JP3517737B2 - Ground fault directional relay for low voltage road - Google Patents
Ground fault directional relay for low voltage roadInfo
- Publication number
- JP3517737B2 JP3517737B2 JP2002013527A JP2002013527A JP3517737B2 JP 3517737 B2 JP3517737 B2 JP 3517737B2 JP 2002013527 A JP2002013527 A JP 2002013527A JP 2002013527 A JP2002013527 A JP 2002013527A JP 3517737 B2 JP3517737 B2 JP 3517737B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- low
- voltage
- ground
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 15
- 230000007935 neutral effect Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 3
- 238000007667 floating Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低圧側巻線が共通
接地された各高低圧変圧器の分岐低圧側電路を含む低圧
側電路のうちで、地絡した低圧側電路を判定する低圧電
路用地絡方向継電器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low piezoelectric path for determining a ground-faulted low voltage side electric path among low voltage side electric paths including branch low voltage side electric paths of high and low voltage transformers in which low voltage side windings are commonly grounded. For ground fault direction relay.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
ビルディングや工場などの自家用電気設備として、例え
ば高圧側が6.6kv、低圧側が200vの3相3線式
高低圧変圧器や、高圧側が6.6kv、低圧側が200
v−100vの単相3線式高低圧変圧器等が設置されて
いる。上記3相3線式高低圧変圧器や単相3線式高低圧
変圧器の場合、電気設備技術基準の解釈第24条によれ
ば、低圧側巻線の中性点もしくは低圧側巻線端子の一つ
にB種接地工事(所定の接地抵抗値以下で、通常、1需
要家に1極だけ設けられる共通の接地極工事)を施すこ
とが義務付けられている。図10は、3相3線式高低圧
変圧器Tr1の低圧側巻線端子の一つTEと、単相3線
式高低圧変圧器Tr2の低圧側巻線の中性点Nとが、通
常、1需要家に1極だけ設けられる共通のB種接地極E
Bに接続されていることを模式的に示した電気回路図で
ある。2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a private electric facility such as a building or a factory, for example, a high-voltage side is 6.6 kv, a low-voltage side is a 3-phase three-wire high / low voltage transformer of 200 v, a high-voltage side is 6.6 kv, and a low-voltage side is 200 v
A v-100v single-phase three-wire high / low voltage transformer or the like is installed. In the case of the above-mentioned three-phase three-wire type high / low voltage transformer or single-phase three-wire type high / low voltage transformer, according to Article 24 of the interpretation of the technical standard for electrical equipment, the neutral point of the low voltage side winding or the low voltage side winding terminal One of them is required to perform class B grounding work (a common grounding pole work which is less than a predetermined grounding resistance value, and usually one customer is provided with only one pole). In FIG. 10, one of the low-voltage side winding terminals TE of the three-phase three-wire type high / low voltage transformer Tr1 and the neutral point N of the low-voltage side winding of the single-phase three-wire type high / low voltage transformer Tr2 are normally Common B type grounding electrode E, which is provided only for one pole for one customer
It is the electric circuit diagram which showed typically being connected to B.
【0003】上記3相3線式高低圧変圧器Tr1の低圧
側電路(分岐低圧側電路を含む)や、単相3線式高低圧
変圧器Tr2の低圧側電路に用いられるケーブルは、最
近、長大になっており、更にコンデンサを構成素子とす
るラインフィルタ等を内蔵した電子機器が負荷として接
続されることが多い。そのため、一般に、低圧側電路の
見かけ上の対地静電容量(浮遊容量)C1やC2が大き
くなっている。Recently, the cables used for the low-voltage side electric line (including the branch low-voltage side electric line) of the three-phase three-wire type high-low voltage transformer Tr1 and the low-voltage side electric line of the single-phase three-wire type high-low voltage transformer Tr2 have recently been used. It has become long, and an electronic device incorporating a line filter or the like having a capacitor as a constituent element is often connected as a load. Therefore, in general, the apparent electrostatic capacitances (stray capacitances) C1 and C2 of the low-voltage side electric circuit are large.
【0004】上記のような低圧側電路において、図10
に示すように3相3線式高低圧変圧器Tr1の低圧側電
路のケーブルの1相が例えばD種接地極ED(通常、電
線管や制御盤、操作盤の筐体などが接地される)に接地
された電線管に地絡した場合、地絡点からの地絡電流は
破線で示すような経路1,2で流れる。このうち、経路
1に流れる電流は、地絡抵抗Rg、電線管に接続されて
いるD種接地線EDL、対地静電容量(浮遊容量)C
1、単相3線式高低圧変圧器Tr2の低圧側電路、B種
分岐接地線EBL1(B種接地母線EBL0から分岐さ
れている)、3相3線式高低圧変圧器Tr1の低圧側電
路で構成される閉回路に流れ、経路2に流れる電流は、
地絡抵抗Rg、電線管に接続されているD種接地線ED
L、対地静電容量(浮遊容量)C2、3相3線式高低圧
変圧器Tr1の低圧側電路のうちの地絡していない分岐
低圧側電路で構成された閉回路に流れる。そのため、地
絡とは直接的に関係の無い単相3線式高低圧変圧器Tr
2の低圧側電路の遮断器ELCB1や、3相3線式高低
圧変圧器Tr1の分岐低圧側電路の遮断器ELCB2を
不要に遮断動作させることがある。In the low voltage side electric circuit as described above, FIG.
As shown in, the one-phase cable of the low-voltage side electric path of the three-phase three-wire high / low voltage transformer Tr1 is, for example, a D-type ground electrode ED (usually the conduit, control panel, casing of the operation panel, etc. are grounded). When a ground fault occurs in a conduit that is grounded at, the ground fault current from the ground fault point flows through paths 1 and 2 as indicated by broken lines. Among these, the current flowing in the path 1 is the ground fault resistance Rg, the D-type ground line EDL connected to the conduit, and the electrostatic capacitance (stray capacitance) C to ground.
1. Single-phase three-wire high-low voltage transformer Tr2 low-voltage side electric circuit, B-type branch ground wire EBL1 (branched from class B ground bus EBL0), three-phase three-wire high-low voltage transformer Tr1 low-voltage side electric line The current flowing in the closed circuit composed of
Ground fault resistance Rg, D type ground wire ED connected to conduit
L, electrostatic capacitance (floating capacitance) C2 to ground, flows into a closed circuit constituted by a branch low-voltage side electric circuit which is not grounded among the low-voltage side electric circuits of the three-phase three-wire high / low voltage transformer Tr1. Therefore, the single-phase three-wire high / low voltage transformer Tr that is not directly related to the ground fault
In some cases, the circuit breaker ELCB1 of the low voltage side electric circuit 2 and the circuit breaker ELCB2 of the branch low voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr1 are unnecessarily operated.
