/00 G01R 31/28 K 5/08 H01L 27/04 T (58)調査した分野(Int.Cl.7,DB名) G01R 31/28 G01R 1/06 G01R 31/26 H01L 21/822 H01L 27/04 H01P 1/00 H01P 5/08 Front page continuation (51) Int.Cl. 7 identification code FI H01P 1/00 G01R 31/28 K 5/08 H01L 27/04 T (58) Fields investigated (Int.Cl. 7 , DB name) G01R 31 / 28 G01R 1/06 G01R 31/26 H01L 21/822 H01L 27/04 H01P 1/00 H01P 5/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板の下面の略全面に接地導体が
形成され、上面にマイクロストリップ線路の信号導体と
該信号導体の先端近傍に設けた略ラジアルスタブ形状の
等価的接地導体とが形成されて成り、前記信号導体と等
価的接地導体とにそれぞれコプレーナ線路構造のウェハ
プローブの信号導体と接地導体とを電気的に接続させる
高周波測定用基板であって、前記等価的接地導体は、中
心を共有して略円弧状に配された、径方向の長さが異な
る複数のラジアル形状導体と、該複数のラジアル形状導
体間を電気的に接続する接続導体とから成ることを特徴
とする高周波測定用基板。
1. A ground conductor is formed on substantially the entire lower surface of a dielectric substrate, and a signal conductor of a microstrip line and a substantially radial stub-shaped equivalent ground conductor provided near the tip of the signal conductor are formed on the upper surface. A high-frequency measurement substrate for electrically connecting a signal conductor and a ground conductor of a wafer probe having a coplanar line structure to the signal conductor and the equivalent ground conductor, respectively, wherein the equivalent ground conductor is a center. A high-frequency wave characterized by comprising a plurality of radial-shaped conductors having different radial lengths and arranged in a substantially arcuate shape sharing the same, and a connecting conductor electrically connecting the plurality of radial-shaped conductors. Measurement substrate.
【請求項2】 前記接続導体の径方向の長さを、最も短
い径方向長さを有する前記ラジアル形状導体の前記径方
向長さの半分以下としたことを特徴とする請求項1記載
の高周波測定用基板。
2. The high frequency wave according to claim 1, wherein the radial length of the connection conductor is not more than half the radial length of the radial conductor having the shortest radial length. Measurement substrate.
【請求項3】 前記複数のラジアル形状導体は、中央に
位置する中央ラジアル形状導体と、該中央ラジアル形状
導体の両側に配され、中心角が前記中央ラジアル形状導
体の中心角の略2分の1である外側ラジアル形状導体と
から成ることを特徴とする請求項1または請求項2記載
の高周波測定用基板。
3. The plurality of radial-shaped conductors are disposed at the center, and the central radial-shaped conductor is disposed on both sides of the central radial-shaped conductor, and the central angle is about half the central angle of the central radial-shaped conductor. 3. The substrate for high frequency measurement according to claim 1 or 2, wherein the outer radial conductor is 1.
JP25317397A 1997-09-18 1997-09-18 High frequency measurement board Expired - Lifetime JP3526517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25317397A JP3526517B2 (en) 1997-09-18 1997-09-18 High frequency measurement board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25317397A JP3526517B2 (en) 1997-09-18 1997-09-18 High frequency measurement board

Publications (2)

Publication Number Publication Date
JPH1194911A JPH1194911A (en) 1999-04-09
JP3526517B2 true JP3526517B2 (en) 2004-05-17

Family

ID=17247561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25317397A Expired - Lifetime JP3526517B2 (en) 1997-09-18 1997-09-18 High frequency measurement board

Country Status (1)

Country Link
JP (1) JP3526517B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507797Y2 (en) 1990-10-19 1996-08-21 日本無線株式会社 Microstrip line circuit measurement jig

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507797Y2 (en) 1990-10-19 1996-08-21 日本無線株式会社 Microstrip line circuit measurement jig

Also Published As

Publication number Publication date
JPH1194911A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
Weller et al. High performance microshield line components
Gauthier et al. W-Band finite ground coplanar waveguide (FGGPW) to microstrip line transition
CN110034361A (en) It is a kind of towards 5G communication miniature ultra wide band filtering function divide feeding network and its design method
JP3404238B2 (en) Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency
CN111880012B (en) Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate
US4795989A (en) MMW microstrip coupler having movable test probe
US6172497B1 (en) High-frequency wave measurement substrate
JP4221884B2 (en) Millimeter-wave high-frequency equipment
JP3526517B2 (en) High frequency measurement board
JP3659461B2 (en) High frequency measurement board
JP3492883B2 (en) High frequency measurement board
JP4769399B2 (en) Sensor for measuring electromagnetic power and device using the same
TWI747460B (en) Power divider
CN114518476A (en) Signal measurement circuit device
US4799032A (en) Directional coupler
JP5566747B2 (en) Millimeter wave transmission line, circuit board using the same, and circuit board measurement method
JPH1114558A (en) How to measure surface resistance
JPS6176964A (en) Measuring method of high frequency dielectric characteristic of thin film insulator
JP2507797Y2 (en) Microstrip line circuit measurement jig
Chen et al. A novel miniaturized wide-band Wilkinson power divider employing two-dimensional transmission line
JP2002290115A (en) Input/output end part connection structure for millimeter wave transmission line
JP2002324826A (en) High frequency probing pad
CN118483485A (en) An ultra-wideband parallel plate waveguide test structure and design method
Jurkus et al. National standards and standard measurement systems for impedance and reflection coefficient
JP2003023010A (en) High frequency probing pad

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term