[go: up one dir, main page]

JP3506521B2 - Biodegradable core-sheath composite long fiber and method for producing the same - Google Patents

Biodegradable core-sheath composite long fiber and method for producing the same

Info

Publication number
JP3506521B2
JP3506521B2 JP04767795A JP4767795A JP3506521B2 JP 3506521 B2 JP3506521 B2 JP 3506521B2 JP 04767795 A JP04767795 A JP 04767795A JP 4767795 A JP4767795 A JP 4767795A JP 3506521 B2 JP3506521 B2 JP 3506521B2
Authority
JP
Japan
Prior art keywords
core
sheath
component
copolymer
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04767795A
Other languages
Japanese (ja)
Other versions
JPH08246243A (en
Inventor
創 山口
直次 一瀬
孝一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP04767795A priority Critical patent/JP3506521B2/en
Publication of JPH08246243A publication Critical patent/JPH08246243A/en
Application granted granted Critical
Publication of JP3506521B2 publication Critical patent/JP3506521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性を有し、かつ
紡出糸条の冷却性および繊維の機械的性能に優れ、また
熱接着性を有する生分解性芯鞘複合長繊維およびその製
造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a biodegradable core-sheath composite continuous fiber which is biodegradable, has excellent cooling properties of spun yarn and mechanical properties of fibers, and has thermal adhesiveness. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来から、生分解性を有する繊維として
は、木綿、麻に代表されるセルロース系繊維あるいは、
絹に代表される蛋白質繊維が挙げられる。しかし、これ
らのいわゆる天然繊維は、非熱可塑性であるため熱接着
性を有しないと同時に、短期間では分解されず、長期間
にわたり製品形態が保持され、自然環境保護や生活環境
保護の点で好ましくない。
2. Description of the Related Art Conventionally, as fibers having biodegradability, cellulosic fibers represented by cotton and hemp, or
A protein fiber represented by silk can be mentioned. However, these so-called natural fibers do not have thermal adhesiveness because they are non-thermoplastic, and at the same time, they are not decomposed in a short period of time and the product form is maintained for a long period of time, and in terms of protection of natural environment and living environment. Not preferable.

【0003】また、生分解性長繊維として、湿式紡糸法
により得られるキュプラレーヨン長繊維やビスコースレ
ーヨン長繊維、キチンやコラーゲンなどの天然物の化学
繊維などが知られている。しかしながら、これら従来の
生分解性長繊維は、機械的強度が低いうえに、親水性で
あるため、吸水・湿潤時の機械的強度低下が著しく、さ
らに素材自体が非熱可塑性であるため熱接着性を有しな
いなど、種々の問題を抱えていた。
As biodegradable long fibers, there are known cupra rayon long fibers, viscose rayon long fibers obtained by a wet spinning method, and natural chemical fibers such as chitin and collagen. However, since these conventional biodegradable long fibers have low mechanical strength and are hydrophilic, the mechanical strength is significantly decreased when they are absorbed by water and wet, and the material itself is non-thermoplastic, so that they are heat-bonded. There were various problems such as not having sex.

【0004】そこで、生分解性複合繊維が、例えば特開
平5−93316号公報「微生物分解性複合繊維」、特
開平5−93318号公報「微生物分解性複合繊維及び
その不織布」で提案されている。しかし、これら生分解
性複合繊維は、樹脂の融点や結晶化温度が低いことか
ら、紡出糸条の冷却性が劣り、糸条同士が密着するなど
のトラブルが発生し、これに起因して得られる繊維は均
斉度に劣るものであった。
Therefore, biodegradable conjugate fibers have been proposed in, for example, Japanese Patent Application Laid-Open No. 5-93316, "Microbiodegradable composite fiber" and Japanese Patent Application Laid-Open No. 5-93318, "Microbiodegradable composite fiber and nonwoven fabric thereof". . However, since these biodegradable conjugate fibers have a low melting point and a crystallization temperature of the resin, the cooling property of the spun yarn is inferior, and troubles such as the yarns sticking to each other occur, which is caused by this. The obtained fiber was inferior in uniformity.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題を
解決し、生分解性を有し、かつ、紡出糸条の冷却性およ
び繊維の機械的性能に優れ、また熱接着性を有する生分
解性複合長繊維およびその製造方法を提供しようとする
ものである。
The present invention solves the above problems, has biodegradability, is excellent in the cooling property of spun yarn and the mechanical performance of fibers, and has thermal adhesiveness. It is an object of the present invention to provide a biodegradable composite filament and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく、日々実験検討の末に本発明に至った。すな
わち、本発明は以下の構成を要旨とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have arrived at the present invention after conducting daily examinations. That is, the present invention has the following structures.

【0007】1.芯成分がポリブチレンサクシネートか
らなり、鞘成分がポリブチレンサクシネートを構成する
繰り返し単位要素に他の脂肪族ポリエステルを構成する
繰り返し単位要素を共重合させ、かつ、ブチレンサクシ
ネートの共重合量比が65〜95モル%である共重合体
からなる芯鞘複合長繊維であり、少なくとも鞘成分を構
成する共重合体に結晶核剤を含有せしめることを特徴と
する生分解性芯鞘複合長繊維。
1. The core component is made of polybutylene succinate, the sheath component is made to copolymerize the repeating unit element constituting another aliphatic polyester to the repeating unit element constituting polybutylene succinate, and the copolymerization amount ratio of butylene succinate Is a core-sheath composite long fiber made of a copolymer having a content of 65 to 95 mol%, characterized in that at least a copolymer constituting the sheath component contains a crystal nucleating agent. .

【0008】2.鞘成分がポリブチレンサクシネートお
よびポリエチレンサクシネートを構成する繰り返し単位
要素による共重合体からなることを特徴とする生分解性
芯鞘複合長繊維。
2. A biodegradable core-sheath composite long fiber, wherein the sheath component is a copolymer of repeating unit elements constituting polybutylene succinate and polyethylene succinate.

【0009】3.鞘成分がポリブチレンサクシネートお
よびポリブチレンアジペートを構成する繰り返し単位要
素による共重合体からなることを特徴とする生分解性芯
鞘複合長繊維。
3. A biodegradable core-sheath composite continuous fiber, wherein the sheath component is a copolymer of repeating unit elements constituting polybutylene succinate and polybutylene adipate.

【0010】4.芯成分および鞘成分ともに、メルトフ
ローレート値が10〜70g/10分である重合体から
なることを特徴とする生分解性芯鞘複合長繊維。但し、
メルトフローレート値の測定は、ASTM−D−123
8(E)記載の方法に準じる。
4. A biodegradable core-sheath composite continuous fiber, characterized in that both the core component and the sheath component are made of a polymer having a melt flow rate value of 10 to 70 g / 10 min. However,
The melt flow rate value is measured according to ASTM-D-123.
According to the method described in 8 (E).