【0005】このように地絡と直接的に関係の無い低圧
側電路の遮断器ELCB1、ELCB2の不要動作が起
きる原因として、3相3線式高低圧変圧器Tr1及び単
相3線式高低圧変圧器Tr2の共通接地極となるB種接
地極EBに各変圧器の低圧側巻線端子TEや低圧側巻線
の中性点Nが共通接続されていることや、前述のように
低圧側電路の対地静電容量(浮遊容量)C1,C2が大
きくなっていることなどが考えられる。As described above, the cause of the unnecessary operation of the circuit breakers ELCB1 and ELCB2 of the low-voltage side electric circuit, which are not directly related to the ground fault, is the three-phase three-wire high / low voltage transformer Tr1 and the single-phase three-wire high / low voltage. The low-voltage side winding terminal TE of each transformer and the neutral point N of the low-voltage side winding are commonly connected to the class B grounding electrode EB that is the common grounding electrode of the transformer Tr2, and as described above, It is conceivable that the electrostatic capacitances (floating capacitances) C1 and C2 to the ground of the electric path are large.
【0006】そこで本発明では、低圧側巻線が共通接地
された各高低圧変圧器の分岐低圧側電路を含むいずれか
の低圧側電路が地絡した場合、地絡した低圧側電路を確
実に判定することが可能な低圧電路用地絡方向継電器を
提供することを解決すべき課題とするものである。Therefore, in the present invention, when any of the low-voltage side electric lines including the branch low-voltage side electric line of each high-low voltage transformer in which the low-voltage side winding is commonly grounded is ground-faulted, the ground-faulted low-voltage side electric line is surely made. It is an object to be solved to provide a ground fault direction relay for a low piezoelectric road which can be determined.
【0007】[0007]
【課題を解決するための手段】上記課題は、特許請求の
範囲に記載した低圧電路用地絡方向継電器により解決す
ることができる。請求項1記載の低圧電路用地絡方向継
電器によれば、実効値・位相演算手段により接地極間電
圧及び零相電流の実効値と位相とが演算されると、この
接地極間電圧及び零相電流の実効値と位相とが所定時間
毎に記憶手段に記憶される。またベクトル演算手段は、
実効値・位相演算手段で演算された最新の接地極間電圧
の実効値と位相に基づく電圧ベクトルと記憶手段に記憶
されている接地極間電圧の実効値と位相に基づく電圧ベ
クトルとの電圧ベクトル差を演算するとともに、実効値
・位相演算手段で演算された最新の零相電流の実効値と
位相に基づく電流ベクトルと記憶手段に記憶されている
零相電流の実効値と位相に基づく電流ベクトルとの電流
ベクトル差を演算する。そして、地絡判定手段は、ベク
トル演算手段で演算された電流ベクトル差の実効値が所
定値を超えた場合、電圧ベクトル差の位相に対する電流
ベクトル差の位相差に基づいて当該低圧側電路が地絡し
ているか否かを判定する。これによって、当該低圧側電
路が地絡した場合、地絡している低圧側電路のみを確実
に判定することができる。The above-mentioned problems can be solved by the ground fault direction relay for a low piezoelectric path described in the claims. According to the ground fault direction relay for low-voltage road according to claim 1, when the effective value / phase calculating means calculates the effective value and the phase of the voltage between ground electrodes and the zero-phase current, the voltage between ground electrodes and the zero phase. The effective value and phase of the current are stored in the storage means at predetermined time intervals. The vector calculation means
A voltage vector based on the effective value and phase of the latest ground-to-ground voltage calculated by the effective value / phase calculation means and a voltage vector based on the effective value and phase of the ground-to-ground voltage stored in the storage means. A current vector based on the effective value and phase of the latest zero-phase current calculated by the effective value / phase calculation means as well as the difference, and a current vector based on the effective value and phase of the zero-phase current stored in the storage means. Calculate the current vector difference between and. Then, when the effective value of the current vector difference calculated by the vector calculating means exceeds the predetermined value, the ground fault determining means determines that the low voltage side electric circuit is grounded based on the phase difference of the current vector difference with respect to the phase of the voltage vector difference. It is determined whether there is a connection. Accordingly, when the low-voltage side electric path is ground-faulted, it is possible to reliably determine only the low-voltage side electric path that is grounded.
【0008】請求項2記載の低圧電路用地絡方向継電器
によれば、地絡判定手段は、高低圧変圧器の低圧側電路
が地絡していると判定した場合、当該低圧側電路の遮断
器を遮断動作させることができるため、地絡している低
圧側電路の遮断器のみが遮断動作され、地絡していない
低圧側電路の遮断器が誤作動することを防止することが
できる。According to the ground fault direction relay for a low-voltage circuit of the present invention, when the ground fault judging means judges that the low voltage side circuit of the high / low voltage transformer is grounded, the circuit breaker of the low voltage side circuit is broken. Therefore, it is possible to prevent the circuit breaker of the low-voltage side electric circuit that is ground-faulted from performing a breaking operation and the circuit breaker of the low-voltage side electric circuit that is not ground-faulted to malfunction.
【0009】[0009]
【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図1は、高圧側が6.6kv、低圧側が2
00vの3相3線式高低圧変圧器Tr1の低圧側巻線端
子の一つTE、及び、高圧側が6.6kv、低圧側が2
00v−100vの単相3線式高低圧変圧器Tr2の低
圧側巻線の中性点Nを所定接地点とし、この所定接地点
TE,NとB種接地極(共通接地極)EBとが各分岐接
地線EBL1,EBL2及び接地母線EBL0を介して
接続されていることを示した電気回路図である。尚、上
記高低圧変圧器Tr1,Tr2それぞれの低圧側電路の
電線や制御盤、操作盤等の低圧電路機器が地絡した場合
の地絡電流を流すためのD種接地極(低圧電路機器用接
地極)EDと電線管や制御盤、操作盤の筐体等の間に接
地線EDLが接続されている。上記D種接地極EDは、
低圧電路の使用電圧が300ボルトを超える場合はC種
接地極を用いる。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. In Figure 1, the high voltage side is 6.6kv and the low voltage side is 2
One of the low-voltage side winding terminals TE of the 00v three-phase three-wire high / low voltage transformer Tr1 and the high-voltage side 6.6 kv and the low-voltage side 2
The neutral point N of the low-voltage side winding of the 00v-100v single-phase three-wire high / low voltage transformer Tr2 is set as a predetermined ground point, and the predetermined ground points TE, N and the B-type ground electrode (common ground electrode) EB are connected to each other. It is an electric circuit diagram showing that it is connected via each branch ground line EBL1, EBL2 and ground bus EBL0. It should be noted that a D-type ground electrode (for low-voltage device) for flowing a ground-fault current when the low-voltage side electric lines of the high- and low-voltage transformers Tr1 and Tr2, low-voltage line devices such as control panel, operation panel, etc. are ground-faulted. A grounding wire EDL is connected between the grounding electrode ED and the casing of the conduit, control panel, operation panel, or the like. The D-type ground electrode ED is
If the working voltage of the low piezoelectric path exceeds 300 V, a Class C ground electrode is used.
【0010】図1に示すように、3相3線式高低圧変圧
器Tr1の低圧側電路の零相電流を検出するための電流
検出器ZCT1が設けられており、電流検出器ZCT1
の出力端子は、3相3線式高低圧変圧器Tr1の低圧側
電路で地絡が発生した場合、その地絡を判別したうえ、
当該低圧側電路に接続されている遮断器MCCB1を後
述のように遮断動作させる低圧電路用地絡方向継電器1
に接続されている。また、低圧電路用地絡方向継電器1
には、上述のB種接地極EBとD種接地極ED間の接地
抵抗を介した電圧を検出するための検出用配線V1L
1,V1L2が接続されている。As shown in FIG. 1, a current detector ZCT1 for detecting the zero-phase current in the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr1 is provided, and the current detector ZCT1 is provided.
When a ground fault occurs in the low-voltage side electric path of the three-phase three-wire high / low voltage transformer Tr1, the output terminal of discriminates the ground fault and
A ground fault direction relay 1 for a low-piezoelectric circuit that causes a circuit breaker MCCB1 connected to the low-voltage side electric circuit to perform an interruption operation as described below.
It is connected to the. Also, the ground fault direction relay for low-voltage road 1
Is a detection wiring V1L for detecting the voltage via the ground resistance between the above-mentioned type B grounding electrode EB and type D grounding electrode ED.
1, V1L2 are connected.
【0011】上記同様に、単相3線式高低圧変圧器Tr
2の低圧側電路の零相電流を検出するための電流検出器
ZCT2が設けられており、電流検出器ZCT2の出力
端子は、単相3線式高低圧変圧器Tr2の低圧側電路で
地絡が発生した場合、その地絡を判別したうえ、当該低
圧側電路に接続されている遮断器MCCB2を遮断動作
させる低圧電路用地絡方向継電器2に接続されている。
また、低圧電路用地絡方向継電器2には、前述のB種接
地極EBとD種接地極ED間の接地抵抗を介した電圧を
検出するための検出用配線V2L1,V2L2が接続さ
れている。尚、上記の低圧電路用地絡方向継電器1と低
圧電路用地絡方向継電器2は同様に構成されており、そ
の構成については後で詳細に説明する。Similarly to the above, the single-phase three-wire high / low voltage transformer Tr
A current detector ZCT2 for detecting the zero-phase current of the low-voltage side electric circuit of No. 2 is provided, and the output terminal of the current detector ZCT2 is a low-voltage side electric path of the single-phase three-wire high / low voltage transformer Tr2. In the case of occurrence of, the ground fault is discriminated, and the ground fault direction relay 2 for low-voltage path is connected to operate the circuit breaker MCCB2 connected to the low voltage side electric circuit.
Further, to the ground fault direction relay 2 for the low piezoelectric path, detection wirings V2L1 and V2L2 for detecting the voltage via the ground resistance between the above-mentioned B-type ground electrode EB and D-type ground electrode ED are connected. The low-voltage ground fault direction relay 1 and the low-voltage road ground fault direction relay 2 have the same configuration, and the configuration thereof will be described in detail later.
【0012】図1において、C1,C2は3相3線式高
低圧変圧器Tr1、単相3線式高低圧変圧器Tr2の各
低圧側電路と対地間の静電容量であり、RgはD種接地
極EDに対して例えば3相3線式高低圧変圧器Tr1の
低圧側電路が地絡した場合の地絡抵抗である。また、R
EはB種接地極(共通接地極)EBとD種接地極ED間
の接地抵抗である。In FIG. 1, C1 and C2 are electrostatic capacities between the low-voltage side electric paths of the three-phase three-wire type high / low voltage transformer Tr1 and the single-phase three-wire type high / low voltage transformer Tr2 and the ground, and Rg is D This is the ground fault resistance when the low-voltage side electric path of the three-phase three-wire high / low voltage transformer Tr1 is grounded to the seed ground electrode ED. Also, R
E is a ground resistance between the B type ground electrode (common ground electrode) EB and the D type ground electrode ED.
【0013】図1に示した電気回路において、例えば3
相3線式高低圧変圧器Tr1の低圧側電路のR相が地絡
した場合の低圧電路用地絡方向継電器1,2の動作原理
について説明する。鳳・テブナンの定理によれば、図1
に示すように3相3線式高低圧変圧器Tr1の低圧側電
路の1相、例えばR相が地絡点ESで地絡した場合、図
1の電気回路の各部の電流分布は、図2、図3の電気回
路の重ね合わせ(一般的に知られている重ね合わせの定
理に基づく)によって求めることができる。In the electric circuit shown in FIG. 1, for example, 3
The operation principle of the low piezoelectric path ground fault direction relays 1 and 2 when the R phase of the low voltage side electric path of the phase 3-wire high / low voltage transformer Tr1 is grounded will be described. According to the Hoh-Thevenin theorem, Fig. 1
As shown in FIG. 2, when one phase of the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr1, for example, R phase is ground-faulted at the ground fault point ES, the current distribution of each part of the electric circuit of FIG. , Superposition of the electric circuits of FIG. 3 (based on the generally known superposition theorem).
【0014】図2は、図1における地絡点ESと地絡抵
抗Rgの間に電圧源V−V0bを接続した回路である。
尚、電圧源V−V0bは、地絡前に地絡点ESと地絡抵
抗Rgの間に発生していた電圧を表し、この電圧の向き
は、地絡前に地絡点ESと地絡抵抗Rgの間に発生して
いた電圧の向きと同じである。従って、図2では、地絡
点ESから大地に電流が流れることは無く、各部の電流
分布は地絡前の電流分布と等しくなる。FIG. 2 shows a circuit in which a voltage source V-V0b is connected between the ground fault point ES and the ground fault resistance Rg in FIG.
The voltage source V-V0b represents the voltage generated between the ground fault point ES and the ground fault resistance Rg before the ground fault, and the direction of this voltage is the direction of the ground fault point ES and the ground fault before the ground fault. The direction of the voltage generated between the resistors Rg is the same. Therefore, in FIG. 2, the current does not flow from the ground fault point ES to the ground, and the current distribution of each part is equal to the current distribution before the ground fault.
【0015】図3は、鳳・テブナンの定理で求められる
電気回路である。図3に示すように地絡点ESと地絡抵
抗Rgの間には、図2と逆向きの電圧源V−V0bが接
続され、他の電圧源は短絡される。FIG. 3 shows an electric circuit obtained by the Hoh-Thevenin theorem. As shown in FIG. 3, the voltage source V-V0b in the opposite direction to that in FIG. 2 is connected between the ground fault point ES and the ground fault resistance Rg, and the other voltage sources are short-circuited.
【0016】図2と図3の電気回路を重ね合わせると、
電圧源V−V0bの向きがそれぞれ逆向きのためキャン
セルされ、地絡点ESと地絡抵抗Rgの間が短絡され
る。この状態は前述の地絡が発生した状態を表す。即
ち、図2と図3の電気回路を重ね合わせることにより、
地絡発生後の電気回路(図1)と等しくなる。これを式
で表すと次のようになる。
地絡発生後(図1)の電流分布=地絡発生前(図2)の電流分布+図3の電流
分布 式(1)
ここで、図3の電気回路を見やすく書き直したのが図4
に示した電気回路である。図4の電気回路において、B
種接地極EBとD種接地極ED間の電圧Vaと電流I0
1a,I02aの位相関係は図5に示すようになる。即
ち、電圧Vaに対する電流I01aの位相は、各低圧側
電路と対地間の静電容量C1,C2、地絡抵抗Rg、B
種接地極(共通接地極)EBとD種接地極ED間の接地
抵抗REの値により0°から進み90°の範囲となり、
電流I02aの位相は、遅れ90°となる。従って、こ
の位相の違いを利用すれば、当該低圧側電路で地絡が発
生した場合と他の低圧側電路で地絡が発生した場合とを
区別することができる。When the electric circuits of FIGS. 2 and 3 are superposed,
Since the directions of the voltage sources V-V0b are opposite to each other, they are canceled, and the ground fault point ES and the ground fault resistance Rg are short-circuited. This state represents a state in which the above-mentioned ground fault has occurred. That is, by overlapping the electric circuits of FIG. 2 and FIG.
It becomes the same as the electric circuit (Fig. 1) after the occurrence of the ground fault. This can be expressed as follows. Current distribution after occurrence of ground fault (Fig. 1) = Current distribution before occurrence of ground fault (Fig. 2) + Current distribution of Fig. 3 (1) Here, Fig. 4 is a rewrite of the electric circuit of Fig. 3 to make it easier to see.
It is the electric circuit shown in. In the electric circuit of FIG. 4, B
Voltage Va and current I0 between the seed ground electrode EB and the D seed ground electrode ED
The phase relationship between 1a and I02a is as shown in FIG. That is, the phases of the current I01a with respect to the voltage Va are the capacitances C1 and C2 between each low voltage side electric circuit and the ground, and the ground fault resistances Rg and B.
Depending on the value of the grounding resistance RE between the seed grounding electrode (common grounding electrode) EB and the D-type grounding electrode ED, it advances from 0 ° and becomes a range of 90 °,
The phase of the current I02a has a delay of 90 °. Therefore, by utilizing this phase difference, it is possible to distinguish between a case where a ground fault occurs in the low voltage side electric line and a case where a ground fault occurs in another low voltage side electric line.
【0017】図3の電気回路の電流分布は、式(1)か
ら次式により求めることが出来る。
図3の電流分布=地絡発生後(図1)の電流分布−地絡発生前(図2)の電流
分布 式(2)
また、図4におけるB種接地極EBとD種接地極ED間
の電圧Va,電流I01a,I02aは、次式で求めら
れる。
Va=RE・Ia=RE・(I0−I0b)
=V0−V0b 式(3)
I01a=I01−I01b 式(4)
I02a=I02−I02b 式(5)
尚、上記各式は、電圧の種別(100V,200V,4
00V)、回路方式(単相2線式、単相3線式、3相3
線式、3相4線式)、及び変圧器のバンク数や分岐電路
(図10に示した分岐低圧側電路等)の数によらず、接
地されている線以外の電圧が印加された電路が地絡した
場合に必ず成立する。The current distribution of the electric circuit of FIG. 3 can be obtained from the equation (1) by the following equation. Current distribution in Fig. 3 = current distribution after occurrence of ground fault (Fig. 1) -current distribution before occurrence of ground fault (Fig. 2) Expression (2) Further, between the B type ground electrode EB and the D type ground electrode ED in Fig. 4. The voltage Va and the currents I01a and I02a of are calculated by the following equations. Va = RE * Ia = RE * (I0-I0b) = V0-V0b Formula (3) I01a = I01-I01b Formula (4) I02a = I02-I02b Formula (5) In addition, each said formula is the type of voltage ( 100V, 200V, 4
00V), circuit method (single-phase two-wire system, single-phase three-wire system, three-phase three
Line type, three-phase four-wire type), and a circuit to which a voltage other than the grounded line is applied, regardless of the number of transformer banks and the number of branch circuits (branch low-voltage side circuit shown in FIG. 10). Is always satisfied when is grounded.
【0018】以上の説明から明らかなように、上記電圧
Va、電流I01a,I02aは、地絡後の電圧V0,
電流I01,I02から地絡前の電圧V0b、電流I0
1b,I02bを引き算することによって求められる。
前述の低圧電路用地絡方向継電器1は、上記計算によっ
て求められる電流I01aが、予め設定した設定値を超
えた場合、即ち、高低圧変圧器Tr1の低圧側電路が地
絡した状態になった場合は、電圧Vaの位相を基準とし
て電流I01aの位相を比較することにより、当該低圧
側電路で地絡が発生したか否かを判別する。また、同様
に低圧電路用地絡方向継電器2は、上記計算によって求
められる電流I02aが、予め設定した設定値を超えた
場合、即ち、高低圧変圧器Tr2の低圧電路が地絡した
状態になった場合、電圧Vaの位相を基準として電流I
02aの位相を比較することにより、当該低圧側電路で
地絡が発生したか否かを判別する。As is apparent from the above description, the voltage Va and the currents I01a and I02a are the same as the voltage V0 after the ground fault,
Current I01, I02 to voltage V0b before ground fault, current I0
It is obtained by subtracting 1b and I02b.
The above-mentioned low-voltage ground fault direction relay 1 has a case where the current I01a obtained by the above calculation exceeds a preset setting value, that is, the low-voltage side electric line of the high-low voltage transformer Tr1 is in a ground fault state. Compares the phase of the current I01a with the phase of the voltage Va as a reference to determine whether or not a ground fault has occurred in the low-voltage side electric circuit. Similarly, the ground fault direction relay 2 for a low piezoelectric path is in a state where the current I02a obtained by the above calculation exceeds a preset set value, that is, the low piezoelectric path of the high / low voltage transformer Tr2 is grounded. In this case, the current I is based on the phase of the voltage Va.
By comparing the phases of 02a, it is determined whether or not a ground fault has occurred in the low voltage side electric circuit.
【0019】図6は、低圧電路用地絡方向継電器1の構
成を示した回路ブロック図である。尚、図6に示したブ
ロック図は、前述の高低圧変圧器Tr1の低圧側電路が
地絡しているか否かを判定するための回路ブロックを示
したものであるが、前述の低圧電路用地絡方向継電器2
も基本的に図6と同様に構成されている。FIG. 6 is a circuit block diagram showing the configuration of the ground fault direction relay 1 for a low piezoelectric road. The block diagram shown in FIG. 6 shows a circuit block for determining whether or not the low-voltage side electric path of the high / low voltage transformer Tr1 described above has a ground fault. Random relay 2
Is basically configured similarly to FIG.
【0020】図6に示すように、前述の電流検出器ZC
T1は端子Z1,Z2間に接続され、B種接地抵抗とD
種接地抵抗の間の電圧を検出するための検出用配線V1
L1,V1L2は、それぞれ端子V1,V2に接続され
ている。As shown in FIG. 6, the aforementioned current detector ZC is used.
T1 is connected between the terminals Z1 and Z2, and is connected to the class B ground resistance and D
Detection wiring V1 for detecting the voltage between the seed ground resistors
L1 and V1L2 are connected to terminals V1 and V2, respectively.
【0021】端子Z1,Z2に接続されている過入力保
護・フィルタ回路2a、及び端子V1,V2に接続され
ている過入力保護フィルタ回路2bは、過大な電圧の入
力を防止し、内部回路を電気的に保護するとともに、高
周波ノイズ成分を除去するための回路である。The over-input protection / filter circuit 2a connected to the terminals Z1 and Z2 and the over-input protection filter circuit 2b connected to the terminals V1 and V2 prevent the input of an excessive voltage and prevent the internal circuit from operating. It is a circuit for electrically protecting and removing high frequency noise components.
【0022】上記過入力保護・フィルタ回路2a、過入
力保護・フィルタ回路2bに接続された実効値演算回路
3a、実効値演算回路3bは、電流検出器ZCT1によ
り検出された電流の実効値、及び、検出用配線V1L
1,V1L2により検出されたB種接地抵抗とD種接地
抵抗間の電圧の実効値をそれぞれ演算する回路である。The over-input protection / filter circuit 2a, the effective-value operation circuit 3a connected to the over-input protection / filter circuit 2b, and the effective-value operation circuit 3b are the effective value of the current detected by the current detector ZCT1, and , Detection wiring V1L
1 is a circuit for calculating the effective value of the voltage between the B-type ground resistance and the D-type ground resistance detected by V1L2.
【0023】また、位相演算回路4a、位相演算回路4
bは、電流検出器ZCT1により検出された電流、及
び、検出用配線V1L1,V1L2により検出された電
圧の位相を演算する回路である。それぞれの位相は、基
準となる位相との差を演算して求める。本発明では、前
記式(2)で示されるように検出時間の異なる地絡前後
の電圧・電流位相を求めるのであるから、この基準とな
る位相は、地絡前後において不変でなければならない。
従って、例えば低圧電路用地絡方向継電器1の電源電圧
(AC100V商用電源)の位相を基準として演算す
る。Further, the phase calculation circuit 4a and the phase calculation circuit 4
Reference numeral b is a circuit that calculates the phases of the current detected by the current detector ZCT1 and the voltages detected by the detection wirings V1L1 and V1L2. Each phase is obtained by calculating the difference from the reference phase. In the present invention, since the voltage / current phase before and after the ground fault with different detection times is obtained as shown in the above formula (2), the reference phase must be unchanged before and after the ground fault.
Therefore, for example, the phase of the power supply voltage (100 VAC commercial power supply) of the ground fault direction relay 1 for the low piezoelectric road is used as a reference for the calculation.
【0024】タイマ回路5は、実効値演算回路3a及び
位相演算回路4aから出力された電流検出器ZCT1に
よる検出電流の実効値及び位相と、実効値演算回路3b
及び位相演算回路4bから出力された検出用配線V1L
1,V1L2による検出電圧の実効値及び位相とを、設
定時間のt1秒間隔で記憶回路6a,6bに記憶させ
る。この記憶回路6a,6bに記憶されるデータ(上記
検出電流、検出電圧の実効値及び位相)は、t1秒毎に
書き換えられ、最新のデータのみが記憶される。The timer circuit 5 includes an effective value arithmetic circuit 3b and an effective value and phase of the current detected by the current detector ZCT1 output from the effective value arithmetic circuit 3a and the phase arithmetic circuit 4a.
And the detection wiring V1L output from the phase calculation circuit 4b
1, the effective value and the phase of the detected voltage by V1L2 are stored in the storage circuits 6a and 6b at intervals of t1 seconds of the set time. The data stored in the storage circuits 6a and 6b (the detected current, the effective value and the phase of the detected voltage) are rewritten every t1 seconds, and only the latest data is stored.
【0025】ベクトル演算回路7aは、電流検出器ZC
T1により、今回、検出された電流の実効値及び位相
と、記憶回路6aに記憶されている電流検出器ZCT1
による検出電流の実効値及び位相とに基づき、前述の電
流I01aをベクトル演算で求める。The vector operation circuit 7a is a current detector ZC.
The effective value and phase of the current detected this time by T1 and the current detector ZCT1 stored in the storage circuit 6a.
Based on the effective value and the phase of the detected current according to the above, the above-mentioned current I01a is obtained by vector calculation.
【0026】ベクトル演算回路7bは、検出用配線V1
L1,V1L2により今回、検出されたB種接地抵抗と
D種接地抵抗間の電圧の実効値及び位相と、記憶回路6
bに記憶されている検出用配線V1L1,V1L2によ
る検出電圧の実効値及び位相とに基づき、前述の電圧V
aをベクトル演算で求める。The vector operation circuit 7b has a detection wiring V1.
The effective value and phase of the voltage between the class B ground resistance and the class D ground resistance detected this time by L1 and V1L2, and the storage circuit 6
Based on the effective value and the phase of the detection voltage by the detection wirings V1L1 and V1L2 stored in b, the above-mentioned voltage V
a is obtained by vector calculation.
【0027】レベル判定回路8は、ベクトル演算回路7
aで求められた前記電流I01aが予め設定されたレベ
ル設定値を超えた場合に論理H信号を出力する。The level determination circuit 8 is a vector operation circuit 7.
When the current I01a obtained by a exceeds a preset level set value, a logic H signal is output.
【0028】位相判別回路9は、ベクトル演算回路7b
で演算された前述の電圧Vaの位相に対して、ベクトル
演算回路7aで演算された前述の電流I01aの位相が
ほぼ90°遅れの場合、前述の単相3線式高低圧変圧器
Tr2の低圧側電路で地絡事故が発生したものと判定
し、論理L信号を出力する一方、電圧Vaの位相に対し
て電流I01aの位相が0°から進み90°の範囲内で
ある場合は、当該高低圧変圧器Tr1の低圧側電路が地
絡したものと判定し、論理H信号を出力する。The phase discrimination circuit 9 is a vector operation circuit 7b.
When the phase of the current I01a calculated by the vector calculation circuit 7a is delayed by approximately 90 ° with respect to the phase of the voltage Va calculated in step 1, the low voltage of the single-phase three-wire high / low voltage transformer Tr2 described above. When it is determined that a ground fault has occurred in the side electric line and a logical L signal is output, the phase of the current I01a advances from 0 ° with respect to the phase of the voltage Va and is within 90 °, the high level is detected. It is determined that the low-voltage side electric path of the low-voltage transformer Tr1 has a ground fault, and a logic H signal is output.
【0029】AND回路10は、レベル判定回路8及び
位相判別回路9から出力された信号が共に論理H信号の
場合にのみ論理H信号を出力する。即ち、前記電流I0
1aが予め設定されたレベル設定値を超えるとともに、
電圧Vaの位相に対して電流I01aの位相が0°から
進み90°の範囲内である場合に、当該高低圧変圧器T
r1の低圧側電路が地絡したことを示す論理H信号を出
力する。The AND circuit 10 outputs the logic H signal only when the signals output from the level judgment circuit 8 and the phase judgment circuit 9 are both logic H signals. That is, the current I0
1a exceeds the preset level setting value,
When the phase of the current I01a advances from 0 ° with respect to the phase of the voltage Va and is within a range of 90 °, the high / low voltage transformer T
A logic H signal indicating that the low-voltage side electric path of r1 is grounded is output.
【0030】時間整定回路11は、任意に設定可能なt
2時間、AND回路10から継続して論理H信号が出力
された場合に論理H信号を出力するもので、ノイズ等に
よる誤判定を防止している。The time settling circuit 11 has a t that can be set arbitrarily.
The logic H signal is output when the logic H signal is continuously output from the AND circuit 10 for 2 hours, and erroneous determination due to noise or the like is prevented.
【0031】出力回路12は、時間整定回路11から論
理H信号が出力された場合、出力リレーX1を作動させ
るとともに動作表示ランプ13を点灯させて当該高低圧
変圧器Tr1の低圧側電路が地絡したことを表示させ
る。上記出力リレーX1のa接点(メーク接点)は、前
述の遮断器MCCB1の引外しコイルを作動させて当該
遮断器MCCB1を遮断動作させるように図示していな
い引外し回路に接続されている。また、出力リレーX1
のb接点(ブレーク接点)は、当該高低圧変圧器Tr1
の低圧側電路が地絡したことを警報するための図示して
いない警報回路に接続されている。When the logic H signal is output from the time settling circuit 11, the output circuit 12 activates the output relay X1 and turns on the operation display lamp 13 so that the low voltage side electric circuit of the high / low voltage transformer Tr1 is grounded. Display what you have done. The a-contact (make contact) of the output relay X1 is connected to a trip circuit (not shown) so as to activate the trip coil of the circuit breaker MCCB1 to cause the circuit breaker MCCB1 to perform a breaking operation. Also, output relay X1
B contact (break contact) is the high and low voltage transformer Tr1.
Is connected to an alarm circuit (not shown) for alarming that the low-voltage side electric circuit has a ground fault.
【0032】また、電源回路14は、端子P1,P2か
ら入力された商用電源からの100ボルト電圧が過入力
保護フィルタ回路15を介して供給されると、低圧電路
用地絡方向継電器1の各回路が必要とする直流電圧を出
力する。尚、以上説明した低圧電路用地絡方向継電器1
のブロック図で示した構成は一例であり、これに限定さ
れることはない。Further, the power supply circuit 14 receives the 100 volt voltage from the commercial power supply input from the terminals P1 and P2 via the over-input protection filter circuit 15, and each circuit of the ground fault direction relay 1 for the low piezoelectric path. Outputs the DC voltage required by. In addition, the ground fault direction relay 1 for the low piezoelectric road described above
The configuration shown in the block diagram of is an example, and the present invention is not limited to this.
【0033】以上の実施の形態の説明では地絡判定の対
象となる高低圧変圧器として、3相3線式高低圧変圧器
Tr1と単相3線式高低圧変圧器Tr2の2台の例を示
したが、電圧の種別(100V,200V,400
V)、回路方式(単相2線式、単相3線式、3相3線
式、3相4線式)、及び変圧器のバンク数や電路(図1
0に示したような分岐低圧側電路を含む)の数に制限は
無い。In the above description of the embodiment, two high- and low-voltage transformers, namely, a three-phase three-wire high-low voltage transformer Tr1 and a single-phase three-wire high-low voltage transformer Tr2, are used as the high-low voltage transformers subject to the ground fault judgment. However, the voltage type (100V, 200V, 400
V), circuit system (single-phase two-wire system, single-phase three-wire system, three-phase three-wire system, three-phase four-wire system), number of banks of transformers and electric circuits (Fig. 1).
(Including the branch low-voltage side electric circuit as shown in 0) is not limited.
【0034】図7、図8、図9は、3相3線式400V
回路、3相4線式400V、単相2線式100V回路の
場合の低圧電路用地絡方向継電器1の接続例を示したも
のである。いずれの場合でもB種接地抵抗とD種接地抵
抗(低圧側電路の電圧が400V回路の場合はC種接地
抵抗となり、その接地極をECとして示している。)の
間の電圧と低圧側電路の零相電流を検出している。尚、
図7の3相3線式400V回路において、C0は高低圧
変圧器Tr1aの低圧側巻線の中性点の電位、即ちB種
接地抵抗の電位を測定するために使用する小容量のコン
デンサであって、図7に示すように、小容量のコンデン
サC0をスター型に結線し、その中性点とC種接地抵抗
の間の電圧をB種接地抵抗とC種接地抵抗間の電圧とし
て検出している。その理由は、高低圧変圧器Tr1aの
場合、低圧側電路が3相3線式400V回路であり、中
性線が引き出されていないためである。7, 8 and 9 are three-phase three-wire type 400V
2 shows an example of connection of the low-voltage ground fault direction relay 1 in the case of a circuit, a three-phase four-wire system 400V, and a single-phase two-wire system 100V circuit. In any case, the voltage between the class B ground resistance and the class D ground resistance (in the case where the voltage of the low-voltage side electric circuit is a 400 V circuit, it becomes the class C ground resistance, and its ground electrode is shown as EC) and the low-voltage side electric circuit. The zero-phase current of is detected. still,
In the three-phase three-wire 400V circuit of FIG. 7, C0 is a small-capacity capacitor used to measure the potential of the neutral point of the low-voltage side winding of the high-voltage transformer Tr1a, that is, the potential of the class B ground resistance. Therefore, as shown in FIG. 7, a small-capacity capacitor C0 is connected in a star shape, and the voltage between the neutral point and the C-class ground resistance is detected as the voltage between the B-class ground resistance and the C-class ground resistance. is doing. The reason is that in the case of the high / low voltage transformer Tr1a, the low voltage side electric circuit is a three-phase three-wire 400V circuit, and the neutral wire is not drawn out.
【0035】[0035]
【発明の効果】本発明によれば、低圧側巻線が共通接地
された各高低圧変圧器の分岐低圧側電路を含むいずれか
の低圧側電路が地絡した場合、地絡した低圧側電路を確
実に判定することができる。According to the present invention, when any of the low-voltage side electric lines including the branch low-voltage side electric line of each high-low voltage transformer in which the low-voltage side winding is commonly grounded, is ground-faulted, the ground-faulted low-voltage side electric line Can be reliably determined.
【図1】本発明の実施の形態を示した電気回路図であ
る。FIG. 1 is an electric circuit diagram showing an embodiment of the present invention.
【図2】図1の電気回路を鳳・テブナンの定理に基づい
て画いた電気回路図である。FIG. 2 is an electric circuit diagram in which the electric circuit of FIG. 1 is drawn based on the Hoh-Thevenin theorem.
【図3】鳳・テブナンの定理で求められる電気回路図で
ある。FIG. 3 is an electric circuit diagram obtained by the Hoh-Thevenin theorem.
【図4】図3の電気回路を簡単化した電気回路図であ
る。FIG. 4 is an electric circuit diagram in which the electric circuit of FIG. 3 is simplified.
【図5】低圧側電路の地絡を判別するためのベクトル図
である。FIG. 5 is a vector diagram for determining a ground fault of a low voltage side electric circuit.
【図6】低圧電路用地絡方向継電器の回路ブロック図で
ある。FIG. 6 is a circuit block diagram of a ground fault direction relay for a low piezoelectric path.
【図7】低圧電路用地絡方向継電器の接続例を示した電
気回路図である。FIG. 7 is an electric circuit diagram showing a connection example of a ground fault direction relay for a low piezoelectric road.
【図8】低圧電路用地絡方向継電器の接続例を示した電
気回路図である。FIG. 8 is an electric circuit diagram showing a connection example of a ground fault direction relay for a low piezoelectric path.
【図9】低圧電路用地絡方向継電器の接続例を示した電
気回路図である。FIG. 9 is an electric circuit diagram showing a connection example of a ground fault direction relay for a low-voltage path.
【図10】従来の問題点を説明するための電気回路図で
ある。FIG. 10 is an electric circuit diagram for explaining a conventional problem.
1,2 低圧電路用地絡方向継電器 2a,2b 過入力保護・フィルタ回路 3a,3b 実効値演算回路 4a,4b 位相演算回路 5 タイマ回路 6a,6b 記憶回路 7a,7b ベクトル演算回路 8 レベル判定回路 9 位相判別回路 10 AND回路 11 時間整定回路 12 出力回路 13 動作表示ランプ X1 出力リレー Tr1 3相3線式高低圧変圧器 Tr2 単相3線式高低圧変圧器 N 中性点 TE 低圧側巻線端子 ZCT1 電流検出器 ZCT2 電流検出器 VL1,VL2 検出用配線 EB B種接地極 ED D種接地極 1,2 Low-voltage ground fault relay 2a, 2b Over-input protection / filter circuit 3a, 3b RMS value calculation circuit 4a, 4b Phase calculation circuit 5 timer circuit 6a, 6b memory circuit 7a, 7b vector operation circuit 8 level judgment circuit 9 Phase discrimination circuit 10 AND circuit 11 hours settling circuit 12 Output circuit 13 Operation indicator lamp X1 output relay Tr1 3-phase 3-wire high / low voltage transformer Tr2 Single-phase 3-wire high / low voltage transformer N neutral point TE Low voltage side winding terminal ZCT1 current detector ZCT2 current detector VL1, VL2 detection wiring EB Class B grounding electrode ED D type ground electrode
フロントページの続き (72)発明者 藤田 秀紀 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社電力技術研究 所内 (56)参考文献 特開2001−352663(JP,A) 特開2001−339847(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 3/32 - 3/52 Front Page Continuation (72) Hideki Fujita Inventor Hideki Fujita 1 20-20 Kitakousan, Otaka-cho, Midori-ku, Nagoya, Aichi Chubu Electric Power Co., Inc. Power Technology Research Center (56) References JP 2001-352663 (JP, A) ) JP 2001-339847 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02H 3/32-3/52
Claims (2)
接地するための共通接地極と前記それぞれの高低圧変圧
器の低圧側巻線に接続されている低圧側電路が地絡した
場合の地絡電流を流すための低圧電路機器用接地極との
間に発生する接地極間電圧を検出する電圧検出手段と、
前記それぞれの高低圧変圧器の低圧側巻線に接続されて
いる低圧側電路の零相電流を検出する電流検出手段と、
前記接地極間電圧及び前記零相電流の実効値と位相とを
演算する実効値・位相演算手段と、前記実効値・位相演
算手段で演算された前記接地極間電圧及び前記零相電流
の実効値と位相とを記憶する記憶手段と、前記実効値・
位相演算手段で演算された最新の前記接地極間電圧の実
効値と位相に基づく電圧ベクトルと前記記憶手段に記憶
されている前記接地極間電圧の実効値と位相に基づく電
圧ベクトルとの電圧ベクトル差及び前記実効値・位相演
算手段で演算された最新の前記零相電流の実効値と位相
に基づく電流ベクトルと前記記憶手段に記憶されている
前記零相電流の実効値と位相に基づく電流ベクトルとの
電流ベクトル差をベクトル演算するベクトル演算手段
と、前記ベクトル演算手段で演算された前記電流ベクト
ル差の実効値が所定値を超えた場合に前記電圧ベクトル
差の位相に対する前記電流ベクトル差の位相差に基づい
て前記低圧側電路が地絡しているか否かを判定する地絡
判定手段とを備えたことを特徴とする低圧電路用地絡方
向継電器。1. A common grounding electrode for grounding the low voltage side windings of a plurality of high and low voltage transformers to a common ground and a low voltage side electric circuit connected to the low voltage side windings of the respective high and low voltage transformers are ground-faulted. In the case of voltage detection means for detecting the voltage between the ground electrodes generated between the ground electrode for low piezoelectric device for flowing the ground fault current,
Current detection means for detecting the zero-phase current of the low-voltage side electric circuit connected to the low-voltage side winding of each of the high-low voltage transformer,
Effective value / phase calculating means for calculating the effective value and phase of the ground-to-ground voltage and the zero-phase current, and the effective value of the ground-to-ground voltage and the zero-phase current calculated by the effective value / phase calculating means. Storage means for storing the value and the phase, and the effective value
A voltage vector based on the latest effective value and phase of the voltage between ground electrodes calculated by the phase calculation means, and a voltage vector based on the effective value and phase of the voltage between ground electrodes stored in the storage means. A current vector based on the difference and the latest effective value and phase of the zero-phase current calculated by the effective value / phase calculating means, and a current vector based on the effective value and phase of the zero-phase current stored in the storage means. Vector calculation means for vector-calculating the current vector difference between the current vector difference and the current vector difference relative to the phase of the voltage vector difference when the effective value of the current vector difference calculated by the vector calculation means exceeds a predetermined value. A ground fault direction relay for a low piezoelectric road, comprising: a ground fault determination means for determining whether or not the low-voltage side electric line is grounded based on a phase difference.
器であって、前記地絡判定手段は、地絡したと判定した
低圧側電路の遮断器を動作させることを特徴とする低圧
電路用地絡方向継電器。2. The ground fault direction relay for a low piezoelectric road according to claim 1, wherein the ground fault judging means operates a circuit breaker of the low voltage side electric line judged to have a ground fault. Folding direction relay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002013527A JP3517737B2 (en) | 2002-01-22 | 2002-01-22 | Ground fault directional relay for low voltage road |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002013527A JP3517737B2 (en) | 2002-01-22 | 2002-01-22 | Ground fault directional relay for low voltage road |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003219553A JP2003219553A (en) | 2003-07-31 |
JP3517737B2 true JP3517737B2 (en) | 2004-04-12 |
Family
ID=27650462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002013527A Expired - Lifetime JP3517737B2 (en) | 2002-01-22 | 2002-01-22 | Ground fault directional relay for low voltage road |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3517737B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9400302B2 (en) | 2010-05-24 | 2016-07-26 | Lifetechnos Co., Ltd. | Earth leakage detector with suffered current-blocking function |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012075250A (en) * | 2010-09-29 | 2012-04-12 | Life Technos:Kk | Insulation ground fault monitoring device with adoption lock |
JP2012233809A (en) * | 2011-05-05 | 2012-11-29 | Life Technos:Kk | Incidental operation alarming device of leakage detection device |
JP6408785B2 (en) * | 2014-04-23 | 2018-10-17 | 一般財団法人関東電気保安協会 | Insulation monitoring device |
JP5770903B1 (en) * | 2014-09-26 | 2015-08-26 | タナシン電機株式会社 | Leakage current calculation device and leakage current calculation method |
CN104777397B (en) * | 2015-04-16 | 2017-09-22 | 王金泽 | Distribution line single-phase wire break based on the vectorial criterion of line voltage judges and localization method |
-
2002
- 2002-01-22 JP JP2002013527A patent/JP3517737B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9400302B2 (en) | 2010-05-24 | 2016-07-26 | Lifetechnos Co., Ltd. | Earth leakage detector with suffered current-blocking function |
Also Published As
Publication number | Publication date |
---|---|
JP2003219553A (en) | 2003-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2921338C (en) | Distributed arc fault protection between outlet and circuit breaker | |
AU2010300767B2 (en) | System and method for polyphase ground-fault circuit-interrupters | |
US5245498A (en) | Downed conductor automatic detecting device | |
EP2686691B1 (en) | A method for detecting earth faults | |
EP2331978B1 (en) | Method and device for supervising secondary circuit of instrument transformer in power system | |
US6584417B1 (en) | Method and directional element for fault direction determination in a capacitance-compensated line | |
US5103365A (en) | Downed conductor automatic detecting device | |
JP6503322B2 (en) | Ground fault detection device | |
JP3517737B2 (en) | Ground fault directional relay for low voltage road | |
JP3407133B2 (en) | Ground fault directional relay for low voltage road | |
JP2012075250A (en) | Insulation ground fault monitoring device with adoption lock | |
JP3652584B2 (en) | Leakage detection protection method and apparatus for low-voltage ground circuit | |
JP2004201356A (en) | Earth fault directional relay | |
US20230129666A1 (en) | Coordination of protective elements in an electric power system | |
JP2002027660A (en) | Ground fault detector for low-voltage circuit | |
Vukolov et al. | Improvement of algorithms for voltage circuits fault detection in relay protection terminal of 6-35 kV electrical networks | |
JP3378418B2 (en) | Leakage protection method | |
JP3691147B2 (en) | Insulation monitoring method for ungrounded circuit | |
FI108166B (en) | Listing of wiring failures in a power grid | |
JP3656824B2 (en) | Ground fault direction relay device | |
JP2000261959A (en) | Ground fault suppression system and ground fault suppression method | |
JP3408992B2 (en) | Low-voltage side ground fault relay | |
JP2000321316A (en) | Ground fault accident detecting method for parallel dual communication underground power transmission line | |
JP2002027661A (en) | Leakage detection/protection method and apparatus for commonly grounded circuit | |
JPH06237522A (en) | Protective device of series capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3517737 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |