[go: up one dir, main page]

JP3511993B2 - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JP3511993B2
JP3511993B2 JP2000317381A JP2000317381A JP3511993B2 JP 3511993 B2 JP3511993 B2 JP 3511993B2 JP 2000317381 A JP2000317381 A JP 2000317381A JP 2000317381 A JP2000317381 A JP 2000317381A JP 3511993 B2 JP3511993 B2 JP 3511993B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
nitride semiconductor
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000317381A
Other languages
Japanese (ja)
Other versions
JP2001196645A (en
Inventor
宏典 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2000317381A priority Critical patent/JP3511993B2/en
Publication of JP2001196645A publication Critical patent/JP2001196645A/en
Application granted granted Critical
Publication of JP3511993B2 publication Critical patent/JP3511993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化物半導体を有す
る発光素子と、発光素子からの光を吸収し波長変換して
蛍光を発する蛍光体とを利用した発光装置に係わり、特
に、色ズレや色むらが少なくRGB発光波長成分がそれ
ぞれピークとして取り出すことが可能な発光装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a light emitting element having a nitride semiconductor and a phosphor that absorbs light from the light emitting element and converts the wavelength to emit fluorescence. The present invention relates to a light emitting device that has little color unevenness and can extract RGB emission wavelength components as peaks.

【0002】[0002]

【従来技術】青色が高輝度に発光可能な窒化物系化合物
半導体(InxGayAl1-x-yN、0≦x≦1、0≦y
≦1)を利用した発光素子と、この発光素子からの青色
光を吸収し黄色光が発光可能な蛍光体とを組み合わせ
て、これらの混色光により図3に示す如く白色系が発光
可能な発光ダイオードが開発された。白色発光ダイオー
ドは、一対のリード電極(315)と導電性ワイヤー
(304)によって電気的に接続されたLEDチップ
(303)が筐体(316)のキャビティー内に配置さ
れている。キャビティーには、蛍光体(302)が含有
された樹脂(301)によって、充填されている。この
発光ダイオードは、発光ダイオードの小型軽量、低消費
電力で信頼性の高い特性を併せ持つことから、液晶装置
のバックライトや車載用の光源などとして急速に普及し
つつある。
2. Description of the Related Art A nitride-based compound semiconductor (In x Ga y Al 1-xy N, 0 ≦ x ≦ 1, 0 ≦ y capable of emitting blue light with high brightness)
≤1) is used in combination with a phosphor capable of emitting blue light that absorbs blue light from the light emitting element and emits white light as shown in FIG. A diode was developed. In the white light emitting diode, an LED chip (303) electrically connected to a pair of lead electrodes (315) by a conductive wire (304) is arranged in a cavity of a housing (316). The cavity is filled with a resin (301) containing a phosphor (302). This light emitting diode is rapidly becoming widespread as a backlight of a liquid crystal device, a light source for a vehicle, and the like, because the light emitting diode has the characteristics of small size, light weight, low power consumption, and high reliability.

【0003】図4に、このような発光ダイオードの発光
スペクトルを示す。図4に示す如く発光ダイオードから
は、単色性のピーク波長を持った発光素子からの青色光
と、発光素子と比べ比較的ブロードな発光スペクトルを
発するとはいえ、蛍光体からは赤みを発光する波長域は
少ない黄色光との混色光が発せられる。そのため、演色
性が低くなる。発光ダイオードからの白色光を着色フィ
ルターを利用してRGB(赤色、緑色、青色)それぞれ
の波長域に分けると赤色成分が少なく、色再現性が悪く
なる傾向にある。これらを防止するためには、赤色を発
光する蛍光体或いは発光素子を加えることによって、解
決することもできる。
FIG. 4 shows an emission spectrum of such a light emitting diode. As shown in FIG. 4, although the light emitting diode emits blue light from the light emitting element having a monochromatic peak wavelength and a relatively broad emission spectrum as compared with the light emitting element, the phosphor emits reddish light. A mixed light with yellow light with a small wavelength range is emitted. Therefore, the color rendering property becomes low. When the white light from the light emitting diode is divided into RGB (red, green, blue) wavelength regions by using a coloring filter, the red component is small and the color reproducibility tends to be poor. In order to prevent these, it is possible to solve by adding a phosphor or a light emitting element that emits red light.