【0011】[0011]

【0012】[0012]

【0013】 5.芯成分にポリブチレンサクシネート
を、鞘成分にポリブチレンサクシネートを構成する繰り
返し単位要素と他の脂肪族ポリエステルを構成する繰り
返し単位要素との共重合体を用い、少なくとも鞘成分に
結晶核剤を添加し、芯鞘複合用の紡糸口金を介して、鞘
成分を構成する共重合体の融点(Tm)から導びかれる
(1)式を満足する紡糸温度[T(℃)]で溶融紡出
し、紡出糸条を冷却後、いったん巻き取った後または巻
き取ることなく連続して延伸することを特徴とする生分
解性芯鞘複合長繊維の製造方法。Tm+40≦T≦Tm
+150 …(1)
5. Polybutylene succinate as a core component, using a copolymer of repeating unit elements constituting polybutylene succinate as a sheath component and repeating unit elements constituting another aliphatic polyester, and at least a crystal nucleating agent as a sheath component. It is added and guided from the melting point (Tm) of the copolymer constituting the sheath component through the spinneret for core-sheath compounding.
Biodegradation characterized by melt-spinning at a spinning temperature [T (° C.)] satisfying the formula (1) , cooling the spun yarn, and once stretching or continuously stretching without winding. Of producing a flexible core-sheath composite long fiber. Tm + 40 ≦ T ≦ Tm
+150 (1)

【0014】次に本発明を詳細に説明する。本発明にお
ける芯鞘複合長繊維は、芯成分としてはポリブチレンサ
クシネートであることが必要であり、鞘成分としてはポ
リブチレンサクシネートを構成する繰り返し単位要素に
他の脂肪族ポリエステルを構成する繰り返し単位要素を
共重合させたものであることが必要である。ポリブチレ
ンサクシネート以外の他の脂肪族ポリエステルとして
は、例えば、ポリグリコール酸やポリ乳酸のようなポリ
(α−ヒドロキシ酸)またはこれらを構成する繰り返し
単位要素による共重合体が、また、ポリ(ε−カプロラ
クトン)、ポリ(β−プロピオラクトン)のようなポリ
(ω−ヒドロキシアルカノエート)が、さらに、ポリ−
3−ヒドロキシプロピオネート、ポリ−3−ヒドロキシ
ブチレート、ポリ−3−ヒドロキシカプロエート、ポリ
−3−ヒドロキシヘプタノエート、ポリ−3−ヒドロキ
シオクタノエートのようなポリ(β−ヒドロキシアルカ
ノエート)およびこれらを構成する繰り返し単位要素と
ポリ−3−ヒドロキシバリレートやポリ−4−ヒドロキ
シブチレートを構成する繰り返し単位要素との共重合体
が挙げられる。また、グリコールとジカルボン酸の縮重
合体からなるものとして、例えばポリエチレンオキサレ
ート、ポリエチレンアジペート、ポリエチレンアゼテー
ト、ポリブチレンオキサレート、ポリエチレンサクシネ
ート、ポリブチレンアジペート、ポリブチレンセバケー
ト、ポリヘキサメチレンセバケート、ポリネオペンチル
オキサレートまたはこれらを構成する繰り返し単位要素
による共重合体が挙げられる。以上の脂肪族ポリエステ
ルのなかで、ポリエチレンサクシネートならびにポリブ
チレンアジペートを構成する繰り返し単位要素が、製糸
性および生分解性能に優れるなどの理由により、特に好
適に用いられる。
Next, the present invention will be described in detail. The core-sheath composite continuous fiber in the present invention needs to be polybutylene succinate as the core component, and the repeating unit element that constitutes the polybutylene succinate as the sheath component constitutes another aliphatic polyester. It is necessary that the unit elements are copolymerized. Examples of the aliphatic polyester other than polybutylene succinate include, for example, poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, or a copolymer of repeating unit elements constituting these, and poly (α-hydroxy acid). ε-caprolactone), poly (ω-hydroxyalkanoates) such as poly (β-propiolactone), and poly-
Poly (β-hydroxyalkanoates such as 3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaproate, poly-3-hydroxyheptanoate, poly-3-hydroxyoctanoate. And a copolymer of a repeating unit element constituting these and a repeating unit element constituting poly-3-hydroxyvalerate or poly-4-hydroxybutyrate. In addition, as a polycondensation polymer of glycol and dicarboxylic acid, for example, polyethylene oxalate, polyethylene adipate, polyethylene azate, polybutylene oxalate, polyethylene succinate, polybutylene adipate, polybutylene sebacate, polyhexamethylene sebacate. , Polyneopentyl oxalate, or copolymers of the repeating unit elements constituting them. Among the above aliphatic polyesters, the repeating unit elements constituting polyethylene succinate and polybutylene adipate are particularly preferably used because of their excellent spinnability and biodegradability.

【0015】また、本発明における芯鞘複合長繊維の鞘
成分を構成する共重合体において、ブチレンサクシネー
トの共重合量比が65〜95モル%であることが必要で
ある。ブチレンサクシートの共重合量比が95モル%を
超えると生分解性能が低下するため好ましくない。逆
に、ブチレンサクシネートの共重合量比が65モル%未
満であると、生分解性能は向上するものの、結晶核剤を
添加しても紡出糸条の冷却性に劣り、さらに得られた糸
の機械的性能が低下するため好ましくない。
Further, in the copolymer constituting the sheath component of the core-sheath composite long fibers in the present invention, it is necessary that the copolymerization ratio of butylene succinate is 65 to 95 mol%. If the copolymerization amount ratio of butylenesac sheet exceeds 95 mol%, the biodegradability is deteriorated, which is not preferable. On the other hand, when the copolymerization amount ratio of butylene succinate is less than 65 mol%, the biodegradability is improved, but even if the crystal nucleating agent is added, the cooling property of the spun yarn is inferior and further obtained. It is not preferable because the mechanical performance of the yarn is reduced.

【0016】本発明における芯成分および鞘成分として
の重合体および共重合体は、数平均分子量が20,00
0以上、好ましくは40,000以上、さらに好ましく
は60,000以上のものが製糸性および得られる糸条
の特性の点で好ましい。また、重合度を高めるために少
量のジイソシアネートやテトラカルボン酸二無水物など
で鎖延長したものでもよい。
The polymers and copolymers as the core component and the sheath component in the present invention have a number average molecular weight of 20,000.
Those having a value of 0 or more, preferably 40,000 or more, and more preferably 60,000 or more are preferable in terms of the spinnability and the characteristics of the obtained yarn. Further, in order to increase the degree of polymerization, chain extension may be carried out with a small amount of diisocyanate, tetracarboxylic acid dianhydride or the like.

【0017】また、本発明における重合体のメルトフロ
ーレート値(以下、MFR値と略す)は、10〜70g
/10分であることが好ましい。但し、本発明における
メルトフローレート値は、ASTM−D−1238
(E)記載の方法に準じて測定したものである。MFR
値が10g/10分未満であると、あまりにも高粘度で
あり、紡出糸条の細化がスムーズでなく、太繊維で均斉
度に劣るものしか得られなくなり好ましくない。逆に、
MFR値が70g/10分を超えると、あまりに低粘度
のため、紡糸工程において糸切れが多発し、操業性が悪
く、均斉度に劣るものしか得られなくなり好ましくな
い。
Further, the melt flow rate value (hereinafter, abbreviated as MFR value) of the polymer in the present invention is 10 to 70 g.
/ 10 minutes is preferable. However, the melt flow rate value in the present invention is ASTM-D-1238.
It is measured according to the method described in (E). MFR
When the value is less than 10 g / 10 minutes, the viscosity is too high, the spun yarn is not thinned smoothly, and only thick fibers having poor uniformity are obtained, which is not preferable. vice versa,
When the MFR value exceeds 70 g / 10 minutes, the viscosity is too low, so that yarn breakage occurs frequently in the spinning process, the operability is poor, and only poor uniformity is obtained, which is not preferable.

