[go: up one dir, main page]

JP3512463B2 - High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same - Google Patents

High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same

Info

Publication number
JP3512463B2
JP3512463B2 JP08515594A JP8515594A JP3512463B2 JP 3512463 B2 JP3512463 B2 JP 3512463B2 JP 08515594 A JP08515594 A JP 08515594A JP 8515594 A JP8515594 A JP 8515594A JP 3512463 B2 JP3512463 B2 JP 3512463B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
hydrogen
resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08515594A
Other languages
Japanese (ja)
Other versions
JPH07292434A (en
Inventor
房男 石川
敬 二ノ宮
吉弘 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyo Seiko Co Ltd
Original Assignee
Nippon Steel Corp
Toyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyo Seiko Co Ltd filed Critical Nippon Steel Corp
Priority to JP08515594A priority Critical patent/JP3512463B2/en
Publication of JPH07292434A publication Critical patent/JPH07292434A/en
Application granted granted Critical
Publication of JP3512463B2 publication Critical patent/JP3512463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐遅れ破壊特性及び耐
水素侵入性に優れ、125kgf/mm2 以上の引張強度を有
する機械構造用鋼及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical structural steel having excellent delayed fracture resistance and hydrogen penetration resistance and having a tensile strength of 125 kgf / mm 2 or more, and a method for producing the same.

【0002】[0002]

【従来の技術】高強度機械構造用鋼は高強度ボルトとし
て機械、自動車、橋梁、建築物に数多く使用されている
他、PC鋼棒、自動車浸炭部品としても数多く使用され
ている。特に近年構造物の大型化に伴い、継手効率の向
上の目的からボルトの高強度化に対する要求は高まって
いる。また自動車においても軽量化による燃費向上を達
成するために各種部品の高強度化の要求が高まってい
る。しかし引張強度が125kgf/mm2 を超えると遅れ破
壊の危険性が高まることがよく知られており、例えば現
在JIS規格で認められている摩擦接合用高力ボルトの
引張強度は110kgf/mm2 クラスが上限となっているの
が現状である。
2. Description of the Related Art High-strength mechanical structural steel is widely used as high-strength bolts in machines, automobiles, bridges and buildings, as well as in PC steel rods and carburized parts. In particular, with the recent increase in the size of structures, there is an increasing demand for higher strength bolts for the purpose of improving joint efficiency. Also in automobiles, there is an increasing demand for higher strength of various parts in order to achieve fuel efficiency improvement by weight reduction. However, it is well known that the risk of delayed fracture increases when the tensile strength exceeds 125 kgf / mm 2. For example, the tensile strength of high-strength bolts for friction welding currently recognized by JIS standard is 110 kgf / mm 2 class. Is currently the upper limit.

【0003】高強度鋼の遅れ破壊向上には種々の方案が
提案されている。例えば高強度ボルト用鋼として特開平
1−96354号公報にはSi,Crを増量した鋼が示
されている。これは400℃以上の高温焼戻しでも高強
度を確保する成分設計により焼戻し脆化に伴う粒界脆化
を抑制し遅れ破壊向上を狙ったものである。また耐食性
を上げ水素侵入を抑制するために、種々のめっき処理方
法が検討されており、例えば特開昭64−68452号
公報には亜鉛めっきした耐遅れ破壊性高強度ボルトが開
示されている。
Various methods have been proposed for improving delayed fracture of high strength steel. For example, as high-strength steel for bolts, Japanese Patent Application Laid-Open No. 1-96354 discloses steel with increased amounts of Si and Cr. This aims at improving delayed fracture by suppressing grain boundary embrittlement due to temper embrittlement by a component design that ensures high strength even at high temperature tempering of 400 ° C. or higher. In order to improve corrosion resistance and suppress hydrogen invasion, various plating treatment methods have been studied. For example, JP-A-64-68452 discloses a galvanized delayed fracture resistant high strength bolt.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、依然と
して引張強度が125kgf/mm2 を超えた鋼においては十
分に遅れ破壊を抑制するには至っておらず、ボルト・P
C鋼棒等の高強度化の障害となっている。また、亜鉛め
っきに関してはめっき時に水素発生を伴うため耐食性は
上げても鋼中水素低減には不十分という問題点を有して
いる。
However, in the steel having a tensile strength of more than 125 kgf / mm 2 , the delayed fracture has not been sufficiently suppressed.
This is an obstacle to the strengthening of C steel rods and the like. Further, with respect to zinc plating, there is a problem that hydrogen is generated during plating, so that even if corrosion resistance is increased, hydrogen reduction in steel is insufficient.

【0005】本発明は上記の問題点に鑑みてなされたも
のであり、引張強度125kgf/mm2以上を有し、耐遅れ
破壊特性及び耐水素侵入性に優れた高強度機械構造用鋼
及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and has a tensile strength of 125 kgf / mm 2 or more, high strength mechanical structural steel excellent in delayed fracture resistance and hydrogen intrusion resistance, and the same. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
に関し、まず鋼材面から検討を行った結果、鋼の化学成
分及び焼戻し温度の調整により結晶粒界を強化した鋼に
おいて焼戻し時に結晶粒内に炭化物・窒化物を多量に析
出させることにより析出物に拡散性水素を結晶粒内にト
ラップし粒界に集積する水素を低減させて遅れ破壊特性
を向上し得ることを見出した。更に歯車等の疲労特性改
善手段として適用の広まりつつあるショットピーニング
処理に着目し、ショットピーニングによって表層近傍に
塑性歪が付与されることにより負荷状態における環境か
らの侵入拡散性水素量を大幅に低減させうることを見出
した。
With respect to the above-mentioned problems, the inventors of the present invention first conducted a study from the viewpoint of the steel material, and as a result, as a result of adjusting the chemical composition of the steel and the tempering temperature, the crystal grain boundary was strengthened in the steel during the tempering. It has been found that by precipitating a large amount of carbides / nitrides in the grains, diffusible hydrogen is trapped in the grains and the hydrogen accumulated in the grain boundaries is reduced to improve delayed fracture characteristics. Furthermore, focusing on the shot peening treatment, which is becoming more widely used as a means for improving the fatigue characteristics of gears, etc., plastic strain is applied near the surface layer by shot peening, which greatly reduces the amount of diffusible hydrogen penetrating from the environment under load conditions. I found that I could do it.

【0007】本発明はこれらの新規の知見に基づいて構
成されたものであり、その要旨は以下の通りである。す
なわち質量%で、 C :0.15〜0.50%、 Si:0.05〜
2.00%、 Mn:0.10〜0.80%、 P :0.020%
以下、 S :0.020%以下、 Cr:1.0〜3.
0%、 Mo:0.2〜1.2%、 Al:0.005〜
0.050%、 N :0.001〜0.010%を含有し、更に V :0.10超〜0.50%、 Ti:0.01超〜
0.05%、 Nb:0.01超〜0.05%の一種またはニ種以上を
含有し、 更に必要に応じて、Ni:0.1〜2.0%を含有し、 残部がFe及び不可避的不純物よりなり、鋼材表面より
108μm以上200μm以内の圧縮残留応力の最大値
(σr )が素材の引張強度(σB )に対して、σr /σ
B ≧0.6を満足することを特徴とする耐遅れ破壊特性
及び耐水素侵入性に優れた高強度機械構造用鋼であり、
更に、引張強度125kgf/mm2 以上の強度達成手段とし
て焼入れ後ので焼戻し温度を400℃以上に規定し、鋼
材表面から108μm以上200μm以内の圧縮残留応
力の最大値(σr )が素材の引張強度(σB )に対し
て、σr /σB ≧0.6を満足するように、ショットピ
ーニング処理を利用することを特徴とする耐遅れ破壊特
性及び耐水素侵入性に優れた高強度機械構造用鋼の製造
方法である。なお、本発明におけるショット粒は、粒径
φ0.8mm以下、Hv600超が好ましい。
The present invention has been constructed on the basis of these new findings, and its gist is as follows. That is, in mass %, C: 0.15 to 0.50%, Si: 0.05 to
2.00%, Mn: 0.10 to 0.80%, P: 0.020%
Hereinafter, S: 0.020% or less, Cr: 1.0 to 3.
0%, Mo: 0.2-1.2%, Al: 0.005-
0.050%, N: 0.001 to 0.010% is contained, and V: more than 0.10 to 0.50%, Ti: more than 0.01.
0.05%, Nb: contains more than 0.01 to 0.05% of one kind or two or more kinds, further contains Ni: 0.1 to 2.0%, if necessary, the balance is Fe and Consists of inevitable impurities, and from the steel surface
The maximum value (σ r ) of compressive residual stress between 108 μm and 200 μm is σ r / σ with respect to the tensile strength (σ B ) of the material.
A high-strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance characterized by satisfying B ≧ 0.6,
Furthermore, as a means for achieving a tensile strength of 125 kgf / mm 2 or more, the tempering temperature after quenching is specified to be 400 ° C or more, and the maximum value (σ r ) of the compressive residual stress within 108 μm to 200 μm from the steel surface is the tensile strength of the material. High strength mechanical structure excellent in delayed fracture resistance and hydrogen intrusion resistance characterized by using shot peening treatment so that σ r / σ B ≧ 0.6 for (σ B ). It is a manufacturing method of steel for use. The shot particles in the present invention preferably have a particle size of 0.8 mm or less and Hv 600 or more.

【0008】[0008]

【作用】以下に、本発明における合金成分、熱処理条
件、ショットピーニング条件の限定理由に関して詳細に
説明する。 C:焼入れ、焼戻しにより高強度を得るために0.15
%以上必要であるが、多すぎると靭性を劣化させるとと
もに遅れ破壊特性も劣化させるために0.50%以下と
した。 Si:鋼の脱酸及び強度を高めるために0.05%以上
必要であるが、冷間加工性を損なう元素であるために、
2.00%以下とした。 Mn:鋼の脱酸及び焼入れ性の確保のために0.10%
以上必要であるが、オーステナイト域加熱時に粒界に偏
析し粒界を脆化させ遅れ破壊特性を劣化させるために
0.8%以下とした。
The function of the alloy components, heat treatment conditions and shot peening conditions in the present invention will be described in detail below. C: 0.15 to obtain high strength by quenching and tempering
% Or more, but if it is too large, the toughness deteriorates and the delayed fracture property also deteriorates, so the content was made 0.50% or less. Si: 0.05% or more is necessary to increase the deoxidation and strength of steel, but since it is an element that impairs cold workability,
It was 2.00% or less. Mn: 0.10% to secure deoxidation and hardenability of steel
Although it is necessary as described above, it is set to 0.8% or less in order to segregate in the grain boundaries during heating in the austenite region to embrittle the grain boundaries and deteriorate the delayed fracture characteristics.

【0009】P:焼入れ性元素としては有効であるが、
凝固時にミクロ偏析し、更にオーステナイトが加熱時に
粒界に偏析し粒界を脆化させ遅れ破壊特性を劣化させる
元素であるために0.020%以下とした。 S:不可避的不純物であるが、Pと同様にオーステナイ
ト域加熱時に粒界に偏析し粒界を脆化させ遅れ破壊特性
を劣化させる元素であるために0.020%以下とし
た。
P: Effective as a hardenable element,
Since it is an element that causes microsegregation during solidification and further segregates austenite at grain boundaries during heating to embrittle the grain boundaries and deteriorate delayed fracture characteristics, the content was made 0.020% or less. S: An unavoidable impurity, but as with P, it is an element that segregates to the grain boundaries during heating in the austenite region, embrittles the grain boundaries, and deteriorates delayed fracture characteristics, so the content was made 0.020% or less.

【0010】Cr:鋼の焼入れ性を得るために必要であ
るとともに焼戻し軟化抵抗を有し400℃以上の焼戻し
温度で125kgf/mm2 以上の引張強度を得るのに有効な
元素であり1.0%以上必要である。ただし多すぎると
靭性の劣化、冷間加工性の劣化を招くために3.0%以
下とした。 Ni:必要に応じて添加され、靭性を向上させるととも
に遅れ破壊特性を向上させる元素であり0.1%以上必
要である。しかし多すぎるとその効果は飽和しむしろコ
スト上昇を招くために2.0%以下とした。 Mo:鋼の焼入れ性を得るために必要であるとともに焼
戻し軟化抵抗を有し400℃以上の焼戻し温度で125
kgf/mm2 以上の引張強度を得るのに有効な元素であり
0.2%以上必要である。ただし多すぎるとその効果は
飽和しコスト上昇を招くために1.2%以下とした。
Cr: An element which is necessary for obtaining the hardenability of steel and has an effect of tempering softening and is effective for obtaining a tensile strength of 125 kgf / mm 2 or more at a tempering temperature of 400 ° C. or more. % Or more is required. However, if it is too large, the toughness and the cold workability are deteriorated. Ni: An element that is added as needed to improve toughness and delayed fracture characteristics, and is required to be 0.1% or more. However, if it is too large, the effect is saturated and rather the cost is increased, so the content is made 2.0% or less. Mo: Necessary for obtaining the hardenability of steel and has temper softening resistance and 125 at a tempering temperature of 400 ° C. or higher.
It is an element effective for obtaining a tensile strength of kgf / mm 2 or more and is required to be 0.2% or more. However, if too much, the effect is saturated and the cost rises, so the content was made 1.2% or less.

【0011】Al:鋼の脱酸に有効な元素であり0.0
05%以上必要であるが、多すぎると靭性の劣化を招く
ために0.050%以下とした。 N:窒化物形成に必須の元素であり0.001%以上必
要であるが、多すぎるとオーステナイト加熱時に粒界に
偏析し粒界を脆化させるとともに遅れ破壊特性も劣化さ
せるため0.010%以下とした。
Al: an element effective in deoxidizing steel, 0.0
It is necessary to be 0.05% or more, but if it is too much, the toughness is deteriorated, so the content was made 0.050% or less. N: 0.001% or more is an essential element for forming a nitride, but if it is too large, it segregates to the grain boundaries during austenite heating, embrittles the grain boundaries, and deteriorates the delayed fracture property as well. Below.

【0012】V,Ti,Nbは、本発明において重要な
元素であり、結晶粒の微細化に寄与し、かつ焼戻し時に
結晶粒内に炭化物、窒化物を形成し水素を粒内にトラッ
プし応力集中部にある粒界への水素の拡散、集積を抑制
することにより遅れ破壊特性を向上させるため、それぞ
れV:0.10%超、Ti:0.01%超、Nb:0.
01%超必要である。ただし、多すぎると凝固時に粗大
な析出物を生成し靭性及び遅れ破壊特性を劣化させるた
め、それぞれV:0.50%以下、Ti:0.05%以
下、Nb:0.05%以下とした。
V, Ti, and Nb are important elements in the present invention, contribute to the refinement of crystal grains, form carbides and nitrides in the crystal grains during tempering, trap hydrogen in the grains, and cause stress. In order to improve delayed fracture characteristics by suppressing the diffusion and accumulation of hydrogen to the grain boundaries in the concentrated portion, V: more than 0.10%, Ti: more than 0.01%, Nb: 0.
It requires more than 01%. However, if too much, coarse precipitates are formed during solidification to deteriorate toughness and delayed fracture characteristics, so V: 0.50% or less, Ti: 0.05% or less, and Nb: 0.05% or less, respectively. .

【0013】熱処理条件に関しては125kgf/mm2 以上
の高強度において遅れ破壊を起こさないために焼戻し温
度の下限値を設定した。すなわち400℃未満では粒界
脆化が顕著となり遅れ破壊特性も劣化するため焼戻し温
度を400℃以上とした。
Regarding the heat treatment conditions, the lower limit of the tempering temperature is set so that delayed fracture does not occur at a high strength of 125 kgf / mm 2 or more. That is, if the temperature is less than 400 ° C, embrittlement of grain boundaries becomes remarkable and delayed fracture characteristics are deteriorated, so the tempering temperature was set to 400 ° C or higher.

【0014】ショットピーニング条件に関しては、塑性
歪量を直接測定することは困難であるため、鋼材表面か
108μm以上200μm以内の圧縮残留応力の最大
値(σr )で代表させた。すなわち、種々の引張負荷条
件下で素材の引張強度(σB )に対して塑性歪量、すな
わちσr が小さくσr /σB <0.6となる場合には十
分な拡散性水素の侵入抑制効果が得られないため、十分
な拡散性水素の侵入抑制効果の得られるσr /σB
0.6を必要なショトピーニング条件とした。なお本条
件を得るための具体的なショットピーニング方法は特に
限定しないが、ボルトのネジ部や首下部等応力集中部の
曲率半径を考慮した場合、粒径φ0.8mm以下の鋼球が
ショット粒として望ましく、また引張強度150kgf/mm
2 クラスの鋼材に対する安定した圧縮残留応力付与を考
慮した場合、硬度Hv600超の鋼球がショット粒とし
て望ましい。
Regarding the shot peening conditions, since it is difficult to directly measure the amount of plastic strain, the maximum value (σ r ) of the compressive residual stress within the range of 108 μm to 200 μm from the steel surface is represented. That is, when the plastic strain amount, that is, σ r is small and σ r / σ B <0.6 with respect to the tensile strength (σ B ) of the material under various tensile load conditions, sufficient diffusion of diffusible hydrogen Since a suppression effect cannot be obtained, a sufficient diffusion hydrogen penetration suppression effect can be obtained σ r / σ B
0.6 was set as the required shot peening condition. Note that the specific shot peening method for obtaining this condition is not particularly limited, but when considering the radius of curvature of the threaded portion of the bolt or the stress concentration portion such as the lower neck, steel balls with a grain diameter of φ 0.8 mm or less are shot grains. Desirable as tensile strength 150kgf / mm
Considering stable application of compressive residual stress to steels of the 2nd class, steel balls having hardness over Hv600 are desirable as shot grains.

【0015】[0015]

【実施例】供試鋼の化学成分を表1に示す。(1)〜
(6)は本発明に従う鋼であり、(7)は比較鋼として
用いたJIS規格のSCM435鋼である。これらの2
0mmφの棒鋼を用い、引張強度が150kgf/mm2 〜16
0kgf/mm2 の目標に焼入れ・焼戻しを行った。この時の
熱処理条件及び引張強度を表2に示す。
[Examples] Table 1 shows the chemical composition of the test steel. (1) ~
(6) is steel according to the present invention, and (7) is JIS standard SCM435 steel used as a comparative steel. These two
Uses 0 mmφ steel bar and has a tensile strength of 150 kgf / mm 2 ~ 16
Quenching and tempering were performed to a target of 0 kgf / mm 2 . Table 2 shows the heat treatment conditions and the tensile strength at this time.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】これらの鋼が遅れ破壊に対しどの程度の拡
散性水素を許容し得るか、すなわち各鋼種の限界水素量
がどのレベルにあるかを調べた。始めに限界水素量を求
める方法について述べる。図1に示したM10ボルトで
軸部に切欠き半径0.25mmRのV型環状ノッチを設け
た試験片を作り、2本を組にして水素を添加するため
に、15〜36%HCl溶液中に20〜150分間浸漬
することにより試験片中の水素量を変化させる。このう
ち1本はHCl浸漬から取り出し後大気中に30分放置
した後、熱的分析法により水素量を測定し、他の1本は
浸漬後30分間大気中に放置した後、図2に示した試験
機で遅れ破壊試験を行う。なお遅れ破壊試験における試
験荷重は各素材の引張強度の90%とした。
The extent of diffusible hydrogen that these steels can tolerate for delayed fracture, that is, the level of the limit hydrogen content of each steel type, was investigated. First, a method for obtaining the limit hydrogen amount will be described. In order to make a test piece with a V-shaped annular notch with a notch radius of 0.25 mmR on the shaft with M10 bolt shown in FIG. 1 and to add hydrogen in pairs, in a 15-36% HCl solution The hydrogen content in the test piece is changed by immersing the test piece for 20 to 150 minutes. One of them was taken out from the HCl soak and left in the air for 30 minutes, then the amount of hydrogen was measured by a thermal analysis method, and the other one was left in the air for 30 minutes after the immersion and then shown in FIG. The delayed destructive test is performed with the testing machine. The test load in the delayed fracture test was 90% of the tensile strength of each material.

【0019】以上の手段に従い、HClの濃度・浸漬時
間を種々変えた場合に、得られた拡散性水素量と遅れ破
壊試験における破断時間との関係を表3に示す。
Table 3 shows the relationship between the amount of diffusible hydrogen obtained and the breaking time in the delayed fracture test when the concentration of HCl and the immersion time were variously changed according to the above means.

【0020】同表から、各鋼の遅れ破壊を起こさない上
限の拡散性水素量、すなわち限界拡散性水素量を推定す
ると表4のようになる。この表より、本発明の組成及び
焼戻し温度の範囲にある(1)〜(6)は、比較材であ
る(7)に比べて限界水素量が高く、遅れ破壊しにくい
ことは明らかである。
From the same table, Table 4 shows the upper limit of diffusible hydrogen content that does not cause delayed fracture of each steel, that is, the critical diffusible hydrogen content. From this table, it is apparent that (1) to (6) in the composition and tempering temperature range of the present invention have a higher limit hydrogen amount and are less likely to undergo delayed fracture as compared with (7) which is a comparative material.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】次に表1に示した鋼に対し、粒径φ0.2
mm・Hv800の鋼球をショット粒として用い、投射速
度100m/sec・投射時間300sec の条件でショット
ピーニング処理を行った場合に、X線回折法により得ら
れた最大圧縮残留応力の表面からの深さとその応力値、
更に遅れ破壊試験によって得られた限界水素量をまとめ
て表5に示す。いずれも本発明のショットピーニング条
件であるσr /σB ≧0.6を満足しており、開発鋼で
ある(1)〜(6)は全て1.1ppm 以上もの高い限界
水素量を示しており、表4との比較からもショットピー
ニング処理による遅れ破壊特性の劣化は認められない。
なお比較鋼である(7)もショットピーニング処理によ
り限界水素量は0.16ppm から0.62ppm へ向上し
ているが、表4の(1)〜(6)に示したショットピー
ニング処理を施さない場合の開発鋼の限界水素量に比べ
て30%以上も低く、比較鋼にショットピーニング処理
を付与しただけでは十分な遅れ破壊改善効果は得られて
いない。
Next, for the steels shown in Table 1, the grain size φ0.2
The depth of the maximum compressive residual stress obtained by X-ray diffraction from the surface when shot peening was performed under the conditions of a projection speed of 100 m / sec and a projection time of 300 sec using steel balls of mm · Hv800 as shot grains. And its stress value,
Further, Table 5 shows a summary of the limiting hydrogen amounts obtained by the delayed fracture test. All satisfied the shot peening condition of the present invention, σ r / σ B ≧ 0.6, and all of the developed steels (1) to (6) showed a high limit hydrogen amount of 1.1 ppm or more. In comparison with Table 4, no deterioration of the delayed fracture property due to the shot peening treatment is observed.
The limit hydrogen content of the comparative steel (7) also improved from 0.16 ppm to 0.62 ppm by the shot peening treatment, but the shot peening treatment shown in (1) to (6) of Table 4 was not performed. In this case, the hydrogen content was 30% or more lower than the limit hydrogen content of the developed steel, and sufficient effect of improving delayed fracture could not be obtained only by giving shot peening treatment to the comparative steel.

【0024】[0024]

【表5】 [Table 5]

【0025】更に図2の試験機の試験片取付部周囲にセ
ルを設け恒温恒湿環境(温度60℃、湿度90%)を作
り、ショットピーニング条件(ショット粒径、ショット
粒硬度、投射速度、投射時間、最大残留圧縮応力の存在
位置、最大圧縮応力最大値)を変えた試験片を用い、負
荷応力を種々変えた状態で、上記湿潤環境中に100時
間保持した後、試験片を取り外し侵入拡散性水素量を測
定した結果を表6に示す。また表6の結果をまとめて図
3に示した。どの負荷レベルでも侵入拡散性水素量は素
材の限界水素量を下回っているが、ショットピーニング
処理により付与された圧縮残留応力の最大値が低い場
合、すなわちσr /σB ≧0.6を満たしていない場合
には、比較的侵入拡散性水素量が多く、負荷応力レベル
が増加するにつれ侵入水素量も増え、負荷応力150kg
f/mm2 の場合で、最大で0.11〜0.22ppm 程度も
の拡散性水素が鋼中に侵入している。これに対しショッ
トピーニング処理により付与された圧縮残留応力最大値
が高い場合、なすわちσr /σB ≧0.6を満たす場合
には、どの負荷応力レベルにおいても侵入水素量が少な
く、負荷応力150kgf/mm2 の場合でも0.012〜
0.018ppm 程度とごく微量の拡散性水素しか鋼中に
侵入し得ない。
Further, a cell is provided around the test piece mounting portion of the testing machine shown in FIG. 2 to create a constant temperature and constant humidity environment (temperature 60 ° C., humidity 90%), and shot peening conditions (shot particle size, shot particle hardness, projection speed, Using test pieces with different projection times, maximum residual compressive stress positions, and maximum compressive stress maximum values, after holding them in the above humid environment for 100 hours with various load stresses, remove the test pieces and invade them. The results of measuring the amount of diffusible hydrogen are shown in Table 6. The results of Table 6 are summarized and shown in FIG. The amount of penetrating diffusible hydrogen is below the limit hydrogen amount of the material at any load level, but when the maximum value of the compressive residual stress applied by shot peening is low, that is, σ r / σ B ≧ 0.6 is satisfied. If not, the amount of infiltrating diffusible hydrogen is relatively large, the amount of invading hydrogen increases as the load stress level increases, and the load stress is 150 kg.
In the case of f / mm 2 , a maximum of 0.11 to 0.22 ppm of diffusible hydrogen has penetrated into the steel. On the other hand, when the maximum value of the compressive residual stress applied by the shot peening process is high, that is, when σ r / σ B ≧ 0.6 is satisfied, the amount of invading hydrogen is small and the load is low at any load stress level. 0.012 even with a stress of 150 kgf / mm 2
Only a very small amount of diffusible hydrogen, about 0.018 ppm, can penetrate into the steel.

【0026】このようにσr /σB ≧0.6なる条件を
満たす場合には環境からの侵入水素量が非常に小さく抑
えられており、限界水素量に達するまでの時間、すなわ
ち遅れ破壊寿命が飛躍的に向上することが期待できる。
As described above, when the condition of σ r / σ B ≧ 0.6 is satisfied, the amount of hydrogen penetrating from the environment is suppressed to a very small value, and the time until the limit amount of hydrogen is reached, that is, the delayed fracture life is reached. Can be expected to improve dramatically.

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【発明の効果】本発明により、高強度鋼の遅れ破壊問題
を解決できるため、ボルトの高強度化が可能になる。従
って、建築ボルトの継手効率の向上や自動車ボルトの軽
量化等が期待できることから、工業的効果は大きい。
According to the present invention, the problem of delayed fracture of high-strength steel can be solved, so that the strength of the bolt can be increased. Therefore, it can be expected to improve the joint efficiency of the building bolts and reduce the weight of the automobile bolts, so that the industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験片の形状の説明図である。FIG. 1 is an explanatory diagram of a shape of a test piece.

【図2】遅れ破壊試験装置の説明図である。FIG. 2 is an explanatory diagram of a delayed fracture test device.

【図3】図1の試験片を負荷応力レベルを変えて恒温
(60℃)・恒湿(湿度90%)環境中に100時間保
持した後に、鋼中に侵入する拡散性水素量がショットピ
ーニング処理により抑制される効果を示す図である。
FIG. 3 Shot peening of the amount of diffusible hydrogen penetrating into the steel after the test piece of FIG. 1 was kept in a constant temperature (60 ° C.) / Constant humidity (90% humidity) environment for 100 hours while changing the load stress level. It is a figure which shows the effect suppressed by a process.

【符号の説明】[Explanation of symbols]

1 試験片 2 バランスウェイト 3 支点 1 test piece 2 balance weight 3 fulcrum

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 房男 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 二ノ宮 敬 愛知県名古屋市中村区名駅南1−24−30 新日本製鐵株式会社 名古屋支店内 (72)発明者 渡邊 吉弘 愛知県海部郡十四山村大字馬ヶ地新田字 大鳥481番地 東洋精鋼株式会社内 (56)参考文献 特開 平6−25745(JP,A) 特開 平5−255738(JP,A) 特開 平4−329849(JP,A) 特開 平5−287440(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 301 C21D 7/06 C22C 38/28 C22C 38/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fusao Ishikawa, Futtsu City, Chiba Prefecture, 20-1 Shintomi, Nippon Steel Co., Ltd. Technology Development Division 1-24-30 Nippon Steel Co., Ltd., Nagoya Branch (72) Inventor Yoshihiro Watanabe, 14 Yamamura, Kaifu-gun, Aichi Prefectural Yamaga, Nigata 481 Otori, Toyo Seiko Co., Ltd. (56) References Japanese Patent Laid-Open No. 6-25745 (JP, A) Japanese Patent Laid-Open No. 5-255738 (JP, A) Japanese Patent Laid-Open No. 4-329849 (JP, A) Japanese Patent Laid-Open No. 5-287440 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C22C 38/00 301 C21D 7/06 C22C 38/28 C22C 38/50

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 C :0.15〜0.50%、 Si:0.05〜2.00%、 Mn:0.10〜0.80%、 P :0.020%以下、 S :0.020%以下、 Cr:1.0〜3.0%、 Mo:0.2〜1.2%、 Al:0.005〜0.050%、 N :0.001〜0.010%、 を含有し、更に V :0.10超〜0.50%、 Ti:0.01超〜0.05%、 Nb:0.01超〜0.05% の一種またはニ種以上を含有し、残部がFe及び不可避
的不純物よりなり、引張強度125kgf/mm2 以上を含有
し、鋼材の表面から108μm以上200μm以内の圧
縮残留応力の最大値(σr )が素材の引張強度(σB
に対して、σr /σB ≧0.6を満足することを特徴と
する耐遅れ破壊特性及び耐水素侵入性に優れた高強度機
械構造用鋼。
1. In mass %, C: 0.15 to 0.50%, Si: 0.05 to 2.00%, Mn: 0.10 to 0.80%, P: 0.020% or less, S: 0.020% or less, Cr: 1.0 to 3.0%, Mo: 0.2 to 1.2%, Al: 0.005 to 0.050%, N: 0.001 to 0.010. %, More than V: 0.10 to 0.50%, Ti: more than 0.01 to 0.05%, Nb: more than 0.01 to 0.05%, or at least one of two or more. However, the balance consists of Fe and unavoidable impurities, contains a tensile strength of 125 kgf / mm 2 or more, and the maximum value (σ r ) of the compressive residual stress within 108 μm to 200 μm from the surface of the steel material is the tensile strength of the material (σ B )
On the other hand, a high-strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance, characterized by satisfying σ r / σ B ≧ 0.6.
【請求項2】 更に質量%で、 Ni:0.1〜2.0% を含有することを特徴とする請求項1記載の耐遅れ破壊
特性及び耐水素侵入性に優れた高強度機械構造用鋼。
2. A high-strength mechanical structure excellent in delayed fracture resistance and hydrogen penetration resistance according to claim 1, further containing Ni: 0.1 to 2.0% by mass . steel.
【請求項3】 請求項1または2記載の鋼成分よりな
り、焼入れた後に400℃以上の温度で焼戻しを行って
引張強度125kgf/mm2 以上を確保した鋼材に鋼材表
面から108μm以上200μm以内の圧縮残留応力の
最大値(σr )が素材の引張強度(σB )に対して、σ
r /σB ≧0.6を満足するように、ショットピーニン
グ処理を行うことを特徴とする耐遅れ破壊特性及び耐水
素侵入性に優れた高強度機械構造用鋼の製造方法。
3. A steel material comprising the steel composition according to claim 1 or 2, which is tempered at a temperature of 400 ° C. or more after quenching and has a tensile strength of 125 kgf / mm 2 or more, and 108 μm or more and 200 μm or less from the surface of the steel material. The maximum value of the compressive residual stress (σ r ) of the material is σ with respect to the tensile strength (σ B ) of the material.
A method for producing a high-strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance, characterized by performing shot peening treatment so as to satisfy r / σ B ≧ 0.6.
【請求項4】 粒径φ0.8mm以下・Hv600超の鋼
球をショット粒として用いてショットピーニング処理を
行うことを特徴とする請求項3記載の耐遅れ破壊特性及
び耐水素侵入性に優れた高強度機械構造用鋼の製造方
法。
4. Excellent delayed fracture resistance and hydrogen penetration resistance according to claim 3, wherein shot peening treatment is performed by using steel balls having a grain size φ0.8 mm or less and Hv600 or more as shot grains. Method for manufacturing high strength mechanical structural steel.
JP08515594A 1994-04-22 1994-04-22 High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same Expired - Lifetime JP3512463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08515594A JP3512463B2 (en) 1994-04-22 1994-04-22 High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08515594A JP3512463B2 (en) 1994-04-22 1994-04-22 High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07292434A JPH07292434A (en) 1995-11-07
JP3512463B2 true JP3512463B2 (en) 2004-03-29

Family

ID=13850785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08515594A Expired - Lifetime JP3512463B2 (en) 1994-04-22 1994-04-22 High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3512463B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577411B2 (en) * 1997-05-12 2004-10-13 新日本製鐵株式会社 High toughness spring steel
EP1342800A1 (en) * 2002-03-04 2003-09-10 Hiroshi Onoe Steel for high-strength screws and high-strength screw
JP4555749B2 (en) * 2004-10-08 2010-10-06 新日本製鐵株式会社 Method for improving delayed fracture resistance of high strength bolts
JP4427012B2 (en) 2005-07-22 2010-03-03 新日本製鐵株式会社 High strength bolt excellent in delayed fracture resistance and method for producing the same
JP6454635B2 (en) * 2015-12-01 2019-01-16 株式会社神戸製鋼所 High-strength bolts with excellent delayed fracture resistance and fatigue characteristics, and manufacturing method thereof
KR102042061B1 (en) * 2017-12-21 2019-11-08 주식회사 포스코 High-strength wire rod and steel with excellent hydrogen retardation resistance and manufacturing the same
CN112899573B (en) * 2021-01-19 2022-01-04 宝武杰富意特殊钢有限公司 Traction pin steel, quenching and tempering heat treatment process thereof and traction pin

Also Published As

Publication number Publication date
JPH07292434A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
WO2011111873A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP3512463B2 (en) High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP5214292B2 (en) Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same
JP4653389B2 (en) High-strength Al-plated wire rod and bolt excellent in delayed fracture resistance, and method for producing the same
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JP2002327235A (en) Mechanical structural steel excellent in hydrogen fatigue fracture resistance and method for producing the same
JP2960771B2 (en) Door guard bar with excellent crushing strength
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
JPH08260039A (en) Manufacturing method of carburized case hardening steel
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP3400886B2 (en) High tension bolt steel with excellent hydrogen entry prevention effect
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP2020128592A (en) Bolt, steel for bolt, and manufacturing method of bolt
JP6601140B2 (en) High strength bolt and steel for high strength bolt
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JP4261760B2 (en) High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term