【0004】しかしながら、いずれも新たな工程が増え
ると共に色を調節させることが極めて難しい。したがっ
て、場合によっては、色むらや色ズレが生じ歩留まりが
低下することとなる。特に、白色発光ダイオードを液晶
のバックライト光源などにする場合、発光ダイオードか
らの光を着色フィルターによって光の三原色であるRG
B(赤色、緑色、青色)の成分に分ける。それぞれのR
GBの成分を液晶によって透過率を制御することでマル
チカラー表示させることができる。そのため、RGBの
成分を高輝度に出せなければ、より明るく演色性の高い
マルチカラー表示が難しい。
However, it is extremely difficult to adjust the color as new processes are added. Therefore, in some cases, color unevenness or color misregistration occurs and the yield decreases. In particular, when the white light emitting diode is used as a liquid crystal backlight light source, the light from the light emitting diode is RG which is the three primary colors of the light by the color filter.
Divide into B (red, green, blue) components. Each R
Multicolor display can be performed by controlling the transmittance of the GB component with liquid crystal. Therefore, if the RGB components cannot be displayed with high brightness, it is difficult to achieve brighter multicolor display with high color rendering.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明は
比較的簡単な構成で、より色ズレや色むらの少ないRG
Bの発光成分が高輝度に発光可能な白色発光ダイオード
を提供することにある。より高輝度低消費電力が求めら
れる現在においては、上記発光ダイオードの構成におい
ては十分ではなく更なる改良が求められている。
SUMMARY OF THE INVENTION Therefore, the present invention has a relatively simple structure and is capable of producing less color shift and color unevenness.
An object of the present invention is to provide a white light-emitting diode in which the light emitting component of B can emit light with high brightness. At present, when higher brightness and lower power consumption are required, the structure of the light emitting diode is not sufficient and further improvement is required.

【0006】[0006]

【課題を解決するための手段】本発明は、井戸層がIn
濃度の異なる複数の窒化物半導体層を有する発光素子
と、該発光素子からの光を受けてそれよりも長波長の蛍
光を発するEu及び/又はCrで付活された窒素含有C
aO−Al −SiO 蛍光体と、を有することを
特徴とする白色系が発光可能な発光装置である。このよ
うな1チップ二端子の比較的簡単な構成によって、演色
性の極めて高く且つ、高輝度に混色発光可能な発光ダイ
オードを歩留まりよく形成させることができる。
According to the present invention, the well layer is made of In.
A light emitting device having a plurality of nitride semiconductor layers having different concentrations, and a nitrogen-containing C activated by Eu and / or Cr which receives light from the light emitting device and emits fluorescence having a wavelength longer than that of the light emitting device.
and aO-Al 2 O 3 -SiO 2 phosphor, a light emitting device white is capable of emitting light, characterized in that it comprises a. With such a relatively simple structure of one chip and two terminals, it is possible to form a light emitting diode having extremely high color rendering properties and capable of emitting mixed color light with high luminance at a high yield.

【0007】本発明の請求項2に記載の発光装置は、前
記発光素子は基板上から窒化物半導体が形成され、青色
の波長域を含む単色性のピーク波長が発光可能な窒化物
半導体層及び、緑色の波長領域を含む単色性のピーク波
長が発光可能な窒化物半導体層とを有し、青色を発光す
る窒化物半導体層は緑色を発光する窒化物半導体層より
も基板側に配置されてなり、前記蛍光体は発光素子が発
光する青色のピーク波長によって主として励起され、前
記蛍光体が発する蛍光は赤色系の波長域を含む発光装置
である。これによって、比較的簡単な構成で、RGBを
高輝度に発光可能な白色発光ダイオードを形成させるこ
とができる。また、本願請求項3に記載の発光装置は、
前記発光素子は回路基板上にAgペースト(114)を
利用して電気的に接続されており、前記蛍光体が混合さ
れた樹脂が前記発光素子の近接に配置されダイボンド樹
脂として併用されていることを特徴とする発光装置であ
る。これにより簡便で高輝度に信頼性の高い混色発光可
能な発光装置とすることができる。
According to a second aspect of the present invention, in the light emitting device, a nitride semiconductor is formed on a substrate of the light emitting element, and a nitride semiconductor layer capable of emitting a monochromatic peak wavelength including a blue wavelength range, and A nitride semiconductor layer capable of emitting a monochromatic peak wavelength including a green wavelength region, and emits blue light.
The nitride semiconductor layer that emits green light is
Is also disposed on the substrate side, and the phosphor emits the light emitting element.
The fluorescent light emitted from the phosphor is excited mainly by the blue peak wavelength of the light emitted, and is a light emitting device including a red wavelength range. With this, it is possible to form a white light emitting diode capable of emitting RGB high brightness with a relatively simple structure. Further, the light emitting device according to claim 3 of the present application,
The light emitting device includes Ag paste (114) on a circuit board.
Are electrically connected using the phosphor
Resin is placed close to the light emitting device
A light-emitting device characterized by being used as fat
It This makes it possible to provide a light-emitting device that is simple and has high brightness and high reliability and is capable of emitting mixed color light.

【0008】[0008]

【発明の実施の形態】本発明者は青色及び緑色が発光可
能な窒化物半導体発光素子と、赤色が発光可能な蛍光体
とを組み合わせることによって、比較的簡単な構成によ
りRGBの成分をバランスよく高輝度に取り出すことが
できる白色発光ダイオードとすることができることを見
出したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor combined a nitride semiconductor light emitting device capable of emitting blue and green light with a phosphor capable of emitting red light to balance RGB components with a relatively simple structure. The inventors have found that a white light emitting diode that can be taken out with high brightness can be obtained.

【0009】即ち、窒化物半導体を利用した発光素子
は、Inの組成比を増減させることで紫外から赤色まで
発光可能な発光素子を形成させることが可能であるとさ
れている。これは、活性層のIn含有量を増やすことに
より、その組成比に応じて長波長の発光を得られる傾向
があるためである。しかし、Inを多く含んだ窒化物半
導体は、高温になると分解されやすい。また、結晶性の
良好なIn量の多いな窒化物半導体層を形成させること
は極めて難しい。そのため、青色、緑色や黄色が発光可
能な発光素子は、現在のところ比較的制御性よく高輝度
に発光可能なものが形成できるが、赤色成分を含む単色
性のピーク波長が発光可能な発光素子が形成しがたい理
由の一つである。
That is, it is said that a light emitting device using a nitride semiconductor can form a light emitting device capable of emitting light from ultraviolet to red by increasing or decreasing the In composition ratio. This is because by increasing the In content of the active layer, long-wavelength light emission tends to be obtained depending on the composition ratio. However, a nitride semiconductor containing a large amount of In is easily decomposed at high temperatures. Further, it is extremely difficult to form a nitride semiconductor layer having a high crystallinity and a large amount of In. Therefore, a light-emitting element capable of emitting blue, green, or yellow light can be formed with relatively good controllability and high brightness at present, but a light-emitting element capable of emitting a monochromatic peak wavelength including a red component. Is one of the reasons why it is difficult to form.

【0010】したがって、本発明は比較的制御性よく青
色成分及び緑色成分が発光可能な窒化物半導体を多重量
子井戸構造を利用した発光素子として形成させる。つま
り、複数の井戸層の混晶比が異なっており、各井戸層か
ら異なる色成分、例えば青色成分及び緑色成分の発光を
させ合成光を取り出させる。他方、残りの赤色成分を発
光素子から放出された電磁波例えば青色の可視光によっ
て励起され、それよりも長波長の可視光に変換する蛍光
体を利用して白色発光ダイオードを形成させるものであ
る。
Therefore, the present invention forms a nitride semiconductor capable of emitting a blue component and a green component with relatively good controllability as a light emitting device utilizing a multiple quantum well structure. In other words, the mixed crystal ratios of the plurality of well layers are different, and the different color components, for example, the blue component and the green component are emitted from each well layer, and the combined light is extracted. On the other hand, a white light emitting diode is formed by utilizing a phosphor that excites the remaining red component by electromagnetic waves emitted from a light emitting element, for example, blue visible light, and converts it into visible light having a longer wavelength.

【0011】以下、本発明の発光装置を図1に示し、具
体的な構成について詳述するがこれのみに限られないこ
とは言うまでもない。本発明の半導体は、MOCVD法
を利用し、原料ガスとしてTMG(トリメチルガリウ
ム)ガス、TMA(トリメチルアルミニウム)ガス、T
MI(トリメチルインジウム)ガス、アンモニアガス、
不純物ガスとしてSiH4(シラン)、Cp2Mg(シク
ロペンタジエニルマグネシウム)及びキャリアガスとし
て水素ガスを種々所望に応じて流し、所望の半導体膜を
成膜させることができる。
The light emitting device of the present invention is shown in FIG. 1 and the specific structure will be described in detail below, but needless to say, the present invention is not limited to this. The semiconductor of the present invention uses the MOCVD method and uses TMG (trimethylgallium) gas, TMA (trimethylaluminum) gas, T
MI (trimethylindium) gas, ammonia gas,
SiH 4 (silane), Cp 2 Mg (cyclopentadienyl magnesium) as an impurity gas and hydrogen gas as a carrier gas can be caused to flow according to various desired conditions to form a desired semiconductor film.

【0012】より具体的には、サファイア基板(103)
上に、低温で成膜させたGaNからなるバッファ層(1
04)、n型不純物濃度が少ない或いはドープされてい
ないn型GaN層、n型電極が形成されるSi含有のG
aNからなるn型コンタクト層、n型不純物濃度が少な
い或いはドープされていないn型GaN層(これら三つ
のn型窒化物半導体層を模式的に105としてい
る。)、Si含有のAlGaN及びSi含有のGaNを
複数積層させ好適に用いられたn型クラッド層(不示
図)、量子井戸構造とされる膜厚の障壁層としてのGa
N(106)(108)(110)/井戸層としてのI
nGaN(107)(109)を複数組積層させた発光
層、MgがドープされたGaN/MgがドープされたG
aInNを複数組積層させたp型クラッド層(11
1)、MgがドープされたGaNからなるp型コンタク
ト層(112)を積層させてなる。こうして積層された
半導体ウエハのn型及びp型コンタクト層をエッチング
により露出させると共にそれぞれn型及びp型用の電極
(113)をスパッタリング法などにより半導体ウエハ
上に形成させる。各電極露出面以外をSiO2の絶縁部
材で被覆する。その後、半導体ウエハを各発光素子の大
きさにダイサーやスクライバーを利用して切断すること
により、それぞれを発光素子とすることができる。
More specifically, the sapphire substrate (103)
A buffer layer made of GaN (1
04), an n-type GaN layer having a low n-type impurity concentration or undoped, and Si-containing G for forming an n-type electrode
An n-type contact layer made of aN, an n-type GaN layer having a low n-type impurity concentration or undoped (these three n-type nitride semiconductor layers are schematically referred to as 105), Si-containing AlGaN and Si-containing. N-type clad layer (not shown), which is preferably used by stacking a plurality of GaN, and Ga as a barrier layer having a quantum well structure
N (106) (108) (110) / I as a well layer
A light emitting layer in which a plurality of sets of nGaN (107) and (109) are stacked, Mg-doped GaN / Mg-doped G
A p-type clad layer (11
1), a p-type contact layer (112) made of GaN doped with Mg is laminated. The n-type and p-type contact layers of the semiconductor wafer thus laminated are exposed by etching, and the n-type and p-type electrodes (113) are formed on the semiconductor wafer by sputtering or the like. The surface other than the exposed surface of each electrode is covered with an insulating member of SiO 2 . After that, the semiconductor wafer is cut into the size of each light emitting element by using a dicer or a scriber, so that each light emitting element can be obtained.

【0013】本発明で特徴的なことは、発光層として働
くGaN(106)(108)/InGaN(107)
(109)/GaN(106)(110)が複数組有
り、In組成比が異なる井戸層(107)(109)が
少なくとも2種類ある。特に、その内少なくとも一つが
420nmから490nmに単色性のピーク波長を持つ
青色光が発光可能にIn組成比が好適に選択されてい
る。他方、残りの井戸層の内少なくとも一つが495n
mから555nmに単色性のピーク波長を持つ緑色光が
発光可能にIn組成比が好適に選択されている。そのた
め、発光素子から放出される光は例えば青色と緑色の混
色光であるシアンが観測されることとなる。なお、より
短波長を発光する発光層の方が結晶性よく形成できる傾
向にあるため、サファイア基板、スピネル基板、窒化ガ
リウム基板やSiC基板上から窒化物半導体を形成させ
る場合、青色を発光する井戸層を緑色を発光する井戸層
よりも基板側に配置させることが好ましい。また、各色
の発光強度を調節させるためには井戸層の積層数を増減
させてやれば比較的簡単に調節させることができる。
The feature of the present invention is that GaN (106) (108) / InGaN (107) which functions as a light emitting layer.
There are a plurality of pairs of (109) / GaN (106) (110) and at least two types of well layers (107) (109) having different In composition ratios. In particular, the In composition ratio is preferably selected so that at least one of them can emit blue light having a monochromatic peak wavelength from 420 nm to 490 nm. On the other hand, at least one of the remaining well layers is 495n
The In composition ratio is preferably selected so that green light having a monochromatic peak wavelength from m to 555 nm can be emitted. Therefore, as the light emitted from the light emitting element, for example, cyan, which is a mixed color light of blue and green, is observed. Since a light emitting layer which emits light of a shorter wavelength tends to be formed with better crystallinity, when a nitride semiconductor is formed on a sapphire substrate, a spinel substrate, a gallium nitride substrate or a SiC substrate, a well emitting blue light. It is preferable to dispose the layer closer to the substrate than the well layer that emits green light. In addition, in order to adjust the emission intensity of each color, the number of well layers may be increased or decreased to make the adjustment relatively easy.

【0014】次に、本発明では発光素子から放出された
光によって、励起されそれよりも長波長の赤色系が発光
可能な蛍光体を用いる。蛍光体は、励起波長よりも長波
長の蛍光を発する方が効率が高い。また、蛍光体には無
機蛍光体と有機蛍光体があるが有機蛍光体は、励起波長
と発光波長とが比較的近づけることができ、且つ効率よ
く発光可能なものとすることができる。したがって、発
光素子からの青色光を受け赤色が発光可能な蛍光染料や
有機蛍光顔料だけでなく、緑色光を吸収して赤色光が発
光可能な蛍光染料や有機蛍光顔料を用いることができ
る。これによって、色味を調整させやすくすることもで
きる。他方、無機蛍光体は、より発光素子に近接して設
けても長時間にわたって信頼性よく発光可能な傾向にあ
る。
Next, in the present invention, a phosphor which is excited by the light emitted from the light emitting element and is capable of emitting a reddish light having a wavelength longer than that thereof is used. It is more efficient for the phosphor to emit fluorescence having a longer wavelength than the excitation wavelength. In addition, although there are inorganic phosphors and organic phosphors as the phosphors, the organic phosphors can be such that the excitation wavelength and the emission wavelength can be relatively close to each other and the light can be efficiently emitted. Therefore, not only a fluorescent dye or an organic fluorescent pigment that can emit red light by receiving blue light from a light emitting element, but also a fluorescent dye or an organic fluorescent pigment that can absorb green light and emit red light can be used. This can also make it easier to adjust the tint. On the other hand, the inorganic phosphor tends to be able to reliably emit light for a long time even if it is provided closer to the light emitting element.

【0015】このような蛍光体(101)として、Ce
で付活されたY・5/3Al、Eu及び/
又はCrで付活された窒素含有CaO−Al−S
iOが挙げられる。他にも、Mg5Li6Sb213
Mn、Mg2TiO4:Mn、Y23:Eu、Y22S:
Eu、3.5MgO・MgF2・GeO2:Mnやペリレ
ン系誘導体などを好適に挙げることができる。
As such a phosphor (101), Ce
Activated Y 2 O 3 .5 / 3Al 2 O 3 , Eu and /
Or nitrogen-containing been activated with Cr CaO-Al 2 O 3 -S
iO 2 may be mentioned. Besides, Mg 5 Li 6 Sb 2 O 13 :
Mn, Mg 2 TiO 4 : Mn, Y 2 O 3 : Eu, Y 2 O 2 S:
Eu, 3.5MgO.MgF 2 .GeO 2 : Mn, and perylene derivative can be preferably mentioned.

【0016】例えば、Eu及び/又はCrで付活された
窒素含有CaO−Al−SiO蛍光体は、酸化
アルミニウム、酸化イットリウム、窒化珪素及び酸化カ
ルシウムなどの原料に希土類原料を所定比に混合した粉
末を窒素雰囲気下において1300℃から1900℃
(より好ましくは1500℃から1750℃)において
溶融し成形させる。成形品をボールミルして洗浄、分
離、乾燥、最後に篩を通して蛍光体を形成させることが
できる。これにより450nmにピークをもった励起ス
ペクトルと約450nmにピークがある青色光により赤
色発光が発光可能なEu及び/又はCrで付活されたC
a−Al−Si−O−N系オキシナイトライド蛍光硝子
とすることができる。
For example, the nitrogen-containing CaO-Al 2 O 3 -SiO 2 phosphor activated with Eu and / or Cr is a rare earth material in a predetermined ratio to a material such as aluminum oxide, yttrium oxide, silicon nitride and calcium oxide. The powder mixed in 1300 ℃ to 1900 ℃ under nitrogen atmosphere
(More preferably from 1500 ° C. to 1750 ° C.) and melt and mold. The molded product can be ball-milled, washed, separated, dried, and finally passed through a sieve to form a phosphor. As a result, C excited by Eu and / or Cr capable of emitting red light by an excitation spectrum having a peak at 450 nm and blue light having a peak at about 450 nm.
It can be an a-Al-Si-O-N based oxynitride fluorescent glass.

【0017】なお、Eu及び/又はCrで付活されたC
a−Al−Si−O−N系オキシナイトライド蛍光硝子
の窒素含有量を増減することによって発光スペクトルの
ピークを575nmから690nmに連続的にシフトす
ることができる。同様に、励起スペクトルも連続的にシ
フトさせることができる。そのため、Mg、Znなどの
不純物がドープされたGaNやInGaNを発光層に含
む窒化ガリウム系化合物半導体からの光を、約580n
mの蛍光体の光の合成光により白色系を発光させること
ができる。特に、約490nmの光が高輝度に発光可能
なInGaNを発光層に含む窒化ガリウム系化合物半導
体からなる発光素子との組合せに理想的に発光を得るこ
ともできる。
C activated with Eu and / or Cr
The peak of the emission spectrum can be continuously shifted from 575 nm to 690 nm by increasing or decreasing the nitrogen content of the a-Al-Si-O-N oxynitride fluorescent glass. Similarly, the excitation spectrum can be continuously shifted. Therefore, light from a gallium nitride-based compound semiconductor containing GaN or InGaN doped with impurities such as Mg and Zn in the light emitting layer is emitted at about 580 n.
White light can be emitted by the combined light of the lights of the phosphors of m. In particular, it is also possible to ideally obtain light emission in combination with a light emitting element made of a gallium nitride-based compound semiconductor containing InGaN in the light emitting layer, which can emit light of approximately 490 nm with high brightness.

【0018】同様に、Y22S:Euであれば、Y23
とEu23を塩酸で溶解後、しゅう酸塩として共沈させ
る。この沈殿物を空気中で800から1000℃で招請
して酸化物とする。さらに硫黄と炭酸ソーダ及びフラッ
クスを混合しアルミナの坩堝に入れ1000℃から12
00℃の空気中で2時間から3時間焼成して焼成品を得
る。焼成品を粉砕、洗浄、分離乾燥して最後に篩に通す
ことでY22S:Euの蛍光体を得る。この蛍光体は、
発光素子からの青色光を効率よく吸収して赤色系の蛍光
を発することができる。上述の蛍光体は1種類で用いて
も良いし、2種類上を混合させて用いることもできる。
Similarly, if Y 2 O 2 S: Eu, then Y 2 O 3
And Eu 2 O 3 are dissolved in hydrochloric acid and coprecipitated as an oxalate. This precipitate is invited in air at 800 to 1000 ° C. to form an oxide. Further, sulfur, sodium carbonate and flux are mixed and put in an alumina crucible at 1000 ° C to 12 ° C.
The product is baked in air at 00 ° C for 2 to 3 hours to obtain a baked product. The fired product is crushed, washed, separated and dried, and finally passed through a sieve to obtain a Y 2 O 2 S: Eu phosphor. This phosphor is
It is possible to efficiently absorb blue light from the light emitting element and emit red fluorescence. The phosphors described above may be used alone or in combination of two or more.

【0019】エポキシ樹脂やシリコーン樹脂或いは低融
点硝子などのバインダー(102)中に、この蛍光体
(101)を混合しスラリーとする。上述した青色及び
緑色がそれぞれ発光可能な活性層を持った多重量子井戸
構造の発光素子に蛍光体含有のスラリーを塗布、硬化さ
せて発光装置を形成させる。或いは、ダイボンド樹脂と
して併用することもできる。より具体的には、回路基板
上に発光素子を配置させて金線などの導電性ワイヤーや
Agペーストなどの導電性ペースト(114)を利用し
て電気的に接続させた後、蛍光体が入った樹脂を塗布、
注入、印刷、蛍光体含有物質の張り合わせなど種々の方
法を利用して形成させることができる。発光素子からの
光を吸収して蛍光を発することができる限り、発光素子
上に被覆するものだけでなく、近接配置させるだけのも
のでも良い。
The phosphor (101) is mixed with a binder (102) such as epoxy resin, silicone resin or low melting point glass to form a slurry. A phosphor-containing slurry is applied to the light-emitting element having a multi-quantum well structure having active layers capable of emitting blue and green lights, respectively, and cured to form a light-emitting device. Alternatively, they can be used together as a die bond resin. More specifically, after the light emitting element is arranged on the circuit board and electrically connected using a conductive wire such as a gold wire or a conductive paste (114) such as Ag paste, a phosphor is added. Applied resin,
It can be formed by various methods such as injection, printing, and attachment of a phosphor-containing substance. As long as it can absorb the light from the light emitting element and emit fluorescence, the light emitting element may be not only the one coated on the light emitting element but also the one closely arranged.

【0020】こうして形成された発光装置の電極に外部
から電流を流すと図2に示す如く約460nmにピーク
がある単色性の発光波長と、約535nmにピーク波長
がある単色性のピーク波長を発光素子が発光する。そし
て、蛍光体からは発光素子からの光によって励起され、
それよりも長波長の赤色系が主として発光することがで
きる。そのため、発光素子上に1種類の蛍光体を塗布等
する極めて簡単な構成、且つ簡便な方法で、RGBが、
それぞれ強発光可能な白色光を発光させることができ
る。
When a current is applied to the electrodes of the light emitting device thus formed from the outside, a monochromatic emission wavelength having a peak at about 460 nm and a monochromatic peak wavelength having a peak wavelength at about 535 nm are emitted as shown in FIG. The element emits light. Then, the phosphor is excited by the light from the light emitting element,
A reddish light having a longer wavelength than that can mainly emit light. Therefore, RGB can be converted by a very simple structure and a simple method such as coating one kind of phosphor on the light emitting element.
It is possible to emit white light that can emit strong light.

【0021】なお、色むらや色ズレなどを抑制できる限
り、上記蛍光体に加えて種々の蛍光体や発光素子を利用
できることもいうまでもない。
Needless to say, various phosphors and light-emitting elements can be used in addition to the above-mentioned phosphors as long as color unevenness and color misregistration can be suppressed.

【0022】[0022]

【発明の効果】本発明の発光装置は、比較的制御性よく
形成できる多色発光素子を利用して、光の三原色のう
ち、2色を形成させると共に、残りの1色を多色発光素
子から供給された光を利用してRGB成分が高輝度に発
光可能な白色系が発光可能な発光ダイオードを提供でき
るものである。特に、本発明の発光ダイオードは、例え
ば2端子から電流を供給することで1つの発光素子を発
光させているにすぎない。そのため、極めて簡単な構造
にも係わらず、色ズレや色むらなく高輝度にRGB成分
を含んだ白色発光ダイオードとすることができる。この
ように、RGB成分を高輝度に含んだ発光ダイオード
は、RGBのフィルタ及び液晶を利用することによっ
て、フルカラーやマルチカラーの表示装置を構成させる
ことができる。同様に、演色性の極めて高い照明用など
の発光ダイオードとすることもできる。
The light emitting device of the present invention utilizes a multicolor light emitting element that can be formed with relatively good controllability to form two of the three primary colors of light and the remaining one color to be a multicolor light emitting element. It is possible to provide a white light emitting diode capable of emitting RGB components with high brightness by using the light supplied from the light emitting diode. In particular, the light emitting diode of the present invention only causes one light emitting element to emit light by supplying a current from, for example, two terminals. Therefore, it is possible to obtain a white light emitting diode including RGB components with high brightness without color shift or color unevenness, despite the extremely simple structure. As described above, the light-emitting diode including the RGB components with high brightness can form a full-color or multi-color display device by using the RGB filter and the liquid crystal. Similarly, a light emitting diode for lighting having extremely high color rendering can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の発光ダイオードの模式的断
面図を示す。
FIG. 1 shows a schematic cross-sectional view of a light emitting diode of the present invention.

【図2】 図2は、本発明の発光ダイオードの発光スペ
クトル図を示す。
FIG. 2 shows an emission spectrum diagram of the light emitting diode of the present invention.

【図3】 図3は、本発明と比較のための発光ダイオー
ドの模式的断面図を示す。
FIG. 3 shows a schematic cross-sectional view of a light emitting diode for comparison with the present invention.

【図4】 図4は、本発明と比較のために示す発光ダイ
オードの発光スペクトル図を示す。
FIG. 4 shows an emission spectrum diagram of a light emitting diode shown for comparison with the present invention.

【符号の説明】[Explanation of symbols]

101・・・蛍光体 102・・・バインダー 103・・・サファイア基板 104・・・バッファ層 105・・・n型窒化物半導体層 106、108、110・・・障壁層 107、109・・・井戸層 111・・・p型クラッド層 112・・・p型コンタクト層 113・・・電極 114・・・半田 115・・・リード電極 116・・・支持体 117・・・絶縁膜 301・・・樹脂 302・・・蛍光体 303・・・LEDチップ 304・・・ワイヤー 315・・・リード電極 316・・・筐体 101 ... Phosphor 102 ... binder 103 ... Sapphire substrate 104 ... Buffer layer 105 ... N-type nitride semiconductor layer 106, 108, 110 ... Barrier layer 107, 109 ... Well layer 111 ... P-type clad layer 112 ... p-type contact layer 113 ... Electrode 114 ... Solder 115 ... Lead electrode 116 ... Support 117 ... Insulating film 301 ... Resin 302 ... Phosphor 303 ... LED chip 304 ... Wire 315 ... Lead electrode 316 ... housing

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 C09K 11/00 - 11/89 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 33/00 C09K 11/00-11/89

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 井戸層がIn濃度の異なる複数の窒化物
半導体層を有する発光素子と、該発光素子からの光を受
けてそれよりも長波長の蛍光を発するEu及び/又はC
rで付活された窒素含有CaO−Al −SiO
蛍光体と、を有することを特徴とする白色系が発光可能
発光装置。
1. A light emitting device in which a well layer has a plurality of nitride semiconductor layers having different In concentrations, and Eu and / or C which receives light from the light emitting device and emits fluorescence having a wavelength longer than that of the light emitting device.
Nitrogen was activated by r-containing CaO-Al 2 O 3 -SiO 2
Can emit white light characterized by having a phosphor
Do the light-emitting device.
【請求項2】 前記発光素子は、基板上から窒化物半導
体が形成され、青色の波長域を含む単色性のピーク波長
が発光可能な窒化物半導体層及び、緑色の波長領域を含
む単色性のピーク波長が発光可能な窒化物半導体層とを
有し、青色を発光する窒化物半導体層は緑色を発光する
窒化物半導体層よりも基板側に配置されてなり、前記蛍
光体は発光素子が発光する青色のピーク波長によって主
として励起され、前記蛍光体が発する蛍光は赤色系の波
長域を含む請求項1記載の発光装置。
2. The light emitting device comprises a nitride semiconductor from above the substrate.
The body is formed, and has a nitride semiconductor layer capable of emitting a monochromatic peak wavelength including a blue wavelength range, and a nitride semiconductor layer capable of emitting a monochromatic peak wavelength including a green wavelength range, The nitride semiconductor layer that emits blue light emits green light
The nitride semiconductor layer is arranged closer to the substrate side than the nitride semiconductor layer.
The light source is mainly due to the blue peak wavelength emitted by the light emitting element.
The light-emitting device according to claim 1, wherein the fluorescence emitted by the phosphor is excited in the red wavelength range.
【請求項3】 前記発光素子は回路基板上にAgペース
ト(114)を利用して電気的に接続されており、前記
蛍光体が混合された樹脂が前記発光素子の近接に配置さ
れダイボンド樹脂として併用されていることを特徴とす
る請求項2記載の発光装置。
3. The light-emitting element is Ag-based on a circuit board.
(114) to be electrically connected,
A resin mixed with phosphor is placed near the light emitting device.
It is also used as a die bond resin.
The light emitting device according to claim 2.
JP2000317381A 1999-10-25 2000-10-18 Light emitting device Expired - Lifetime JP3511993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000317381A JP3511993B2 (en) 1999-10-25 2000-10-18 Light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30192499 1999-10-25
JP11-301924 1999-10-25
JP2000317381A JP3511993B2 (en) 1999-10-25 2000-10-18 Light emitting device

Publications (2)

Publication Number Publication Date
JP2001196645A JP2001196645A (en) 2001-07-19
JP3511993B2 true JP3511993B2 (en) 2004-03-29

Family

ID=26562931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000317381A Expired - Lifetime JP3511993B2 (en) 1999-10-25 2000-10-18 Light emitting device

Country Status (1)

Country Link
JP (1) JP3511993B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952932C1 (en) * 1999-11-03 2001-05-03 Osram Opto Semiconductors Gmbh LED white light source with broadband excitation
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP3479062B2 (en) * 2001-10-31 2003-12-15 サンユレック株式会社 Light emitting diode
JP2003152227A (en) 2001-11-14 2003-05-23 Citizen Electronics Co Ltd LED color correction means and color correction method
JP4191937B2 (en) * 2002-02-15 2008-12-03 株式会社日立製作所 White light source and image display apparatus using the same
JP5026730B2 (en) * 2002-04-26 2012-09-19 株式会社カネカ Composition for optical material, optical material and method for producing the same
JP4611617B2 (en) * 2002-04-26 2011-01-12 株式会社カネカ Light emitting diode
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
KR101030068B1 (en) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device manufacturing method and nitride semiconductor device
JP2004083653A (en) 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method of manufacturing the same
JP4072632B2 (en) * 2002-11-29 2008-04-09 豊田合成株式会社 Light emitting device and light emitting method
JP2004266134A (en) * 2003-03-03 2004-09-24 Kanegafuchi Chem Ind Co Ltd Resin paste for die bonding and light emitting diode using it
US7592192B2 (en) * 2004-03-05 2009-09-22 Konica Minolta Holdings, Inc. White light emitting diode (white LED) and method of manufacturing white LED
TWI243489B (en) * 2004-04-14 2005-11-11 Genesis Photonics Inc Single chip light emitting diode with red, blue and green three wavelength light emitting spectra
JP2007335799A (en) * 2006-06-19 2007-12-27 Toyoda Gosei Co Ltd Light-emitting apparatus
JP5073973B2 (en) * 2006-06-21 2012-11-14 株式会社野田スクリーン Light emitting diode package
JP5073972B2 (en) * 2006-06-21 2012-11-14 株式会社野田スクリーン Light emitting diode package
JP2008141118A (en) * 2006-12-05 2008-06-19 Rohm Co Ltd Semiconductor white light emitting device
JP2008147419A (en) * 2006-12-11 2008-06-26 Rohm Co Ltd Semiconductor white light emitting element, and method of manufacturing semiconductor white light emitting element
KR20160088743A (en) * 2015-01-16 2016-07-26 서울반도체 주식회사 Light emitting device
JP2022553664A (en) * 2019-10-23 2022-12-26 インテマティックス・コーポレーション High color gamut photoluminescence wavelength conversion white light emitting device

Also Published As

Publication number Publication date
JP2001196645A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP3511993B2 (en) Light emitting device
EP1630877B1 (en) LED with fluorescent material
JP2927279B2 (en) Light emitting diode
TWI492413B (en) Illuminating device
JP3809760B2 (en) Light emitting diode
US7854859B2 (en) Nitride phosphor, method for producing this nitride phosphor, and light emitting device that uses this nitride phosphor
JP3503139B2 (en) Light emitting device and display device
JP3956972B2 (en) Light emitting device using fluorescent material
JP4932078B2 (en) Light emitting device and manufacturing method thereof
US6933535B2 (en) Light emitting devices with enhanced luminous efficiency
US20070012931A1 (en) White semiconductor light emitting device
JP2002368265A (en) Group III nitride compound semiconductor light emitting device
JP4222059B2 (en) Light emitting device
JP4151284B2 (en) Nitride semiconductor light-emitting element, light-emitting device, and manufacturing method thereof
JP3367096B2 (en) Method of forming light emitting diode
JP2003101081A (en) Light-emitting diode
JP4770058B2 (en) LIGHT EMITTING ELEMENT AND DEVICE
JP5157029B2 (en) Light emitting device using phosphor
JP5606342B2 (en) Light emitting device
JP3604298B2 (en) Method of forming light emitting diode
JP2002050800A (en) Light-emitting device and forming method therefor
JPH11243232A (en) Led display device
JP4613546B2 (en) Light emitting device
JP2002246651A (en) Light emitting diode and method of manufacturing the same
JP2003224307A (en) Light-emitting diode and its formation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

R150 Certificate of patent or registration of utility model

Ref document number: 3511993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250