【0018】なお、本発明においては、前述したところ
の芯成分ならびに鞘成分を構成する重合体および共重合
体に、各々必要に応じて、例えば艶消し剤、顔料、光安
定剤、熱安定剤、酸化防止剤などの各種添加剤を本発明
の効果を損なわない範囲内で添加してもよい。
In the present invention, the polymers and copolymers constituting the core component and the sheath component described above may be, if necessary, for example, matting agents, pigments, light stabilizers and heat stabilizers. Various additives such as antioxidants may be added within a range that does not impair the effects of the present invention.

【0019】本発明における複合長繊維の断面は芯鞘形
態であることが必要である。すなわち、本発明の芯成分
重合体を単独に用いると、紡出糸条の冷却性および得ら
れる糸の機械的性能には優れるものの、生分解性能に乏
しくなる。一方、本発明の鞘成分重合体を単独で用いる
と、生分解性能には優れるものの、製糸工程において前
記重合体の結晶化温度が低いために紡出糸条間に密着が
生じ、糸を採取することが困難になる。本発明の芯鞘構
造にすることにより、芯成分にて機械的性能を向上さ
せ、鞘成分で生分解性能を促進させ、さらに鞘成分に結
晶核剤を添加することにより、初めて紡出糸条間の密着
発生がなく、かつ機械的性能および生分解性能に優れた
長繊維を得ることができる。
The cross section of the composite continuous fiber in the present invention is required to have a core-sheath form. That is, when the core component polymer of the present invention is used alone, although the cooling properties of the spun yarn and the mechanical properties of the obtained yarn are excellent, the biodegradability becomes poor. On the other hand, when the sheath component polymer of the present invention is used alone, the biodegradability is excellent, but since the crystallization temperature of the polymer is low in the yarn making process, adhesion occurs between spun yarns and the yarn is collected. Difficult to do. By using the core-sheath structure of the present invention, the core component improves mechanical performance, the sheath component promotes biodegradability, and a crystal nucleating agent is added to the sheath component for the first time. It is possible to obtain long fibers which are free from adhesion between the fibers and have excellent mechanical performance and biodegradability.

【0020】さらに、鞘部が低融点であるので、高次加
工において本発明の生分解性複合長繊維で構成された製
品を鞘部の融点近傍の温度で熱処理を施すことにより、
柔軟性を損なうことなく、熱融着繊維を効率的に得るこ
とができる。
Further, since the sheath portion has a low melting point, a product constituted by the biodegradable composite continuous fiber of the present invention is subjected to a heat treatment at a temperature near the melting point of the sheath portion in a higher processing,
The heat-bonded fiber can be efficiently obtained without impairing the flexibility.

【0021】また、本発明の生分解性芯鞘複合長繊維に
おいては、複合比すなわち芯成分に対する鞘成分の重量
比を1/5〜5/1とするのが好ましく、1/2〜2/
1とするのがより好ましい。芯成分1に対し鞘部の重量
比が5を超えると生分解性能は優れるものの繊維の強度
が低下し、また紡出糸条の冷却性も低下するため好まし
くない。逆に、芯成分5に対し鞘部の重量比が1未満で
あると紡出糸条の冷却性は向上するものの、糸条の断面
形状が安定せず、また生分解性能も低下するため好まし
くない。
In the biodegradable core-sheath composite continuous fiber of the present invention, the composite ratio, that is, the weight ratio of the sheath component to the core component is preferably 1/5 to 5/1, and 1/2 to 2 /.
It is more preferably 1. When the weight ratio of the sheath portion to the core component 1 exceeds 5, the biodegradability is excellent, but the strength of the fiber decreases and the cooling property of the spun yarn also decreases, which is not preferable. On the contrary, when the weight ratio of the sheath portion to the core component 5 is less than 1, although the cooling property of the spun yarn is improved, the cross-sectional shape of the yarn is not stable and the biodegradability is deteriorated, which is preferable. Absent.

【0022】ところで、本発明においては、芯鞘複合長
繊維の少なくとも鞘成分に結晶核剤を添加することが必
要である。すなわち、結晶核剤を添加することなしでは
結晶性の低い共重合体が溶融紡出後に固化しにくいた
め、紡出糸条間に密着が発生しやすくなる。結晶核剤
は、鞘成分を構成する共重合体の重合工程あるいは溶融
工程で添加するが、その際、得られる糸の機械的性能お
よび均斉度を向上させるため、できる限り均一分散させ
ておくことが好ましい。
By the way, in the present invention, it is necessary to add a crystal nucleating agent to at least the sheath component of the core-sheath composite long fibers. That is, since a copolymer having low crystallinity is hard to solidify after melt-spinning without adding a crystal nucleating agent, adhesion is apt to occur between spun yarns. The crystal nucleating agent is added in the polymerization step or the melting step of the copolymer constituting the sheath component, but at this time, it should be dispersed as uniformly as possible in order to improve the mechanical performance and the uniformity of the obtained yarn. Is preferred.

【0023】結晶核剤としては、粉末状の無機物で、か
つ溶融液に溶解したりするものでなければ特に制限をう
けないが、タルク、炭酸カルシウム、酸化チタン、シリ
カゲル、酸化マグネシウムなどが好適に用いられる。
The crystal nucleating agent is not particularly limited as long as it is a powdered inorganic substance and does not dissolve in the melt, but talc, calcium carbonate, titanium oxide, silica gel, magnesium oxide and the like are preferable. Used.

【0024】結晶核剤としての無機粉末の平均粒径は5
μm以下であるのが好ましい。平均粒径が5μmを超え
ると、繊度のより細かな繊維が得られにくくなる傾向が
生じたり、あるいは吐出孔を複数備えている紡糸口金内
の濾過フィルターに目詰まりが発生しやすくなり、紡糸
操業性が低下する傾向が生じる。これら理由により、結
晶核剤としての無機粉末の平均粒径は5μm以下、好ま
しくは4μm以下、さらに好ましくは3μm以下が良
い。
The average particle size of the inorganic powder as a crystal nucleating agent is 5
It is preferably not more than μm. When the average particle size exceeds 5 μm, it tends to be difficult to obtain finer fibers, or the filtration filter in the spinneret having a plurality of discharge holes is apt to be clogged, resulting in a spinning operation. There is a tendency for the sex to decrease. For these reasons, the average particle size of the inorganic powder as the crystal nucleating agent is 5 μm or less, preferably 4 μm or less, more preferably 3 μm or less.

【0025】結晶核剤としての無機粉末の嵩比容は、2
〜10cc/gであるのが好ましく、3〜8cc/gで
あるのがより好ましい。なお、嵩比容は、単位重量当り
の無機粉末の体積のことである。嵩比容が大きくなれば
なるほど、無機粉末の表面積が大きくなり、結晶核剤と
しての効果を増大させることになる。無機粉末の嵩比容
が2cc/g未満であると、結晶核剤としての効果が低
減し、そのために結晶核剤の添加量(重合体中への含有
量)を多くしなければならず、得られる繊維の機械的強
度は低下する。また、嵩比容が10cc/gを超える無
機粉末の製造は困難であり、このような無機粉末を得よ
うとすると、無機粉末のコストが高騰し、ひいては得ら
れる長繊維のコストも高騰する結果となる。
The bulk specific volume of the inorganic powder as a crystal nucleating agent is 2
It is preferably from 10 to cc / g, more preferably from 3 to 8 cc / g. The bulk specific volume is the volume of the inorganic powder per unit weight. The larger the bulk specific volume, the larger the surface area of the inorganic powder and the greater the effect as a crystal nucleating agent. If the bulk specific volume of the inorganic powder is less than 2 cc / g, the effect as a crystal nucleating agent is reduced, and therefore the amount of the crystal nucleating agent added (content in the polymer) must be increased, The mechanical strength of the resulting fiber is reduced. Further, it is difficult to produce an inorganic powder having a bulk specific volume of more than 10 cc / g, and when such an inorganic powder is tried to be obtained, the cost of the inorganic powder rises, and the cost of the obtained long fiber also rises. Becomes

【0026】[0026]

【0027】[0027]

【0028】本発明における生分解性芯鞘複合長繊維
は、その単糸繊度が1.5〜10デニールであるのが好
ましい。単糸繊度が1.5デニール未満であると紡出糸
条の冷却性に優れるものの、製糸時の糸切れが多く、ま
た、生産性が劣るなどの問題がある。逆に、単糸繊度が
10デニールを超えると生産性は向上するものの、紡出
糸条の冷却性および生分解性能が低下するため好ましく
ない。これら理由により、単糸繊度が2〜6デニールで
あるのがさらに好ましい。
The biodegradable core-sheath composite continuous fiber in the present invention preferably has a single yarn fineness of 1.5 to 10 denier. If the single yarn fineness is less than 1.5 denier, the spun yarn has excellent cooling properties, but there are problems such as frequent yarn breakage during spinning and poor productivity. On the contrary, when the single yarn fineness exceeds 10 denier, the productivity is improved, but the cooling property and biodegradability of the spun yarn are deteriorated, which is not preferable. For these reasons, the single yarn fineness is more preferably 2 to 6 denier.

【0029】本発明の生分解性芯鞘複合長繊維は、引張
強度が4.0g/d以上であることが重要である。引張
強度が4.0g/d未満であると用途により実使用に耐
え難く、好ましくない。
It is important that the biodegradable core-sheath composite continuous fiber of the present invention has a tensile strength of 4.0 g / d or more. If the tensile strength is less than 4.0 g / d, it is difficult to withstand actual use depending on the application, which is not preferable.

【0030】 次に本発明の生分解性芯鞘複合長繊維の
製造方法について説明する。まず、芯成分、鞘成分とも
に、前述したところの重合体、すなわち、芯成分にはポ
リブチレンサクシネートを、鞘成分にはブチレンサクシ
ネートの共重合量比が65〜95モル%である、ポリブ
チレンサクシネートおよび他の脂肪族ポリエステルを構
成する繰り返し単位要素による共重合体を用い溶融紡糸
を行う。このとき、少なくとも鞘成分に、重合工程ある
いは溶融工程において結晶核剤を添加し、分散させるこ
とが必要である。紡糸温度は(1)式を満足する範囲で
行わなければならない。紡糸温度が(1)式で定義され
た値より高くなると、紡出糸条の冷却性が劣り、紡出糸
条に密着が発生し好ましくない。また、紡糸温度が
(1)式で定義された値より低くなると重合体が十分に
溶融せず、製糸性が著しく劣るため好ましくない。芯鞘
複合繊維用の紡糸口金より吐出した紡出糸条を公知の冷
却装置にて冷却し、仕上げ油剤を付与した後、紡糸速度
350〜2000m/分の引取りローラーを介して未延
伸糸とする。この未延伸糸をいったん巻き取った後、1
段あるいは複数段延伸機を用いて、全延伸倍率の0.5
〜0.85倍の延伸倍率で延伸を施し、目的とする延伸
糸を得る。なお、前記未延伸糸は、巻き取ることなく連
続して延伸することもできる。
Next, a method for producing the biodegradable core-sheath composite continuous fiber of the present invention will be described. First, for both the core component and the sheath component, the above-mentioned polymer, that is, polybutylene succinate for the core component and butylene succinate for the sheath component has a copolymerization ratio of 65 to 95 mol%. Melt spinning is performed using a copolymer of butylene succinate and other repeating unit constituents of an aliphatic polyester. At this time, at least the sheath component has a polymerization step.
Alternatively, it is necessary to add and disperse the crystal nucleating agent in the melting step . The spinning temperature must be within the range that satisfies the expression (1) . When the spinning temperature is higher than the value defined by the formula (1) , the cooling property of the spun yarn is inferior and the spun yarn adheres to the spun yarn, which is not preferable. In addition, the spinning temperature
When it is lower than the value defined by the formula (1) , the polymer is not sufficiently melted and the spinnability is remarkably deteriorated, which is not preferable. The spun yarn discharged from the spinneret for core-sheath composite fibers is cooled by a known cooling device, and after applying a finishing oil agent, it is treated with an undrawn yarn through a take-up roller at a spinning speed of 350 to 2000 m / min. To do. After winding this unstretched yarn once,
Using a multi-stage or multi-stage drawing machine, the total draw ratio of 0.5
Stretching is performed at a stretch ratio of 0.85 times to obtain the target stretched yarn. The undrawn yarn can be continuously drawn without winding.

【0031】[0031]

【作用】本発明の生分解性芯鞘複合長繊維は、芯成分に
て機械的性能を向上させ、鞘成分にて生分解性能を促進
させることにより、優れた機械的性能および生分解性能
をあわせもつものである。さらに、少なくとも鞘成分に
結晶核剤を含有せしめることにより、紡出糸条の冷却効
果を促進させ、紡出糸条の密着を防止することができ
る。
The biodegradable core-sheath composite continuous fiber of the present invention has excellent mechanical performance and biodegradability by improving mechanical performance in the core component and promoting biodegradation performance in the sheath component. It is something that has a combination. Furthermore, by including a crystal nucleating agent in at least the sheath component, it is possible to promote the cooling effect of the spun yarn and prevent adhesion of the spun yarn.

【0032】 また、本発明の生分解性芯鞘複合長繊維
を製造するに際し、紡糸温度として、本発明の範囲を選
択することにより、紡出糸条の密着を防止し、均斉度に
優れた生分解性芯鞘複合長繊維を得ることができるので
ある。
Further, when the biodegradable core-sheath composite continuous fiber of the present invention is produced, by selecting the range of the present invention as the spinning temperature, it is possible to prevent the spun yarn from adhering to each other and to provide excellent uniformity. The biodegradable core-sheath composite continuous fiber can be obtained.

【0033】[0033]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

【0034】実施例において、各物性値の測定を次の方
法により実施した。 ・MFR値(g/10分);ASTM D1238
(E)に記載の方法に準じて測定した。
In the examples, each physical property value was measured by the following methods. MFR value (g / 10 minutes); ASTM D1238
It measured according to the method as described in (E).

【0035】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定し、得られた融解吸熱曲
線の最大値を与える温度を融点とした。
Melting point (° C.); measured using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a heating rate of 20 ° C./min, and the maximum melting endothermic curve obtained The temperature giving the value was taken as the melting point.

【0036】・結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、昇温速度を20℃/分として測定し、得られた固化
発熱曲線の最大値を与える温度を結晶化温度とした。
Crystallization temperature (° C.); using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., and a sample weight of 5 m
g, the rate of temperature increase was measured at 20 ° C./min, and the temperature that gives the maximum value of the solidification exothermic curve obtained was taken as the crystallization temperature.

【0037】・冷却性;引取りローラーを介して得られ
た未延伸糸について、目視にて密着の有無を判定した。
Coolability: The presence or absence of adhesion of the undrawn yarn obtained through the take-up roller was visually determined.

【0038】・引張強度(g/d)、伸度(%);JI
S−L−1013に記載の方法に準じて測定した。すな
わち、定速伸長型引張試験機(東洋ボールドウィン社製
テンシロンUTM−4−1−100)を用いて試料を伸
長し、得られた切断時荷重値(g)を単位太さ当りに換
算し、その平均値を繊維の引張強度(g/d)とした。
また、同時に得られた切断時伸長率(%)の平均値を伸
度(%)とした。これらの処方においてはいずれも測定
回数20回とし、その値は平均値で示した。
Tensile strength (g / d), elongation (%); JI
The measurement was performed according to the method described in SL-1013. That is, the sample was stretched using a constant-speed elongation type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
The obtained load value at break (g) was converted per unit thickness, and the average value was taken as the tensile strength (g / d) of the fiber.
Further, the average value of the elongation rate at break (%) obtained at the same time was defined as the elongation rate (%). In each of these prescriptions, the number of measurements was 20 and the value was shown as an average value.

【0039】・生分解性能;得られた繊維10gの試料
を土中埋設し、1、3、6、12ヶ月後に掘りおこし、
繊維の引張強度を標準状態で測定し、土中埋設前の引張
強度に対する埋設後の引張強度を対比し、次式に示す強
度保持率として評価した。 強度保持率(%)=(埋設後の引張強度/埋設前の引張
強度)×100
Biodegradability: A sample of 10 g of the obtained fiber was buried in soil and excavated after 1, 3, 6 and 12 months,
The tensile strength of the fiber was measured in a standard state, and the tensile strength after embedding was compared with the tensile strength before embedding in the soil, and the strength retention rate shown in the following formula was evaluated. Strength retention rate (%) = (tensile strength after embedding / tensile strength before embedding) × 100

【0040】実施例1 芯成分として、MFR値が27g/10分、融点114
℃、結晶化温度75℃のポリブチレンサクシネートチッ
プ、鞘成分として、MFR値が32g/10分、融点9
9℃、結晶化温度49℃のブチレンサクシネート/エチ
レンサクシネート=85/15モル%の共重合体チップ
を用い、鞘成分に(1)式を満足する1.5重量%のタ
ルクを結晶核剤として添加し、芯鞘複合長繊維を製造し
た。すなわち、前記重合体チップをエクストルーダ型溶
融押出し機を用いて(2)式を満足する170℃で溶融
し、これを孔径0.4mmの紡糸孔を24個有する芯鞘
複合用の紡糸口金を通して単孔吐出量を1.3g/分と
して溶融紡出し、紡出糸条を冷却装置にて冷却した後、
紡糸速度が1200m/分の引取りローラーを介して未
延伸糸として巻き取った。次いでこの糸を延伸倍率3.
1倍で延伸し、銘柄75d/24fの延伸糸を得た。製
造条件、糸の物性および生分解性能を表1に示す。
Example 1 As a core component, the MFR value was 27 g / 10 minutes and the melting point was 114.
℃, crystallization temperature of 75 ℃ polybutylene succinate chips, as a sheath component, MFR value 32g / 10 minutes, melting point 9
Using a butylene succinate / ethylene succinate = 85/15 mol% copolymer chip having a crystallization temperature of 9 ° C. and a crystallization temperature of 49 ° C., 1.5 wt% of talc satisfying the formula (1) is used as a crystal nucleus in the sheath component. It was added as an agent to produce a core-sheath composite long fiber. That is, the polymer chip was melted at 170 ° C. which satisfies the formula (2) by using an extruder type melt extruder, and the melted polymer chip was passed through a spinneret for core-sheath composite having 24 spinning holes with a hole diameter of 0.4 mm. After melt-spinning with a hole discharge rate of 1.3 g / min and cooling the spun yarn with a cooling device,
It was wound as an undrawn yarn through a take-up roller having a spinning speed of 1200 m / min. This yarn is then drawn at a draw ratio of 3.
It was drawn at 1 time to obtain a drawn yarn of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0041】実施例2 鞘成分として、MFR値が33g/10分、融点86
℃、結晶化温度28℃のブチレンサクシネート/エチレ
ンサクシネート=65/35モル%の共重合体チップを
用い、単孔吐出量を1.2g/分とすること以外は実施
例1と同様にして溶融紡糸し、得られた糸を実施例1と
同様に巻き取り、延伸倍率2.9倍で延伸し、銘柄75
d/24fの延伸糸を得た。製造条件、糸の物性および
生分解性能を表1に示す。
Example 2 As a sheath component, the MFR value is 33 g / 10 minutes and the melting point is 86.
Same as Example 1 except that a butylene succinate / ethylene succinate = 65/35 mol% copolymer chip having a crystallization temperature of 28 ° C. and a single hole discharge rate of 1.2 g / min was used. Melt spinning, and the obtained yarn is wound up in the same manner as in Example 1 and drawn at a draw ratio of 2.9 times to give a brand 75
A drawn yarn of d / 24f was obtained. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0042】実施例3 鞘成分として、MFR値が29g/10分、融点112
℃、結晶化温度73℃のブチレンサクシネート/エチレ
ンサクシネート=95/5モル%の共重合体チップを用
い、単孔吐出量を1.4g/分とすること以外は実施例
1と同様にして溶融紡糸し、得られた糸を実施例1と同
様に巻き取り、延伸倍率3.4倍で延伸し、銘柄75d
/24fの延伸糸を得た。製造条件、糸の物性および生
分解性能を表1に示す。
Example 3 As a sheath component, MFR value is 29 g / 10 minutes, melting point 112
C. and crystallization temperature 73.degree. C. Butylene succinate / ethylene succinate = 95/5 mol% copolymer chips were used and the same as in Example 1 except that the single hole discharge rate was 1.4 g / min. Melt spinning, and the obtained yarn is wound up in the same manner as in Example 1 and drawn at a draw ratio of 3.4 to give a brand 75d.
A drawn yarn of / 24f was obtained. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0043】実施例4 鞘成分として、MFR値が32g/10分、融点110
℃、結晶化温度32℃のブチレンサクシネート/ブチレ
ンアジペート=85/15モル%の共重合体チップを用
いること以外は実施例1と同様にして溶融紡糸し、得ら
れた糸を実施例1と同様に巻き取り、延伸倍率3.1倍
で延伸し、銘柄75d/24fの延伸糸を得た。製造条
件、糸の物性および生分解性能を表1に示す。
Example 4 As a sheath component, MFR value is 32 g / 10 minutes, melting point 110
Melt spinning was performed in the same manner as in Example 1 except that a butylene succinate / butylene adipate = 85/15 mol% copolymer chip having a crystallization temperature of 32 ° C. and a crystallization temperature of 32 ° C. was used. Similarly, it was wound and drawn at a draw ratio of 3.1 times to obtain a drawn yarn of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0044】実施例5 結晶核剤としてタルクを0.25重量%添加し、単孔吐
出量を1.4g/分とすること以外は実施例1と同様に
して溶融妨糸し、得られた糸を実施例1と同様に巻き取
り、延伸倍率3.4倍で延伸し、銘柄75d/24fの
延伸糸を得た。製造条件、糸の物性および生分解性能を
表1に示す。
Example 5 Obtained by melt-spinning in the same manner as in Example 1 except that 0.25% by weight of talc was added as a crystal nucleating agent and the single hole discharge rate was 1.4 g / min. The yarn was wound up in the same manner as in Example 1 and drawn at a draw ratio of 3.4 to obtain a drawn yarn of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0045】実施例6 結晶核剤としてタルクを2.5重量%添加すること以外
は実施例1と同様にして溶融妨糸し、得られた糸を実施
例1と同様に巻き取り、延伸倍率3.1倍で延伸し、銘
柄75d/24fの延伸糸を得た。製造条件、糸の物性
および生分解性能を表1に示す。
Example 6 Melt impeding was carried out in the same manner as in Example 1 except that 2.5% by weight of talc was added as a crystal nucleating agent, and the obtained yarn was wound in the same manner as in Example 1 and the draw ratio was increased. It was drawn at 3.1 times to obtain a drawn yarn of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0046】実施例7 単孔吐出量を1.5g/分とすること以外は実施例1と
同様に溶融紡出した後、一工程法で延伸糸を得た。すな
わち速度が1500m/分の引取りローラーと、速度が
4500m/分の延伸ローラー間で延伸倍率3.0倍の
条件で延伸し、銘柄75d/24fの延伸糸を得た。製
造条件、糸の物性および生分解性能を表1に示す。
Example 7 A drawn yarn was obtained by a one-step method after melt spinning in the same manner as in Example 1 except that the single hole discharge rate was set to 1.5 g / min. That is, it was drawn under the condition of a draw ratio of 3.0 times between a take-up roller having a speed of 1500 m / min and a drawing roller having a speed of 4500 m / min to obtain a drawn yarn of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0047】実施例8 芯成分重合体のMFR値が50g/10分、鞘成分重合
体のMFR値が52g/10分である重合体チップを用
い、単孔吐出量1.5g/分とし、紡糸温度を140℃
とすること以外は実施例1と同様にして溶融紡糸し、得
られた糸を実施例1と同様に巻き取り、延伸倍率3.6
倍で延伸し、銘柄75d/24fの延伸を得た。製造条
件、糸の物性および生分解性能を表1に示す。
Example 8 A polymer chip having a core component polymer having an MFR value of 50 g / 10 minutes and a sheath component polymer having an MFR value of 52 g / 10 minutes was used, and a single hole discharge rate was set to 1.5 g / min. Spinning temperature is 140 ℃
Melt spinning was performed in the same manner as in Example 1 except that the above was performed, and the obtained yarn was wound in the same manner as in Example 1 and the draw ratio was 3.6.
Stretching was performed twice to obtain a stretch of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0048】実施例9 芯成分重合体のMFR値が15g/10分、鞘成分重合
体のMFR値が17g/10分である重合体チップを用
い、単孔吐出量1.4g/分とし、紡糸温度を230℃
とすること以外は実施例1と同様にして溶融紡糸し、得
られた糸を実施例1と同様に巻き取り、延伸倍率3.4
倍で延伸し、銘柄75d/24fの延伸を得た。製造条
件、糸の物性および生分解性能を表1に示す。
Example 9 A polymer chip having a core component polymer having an MFR value of 15 g / 10 min and a sheath component polymer having an MFR value of 17 g / 10 min was used, and a single hole discharge rate was 1.4 g / min. Spin temperature is 230 ℃
Melt spinning was performed in the same manner as in Example 1 except that the above was set, and the obtained yarn was wound in the same manner as in Example 1 and the draw ratio was 3.4.
Stretching was performed twice to obtain a stretch of brand 75d / 24f. Table 1 shows production conditions, physical properties of the yarn, and biodegradability.

【0049】比較例1 MFR値が27g/10分、融点114℃、結晶化温度
75℃のポリブチレンサクシネートチップを用いて、単
相長繊維を製造した。すなわち、前記重合体チップを用
い、紡糸温度を190℃とし、単孔吐出量を1.4g/
分、単相用の紡糸口金を通すこと以外は実施例1と同様
にして溶融紡糸し、得られた糸を実施例1と同様に巻き
取り、延伸倍率3.4倍で延伸し、銘柄75d/24f
の延伸糸を得た。製造条件、糸の物性および生分解性能
を表2に示す。
Comparative Example 1 Single phase long fibers were produced using polybutylene succinate chips having an MFR value of 27 g / 10 minutes, a melting point of 114 ° C. and a crystallization temperature of 75 ° C. That is, using the polymer chip, the spinning temperature was 190 ° C., and the single hole discharge rate was 1.4 g /
Melt spinning in the same manner as in Example 1 except that a single-phase spinneret was passed through, and the obtained yarn was wound in the same manner as in Example 1 and stretched at a draw ratio of 3.4. / 24f
The drawn yarn of was obtained. Table 2 shows production conditions, physical properties of the yarn, and biodegradability.

【0050】比較例2 MFR値が32g/10分、融点86℃、結晶化温度2
5℃のブチレンサクシネート/エチレンサクシネート=
65/35モル%の共重合体チップを用いて、単相長繊
維を製造した。すなわち、前記重合体チップを用い、単
相用の紡糸口金を通すこと以外は、実施例1と同様にし
て溶融紡糸した。製造条件を表2に示す。
Comparative Example 2 MFR value 32 g / 10 minutes, melting point 86 ° C., crystallization temperature 2
Butylene succinate / ethylene succinate at 5 ° C =
Single phase long fibers were made using 65/35 mol% copolymer chips. That is, melt spinning was performed in the same manner as in Example 1 except that the polymer chip was used and the single-phase spinneret was passed through. The manufacturing conditions are shown in Table 2.

【0051】比較例3 鞘成分として、MFR値が32g/10分、融点84
℃、結晶化温度22℃のブチレンサクシネート/エチレ
ンサクシネート=60/40モル%の共重合体チップを
用いること以外は実施例1と同様にして溶融紡糸した。
製造条件を表2に示す。
Comparative Example 3 As a sheath component, the MFR value was 32 g / 10 minutes and the melting point was 84.
Melt spinning was performed in the same manner as in Example 1 except that a butylene succinate / ethylene succinate = 60/40 mol% copolymer chip having a crystallization temperature of 22 ° C. was used.
The manufacturing conditions are shown in Table 2.

【0052】比較例4 結晶核剤としてタルクを添加しないこと以外は実施例1
と同様にして溶融紡糸した。製造条件を表2に示す。
Comparative Example 4 Example 1 except that talc was not added as a crystal nucleating agent.
Melt spinning was performed in the same manner as in. The manufacturing conditions are shown in Table 2.

【0053】[0053]

【表1】 [Table 1]

【0054】表1から明らかなように、実施例1は芯鞘
複合形態であり、かつ本発明の構成を全て満足するもの
であるので、紡出糸条の冷却性および製糸性も良好で、
得られた芯鞘複合長繊維は十分な強度を有し、優れた生
分解性能を有するものであった。実施例2は、鞘成分の
ブチレンサクシネート共重合量比が実施例1より低いた
め、得られた芯鞘複合長繊維は実施例1よりもやや劣る
ものの十分な強度を有し、製糸性も良好で、優れた生分
解性能を有するものであった。実施例3は、鞘成分のブ
チレンサクシネート共重合量比が実施例1より高いた
め、得られた芯鞘複合長繊維は実施例1よりもやや劣る
ものの優れた生分解性能を有し、製糸性も良好で十分な
強度を有するものであった。実施例4は、製糸性も良好
で得られた芯鞘複合長繊維は十分な強度を有し、優れた
生分解性能を有するものであった。実施例5は、タルク
の添加量が実施例1より少ないため、冷却性にやや劣る
ものの、製糸性も良好で得られた芯鞘複合長繊維は十分
な強度を有し、優れた生分解性能を有するものであっ
た。実施例6は、タルクの添加量が実施例1より多いた
め、得られた芯鞘複合長繊維は実施例1よりもやや劣る
ものの十分な強度を有し、製糸性も良好で優れた生分解
性能を有するものであった。実施例7は紡出糸条を巻き
取ることなく延伸しているため得られた芯鞘複合長繊維
は実施例1よりやや劣るものの十分な強度を有し、製糸
性も良好で、優れた生分解性能を有するものであった。
実施例8は、紡糸温度が実施例1より低いため、得られ
た芯鞘複合長繊維は実施例1よりもやや劣るものの十分
な強度を有し、製糸性も良好で優れた生分解性能を有す
るものであった。実施例9は、紡糸温度が実施例1より
高いため、冷却性にやや劣るものの、製糸性も良好で得
られた芯鞘複合長繊維は十分な強度を有し、優れた生分
解性能を有するものである。
As is clear from Table 1, since Example 1 has the core-sheath composite form and satisfies all the constitutions of the present invention, the cooling property and the spinnability of the spun yarn are also good,
The obtained core-sheath composite long fibers had sufficient strength and excellent biodegradability. In Example 2, since the butylene succinate copolymerization ratio of the sheath component was lower than that in Example 1, the obtained core-sheath composite continuous fiber had a sufficient strength, although it was slightly inferior to that in Example 1, and also had spinnability. It was good and had excellent biodegradability. In Example 3, since the butylene succinate copolymerization amount ratio of the sheath component is higher than that in Example 1, the obtained core-sheath composite long fiber has an excellent biodegradability although it is slightly inferior to Example 1, The property was also good and had sufficient strength. In Example 4, the core-sheath composite long fibers obtained with good spinnability had sufficient strength and excellent biodegradability. In Example 5, since the amount of talc added was smaller than that in Example 1, the cooling property was slightly inferior, but the spunability was good, and the obtained core-sheath composite long fibers had sufficient strength and excellent biodegradability. It was something that had. In Example 6, since the amount of talc added was larger than that in Example 1, the obtained core-sheath composite continuous fiber had a sufficient strength, although it was slightly inferior to that in Example 1, and had good spinnability and excellent biodegradation. It had performance. In Example 7, the spun yarn was stretched without winding, and thus the obtained core-sheath composite continuous fiber had a sufficient strength, although it was slightly inferior to that in Example 1, and had good spinnability and excellent rawness. It had a decomposition performance.
In Example 8, since the spinning temperature was lower than that of Example 1, the obtained core-sheath composite continuous fiber had a sufficient strength, although it was slightly inferior to that of Example 1, and had good spinnability and excellent biodegradability. I had one. In Example 9, since the spinning temperature is higher than that of Example 1, the cooling property is slightly inferior, but the spunability is also good, and the obtained core-sheath composite filament has sufficient strength and excellent biodegradability. It is a thing.

【0055】[0055]

【表2】 [Table 2]

【0056】これに対し、表2から明らかなように、比
較例1は、ポリブチレンサクシネートのみで構成される
ために十分な強度を有し、製糸性も良好であるものの、
生分解性能に劣るものである。比較例2は、ブチレンサ
クシネートとエチレンサクシネートの共重合体のみから
構成されるため、紡出糸条の冷却性が悪く密着してしま
い、糸条を得ることができなかった。比較例3は、ブチ
レンサクシネートに対するエチレンサクシネートの共重
合比が高いために、紡出糸条の鞘成分が十分に冷却せず
密着してしまい、糸条を得ることができなかった。比較
例4は、結晶核剤が添加されていないために、紡出糸条
が密着してしまい、糸条を得ることができなかった。
On the other hand, as is clear from Table 2, Comparative Example 1 has sufficient strength because it is composed only of polybutylene succinate and has good spinnability,
It is inferior in biodegradability. Since Comparative Example 2 was composed only of a copolymer of butylene succinate and ethylene succinate, the spinnability of the spun yarn was poor because of poor cooling, and the yarn could not be obtained. In Comparative Example 3, since the copolymerization ratio of ethylene succinate to butylene succinate was high, the sheath component of the spun yarn was not sufficiently cooled and adhered to the yarn, so that the yarn could not be obtained. In Comparative Example 4, since the crystal nucleating agent was not added, the spun yarn was in close contact and the yarn could not be obtained.

【0057】[0057]

【発明の効果】以上のように本発明によれば、密着など
の問題を解決し、機械的強度に優れ、また熱接着性を有
する生分解性芯鞘複合長繊維を提供することができる。
As described above, according to the present invention, it is possible to provide a biodegradable core-sheath composite continuous fiber which solves problems such as adhesion and has excellent mechanical strength and thermal adhesiveness.

【0058】繊維断面を芯鞘形態とすることにより、芯
成分にて機械的性能を向上させ、鞘成分にて生分解性能
を促進させ、機械的性能および生分解性能に優れた長繊
維を得ることができる。さらに、少なくとも鞘成分を構
成する重合体に結晶核剤を含有せしめることにより、紡
出糸条の冷却効果を促進させ、紡出糸条の密着を防止す
ることができる。
By making the cross section of the fiber into a core-sheath form, the core component improves the mechanical performance and the sheath component promotes the biodegradation performance to obtain a long fiber excellent in the mechanical performance and the biodegradation performance. be able to. Furthermore, by including a crystal nucleating agent in the polymer constituting at least the sheath component, the cooling effect of the spun yarn can be promoted and the adhesion of the spun yarn can be prevented.

【0059】 また、本発明の生分解性芯鞘複合長繊維
を製造するに際し、紡糸温度として本発明の範囲を選択
することにより、紡出糸条の密着を防止し、均斉度に優
れた生分解性芯鞘複合長繊維を得ることができるのであ
る。
Further, in producing the biodegradable core-sheath composite continuous fiber of the present invention, by selecting the range of the present invention as the spinning temperature, the adhesion of the spun yarn is prevented, and the raw material excellent in uniformity is obtained. Thus, degradable core-sheath composite long fibers can be obtained.

【0060】本発明による長繊維は、衛生材料、生活関
連用素材、産業用素材として極めて好適である。しかも
この長繊維は、生分解性を有するので、その使用後に完
全に生分解消失するため、自然環境保護の観点からも有
益であり、あるいは、例えば堆肥化して肥料とするなど
再利用を図ることもできるため資源の再利用の観点から
も有益である。
The long fibers according to the present invention are extremely suitable as sanitary materials, life-related materials and industrial materials. Moreover, since this long fiber has biodegradability, it is completely biodegradable and disappears after its use, which is also beneficial from the viewpoint of protecting the natural environment, or it can be reused by, for example, composting it into a fertilizer. It is also useful from the perspective of resource reuse.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−93316(JP,A) 特開 平7−324227(JP,A) 特開 平8−246241(JP,A) 特開 平4−194026(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 8/00 - 8/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-93316 (JP, A) JP-A-7-324227 (JP, A) JP-A-8-246241 (JP, A) JP-A-4- 194026 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) D01F 8/00-8/18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芯成分がポリブチレンサクシネートから
なり、鞘成分がポリブチレンサクシネートを構成する繰
り返し単位要素に他の脂肪族ポリエステルを構成する繰
り返し単位要素を共重合させ、かつ、ブチレンサクシネ
ートの共重合量比が65〜95モル%である共重合体か
らなる芯鞘複合長繊維であり、少なくとも鞘成分を構成
する共重合体に結晶核剤を含有せしめることを特徴とす
る生分解性芯鞘複合長繊維。
1. A repeating unit element comprising a polybutylene succinate as a core component and a polybutylene succinate as a sheath component and a repeating unit element constituting another aliphatic polyester as a copolymer, and a butylene succinate. Is a core-sheath composite long fiber made of a copolymer having a copolymerization amount ratio of 65 to 95 mol%, characterized in that at least the copolymer constituting the sheath component contains a crystal nucleating agent. Core-sheath composite filament.
【請求項2】 鞘成分がポリブチレンサクシネートおよ
びポリエチレンサクシネートを構成する繰り返し単位要
素による共重合体からなることを特徴とする請求項1記
載の生分解性芯鞘複合長繊維。
2. The biodegradable core-sheath composite continuous fiber according to claim 1, wherein the sheath component is a copolymer of repeating unit elements constituting polybutylene succinate and polyethylene succinate.
【請求項3】 鞘成分がポリブチレンサクシネートおよ
びポリブチレンアジペートを構成する繰り返し単位要素
による共重合体からなることを特徴とする請求項1記載
の生分解性芯鞘複合長繊維。
3. The biodegradable core-sheath composite filament according to claim 1, wherein the sheath component is a copolymer of repeating unit elements constituting polybutylene succinate and polybutylene adipate.
【請求項4】 芯成分および鞘成分ともに、メルトフロ
ーレート値が10〜70g/10分である重合体からな
ることを特徴とする請求項1から3までのいずれか一項
に記載の生分解性芯鞘複合長繊維。但し、メルトフロー
レート値の測定は、ASTM−D−1238(E)記載
の方法に準じる。
4. The biodegradation according to any one of claims 1 to 3, wherein both the core component and the sheath component are made of a polymer having a melt flow rate value of 10 to 70 g / 10 minutes. Core-sheath composite filaments. However, the melt flow rate value is measured according to the method described in ASTM-D-1238 (E).
【請求項5】 芯成分にポリブチレンサクシネートを、
鞘成分にポリブチレンサクシネートを構成する繰り返し
単位要素と他の脂肪族ポリエステルを構成する繰り返し
単位要素との共重合体を用い、少なくとも鞘成分に結晶
核剤を添加し、芯鞘複合用の紡糸口金を介して、鞘成分
を構成する共重合体の融点(Tm)から導びかれる
(1)式を満足する紡糸温度[T(℃)]で溶融紡出
し、紡出糸条を冷却後、いったん巻き取った後または巻
き取ることなく連続して延伸することを特徴とする生分
解性芯鞘複合長繊維の製造方法。Tm+40≦T≦Tm
+150 …(1)
5. Polybutylene succinate as the core component,
Using a copolymer of a repeating unit element constituting polybutylene succinate and a repeating unit element constituting another aliphatic polyester as a sheath component, adding a crystal nucleating agent to at least the sheath component, and spinning for core-sheath composite Guided from the melting point (Tm) of the copolymer constituting the sheath component through the die
Biodegradation characterized by melt-spinning at a spinning temperature [T (° C.)] satisfying the formula (1) , cooling the spun yarn, and once stretching or continuously stretching without winding. Of producing a flexible core-sheath composite long fiber. Tm + 40 ≦ T ≦ Tm
+150 (1)
JP04767795A 1995-03-08 1995-03-08 Biodegradable core-sheath composite long fiber and method for producing the same Expired - Fee Related JP3506521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04767795A JP3506521B2 (en) 1995-03-08 1995-03-08 Biodegradable core-sheath composite long fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04767795A JP3506521B2 (en) 1995-03-08 1995-03-08 Biodegradable core-sheath composite long fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08246243A JPH08246243A (en) 1996-09-24
JP3506521B2 true JP3506521B2 (en) 2004-03-15

Family

ID=12781917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04767795A Expired - Fee Related JP3506521B2 (en) 1995-03-08 1995-03-08 Biodegradable core-sheath composite long fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3506521B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177193B1 (en) * 1999-11-30 2001-01-23 Kimberly-Clark Worldwide, Inc. Biodegradable hydrophilic binder fibers
CN1332996C (en) * 2004-12-22 2007-08-22 中国科学院化学研究所 Modified butanediol ester poly succinic acid and synthetic method
JP6652855B2 (en) * 2016-02-22 2020-02-26 ユニチカ株式会社 Continuous fiber nonwoven fabric and method for producing the same
CN107915967A (en) * 2017-12-14 2018-04-17 中国石油大学(北京) A kind of method of high molecular material spontaneous nucleation
CA3147147A1 (en) * 2019-08-12 2021-02-18 Richard Marcus AMMEN Eco-friendly polyester fibers and microfiber shed-resistance polyester textiles
WO2021201186A1 (en) * 2020-03-31 2021-10-07 三菱ケミカル株式会社 Biodegradable resin composition and molded article
CN112695396B (en) * 2020-12-17 2022-07-05 厦门安踏体育用品有限公司 Preparation process of cool quick-drying composite fiber and fabric

Also Published As

Publication number Publication date
JPH08246243A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP4591204B2 (en) Polylactic acid resin, polylactic acid fiber, flat yarn and production method thereof
US6174602B1 (en) Spontaneously degradable fibers and goods made thereof
US6420027B2 (en) Biodegradable complex fiber and method for producing the same
JP3506521B2 (en) Biodegradable core-sheath composite long fiber and method for producing the same
JP2010007221A (en) Polylactic acid-based long fiber nonwoven fabric and its manufacturing method
JP3261028B2 (en) Self-adhesive composite fiber
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH1161561A (en) Biodegradable highly oriented undrawn yarn, and its production
JP3886808B2 (en) Polylactic acid spontaneous crimped fiber
JP2006233375A (en) Synthetic fiber and fiber structure composed of the same
JPH1161560A (en) Biodegradable staple fiber and its production
JPH0921018A (en) Biodegradable fiber and nonwoven fabric using the same
JPH09310292A (en) Biodegradable wet nonwoven fabric and its production
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JPH08158154A (en) Biodegradable filament and its production
JP3663678B2 (en) Biodegradable fiber and non-woven fabric using the same
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JP3373294B2 (en) Stockings with excellent biodegradability
JP3573568B2 (en) Biodegradable wet nonwoven fabric and method for producing the same
JP2020133019A (en) Thermally adhesive conjugate fiber
JP3292786B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP2003306834A (en) Latently crimpable polylactic acid conjugated fiber
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees