[go: up one dir, main page]

JP3518543B2 - Manufacturing method of secondary battery - Google Patents

Manufacturing method of secondary battery

Info

Publication number
JP3518543B2
JP3518543B2 JP2003004815A JP2003004815A JP3518543B2 JP 3518543 B2 JP3518543 B2 JP 3518543B2 JP 2003004815 A JP2003004815 A JP 2003004815A JP 2003004815 A JP2003004815 A JP 2003004815A JP 3518543 B2 JP3518543 B2 JP 3518543B2
Authority
JP
Japan
Prior art keywords
component
battery
carbonaceous material
negative electrode
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004815A
Other languages
Japanese (ja)
Other versions
JP2003249220A (en
Inventor
和哉 栗山
洋悦 吉久
仁史 岡西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP2003004815A priority Critical patent/JP3518543B2/en
Publication of JP2003249220A publication Critical patent/JP2003249220A/en
Application granted granted Critical
Publication of JP3518543B2 publication Critical patent/JP3518543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶媒系の電解
質を用いた二次電池、特にリチウム二次電池において、
その負極を改良したものに関する。
TECHNICAL FIELD The present invention relates to a secondary battery using a non-aqueous solvent-based electrolyte, particularly a lithium secondary battery,
It relates to an improved version of the negative electrode.

【0002】[0002]

【従来の技術】電子機器の小型化に伴い、電池の高密度
化が要求されており、この要求に応えるべく、種々の新
しい二次電池の提案がなされている。その一つに、リチ
ウムを用いた非水電解質電池があり、実用化に向けての
研究が行なわれている。
2. Description of the Related Art With the miniaturization of electronic devices, there has been a demand for higher density batteries, and various new secondary batteries have been proposed to meet this demand. One of them is a non-aqueous electrolyte battery using lithium, which is being researched for practical use.

【0003】しかしながら、非水電解質電池の実用化に
際しては、負極に金属リチウムを用いることに伴う次の
ような欠点が特に問題となってきている。即ち、(1)
サイクル寿命が短いこと、(2)急速充電性が劣るこ
と、等である。これらは、いずれも、金属リチウム自身
に起因するものであり、充放電の繰り返しに伴うリチウ
ム負極の形態変化、デンドライトの形成、リチウムの不
働態化等が原因とされている。
However, when the non-aqueous electrolyte battery is put into practical use, the following drawbacks associated with the use of metallic lithium for the negative electrode have become particularly problematic. That is, (1)
The cycle life is short, and (2) rapid chargeability is inferior. All of these are caused by metallic lithium itself, and are considered to be caused by morphological change of the lithium negative electrode due to repeated charging and discharging, formation of dendrite, passivation of lithium, and the like.

【0004】上記問題を解決する一手法として、負極と
して、リチウムを単体で用いるのではなく炭素質材料に
ドープさせて用いることが提案されている。これは、リ
チウムの炭素層間化合物が電気化学的に容易に形成でき
ることを利用したものである。例えば、炭素質材料から
なる負極を用い、非水電解液中で充電を行なうと、電解
液中のリチウムは電気化学的に負極の炭素の層間にドー
プされ、放電時はリチウムが炭素層間から脱ドープされ
る。
As a method for solving the above problems, it has been proposed to use lithium as a negative electrode by doping a carbonaceous material instead of using lithium alone. This is because the carbon intercalation compound of lithium can be easily formed electrochemically. For example, when a negative electrode made of a carbonaceous material is used and charging is performed in a non-aqueous electrolyte, lithium in the electrolyte is electrochemically doped into the carbon layer of the negative electrode, and lithium is removed from the carbon layer during discharge. Be doped.

【0005】ところで、炭素質材料の単位重量当りの電
気量は、リチウムのドープ量によって決まる。従って、
電池の充放電容量を大きくするためには、炭素質材料へ
のリチウムのドープ量をできるだけ大きくすることが望
ましい。
The amount of electricity per unit weight of the carbonaceous material depends on the amount of lithium doped. Therefore,
In order to increase the charge / discharge capacity of the battery, it is desirable to increase the amount of lithium doped into the carbonaceous material as much as possible.

【0006】従来、この種の電池の負極に用いられてい
る炭素質材料としては、例えば、特許文献1に示される
ような、有機材料を炭素化して得られる炭素質材料が知
られている。しかしながら、これまで知られている炭素
質材料では、リチウムのドープ量が不充分であるため
に、理論値の半分程度の電気量しか示さないのが実状で
あった。
Conventionally, as a carbonaceous material used for the negative electrode of this type of battery, for example, a carbonaceous material obtained by carbonizing an organic material as shown in Patent Document 1 is known. However, the carbonaceous materials that have been known so far are in fact the fact that they show only about half the theoretical amount of electricity because the doping amount of lithium is insufficient.

【0007】また、例えば、コークス、炭化水素、又は
高分子材料を炭素化して得られた擬黒鉛構造を有する炭
素質材料であって、X線回折による格子面間隔(d00
2)が3.40Åより大きく、a軸方向の結晶子の大き
さ(La)及びc軸方向の結晶子の大きさ(Lc)が共
に200Å未満である材料を、負極に用い、これに、リ
チウムを吸蔵・放出させて負極を構成する方法が提案さ
れている。しかしながら、このような、ある程度の乱層
構造を有した擬黒鉛材料を、負極に用いた場合、次のよ
うな問題があった。即ち、(1)原料等に不純物として
含まれている鉄成分、カルシウム成分、アルミニウム成
分、マグネシウム成分、チタン成分等がリチウムと反応
するために、保存中の容量低下が大きい、(2)リチウ
ムの吸蔵・放出量が100〜150mAh/gと小さ
い。
Further, for example, a carbonaceous material having a pseudo-graphite structure obtained by carbonizing a coke, a hydrocarbon, or a polymer material, which has a lattice spacing (d00) by X-ray diffraction.
2) is larger than 3.40Å, and the size of the crystallite in the a-axis direction (La) and the size of the crystallite in the c-axis direction (Lc) are both less than 200Å are used for the negative electrode. A method of occluding and releasing lithium to form a negative electrode has been proposed. However, when the pseudo graphite material having such a disordered layer structure to some extent is used for the negative electrode, there are the following problems. That is, (1) the iron component, the calcium component, the aluminum component, the magnesium component, the titanium component, etc., which are contained as impurities in the raw material and the like react with lithium, so that the capacity is greatly reduced during storage. The amount of occlusion / release is small at 100 to 150 mAh / g.

【0008】このように、炭素質材料を用いた負極は、
本来期待されている性能が、実用的観点からは、未だに
実現されていないのが現状である。
Thus, the negative electrode using the carbonaceous material is
From the practical point of view, the originally expected performance has not yet been realized.

【0009】また、炭素質材料を用いた負極を備えた非
水電解質二次電池としては、特許文献2,3に記載のも
のが知られている。前者は、コークス等にリチウム等の
アルカリ金属をドープさせて構成された負極を備えたも
のであり、後者は、熱分解ポリマーであるポリアセンに
リチウム等のアルカリ金属をドープさせて構成された負
極を備えたものである。このような二次電池は、アルカ
リ金属イオンのドーピング現象を利用したものであり、
充放電を繰り返してもリチウム負極のようなデンドライ
トの生成はないので、充放電サイクル性能の優れた電池
となり得るものである。
Further, as non-aqueous electrolyte secondary batteries provided with a negative electrode using a carbonaceous material, those described in Patent Documents 2 and 3 are known. The former is provided with a negative electrode configured by doping coke or the like with an alkali metal such as lithium, and the latter is a negative electrode configured by doping polyacene, which is a thermal decomposition polymer, with an alkali metal such as lithium. Be prepared. Such a secondary battery utilizes a doping phenomenon of alkali metal ions,
Since the dendrite like the lithium negative electrode is not generated even when the charge and discharge are repeated, the battery can have excellent charge and discharge cycle performance.

【0010】しかしながら、このような二次電池では、
ドープしたリチウム等のアルカリ金属が充放電サイクル
の初期に消耗されるため、正極中のリチウムを過剰にし
て、消耗されるリチウムを補い得るようにしていた。こ
のため、正極の体積が増大し、単位体積当りの二次電池
のエネルギー密度が低下してしまうという問題があっ
た。また、金属リチウムを負極に用いた電池に比して、
放置中の自己放電が大きく、貯蔵による容量低下が大き
いという問題があった。
However, in such a secondary battery,
Since the doped alkali metal such as lithium is consumed at the beginning of the charge / discharge cycle, the lithium in the positive electrode is made excessive so that the consumed lithium can be supplemented. Therefore, there is a problem that the volume of the positive electrode increases and the energy density of the secondary battery per unit volume decreases. In addition, compared with a battery using metallic lithium for the negative electrode,
There was a problem that the self-discharge during standing was large and the capacity was greatly reduced due to storage.

【0011】[0011]

【特許文献1】特開昭62−268058号公報[Patent Document 1] Japanese Patent Laid-Open No. 62-268058

【特許文献2】特開昭62−90863号公報[Patent Document 2] JP-A-62-90863

【特許文献3】特開昭58−209864号公報[Patent Document 3] JP-A-58-209864

【特許文献4】特開平4−184862号公報[Patent Document 4] Japanese Patent Laid-Open No. 4-184862

【特許文献5】特開平4−206259号公報[Patent Document 5] Japanese Patent Laid-Open No. 4-206259

【0012】[0012]

【発明が解決しようとする課題】本発明は、サイクル特
性、自己放電特性に優れ、エネルギー密度が高い二次電
池を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a secondary battery having excellent cycle characteristics and self-discharge characteristics and high energy density.

【0013】[0013]

【課題を解決するための手段】本発明は、リチウムを吸
蔵・放出する負極用炭素質材料を用いた二次電池を製造
する方法において、上記負極用炭素質材料を製造する工
程が、不純物である、鉄成分、カルシウム成分、アルミ
ニウム成分、マグネシウム成分、及びチタン成分の内の
少なくとも1つを1重量%を越えて含有している、炭素
質材料から、上記各成分のいずれもが1重量%以下に制
御された上記負極用炭素質材料を得るよう処理するもの
であることを特徴とするものである。上記処理として
は、酸処理を行うことができる。不純物である各成分と
しては、例えば、Fe、CaO、Al、M
gO、TiOなどがある。
The present invention is designed to absorb lithium.
Manufactures secondary batteries using carbonaceous materials for storage and release
The method for producing a carbonaceous material for a negative electrode according to
The impurities are iron, calcium, and aluminum.
Of the titanium, magnesium, and titanium components
Carbon containing at least 1 in excess of 1% by weight
Each of the above components is controlled to 1% by weight or less from quality materials.
Controlled to obtain the above-mentioned carbonaceous material for negative electrode
It is characterized by being. As the above process
Can be subjected to acid treatment. Examples of each component that is an impurity include Fe 2 O 3 , CaO, Al 2 O 3 , and M.
gO, TiO 2 and the like.

【0014】不純物である鉄成分、カルシウム成分、ア
ルミニウム成分、マグネシウム成分、及びチタン成分
は、吸蔵・放出されるリチウムと反応するため、これら
の不純物を有する炭素質材料を負極に用いると、保存中
に電池の自己放電が生じる。本発明では、これらの不純
物濃度を低くしているので、自己放電が抑制され、電池
の保存特性が向上する。特に、不純物濃度をいずれも1
重量%以下に制御しているので、自己放電の抑制効果は
大きい。
Impurities such as iron component, calcium component, aluminum component, magnesium component, and titanium component react with lithium that is occluded / released. Therefore, if a carbonaceous material containing these impurities is used for the negative electrode, it will be stored. Self-discharge of the battery occurs. In the present invention, since the concentration of these impurities is low, self-discharge is suppressed and the storage characteristics of the battery are improved. Especially, the impurity concentration is 1
Since the content is controlled to be less than or equal to weight%, the effect of suppressing self-discharge is great.

【0015】本発明においては、上記炭素質材料とし
て、X線回折による格子面間隔(d002)が3.40
Å以下であり、且つa軸方向の結晶子の大きさ(La)
及びc軸方向の結晶子の大きさ(Lc)が共に200Å
以上であるものを用いるのが好ましい。(d002)が
3.40Åより大きく、(La)及び(Lc)が共に2
00Åより小さいと、リチウムの吸蔵・放出量は100
〜150mAh/gと小さくなり、高エネルギー密度化
が図れない。しかし、(d002)が3.40Å以下で
あり、(La)及び(Lc)が共に200Å以上である
と、リチウムの吸蔵・放出量は200mAh/g以上と
なり、高エネルギー密度化が図れることとなる。このよ
うな炭素質材料の例としては、特に限定するものではな
いが、例えば、黒鉛、石炭又は石油などのピッチを
原料とした繊維、メソカーボンマイクロビーズなどに
熱処理を施して黒鉛化したもの、などが挙げられる。
In the present invention, the carbonaceous material has a lattice spacing (d002) of 3.40 by X-ray diffraction.
Å or less, and the size of the crystallite in the a-axis direction (La)
And the crystallite size (Lc) in the c-axis direction is both 200Å
It is preferable to use the above. (D002) is larger than 3.40Å and both (La) and (Lc) are 2
If it is smaller than 00Å, the absorption / release amount of lithium is 100
It becomes as small as 150 mAh / g, and high energy density cannot be achieved. However, if (d002) is 3.40 Å or less and both (La) and (Lc) are 200 Å or more, the absorption / desorption amount of lithium is 200 mAh / g or more, and high energy density can be achieved. . Examples of such a carbonaceous material are not particularly limited, but for example, graphite, fibers made from pitch of coal or petroleum, and the like, graphitized by subjecting mesocarbon microbeads to heat treatment, And so on.

【0016】[0016]

【発明の実施の形態】(実施例1)図1は本実施例のリ
チウム二次電池を示す模式図である。図において、1は
正極、2は負極、3はセパレータ、5は正極集電体、6
は負極集電体、8は正極外装体、9は負極外装体、10
は絶縁パッキングである。正極1は、活物質であるLi
CoOと、導電剤であるカーボンブラックと、結着剤
であるフッ素系樹脂とを混合してなるものであり、アル
ミニウムネットからなる正極集電体5に圧着されてい
る。負極2は、炭素質材料の粉末と、結着剤であるポリ
フッ化ビニリデンとを混合してなるものであり、ニッケ
ルネットからなる負極集電体6に圧着されている。セパ
レータ3は、ポリプロピレンの微孔膜でできている。電
解液は、エチレンカーボネートとジエチルカーボネート
との混合溶媒にLiPFを溶解してなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 is a schematic view showing a lithium secondary battery of this embodiment. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 5 is a positive electrode current collector, and 6
Is a negative electrode current collector, 8 is a positive electrode outer casing, 9 is a negative electrode outer casing, 10
Is an insulating packing. The positive electrode 1 is Li which is an active material.
It is made by mixing CoO 2 , carbon black which is a conductive agent, and fluororesin which is a binder, and is pressure-bonded to the positive electrode current collector 5 made of an aluminum net. The negative electrode 2 is formed by mixing powder of carbonaceous material and polyvinylidene fluoride as a binder, and is pressure-bonded to the negative electrode current collector 6 made of nickel net. The separator 3 is made of a polypropylene microporous membrane. The electrolytic solution is prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate.

【0017】負極2に用いる炭素質材料は、天然黒鉛を
平均粒径10μmに粉砕した後、酸処理したものであ
る。この炭素質材料中の不純物である鉄成分、カルシウ
ム成分、アルミニウム成分、マグネシウム成分、及びチ
タン成分はそれぞれ0.5、0.3、0.3、0.2、
及び0.2重量%であった。また、この炭素質材料をX
線回折法により分析したところ、格子面間隔(d00
2)が3.35Å、a軸方向の結晶子の大きさ(La)
及びc軸方向の結晶子の大きさ(Lc)が共に1000
Å以上であった。本実施例の電池を電池C1とする。
The carbonaceous material used for the negative electrode 2 is natural graphite crushed to an average particle size of 10 μm and then acid-treated. The iron component, calcium component, aluminum component, magnesium component and titanium component which are impurities in this carbonaceous material are 0.5, 0.3, 0.3 and 0.2, respectively.
And 0.2% by weight. In addition, this carbonaceous material
When analyzed by the line diffraction method, the lattice spacing (d00
2) is 3.35Å, the crystallite size in the a-axis direction (La)
And the crystallite size (Lc) in the c-axis direction are both 1000
It was more than Å. The battery of this example is referred to as battery C1.

【0018】(比較例1〜6)負極2に用いる炭素質材
料を異なるものとした以外は、実施例1と同様に行なっ
て、比較例1〜6の電池Z1〜Z6を作製した。
Comparative Examples 1 to 6 Batteries Z1 to Z6 of Comparative Examples 1 to 6 were produced in the same manner as in Example 1 except that the carbonaceous material used for the negative electrode 2 was different.

【0019】即ち、各電池Z1〜Z6の負極2の炭素質
材料としては、天然黒鉛を平均粒径10μmに粉砕した
ものを、実施例1のような酸処理を行なうことなく、そ
のまま用いた。これらの炭素質材料をX線回折法により
分析したところ、格子面間隔(d002)が3.35
Å、a軸方向の結晶子の大きさ(La)及びc軸方向の
結晶子の大きさ(Lc)が共に1000Å以上であっ
た。なお、炭素質材料中の不純物である鉄成分、カルシ
ウム成分、アルミニウム成分、マグネシウム成分、及び
チタン成分は、表1に示すように、各電池Z1〜Z6毎
に異なっている。即ち、電池Z1〜Z5では、不純物で
ある5成分の内、1成分のみが1重量%を越えて含まれ
ており、電池Z6では、5成分全てが1重量%を越えて
含まれている。
That is, as the carbonaceous material of the negative electrode 2 of each of the batteries Z1 to Z6, natural graphite crushed to an average particle size of 10 μm was used as it was without the acid treatment as in Example 1. When these carbonaceous materials were analyzed by X-ray diffraction, the lattice spacing (d002) was 3.35.
Å, the crystallite size in the a-axis direction (La) and the crystallite size in the c-axis direction (Lc) were both 1000 Å or more. As shown in Table 1, the iron component, calcium component, aluminum component, magnesium component, and titanium component that are impurities in the carbonaceous material are different for each battery Z1 to Z6. That is, in the batteries Z1 to Z5, only one component out of the five components as impurities was contained in an amount exceeding 1% by weight, and in the battery Z6, all five components were contained in an amount exceeding 1% by weight.

【0020】[0020]

【表1】 [Table 1]

【0021】こうして得られた実施例1の電池C1及び
比較例1〜6の電池Z1〜Z6の初期容量を求めて比較
した。試験条件は、次の通りとした。即ち、充電は定電
流定電圧充電であり、定電流の電流密度は1.0mA/
cm、終止電圧は4.2V、定電圧充電電圧は4.2
V、充電時間は5時間とし、放電は定電流放電であり、
電流密度は1.0mA/cm、終止電圧は3.0Vと
した。電池C1及び電池Z1〜Z6の初期容量は、いず
れも18mAhであった。
The initial capacities of the battery C1 of Example 1 and the batteries Z1 to Z6 of Comparative Examples 1 to 6 thus obtained were determined and compared. The test conditions were as follows. That is, the charging is constant current constant voltage charging, and the constant current has a current density of 1.0 mA /
cm 2 , final voltage is 4.2 V, constant voltage charging voltage is 4.2
V, charging time is 5 hours, discharge is constant current discharge,
The current density was 1.0 mA / cm 2 and the final voltage was 3.0V. The initial capacities of the battery C1 and the batteries Z1 to Z6 were all 18 mAh.

【0022】また、電池C1及び電池Z1〜Z6の保存
特性を求めて比較した。試験条件は、上記初期容量を求
める場合の試験条件と同じ条件の充放電を10回繰り返
した後、同じ条件で充電し、60℃で保存して、電池の
放電容量を測定することとした。この結果、30日経過
後の容量残存率は、電池C1では95%であったのに対
し、電池Z1、Z2、Z3、Z4、Z5、及びZ6では
それぞれ65、63、61、63、60、及び50%で
あった。このように、不純物である鉄成分、カルシウム
成分、アルミニウム成分、マグネシウム成分、及びチタ
ン成分のいずれもが、1重量%以下に抑制された実施例
1の電池C1は、保存特性が優れている。
Further, the storage characteristics of the battery C1 and the batteries Z1 to Z6 were determined and compared. The test conditions were to repeat charging and discharging under the same conditions as the test conditions for obtaining the initial capacity 10 times, charge under the same conditions, store at 60 ° C., and measure the discharge capacity of the battery. As a result, the capacity remaining rate after 30 days was 95% in the battery C1, whereas it was 65, 63, 61, 63, 60, and in the batteries Z1, Z2, Z3, Z4, Z5, and Z6, respectively. It was 50%. As described above, the battery C1 of Example 1 in which all of the iron component, the calcium component, the aluminum component, the magnesium component, and the titanium component, which are impurities, were suppressed to 1% by weight or less has excellent storage characteristics.

【0023】[不純物の含有量の検討]負極2に用いる
炭素質材料中の不純物である鉄成分、カルシウム成分、
アルミニウム成分、マグネシウム成分、及びチタン成分
の濃度と電池の自己放電率との関係を調べた。
[Study of Impurity Content] Iron component, calcium component, which are impurities in the carbonaceous material used for the negative electrode 2,
The relationship between the concentrations of the aluminum component, the magnesium component, and the titanium component and the self-discharge rate of the battery was investigated.

【0024】図2は、炭素質材料中のカルシウム成分、
アルミニウム成分、マグネシウム成分、及びチタン成分
の濃度をそれぞれ0.2、0.2、0.1、及び0.1
重量%とした場合の、鉄成分の濃度と電池の自己放電率
との関係を示し、図3は、炭素質材料中の鉄成分、アル
ミニウム成分、マグネシウム成分、及びチタン成分の濃
度をそれぞれ0.3、0.2、0.1、及び0.1重量
%とした場合の、カルシウム成分の濃度と電池の自己放
電率との関係を示し、図4は、炭素質材料中の鉄成分、
カルシウム成分、マグネシウム成分、及びチタン成分の
濃度をそれぞれ0.3、0.2、0.1、及び0.1重
量%とした場合の、アルミニウム成分の濃度と電池の自
己放電率との関係を示し、図5は、炭素質材料中の鉄成
分、カルシウム成分、アルミニウム成分、及びチタン成
分の濃度をそれぞれ0.3、0.2、0.2、及び0.
1重量%とした場合の、マグネシウム成分の濃度と電池
の自己放電率との関係を示し、図6は、炭素質材料中の
鉄成分、カルシウム成分、アルミニウム成分、及びマグ
ネシウム成分の濃度をそれぞれ0.3、0.2、0.
2、及び0.1重量%とした場合の、チタン成分の濃度
と電池の自己放電率との関係を示している。これらの図
からわかるように、一つの不純物の濃度が1重量%を越
えると、自己放電率は極端に大きくなっている。従っ
て、不純物である鉄成分、カルシウム成分、アルミニウ
ム成分、マグネシウム成分、及びチタン成分の濃度をい
ずれも1重量%以下とするのが、電池の保存特性上好ま
しい。
FIG. 2 shows the calcium component in the carbonaceous material,
The concentrations of aluminum component, magnesium component, and titanium component are 0.2, 0.2, 0.1, and 0.1, respectively.
FIG. 3 shows the relationship between the iron component concentration and the self-discharge rate of the battery in the case of weight%. FIG. 3 shows the concentrations of the iron component, aluminum component, magnesium component, and titanium component in the carbonaceous material, respectively. Fig. 4 shows the relationship between the concentration of the calcium component and the self-discharge rate of the battery when 3, 0.2, 0.1, and 0.1% by weight, and Fig. 4 shows the iron component in the carbonaceous material,
The relationship between the concentration of the aluminum component and the self-discharge rate of the battery when the concentrations of the calcium component, the magnesium component, and the titanium component are 0.3, 0.2, 0.1, and 0.1% by weight, respectively. 5 shows the concentrations of iron component, calcium component, aluminum component, and titanium component in the carbonaceous material of 0.3, 0.2, 0.2, and 0.
FIG. 6 shows the relationship between the concentration of the magnesium component and the self-discharge rate of the battery in the case of 1% by weight. FIG. 6 shows that the concentrations of the iron component, the calcium component, the aluminum component, and the magnesium component in the carbonaceous material are 0. .3, 0.2, 0.
It shows the relationship between the concentration of titanium component and the self-discharge rate of the battery in the case of 2 and 0.1% by weight. As can be seen from these figures, when the concentration of one impurity exceeds 1% by weight, the self-discharge rate becomes extremely large. Therefore, it is preferable that the concentration of each of the iron component, the calcium component, the aluminum component, the magnesium component, and the titanium component, which are impurities, be 1% by weight or less in view of the storage characteristics of the battery.

【0025】(実施例2)負極2に用いる炭素質材料を
異なるものとした以外は、実施例1と同様に行なって、
本実施例の電池C2を作製した。
Example 2 Example 2 was repeated except that the carbonaceous material used for the negative electrode 2 was changed.
A battery C2 of this example was manufactured.

【0026】即ち、負極2に用いる炭素質材料は、異方
性の石炭ピッチをアルゴン雰囲気中にて2500℃の温
度で焼成し、平均粒径10μmに粉砕した後、酸処理し
たものである。この炭素質材料中の不純物である鉄成
分、カルシウム成分、アルミニウム成分、マグネシウム
成分、及びチタン成分はそれぞれ0.3、0.2、0.
2、0.1、及び0.1重量%であった。また、この炭
素質材料をX線回折法により分析したところ、格子面間
隔(d002)が3.38Å、a軸方向の結晶子の大き
さ(La)が250Å、c軸方向の結晶子の大きさ(L
c)が200Åであった。
That is, the carbonaceous material used for the negative electrode 2 is obtained by firing anisotropic coal pitch in an argon atmosphere at a temperature of 2500 ° C., pulverizing it to an average particle size of 10 μm, and then treating it with an acid. The iron component, calcium component, aluminum component, magnesium component, and titanium component which are impurities in this carbonaceous material are 0.3, 0.2, 0.
2, 0.1, and 0.1% by weight. In addition, when this carbonaceous material was analyzed by an X-ray diffraction method, the lattice spacing (d002) was 3.38Å, the crystallite size in the a-axis direction (La) was 250Å, and the crystallite size in the c-axis direction. Sa (L
c) was 200Å.

【0027】(比較例7〜12)負極2に用いる炭素質
材料を異なるものとした以外は、実施例2と同様に行な
って、比較例7〜12の電池Z7〜Z12を作製した。
Comparative Examples 7 to 12 Batteries Z7 to Z12 of Comparative Examples 7 to 12 were produced in the same manner as in Example 2 except that the carbonaceous material used for the negative electrode 2 was different.

【0028】即ち、各電池Z7〜Z12の負極2の炭素
質材料としては、異方性の石炭ピッチをアルゴン雰囲気
中にて2500℃の温度で焼成し、平均粒径10μmに
粉砕したものを、実施例2のような酸処理を行なうこと
なく、そのまま用いた。これらの炭素質材料をX線回折
法により分析したところ、格子面間隔(d002)が
3.38Å、a軸方向の結晶子の大きさ(La)が25
0Å、c軸方向の結晶子の大きさ(Lc)が200Å以
上であった。なお、炭素質材料中の不純物である鉄成
分、カルシウム成分、アルミニウム成分、マグネシウム
成分、及びチタン成分は、表2に示すように、各電池Z
7〜Z12毎に異なっている。即ち、電池Z7〜Z11
では、不純物である5成分の内、1成分のみが1重量%
を越えて含まれており、電池Z12では、5成分全てが
1重量%を越えて含まれている。
That is, as the carbonaceous material for the negative electrode 2 of each of the batteries Z7 to Z12, anisotropic coal pitch was fired in an argon atmosphere at a temperature of 2500 ° C. and crushed to an average particle size of 10 μm. It was used as it was without performing the acid treatment as in Example 2. Analysis of these carbonaceous materials by an X-ray diffraction method revealed that the lattice spacing (d002) was 3.38Å and the crystallite size (La) in the a-axis direction was 25.
0Å, the crystallite size (Lc) in the c-axis direction was 200Å or more. The iron component, the calcium component, the aluminum component, the magnesium component, and the titanium component, which are impurities in the carbonaceous material, are shown in Table 2 for each battery Z.
7 to Z12 are different. That is, batteries Z7 to Z11
Then, out of the five impurities, only one component is 1% by weight.
In battery Z12, all five components are contained in an amount of more than 1% by weight.

【0029】[0029]

【表2】 [Table 2]

【0030】こうして得られた実施例2の電池C2及び
比較例7〜12の電池Z7〜Z12の初期容量を求めて
比較した。試験条件は、電池C1及び電池Z1〜Z6の
場合と同じである。電池C2及び電池Z7〜Z12の初
期容量は、いずれも16mAhであった。
The initial capacities of the battery C2 of Example 2 and the batteries Z7 to Z12 of Comparative Examples 7 to 12 thus obtained were determined and compared. The test conditions are the same as those for the battery C1 and the batteries Z1 to Z6. The initial capacities of the battery C2 and the batteries Z7 to Z12 were all 16 mAh.

【0031】また、電池C2及び電池Z7〜Z12の保
存特性を求めて比較した。試験条件は、電池C1及び電
池Z1〜Z6の場合と同じである。この結果、30日経
過後の容量保存率は、電池C2では95%であったのに
対し、電池Z7、Z8、Z9、Z10、Z11、及びZ
12ではそれぞれ68、65、61、64、60、及び
51%であった。このように、不純物である鉄成分、カ
ルシウム成分、アルミニウム成分、マグネシウム成分、
及びチタン成分のいずれもが、1重量%以下に抑制され
た実施例2の電池C2は、保存特性が優れている。
Further, the storage characteristics of the battery C2 and the batteries Z7 to Z12 were determined and compared. The test conditions are the same as those for the battery C1 and the batteries Z1 to Z6. As a result, the capacity retention rate after 30 days was 95% for the battery C2, whereas the capacity storage ratio was 30% for the batteries Z7, Z8, Z9, Z10, Z11, and Z.
In No. 12, it was 68, 65, 61, 64, 60, and 51%, respectively. In this way, impurities iron component, calcium component, aluminum component, magnesium component,
The battery C2 of Example 2 in which both the titanium component and the titanium component were suppressed to 1% by weight or less has excellent storage characteristics.

【0032】(実施例3)負極2に用いる炭素質材料を
異なるものとした以外は、実施例1と同様に行なって、
本実施例の電池C3を作製した。
(Example 3) The same procedure as in Example 1 was repeated except that the carbonaceous material used for the negative electrode 2 was different.
A battery C3 of this example was manufactured.

【0033】即ち、負極2に用いる炭素質材料は、異方
性の石炭ピッチをアルゴン雰囲気中にて1400℃の温
度で焼成し、平均粒径10μmに粉砕した後、酸処理し
たものである。この炭素質材料中の不純物である鉄成
分、カルシウム成分、アルミニウム成分、マグネシウム
成分、及びチタン成分はそれぞれ0.3、0.2、0.
2、0.1、及び0.1重量%であった。また、この炭
素質材料をX線回折法により分析したところ、格子面間
隔(d002)が3.45Å、a軸方向の結晶子の大き
さ(La)が34Å、c軸方向の結晶子の大きさ(L
c)が20Åであった。
That is, the carbonaceous material used for the negative electrode 2 is obtained by firing anisotropic coal pitch in an argon atmosphere at a temperature of 1400 ° C., crushing it to an average particle size of 10 μm, and then treating it with an acid. The iron component, calcium component, aluminum component, magnesium component, and titanium component which are impurities in this carbonaceous material are 0.3, 0.2, 0.
2, 0.1, and 0.1% by weight. Moreover, when this carbonaceous material was analyzed by an X-ray diffraction method, the lattice spacing (d002) was 3.45Å, the crystallite size in the a-axis direction (La) was 34Å, and the crystallite size in the c-axis direction. Sa (L
c) was 20Å.

【0034】(比較例13〜18)負極2に用いる炭素
質材料を異なるものとした以外は、実施例1と同様に行
なって、比較例13〜18の電池Z13〜Z18を作製
した。
(Comparative Examples 13 to 18) Batteries Z13 to Z18 of Comparative Examples 13 to 18 were produced in the same manner as in Example 1 except that the carbonaceous material used for the negative electrode 2 was different.

【0035】即ち、各電池Z13〜Z18の負極2の炭
素質材料としては、異方性の石炭ピッチをアルゴン雰囲
気中にて1400℃の温度で焼成し、平均粒径10μm
に粉砕したものを、実施例2のような酸処理を行なうこ
となく、そのまま用いた。これらの炭素質材料をX線回
折法により分析したところ、格子面間隔(d002)が
3.45Å、a軸方向の結晶子の大きさ(La)が34
Å、c軸方向の結晶子の大きさ(Lc)が20Åであっ
た。なお、炭素質材料中の不純物である鉄成分、カルシ
ウム成分、アルミニウム成分、マグネシウム成分、及び
チタン成分は、表3に示すように、各電池Z13〜Z1
8毎に異なっている。即ち、電池Z13〜Z17では、
不純物である5成分の内、1成分のみが1重量%を越え
て含まれており、電池Z18では、5成分全てが1重量
%を越えて含まれている。
That is, as the carbonaceous material of the negative electrode 2 of each of the batteries Z13 to Z18, anisotropic coal pitch was fired at a temperature of 1400 ° C. in an argon atmosphere, and the average particle diameter was 10 μm.
The pulverized product was used as it was without the acid treatment as in Example 2. When these carbonaceous materials were analyzed by an X-ray diffraction method, the lattice spacing (d002) was 3.45Å and the crystallite size (La) in the a-axis direction was 34.
Å, the crystallite size (Lc) in the c-axis direction was 20Å. The iron component, the calcium component, the aluminum component, the magnesium component, and the titanium component which are impurities in the carbonaceous material, as shown in Table 3, are used in the batteries Z13 to Z1.
Every 8 is different. That is, in the batteries Z13 to Z17,
Of the five components that are impurities, only one component is contained in excess of 1% by weight, and battery Z18 contains all five components in excess of 1% by weight.

【0036】[0036]

【表3】 [Table 3]

【0037】こうして得られた実施例3の電池C3及び
比較例13〜18の電池Z13〜Z18の初期容量を求
めて、実施例2の電池C2と比較した。試験条件は、電
池Z1〜Z6の場合と同じである。初期容量は、電池C
2では16mAhであったのに対し、電池C3及び電池
Z13〜Z18はいずれも10mAhであった。実施例
2の電池C2が容量面において優れていることがわか
る。
The initial capacities of the battery C3 of Example 3 and the batteries Z13 to Z18 of Comparative Examples 13 to 18 thus obtained were determined and compared with the battery C2 of Example 2. The test conditions are the same as those for batteries Z1 to Z6. Initial capacity is battery C
2 was 16 mAh, whereas all of the batteries C3 and Z13 to Z18 were 10 mAh. It can be seen that the battery C2 of Example 2 is excellent in capacity.

【0038】また、電池Z13〜Z18の保存特性を求
めて、実施例2の電池C2と比較した。試験条件は、電
池Z1〜Z6の場合と同じである。この結果、30日経
過後の容量保存率は、電池C2では95%であったのに
対し、電池Z13、Z14、Z15、Z16、Z17、
及びZ18ではそれぞれ68、65、61、64、6
0、及び51%であった。このように、不純物である鉄
成分、カルシウム成分、アルミニウム成分、マグネシウ
ム成分、及びチタン成分のいずれもが、1重量%以下に
抑制された実施例2の電池C2は、保存特性が優れてい
る。
The storage characteristics of the batteries Z13 to Z18 were determined and compared with the battery C2 of Example 2. The test conditions are the same as those for batteries Z1 to Z6. As a result, the capacity retention rate after 30 days was 95% for the battery C2, whereas the capacity storage ratio for the batteries Z13, Z14, Z15, Z16, Z17 was
And Z18 are 68, 65, 61, 64, 6 respectively.
0 and 51%. As described above, the battery C2 of Example 2 in which all of the iron, calcium, aluminum, magnesium, and titanium components as impurities were suppressed to 1% by weight or less has excellent storage characteristics.

【0039】以上のように、本発明の二次電池である実
施例1〜3の電池C1〜C3は、特に保存特性が優れた
ものであった。
As described above, the batteries C1 to C3 of Examples 1 to 3, which are the secondary batteries of the present invention, were particularly excellent in storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1〜3及び比較例1〜18の各二次電
池を示す模式図である。
FIG. 1 is a schematic view showing each secondary battery of Examples 1 to 3 and Comparative Examples 1 to 18.

【図2】 実施例1〜3に係る二次電池において、不純
物である鉄成分の濃度に対する自己放電率の変化を示す
図である。
FIG. 2 is a diagram showing changes in the self-discharge rate with respect to the concentration of an iron component that is an impurity in the secondary batteries according to Examples 1 to 3.

【図3】 実施例1〜3に係る二次電池において、不純
物であるカルシウム成分の濃度に対する自己放電率の変
化を示す図である。
FIG. 3 is a diagram showing changes in the self-discharge rate with respect to the concentration of a calcium component that is an impurity in the secondary batteries according to Examples 1 to 3.

【図4】 実施例1〜3に係る二次電池において、不純
物であるアルミニウム成分の濃度に対する自己放電率の
変化を示す図である。
FIG. 4 is a diagram showing changes in the self-discharge rate with respect to the concentration of an aluminum component which is an impurity in the secondary batteries according to Examples 1 to 3.

【図5】 実施例1〜3に係る二次電池において、不純
物であるマグネシウム成分の濃度に対する自己放電率の
変化を示す図である。
FIG. 5 is a diagram showing changes in the self-discharge rate with respect to the concentration of a magnesium component that is an impurity in the secondary batteries according to Examples 1 to 3.

【図6】 実施例1〜3に係る二次電池において、不純
物であるチタン成分の濃度に対する自己放電率の変化を
示す図である。
FIG. 6 is a diagram showing changes in the self-discharge rate with respect to the concentration of a titanium component that is an impurity in the secondary batteries according to Examples 1 to 3.

【符号の説明】[Explanation of symbols]

2 負極 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−206259(JP,A) 特開 平4−184862(JP,A) 特開 平4−322056(JP,A) 特開 平5−307956(JP,A) 特開 平6−290781(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 C01B 31/02 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-4-206259 (JP, A) JP-A-4-184862 (JP, A) JP-A-4-322056 (JP, A) JP-A-5- 307956 (JP, A) JP-A-6-290781 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40 C01B 31/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムを吸蔵・放出する負極用炭素質
材料を用いた二次電池を製造する方法において、 上記負極用炭素質材料を製造する工程が、不純物であ
る、鉄成分、カルシウム成分、アルミニウム成分、マグ
ネシウム成分、及びチタン成分の内の少なくとも1つを
1重量%を越えて含有している、炭素質材料から、上記
各成分のいずれもが1重量%以下に制御された上記負極
用炭素質材料を得るよう処理するものであることを特徴
とする二次電池の製造方法。
1. A carbonaceous material for negative electrode which absorbs and releases lithium.
In the method of manufacturing a secondary battery using a material, the step of manufacturing the carbonaceous material for a negative electrode is an impurity.
Iron component, calcium component, aluminum component, mug
At least one of a nesium component and a titanium component
From the carbonaceous material containing more than 1% by weight,
The above negative electrode in which each of the components is controlled to 1% by weight or less
Characterized by being treated to obtain a carbonaceous material for use
And a method of manufacturing a secondary battery.
【請求項2】 上記処理が酸処理である、請求項1記載
の二次電池の製造方法。
2. The method according to claim 1, wherein the treatment is acid treatment.
Manufacturing method of secondary battery.
JP2003004815A 1992-05-15 2003-01-10 Manufacturing method of secondary battery Expired - Fee Related JP3518543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004815A JP3518543B2 (en) 1992-05-15 2003-01-10 Manufacturing method of secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP14851892 1992-05-15
JP4-148518 1992-05-15
JP35837092 1992-12-24
JP4-358370 1992-12-24
JP2003004815A JP3518543B2 (en) 1992-05-15 2003-01-10 Manufacturing method of secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52005993A Division JP3413836B2 (en) 1992-05-15 1993-05-14 Rechargeable battery

Publications (2)

Publication Number Publication Date
JP2003249220A JP2003249220A (en) 2003-09-05
JP3518543B2 true JP3518543B2 (en) 2004-04-12

Family

ID=28678627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004815A Expired - Fee Related JP3518543B2 (en) 1992-05-15 2003-01-10 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP3518543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275302A1 (en) 2004-01-05 2007-11-29 Chiaki Sotowa Negative Electrode Material for Lithium Battery, and Lithium Battery

Also Published As

Publication number Publication date
JP2003249220A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP5082207B2 (en) Method for producing negative electrode material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3193342B2 (en) Non-aqueous electrolyte secondary battery
EP0573266A1 (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP3499584B2 (en) Lithium secondary battery
JPH087885A (en) Lithium secondary battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP3311104B2 (en) Lithium secondary battery
JP2015130324A (en) Nonaqueous electrolyte secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP7122612B2 (en) Non-aqueous electrolyte secondary battery
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
EP0593785B1 (en) Method of manufacture of a secondary cell
JPH0589879A (en) Lithium secondary battery
JP3406843B2 (en) Lithium secondary battery
JP3807854B2 (en) Electric double layer capacitor
JP3518543B2 (en) Manufacturing method of secondary battery
JPH11135124A (en) Negative electrode material of lithium series secondary battery and manufacture thereof
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JP3052565B2 (en) Non-aqueous electrolyte secondary battery
JP3064662B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees