JP3503045B2 - Shape memory biodegradable absorbent material - Google Patents
Shape memory biodegradable absorbent materialInfo
- Publication number
- JP3503045B2 JP3503045B2 JP13933997A JP13933997A JP3503045B2 JP 3503045 B2 JP3503045 B2 JP 3503045B2 JP 13933997 A JP13933997 A JP 13933997A JP 13933997 A JP13933997 A JP 13933997A JP 3503045 B2 JP3503045 B2 JP 3503045B2
- Authority
- JP
- Japan
- Prior art keywords
- shape
- copolymer
- temperature
- lactide
- lactic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 140
- 230000002745 absorbent Effects 0.000 title claims 2
- 239000002250 absorbent Substances 0.000 title claims 2
- 239000012781 shape memory material Substances 0.000 claims description 219
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 171
- 229920001577 copolymer Polymers 0.000 claims description 148
- 229920000642 polymer Polymers 0.000 claims description 140
- 210000004204 blood vessel Anatomy 0.000 claims description 103
- 230000009477 glass transition Effects 0.000 claims description 89
- 235000014655 lactic acid Nutrition 0.000 claims description 85
- 239000004310 lactic acid Substances 0.000 claims description 84
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims description 82
- 238000011282 treatment Methods 0.000 claims description 72
- 238000002425 crystallisation Methods 0.000 claims description 65
- 230000008025 crystallization Effects 0.000 claims description 65
- 230000003872 anastomosis Effects 0.000 claims description 48
- 239000000843 powder Substances 0.000 claims description 40
- 238000012545 processing Methods 0.000 claims description 39
- 239000003462 bioceramic Substances 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 33
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 31
- 210000002435 tendon Anatomy 0.000 claims description 31
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 claims description 26
- 238000001816 cooling Methods 0.000 claims description 25
- 230000002792 vascular Effects 0.000 claims description 25
- 238000000465 moulding Methods 0.000 claims description 24
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 21
- 239000003814 drug Substances 0.000 claims description 21
- 229940079593 drug Drugs 0.000 claims description 20
- 208000037803 restenosis Diseases 0.000 claims description 20
- 239000002639 bone cement Substances 0.000 claims description 18
- 238000007151 ring opening polymerisation reaction Methods 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 11
- -1 or D-lactide Chemical compound 0.000 claims description 9
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 7
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 230000000379 polymerizing effect Effects 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 6
- 239000001506 calcium phosphate Substances 0.000 claims description 5
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims description 4
- 230000000975 bioactive effect Effects 0.000 claims description 4
- 229940022769 d- lactic acid Drugs 0.000 claims description 4
- 229930182843 D-Lactic acid Natural products 0.000 claims description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 3
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 3
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 3
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 3
- 229910021532 Calcite Inorganic materials 0.000 claims description 2
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 2
- 239000005312 bioglass Substances 0.000 claims description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 claims description 2
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims description 2
- 229940038472 dicalcium phosphate Drugs 0.000 claims description 2
- 229910000392 octacalcium phosphate Inorganic materials 0.000 claims description 2
- YIGWVOWKHUSYER-UHFFFAOYSA-F tetracalcium;hydrogen phosphate;diphosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YIGWVOWKHUSYER-UHFFFAOYSA-F 0.000 claims description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims 28
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 claims 9
- 238000007334 copolymerization reaction Methods 0.000 claims 6
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims 5
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims 5
- 239000007800 oxidant agent Substances 0.000 claims 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 229920001038 ethylene copolymer Polymers 0.000 claims 1
- 150000002596 lactones Chemical class 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 description 49
- 229960000448 lactic acid Drugs 0.000 description 48
- 238000000034 method Methods 0.000 description 46
- 238000011084 recovery Methods 0.000 description 39
- 239000002504 physiological saline solution Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 21
- 238000003303 reheating Methods 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 238000005304 joining Methods 0.000 description 15
- 230000002441 reversible effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 12
- 239000004033 plastic Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 230000006835 compression Effects 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 230000005526 G1 to G0 transition Effects 0.000 description 10
- 238000005452 bending Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000001356 surgical procedure Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 8
- 229920001432 poly(L-lactide) Polymers 0.000 description 8
- 210000000689 upper leg Anatomy 0.000 description 8
- 210000001124 body fluid Anatomy 0.000 description 7
- 239000010839 body fluid Substances 0.000 description 7
- 239000011162 core material Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229920000954 Polyglycolide Polymers 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000004633 polyglycolic acid Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- NZHGWWWHIYHZNX-CSKARUKUSA-N tranilast Chemical compound C1=C(OC)C(OC)=CC=C1\C=C\C(=O)NC1=CC=CC=C1C(O)=O NZHGWWWHIYHZNX-CSKARUKUSA-N 0.000 description 5
- 229960005342 tranilast Drugs 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000023597 hemostasis Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000007334 memory performance Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000008468 bone growth Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000002439 hemostatic effect Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 2
- 239000000622 polydioxanone Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 1
- 208000006670 Multiple fractures Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241001413591 Trifolium arvense Species 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229920000431 shape-memory polymer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary devices, e.g. pins or nails
- A61B17/7233—Intramedullary devices, e.g. pins or nails with special means of locking the nail to the bone
- A61B17/7258—Intramedullary devices, e.g. pins or nails with special means of locking the nail to the bone with laterally expanding parts, e.g. for gripping the bone
- A61B17/7266—Intramedullary devices, e.g. pins or nails with special means of locking the nail to the bone with laterally expanding parts, e.g. for gripping the bone with fingers moving radially outwardly
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8004—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Surgical Instruments (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、再加熱により元の
形状に復元し生体内で分解吸収される、形状を記憶した
生体内分解吸収性材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable and absorbable material having a remembered shape, which is restored to its original shape by reheating and decomposed and absorbed in a living body.
【0002】[0002]
【従来の技術】生体に埋入して使う材料(インプラント
材料)には金属、バイオセラミック、高分子材料および
生体由来材料と、そのハイブリット材料などがある。2. Description of the Related Art Materials (implant materials) used by being implanted in a living body include metals, bioceramics, polymer materials, living body-derived materials, and hybrid materials thereof.
【0003】これらは、また、生体内で機能を果たした
後に徐々に分解して体内に吸収され体外に排出される所
謂吸収性材料と、本質的に体内で分解されずにそのまま
残留する非吸収性材料に別けることができる。These are so-called absorptive materials which are gradually decomposed after being functioned in the living body, absorbed into the body and discharged out of the body, and non-absorbable materials which are not decomposed in the body but remain as they are. It can be divided into sex materials.
【0004】非吸収性の人工材料(合成材料)は、長期
間体内に残存すると、生体との物理的、化学的(生理
的)性質の相違から、あるいは腐蝕による毒性の発現か
ら、好ましくない異物反応を起こす危惧があるために、
時として摘出手術可能な部位では再手術による排除がな
される。これは患者に対し二度の手術の苦痛を与え、ま
た更なる経済面の負担を荷すので、出来るならばこれに
代わる再手術が不要な生体材料の開発が望まれている。A non-absorbable artificial material (synthetic material) is an undesirable foreign substance when it remains in the body for a long period of time because of the difference in physical and chemical (physiological) properties from the living body or the manifestation of toxicity due to corrosion. Because there is a fear of causing a reaction,
Occasionally, excision site is removed by re-operation. Since this gives the patient the pain of double surgery and further burdens the financial aspect, it is desired to develop a biomaterial that does not require re-operation if necessary.
【0005】これに応えるものが生体内分解吸収性の生
体材料であるが、非吸収性である金属、セラミック、ポ
リマ−などの全てのインプラント材料を代替するほど
に、それらの物性を全て兼ね備えた種々の吸収性材料が
あるわけではないので、一つずつ、これらを代替するた
めの研究開発がなされている。Biomaterials that can be biodegradable and absorbable in response to these requirements, but have all of these physical properties to the extent that they replace all non-absorbable implant materials such as metals, ceramics, and polymers. Since there are not various absorptive materials, researches and developments have been made to replace them one by one.
【0006】手術用の縫合糸や生体の破損、切断された
部位を止め合わせるための金属材料(ステンレス、チタ
ン、銀、白金)は、手術後に生体内に残される生体材料
である。縫合糸の選択は、組織障害、組織抗張力、縫合
合併症などの恐れ、体液の縫合糸に与える影響、感染の
存在などを配慮して決められる。Surgical threads for surgery and metal materials (stainless steel, titanium, silver, platinum) for stopping broken or cut parts of a living body are biomaterials left in the living body after surgery. The selection of the suture thread is determined in consideration of tissue damage, tissue tensile strength, fear of suture complications, the influence of body fluid on the suture thread, and the presence of infection.
【0007】絹糸は筋膜や腹膜、ナイロン糸は皮膚や神
経、ポリエステル糸は心臓や腱、ポリプロピレン糸は神
経や血管などの吻合に用いられるのが一般的である。合
成吸収性縫合糸(ポリグリコ−ル酸系)は、これらの部
位のみならず消化管などにもよく使われる。Generally, silk thread is used for anastomosis of fascia or peritoneum, nylon thread is used for skin or nerve, polyester thread is used for heart or tendon, and polypropylene thread is used for anastomosis of nerve or blood vessel. Synthetic absorbable sutures (polyglycolic acid type) are often used not only in these areas but also in the digestive tract and the like.
【0008】しかし、高い強度を要する部位に対しては
ステンレス鋼やチタンなどのワイヤ−(金属線)などが
用いられている。ところが、この金属材料は手術の状態
や術後の患部の治癒状態を見るための手段として、最
近、急激にその利用の頻度が増しているMRI(Magnet
ic Resonance Images) あるいはCT(Conputer Tomog
raphy) に対して、反射する光線が原因で写真のぼやけ
(halation)現象が生ずるので、これによる画像診断に
支障をきたしている。この事実は、金属線を代替する縫
合、吻合あるいは結紮のための新しい材料の開発を要求
するものである。However, a wire (metal wire) such as stainless steel or titanium is used for a portion requiring high strength. However, the use of this metal material has rapidly increased recently as a means for observing the state of surgery and the healing state of the affected area after surgery.
ic Resonance Images) or CT (Compputer Tomog
In contrast to raphy), a photo halation phenomenon occurs due to the reflected light rays, which hinders image diagnosis. This fact requires the development of new materials for suturing, anastomosis or ligation to replace metal wires.
【0009】また、上述した各種の縫合糸は、手術の場
で多様に使い分けられているが、多くの場合、手術の中
枢とは別の止血や切開部位の縫合、吻合のための作業に
用いられる。しかし、場合によってはこの作業に要する
時間が手術時間の大半を占めることがよくあるので、よ
り簡易な方法で処置できる縫合、吻合、結紮材料の開発
が要求されている。The above-mentioned various sutures are variously used in the field of surgery, but in many cases, they are used for work for hemostasis, suturing of incision site and anastomosis other than the center of surgery. To be However, in some cases, the time required for this work often occupies most of the operation time, and therefore there is a demand for the development of suture, anastomosis, and ligation materials that can be treated by a simpler method.
【0010】例えば、切断された腱を接合するのに縫合
糸を用いて縫い合わす方法が採られているが、方式はま
すます複雑化する傾向にあるので、これに代わる接合材
と簡易な方式が望まれている。また、胸腔、腹腔などの
部位の手術では50本以上の血管が切断されることも多
々あり、止血のためや、術後にこれを結紮するために少
なくとも100回以上の縫合、結紮が必要となるので、
より簡易に処置できる方法と材料の開発が望まれてい
る。しかも、従来の非吸収性材料は、血管を結んだ後も
血管が自然に別の経路に再生出来ることと、金属のクリ
ップやステ−プルあるいは各種の縫合糸を取り除くため
に生体を再び切開することの煩雑さと危険性のために、
また、切開すれば再び縫合しなければならないというジ
レンマのために、生体内にそのまま放置されることが常
である。そこで、この目的に使われる材料が生体内で分
解吸収されて体外に排出される生体材料であるならば、
これらの問題を回避できるので理想的である。[0010] For example, a method in which a suture is used to sew a cut tendon has been adopted, but the method tends to become more and more complicated. Therefore, an alternative joining material and a simple method are used. Is desired. In addition, at least 50 or more blood vessels are often cut in a surgery of a region such as a chest cavity or abdominal cavity, and it is necessary to suture or ligate at least 100 times for hemostasis or to ligate this after surgery. So
It is desired to develop methods and materials that can be treated more easily. Moreover, conventional non-resorbable materials allow the blood vessels to regenerate naturally after connecting the blood vessels, and to reopen the living body to remove metal clips and staples or various sutures. Because of the complexity and danger of
In addition, because of the dilemma of having to re-suture after making an incision, it is usually left in the living body. Therefore, if the material used for this purpose is a biomaterial that is decomposed and absorbed in the living body and discharged to the outside of the body,
Ideally, these problems can be avoided.
【0011】斯かる目的のために、生体内分解吸収性ポ
リマ−であるポリグリコ−ル酸、ポリ乳酸、グリコ−ル
酸−乳酸共重合体、ポリジオキサノンからできたステ−
プルやクリップが、ポリマ−の物理強度を考慮した特殊
な形状につくられ、特殊な治具を用いて物理的にコ−キ
ングできるように工夫されて、手術の現場で使用されて
いる。しかし、これらは取扱いが煩雑であるという問題
と物理的な強度が金属におよばないので、金属製のもの
よりもかなりサイズが大きなものとならざるを得ず、ま
た、金属のように延性がないので、しっかりとかしめる
ことができないという欠点を残している。For this purpose, a biodegradable and absorbable polymer such as polyglycolic acid, polylactic acid, a glycolic acid-lactic acid copolymer and polydioxanone is used.
Pulls and clips are made in a special shape in consideration of the physical strength of the polymer, and are devised so that they can be physically caulked using a special jig, and are used in the field of surgery. However, since these are complicated to handle and their physical strength does not reach metal, they have to be considerably larger in size than those made of metal, and they are not ductile like metals. So it has the drawback of not being able to firmly crimp.
【0012】[0012]
【発明が解決しようとする課題】本発明は前記の実情に
応えるために創意工夫されたもので、医療用の補綴材、
充填材、或は足場(scaffold)用の材料はもとより、切
断された血管の結紮(止血)や吻合、切開部位の縫合、
切断された腱の接合、折損した骨の固定、接合など、生
体組織の結紮、吻合、縫合、固定、接合その他の処置を
極めて簡単且つ確実に行うことができ、MRIやCTに
おけるハレーション現象が生ずることもなく、さらには
コントロールされた薬物の放出や組織工学(tissue eng
ineering)の基材としても有効であり、生体内に放置し
ても加水分解されて生体内に吸収されてしまう、新規な
生体内分解吸収性材料でつくられた形状記憶性をもつイ
ンプラント材料を開発することを課題とする。DISCLOSURE OF THE INVENTION The present invention has been devised in order to respond to the above-mentioned actual circumstances, and is a medical prosthesis material,
In addition to filling materials or materials for scaffolds, ligation (hemostatic) or anastomoses of cut blood vessels, suturing of incision sites,
It is possible to perform ligation, anastomosis, suture, fixation, joining and other treatments of biological tissues such as joining of cut tendons, fixing of broken bones, joining, etc. very easily and reliably, and halation phenomenon in MRI and CT occurs. In addition, controlled drug release and tissue engineering (tissue eng
An implant material made of a novel biodegradable and absorbable material, which is also effective as a base material for ineering, is hydrolyzed and absorbed in the body even if left in the body. The challenge is to develop.
【0013】尚、形状記憶材料としては、ノルボルネン
系、トランス−ポリイソプレン系、スチレンブタジエン
共重合体系、ポリオレフィン系、ポリエステル系、ポリ
ウレタン系、ポリアクリル系などの合成ポリマーや、セ
ルローズ繊維、タンパク繊維などの天然ポリマーが開発
されているが、これらはいずれも生体内で分解され吸収
される材料ではなく、本発明のように生体適合性をもつ
材料として認知されている生体内分解吸収性材料を形状
記憶材料として仕上げ、これを生体に埋入して用いるよ
うにした実用レベルの例は未だ存在しない。As the shape memory material, norbornene-based, trans-polyisoprene-based, styrene-butadiene copolymer-based, polyolefin-based, polyester-based, polyurethane-based, polyacrylic-based synthetic polymers, cellulose fibers, protein fibers, etc. Natural polymers have been developed, but these are not materials that are decomposed and absorbed in vivo, but biodegradable and absorbable materials that are recognized as biocompatible materials like the present invention are formed. There is still no practical level example in which it is finished as a memory material and is embedded in a living body for use.
【0014】[0014]
【課題を解決するための手段】前記課題を達成する本発
明の基本的な形状記憶生体内分解吸収性材料は、乳酸系
ポリマーの成形体からなり、所定温度以上に加熱すると
その形状が外力を加えなくても記憶した形状に復元され
ることを特徴とするものである。即ち、乳酸系ポリマー
からなる所定形状の成形体を、そのガラス転移温度(T
g)よりも高く結晶化温度(Tc)(結晶化温度がない
場合は100℃)より低い温度(Tf)で別の形状の成
形体に変形処理し、そのままガラス転移温度(Tg)よ
り低い温度に冷却してその形状を固定した生体内分解吸
収性材料であって、上記の変形処理温度(Tf)以上に
再び加熱すると元の所定形状の成形体に形状が復元され
るものである。The basic shape-memory biodegradable and absorbable material of the present invention that achieves the above-mentioned object is composed of a molded product of lactic acid-based polymer, and the shape thereof exerts an external force when heated above a predetermined temperature. It is characterized in that it is restored to the memorized shape without addition. That is, a glass transition temperature (T
g), the temperature is lower than the crystallization temperature (Tc) (100 ° C. when there is no crystallization temperature) (Tf), and is transformed into a molded article of another shape, and the temperature is lower than the glass transition temperature (Tg) as it is. It is a biodegradable and absorbable material that has been cooled to a fixed shape and fixed in its shape, and when reheated to the deformation treatment temperature (Tf) or higher, the shape is restored to the original molded body having a predetermined shape.
【0015】ここに、「変形処理」とは、拡張変形、延
伸変形、圧縮変形、曲げ変形、捻り変形、あるいはこれ
らの複合変形など、成形体の形状を変える全ての処理、
操作を意味する。The term "deformation process" as used herein means all processes for changing the shape of a molded body, such as expansion deformation, stretching deformation, compression deformation, bending deformation, twisting deformation, or a composite deformation of these,
Means an operation.
【0016】一般に形状記憶性能を有するポリマーの分
子集合体の構造形態は、ポリマー分子の流動性を抑制し
て成形体の形状を固定する作用をする固定相と、ある温
度を境にして温度を上下することに伴いポリマー分子が
流動・固化することによって軟化と硬化の現象を繰り返
すことのできる可逆相の部分からできている。In general, the structural form of a molecular assembly of polymers having shape memory performance is such that the temperature is demarcated at a certain temperature with a stationary phase that acts to suppress the fluidity of the polymer molecules and fix the shape of the molded article. It is composed of a reversible phase that can repeat the phenomena of softening and hardening as the polymer molecules flow and solidify as it goes up and down.
【0017】固定相の形成を決定する化学的要因は、個
々の直鎖状ポリマー分子鎖間の相互作用の形式や相互作
用の密度の大小と形態、あるいは分子鎖の絡みなどに依
存するものである。The chemical factors that determine the formation of the stationary phase depend on the type of interaction between individual linear polymer molecular chains, the magnitude and form of the interaction density, or the entanglement of the molecular chains. is there.
【0018】ポリマーの分子鎖間相互作用は共有結合、
配位結合、イオン結合などの強い一次結合によるもの
と、クーロン力、水素結合、ファンデルワールス力など
の比較的弱い二次結合力によるものに別けられる。拘束
相(固定相)と流動相(可逆相)がこれらのうちのどの
分子間相互作用の形式によって成り立つものであるか
は、ポリマーを形成するモノマーの化学構造と配列ある
いはその立体的特異性などの固有の性質によって決ま
る。このポリマー分子鎖間の相互作用(結合力)の違い
によって、高分子集合体はゴム相、ガラス相、結晶相を
形成する。そして、これらの相が単独で存在するポリマ
ーもあれば、複数に存在するポリマーもある。The intermolecular chain interaction of the polymer is a covalent bond,
Coordination bond, strong primary bond such as ionic bond, and Coulomb force, hydrogen bond, van der Waals force such as relatively weak secondary bond force. Which of these intermolecular interactions forms the constrained phase (stationary phase) and the fluid phase (reversible phase) depends on the chemical structure and sequence of the monomer forming the polymer, or its stereospecificity. Depends on the unique nature of. Due to the difference in the interaction (bonding force) between the polymer molecular chains, the polymer aggregate forms a rubber phase, a glass phase, and a crystal phase. Then, there are some polymers in which these phases are present alone, and some are in plural.
【0019】形状記憶性能をもつポリマーは、ガラス転
移温度(Tg)の上下で弾性率が大きく変化する性質を
もつので、これを利用して形状が記憶される。即ち、一
般的なプラスチックの成形法によって、ある形状(原
形)を賦与された成形物(一次成形物)を、そのポリマ
ーのTgより高く溶融温度(Tm)より低い温度(T
f)に加熱して軟化させ、原形とは別の形状に変形させ
る。この形を保持しながらTgより低い温度に冷却して
形状を固定する(二次成形物)。その後、再び二次成形
した温度(Tf)以上、Tm以下の温度に加熱すること
で二次成形時の形状を消却して、一次成形物である原形
に形状を回復させる。斯かる過程によって一時的に二次
形状を賦され、また再び原形に戻る性能がポリマーの形
状記憶である。A polymer having a shape memory property has a property that the elastic modulus greatly changes above and below the glass transition temperature (Tg), so that the shape is memorized by utilizing this property. That is, a molded product (primary molded product) to which a certain shape (original form) is given by a general plastic molding method has a temperature (Tm) higher than the Tg of the polymer and lower than the melting temperature (Tm).
It is heated to f) to soften it and transform it into a shape different from the original shape. While maintaining this shape, it is cooled to a temperature lower than Tg to fix the shape (secondary molded product). After that, the shape at the time of the secondary molding is erased by heating again to the temperature of the secondary molding temperature (Tf) or higher and Tm or lower, and the shape is restored to the original shape which is the primary molded product. The shape memory of the polymer has the ability to be temporarily given a secondary shape by such a process and to return to the original shape again.
【0020】このとき、Tgを境にした温度の上下で大
きな弾性率の変化を示すガラス質のポリマーが、別の形
状の固定と消却、および、ある形状への回復に最も有効
なものの一つである。つまり、形状の消却と完全に近い
原形への回復が効率的に行われるポリマーの一つであ
る。本発明に用いる乳酸系ポリマーには、弾性率
(E′)がTgを境にして150倍以上変化するものが
多々あるので、形状記憶材料として好適である。At this time, the vitreous polymer showing a large change in elastic modulus above and below the temperature with Tg as the boundary is one of the most effective ones for fixing and erasing another shape and recovering to a certain shape. Is. In other words, it is one of the polymers in which the shape is erased and the shape is restored almost completely. Many of the lactic acid-based polymers used in the present invention have a modulus of elasticity (E ') that changes by 150 times or more with Tg as a boundary, and are therefore suitable as shape memory materials.
【0021】可逆相がガラス相よりも流動的であるゴム
相のみの場合のように、流動相のみからなるポリマーで
は上記の性質は得られない。しかし、分子間に架橋部分
を有するゴム相単独あるいはガラス相や結晶相がこれに
混在した複数の混合相で構成された場合には、形状記憶
・回復性能を示すポリマーが存在する。但し、正確に二
次賦形を固定できて、完全に原形に回復できるかという
賦形と記憶回復の機能と回復の温度が、医療用途に使え
る実用の範囲であるかどうかという点で、幾分かの不満
が残されるかも知れない。The above properties cannot be obtained with a polymer consisting only of a fluid phase, as in the case of only a rubber phase whose reversible phase is more fluid than a glass phase. However, when a rubber phase having a cross-linked portion between molecules alone or a plurality of mixed phases in which a glass phase or a crystal phase is mixed, a polymer having shape memory / recovery performance exists. However, in terms of whether the secondary shaping can be accurately fixed and the shape can be completely restored to its original shape, the function of memory restoration and the temperature of restoration are within the practical range usable for medical applications. There may be some dissatisfaction.
【0022】逆に結晶相は固定相となるものであり、こ
の相のみで構成されたポリマーに形状記憶性能を求める
ことはできない。常温にて結晶相とゴム相(殊に部分的
に架橋されたゴム相)からなるポリマーの分子集合体、
あるいは結晶相とガラス相が混在したポリマーの分子集
合体の場合にも形状記憶性能を発現するものは存在す
る。On the contrary, the crystalline phase is a stationary phase, and it is not possible to determine the shape memory performance of a polymer composed of only this phase. A molecular assembly of a polymer consisting of a crystalline phase and a rubber phase (particularly a partially crosslinked rubber phase) at room temperature,
Alternatively, even in the case of a polymer molecular assembly in which a crystal phase and a glass phase are mixed, there are those that exhibit shape memory performance.
【0023】さて、生体内分解吸収性ポリマーのうち
で、生体適合性に優れ、安全性があって、生体内での使
用が認知されており、インプラント材料としての実用経
験のあるポリマーの代表的なものに、いくつかのポリ
(α−オキシ酸)がある。ポリグリコール酸は、Tm
(溶融温度)が230℃(225〜235℃)、Tgが
36℃(45〜50℃)、ポリ−L−乳酸はTmが18
9℃(195℃)、Tgが56℃(55〜65℃)の結
晶性(結晶化温度をもっている)のポリマーである。但
し、括弧内は異なる文献の値である。Of the biodegradable and absorbable polymers, a typical polymer that has excellent biocompatibility, safety, is recognized for use in vivo, and has practical experience as an implant material. There are several poly (α-oxy acids). Polyglycolic acid has a Tm
(Melting temperature) is 230 ° C (225 to 235 ° C), Tg is 36 ° C (45 to 50 ° C), and poly-L-lactic acid has Tm of 18
It is a polymer having crystallinity (having a crystallization temperature) of 9 ° C (195 ° C) and Tg of 56 ° C (55 to 65 ° C). However, the values in parentheses are from different documents.
【0024】これらのポリマーは基本的に結晶相と非晶
相(ガラス相)で構成されており、熱処理の仕方によっ
ては全くの非晶性にすることはできるが、加熱により成
形可能な流動性を与えて成形(変形)する過程で結晶性
(一部非晶性のガラス相が混在する)のポリマーに落ち
着くことは避けられない。これはポリマーの構成分子の
単位であるモノマーの化学構造(同一異性体からなる)
に起因するものであり、不可避な現象であるから、これ
らのポリマーは本質的に結晶性のポリマーに属するもの
である。These polymers are basically composed of a crystalline phase and an amorphous phase (glass phase), and although they can be made completely amorphous depending on the heat treatment method, they have a fluidity such that they can be molded by heating. It is unavoidable to settle into a crystalline (partly amorphous glass phase is mixed) polymer in the process of giving (forming) (deforming). This is the chemical structure of the monomer (consisting of the same isomer), which is the unit of the constituent molecules of the polymer.
These polymers are essentially crystalline polymers because they are an inevitable phenomenon.
【0025】単一重合体(ホモポリマー)であるポリグ
リコール酸とポリ乳酸は本質的に結晶性のポリマーであ
るが、実体は結晶相とガラス相からなるポリマーであ
り、Tgが比較的高いけれども、Tgより高く結晶化温
度(Tc,Tc<Tm)より低い温度にて、先記した二
次賦形のための変形処理を行い冷却固化すると形状を記
憶することはできる。しかし、そのときの温度は結晶相
が混在しているために、例えば100℃以上の高温を要
し、また処理中に結晶化が進行して結晶化度が上昇する
ために形状の回復に100℃以上の高温を要したり、回
復が完全でないという欠点を有しているので、本質的に
は実用的な(特に医療用のインプラントとしての)形状
記憶ポリマーになり得るものとは言えないかも知れな
い。Polyglycolic acid and polylactic acid, which are homopolymers, are essentially crystalline polymers, but the substance is a polymer consisting of a crystalline phase and a glass phase, and although the Tg is relatively high, At a temperature higher than Tg and lower than the crystallization temperature (Tc, Tc <Tm), the shape can be memorized by performing the above-mentioned deformation treatment for secondary shaping and solidifying by cooling. However, the temperature at that time requires a high temperature of, for example, 100 ° C. or more because the crystal phase is mixed, and the crystallization progresses during the treatment to increase the crystallinity, so that the shape recovery is 100%. Since it has the drawback of requiring a high temperature of ℃ or more and incomplete recovery, it may not be said that it can be a practical shape memory polymer (especially as a medical implant). I don't know.
【0026】乳酸には光学異性体であるS(L)体とR
(D)体がある。ポリ乳酸はこれらの乳酸からオリゴマ
ーをつくり、次いで環化された二量体(ラクチド)をつ
くり、更にこれを開環重合してポリ乳酸にする方法によ
って通常は合成されている。L体(又はD体)のみの乳
酸でつくられる上記のポリ−L−乳酸(又はポリ−D−
乳酸)は、その立体特異性に由来して本質的に結晶性の
ポリマーであり、分子鎖はα−ヘリックス構造をとって
いる。In lactic acid, S (L) and R which are optical isomers
(D) I have a body. Polylactic acid is usually synthesized by a method of forming an oligomer from these lactic acids, then forming a cyclized dimer (lactide), and further ring-opening polymerizing this to give polylactic acid. The above-mentioned poly-L-lactic acid (or poly-D-) made from only L-form (or D-form) of lactic acid
Lactic acid) is an essentially crystalline polymer due to its stereospecificity, and its molecular chain has an α-helix structure.
【0027】乳酸の環化二量体にはL体とL体、D体と
D体、および実際に抽出分離は困難ではあるがL体とD
体(メソ体)からなる三種のラクチドが存在する。これ
らは各々L−ラクチド、D−ラクチド、DL(メソ)−
ラクチドと称される。L−ラクチドとD−ラクチドを所
定比率混合して開環重合すればポリ−D,L−ラクチド
(ポリ−D,L−乳酸)が合成できるが、その比率が5
0/50(モル比)のときのD体、L体混合のポリマー
をポリ−D,L−乳酸と通常は呼称している。しかし、
その比率が異なるものもまた広義のポリ−D,L−乳酸
である。The cyclized dimers of lactic acid are L-form and L-form, D-form and D-form, and L-form and D-form are difficult to extract and separate in practice.
There are three types of lactide consisting of the body (meso body). These are L-lactide, D-lactide and DL (meso)-, respectively.
Called lactide. Poly-D, L-lactide (poly-D, L-lactic acid) can be synthesized by mixing L-lactide and D-lactide in a predetermined ratio and ring-opening polymerization, but the ratio is 5
A polymer of D-form and L-form mixed at 0/50 (molar ratio) is usually referred to as poly-D, L-lactic acid. But,
Those having different ratios are also poly-D, L-lactic acid in a broad sense.
【0028】D体とL体の比率が異なる場合、その比率
の多い方のラクチドがブロック状に連結された部分であ
るセグメントを形成する要因となる。L−ラクチドとD
−ラクチドが等モル比で連結したポリ−D,L−ラクチ
ドの最も短いモノマーの連結単位は−(L−L−D−
D)−であり、かかる光学異性体の連結の最小単位はポ
リマー分子鎖間の相互作用を程良く乱すために、L体あ
るいはD体のみのポリマーのように結晶性のポリマーを
形成できず、本質的に非晶性である常温でガラス質のポ
リマーをつくる。これがゴム質のポリマーをつくらない
のは、モノマーである乳酸の化学構造の極性と非極性の
適当なバランスに起因している。このD体とL体の比率
が50/50(モル比)であるポリ−D,L−乳酸のT
gは57℃(55〜60℃)である。When the ratio of the D-form and the L-form is different, the lactide having the larger ratio becomes a factor to form a segment which is a block-connected portion. L-lactide and D
-The shortest monomer-linking unit of poly-D, L-lactide in which lactide is linked in an equimolar ratio is-(L-LD-
D)-, and the minimum unit of the connection of such optical isomers disturbs the interaction between polymer molecular chains appropriately, so that it is not possible to form a crystalline polymer like a polymer of L-form or D-form, Creates a glassy polymer at room temperature that is essentially amorphous. The reason why it does not form a rubbery polymer is due to the proper balance of polar and non-polar chemical structure of the lactic acid monomer. The T of poly-D, L-lactic acid in which the ratio of the D-form to the L-form is 50/50 (molar ratio)
g is 57 ° C (55 to 60 ° C).
【0029】本発明は斯かるポリ−D,L−乳酸の化学
構造と配列、相構造、Tgの値、物理的諸物性および生
体内での分解と全吸収の性状に着目、勘案して、生体内
分解吸収性の形状記憶材料としての有効性を見定め、生
体内に埋入可能なインプラント材料としての実用を目的
として完成されたものである。The present invention pays attention to the chemical structure and sequence of poly-D, L-lactic acid, the phase structure, the value of Tg, the physical properties and the properties of decomposition and total absorption in the living body, It has been completed for the purpose of practical use as an implant material that can be implanted in the living body, considering its effectiveness as a biodegradable and absorbable shape memory material.
【0030】本発明は以下の事実の認識、把握に基づい
ている。即ち、ポリ−D,L−ラクチドを基本成分とす
る乳酸系ポリマーからなる成形体は、流動性を防止して
成形体の形状を固定する構造部分(固定相)と、ポリマ
ーのガラス転移温度(Tg)を境にして温度を上下する
ことにより硬化と軟化を繰り返す構造部分(可逆相)を
有している。そのために原形物を溶融成形した後にTg
以下に冷却することによって、固定相と可逆相が固定化
されて一次成形体の形状(原形)が維持される。この一
次成形体をTgより高くTcより低い温度(Tf)に再
び加熱して変形すると、可逆相のみが流動して別の形状
の成形体に変えることができる。これをそのままTg以
下の常温に冷却すると、可逆相が固定化されて原形とは
別の形状物(二次成形体)が得られる。斯かる二次成形
体を更に再びTf以上(Tc以下)の温度に加熱する
と、可逆相が再び流動して、固定相によって記憶されて
いた元の形状(一次成形体の原形)に復元される。The present invention is based on the recognition and understanding of the following facts. That is, a molded body made of a lactic acid-based polymer containing poly-D, L-lactide as a basic component has a structural portion (stationary phase) that prevents fluidity and fixes the shape of the molded body, and a glass transition temperature of the polymer ( It has a structural part (reversible phase) in which curing and softening are repeated by raising and lowering the temperature at Tg). Therefore, after melting the original product, Tg
By cooling below, the stationary phase and the reversible phase are fixed and the shape (original shape) of the primary molded body is maintained. When this primary compact is heated again to a temperature (Tf) higher than Tg and lower than Tc to be deformed, only the reversible phase flows and can be transformed into a compact having another shape. When this is cooled to room temperature below Tg as it is, the reversible phase is fixed and a shaped product (secondary shaped product) different from the original form is obtained. When such a secondary compact is heated again to a temperature of Tf or higher (Tc or lower), the reversible phase flows again, and the original shape (the original shape of the primary compact) memorized by the stationary phase is restored. .
【0031】この場合の乳酸系ポリマーは、形状回復温
度が45〜100℃の範囲にあるものが適している。つ
まり、Tgが45〜100℃である乳酸系ポリマーが、
生体内に埋植して使用する生体内分解吸収性のインプラ
ント材料として有用である。この温度範囲の制限は以下
の理由による。In this case, the lactic acid-based polymer preferably has a shape recovery temperature in the range of 45 to 100 ° C. That is, the lactic acid-based polymer having a Tg of 45 to 100 ° C.
It is useful as a biodegradable and absorbable implant material to be used by being implanted in a living body. The limitation of this temperature range is as follows.
【0032】一般にプラスチック製の滅菌を必要とする
医療材料は、耐熱性である小数のポリマー材料を除け
ば、一部γ線による滅菌もあるが、大概エチレンオキサ
イドガス(EOG)で滅菌される。EOG滅菌の下限温
度は40〜45℃であるから、滅菌時の温度で形状が回
復しない温度をもつ必要がある。また、製品が保管貯蔵
中に形状を回復してはいけないので、夏期の気温に出来
るだけ耐え得る温度の下限である45℃以上のTgを有
するポリマーを選択しなければならない。In general, medical materials made of plastic and requiring sterilization are generally sterilized by ethylene oxide gas (EOG), though some sterilization by γ-ray is possible except for a small number of heat-resistant polymer materials. Since the lower limit temperature of EOG sterilization is 40 to 45 ° C, it is necessary to have a temperature at which the shape does not recover at the temperature during sterilization. Also, because the product must not regain its shape during storage and storage, it is necessary to select a polymer having a Tg of 45 ° C. or higher, which is the lower limit of the temperature that can withstand the summer temperature as much as possible.
【0033】一方、高温域は生体内で形状を回復する熱
処理をすることから上限が決められる。二次成形体を生
体に埋入して、熱処理によって原形に復元するときの加
熱には、レーザー、超音波、高周波、赤外線などの手段
や、熱風、温水などの熱媒による直接加温の方法が考え
られるが、生体組織がこのとき火傷しないことが必要で
あるから、出来るだけ低い温度で加熱しなければならな
い。数秒以内の短時間の加熱であれば100℃の熱媒の
接触でも火傷の危惧は少ないので、この温度を上限とし
て設定できる。但し、より安全には45〜70℃、好ま
しくは50〜65℃の加温により形状を回復できるのが
良い。それ故、形状記憶の回復温度の範囲を45〜10
0℃と設定した。On the other hand, the upper limit of the high temperature range is determined by the heat treatment for recovering the shape in the living body. When the secondary molded body is embedded in a living body and heated to restore it to its original shape by heat treatment, a method such as laser, ultrasonic wave, high frequency wave, infrared ray, or a direct heating method using a heat medium such as hot air or hot water is used. However, since it is necessary that the living tissue does not get burned at this time, it must be heated at a temperature as low as possible. If heating is performed for a short time within a few seconds, there is little risk of burns even when the heating medium comes into contact with 100 ° C. Therefore, this temperature can be set as the upper limit. However, it is better that the shape can be recovered more safely by heating at 45 to 70 ° C., preferably 50 to 65 ° C. Therefore, the range of the shape memory recovery temperature is 45 to 10
The temperature was set to 0 ° C.
【0034】さて、乳酸系ポリマーのうちで極めて好適
なものは先記したポリ−D,L−乳酸である。このポリ
−D,L−乳酸は、D−ラクチドとL−ラクチドの混合
物を比率を変えて開環重合して得られた共重合体でもよ
く、DL−ラクチドを開環重合して得られた共重合体で
もよく、L−乳酸とD−乳酸の混合物を重合して得られ
た共重合体でもよく、これらの共重合体の混合物でもよ
い。Among the lactic acid type polymers, the most preferable one is poly-D, L-lactic acid described above. The poly-D, L-lactic acid may be a copolymer obtained by ring-opening polymerization of a mixture of D-lactide and L-lactide in different ratios, and may be obtained by ring-opening polymerization of DL-lactide. It may be a copolymer, a copolymer obtained by polymerizing a mixture of L-lactic acid and D-lactic acid, or a mixture of these copolymers.
【0035】かかるポリ−D,L−乳酸は、基本的に非
結晶性のガラス質のポリマーであるため、ガラス転移温
度より高い温度で変形容易な弾性特性を示し、高倍率に
拡張変形、延伸変形、圧縮変形、捻り変形などが可能で
あって、しかも形状の復元の度合(形状回復率)が殆ど
100%に近く、主として分子量と若干の結晶相の介入
によって強度を調節することができ、また、非晶性であ
るがために結晶性のポリ−L−乳酸などに比較すると生
体内での加水分解が速いといった利点を有する。Since such poly-D, L-lactic acid is basically a non-crystalline glassy polymer, it exhibits elastic characteristics that can be easily deformed at a temperature higher than the glass transition temperature, and is expanded and stretched at a high magnification. Deformation, compression deformation, twisting deformation, etc. are possible, and the degree of shape restoration (shape recovery rate) is almost 100%, and the strength can be adjusted mainly by the intervention of the molecular weight and some crystal phase. Further, since it is amorphous, it has an advantage that hydrolysis in vivo is faster than that of crystalline poly-L-lactic acid.
【0036】その他、ガラス質の非晶性ポリ−D,L−
乳酸に対して結晶性のポリ−L−乳酸、ポリ−D−乳
酸、ポリグリコール酸あるいは非晶性のポリジオキサノ
ン、ポリカプロラクトン、ポリトリメチレンカーボネー
トなどの生体内分解吸収性のポリマーを一部混合しても
よい。また、乳酸−グリコール酸共重合体、乳酸−ジオ
キサノン共重合体、乳酸−カプロラクトン共重合体、乳
酸−エチレングリコール共重合体、乳酸−プロピレン共
重合体、ラクチド−エチレンオキシド/プロピレンオキ
シド共重合体(但し、乳酸、ラクチドはL−、D−、D
L−、D,L−のいずれでもよい)などのラクチドに生
体内分解吸収性をもつモノマーを共重合して得た、本質
的に非晶質の形状記憶回復性能をもったポリマーを、単
独あるいは混合して好適に用いることができる。In addition, vitreous amorphous poly-D, L-
A part of biodegradable and absorbable polymer such as poly-L-lactic acid, poly-D-lactic acid, polyglycolic acid or amorphous polydioxanone, polycaprolactone, polytrimethylene carbonate which is crystalline with respect to lactic acid is mixed. May be. Further, lactic acid-glycolic acid copolymer, lactic acid-dioxanone copolymer, lactic acid-caprolactone copolymer, lactic acid-ethylene glycol copolymer, lactic acid-propylene copolymer, lactide-ethylene oxide / propylene oxide copolymer (however , Lactic acid and lactide are L-, D-, D
L-, D, or L-) may be used alone to obtain a polymer having an essentially amorphous shape memory recovery property, which is obtained by copolymerizing a lactide with a monomer having biodegradability and absorbability. Alternatively, they can be mixed and suitably used.
【0037】このような結晶性のホモポリマーを混合し
て用いることの利点は、材料としての種々の物理的強度
が上がること、変形ならびに記憶形状の回復温度を上昇
できること、生体内での分解の速度、全吸収に要する期
間を調節できることなどである。また、分子内に吸収性
のモノマーを共重合させる利点は、分子鎖内モノマーの
化学配列の周期を乱すことと、分子鎖間の相互作用を乱
すことによって、結晶性のポリマーを非晶性に変えるこ
とが出来るので、それぞれに特徴をもった形状記憶回復
性能を付与でき、また分解・吸収の速度も調整できるこ
とである。The advantages of using such a crystalline homopolymer as a mixture are that various physical strengths as a material can be increased, deformation and memory shape recovery temperatures can be increased, and decomposition in vivo can be prevented. It is possible to adjust the speed and the time required for total absorption. In addition, the advantage of copolymerizing an absorptive monomer in the molecule is that the crystalline polymer is made amorphous by disturbing the cycle of the chemical arrangement of the monomer in the molecular chain and disturbing the interaction between the molecular chains. Since they can be changed, it is possible to impart shape memory recovery performance with their respective characteristics and to adjust the rate of decomposition / absorption.
【0038】本発明の今一つの技術的裏付けは、二次賦
形の温度がこれらの生体内分解吸収性ポリマーを成形時
に劣化させない温度であることである。これらのポリマ
ーは通常の成形方法である射出成形、押出成形、圧縮成
形などでTm以上で成形すると容易に劣化する。例えば
初期に40万の分子量のポリマーが1/10の分子量に
低下することが常である。しかし、本発明のTfではほ
とんど劣化がない。そのため原形への形状回復率が非常
に高くなり、形状記憶の良好な材料が得られるわけであ
る。Another technical proof of the present invention is that the temperature of secondary shaping is such that these biodegradable and absorbable polymers do not deteriorate during molding. These polymers are easily deteriorated when they are molded at Tm or higher by usual molding methods such as injection molding, extrusion molding, and compression molding. For example, a polymer having a molecular weight of 400,000 at the beginning is usually reduced to a molecular weight of 1/10. However, the Tf of the present invention causes almost no deterioration. Therefore, the shape recovery rate to the original shape becomes extremely high, and a material having a good shape memory can be obtained.
【0039】以上の材料は、生体内で用いる部位や使用
目的に応じて、記憶させる形状、つまり元の成形体の形
状を、筒形状、リング状、糸状、棒状、プレート状、異
形状など種々決定し、これを使用しやすい別の形状に変
形処理することによって、例えば、後述する血管結紮用
材料、血管吻合用材料、腱接合用材料、骨接合用材料、
縫合用材料、血管再狭窄防止用材料、髄孔内でのボーン
セメント流出防止用材料、その他の生体組織処置材料と
して好適に使用することができる。しかも、この材料は
生体内分解吸収性の乳酸系ポリマーより成るものである
から、体内に放置しても経時的に加水分解されて体内に
吸収され、体外に排出されるので、異物として残ること
がない。また、非金属である乳酸系ポリマーはMRIや
CTのハレーション現象を生ずることもない。The above materials have various shapes such as a cylindrical shape, a ring shape, a thread shape, a rod shape, a plate shape, and an irregular shape, which are shapes to be memorized, that is, the shape of the original molded body, depending on the site used in the living body and the purpose of use. By determining and deforming this into another shape that is easy to use, for example, a vascular ligation material, a vascular anastomosis material, a tendon-bonding material, a bone-bonding material, which will be described later,
It can be suitably used as a suture material, a vascular restenosis preventing material, a bone cement outflow preventing material in the medullary canal, and other living tissue treating materials. Moreover, since this material consists of a biodegradable and absorbable lactic acid-based polymer, even if it is left in the body, it will be hydrolyzed over time, absorbed into the body, and discharged outside the body, so it will remain as a foreign substance. There is no. Further, the non-metal lactic acid-based polymer does not cause the MRI or CT halation phenomenon.
【0040】上記の形状記憶生体内分解吸収性材料は、
乳酸系ポリマーからなる元の成形体の変形処理を一度だ
け行ったものであるが、変形処理を再度繰り返して行っ
てもよい。即ち、乳酸系ポリマーからなる所定形状の成
形体を、そのガラス転移温度より高く結晶化温度(結晶
化温度がない場合は100℃)より低い温度で別の形状
の成形体に変形処理し、そのままガラス転移温度より低
い温度に冷却してその形状を固定した後、この成形体を
ガラス転移温度より高く上記の変形処理温度より低い温
度で更に別の形状の成形体に変形処理し、そのままガラ
ス転移温度より低い温度に冷却してその形状を固定した
生体内分解吸収性材料としてもよい。The above shape memory biodegradable and absorbable material is
Although the original molded body made of lactic acid-based polymer is subjected to the deformation treatment only once, the deformation treatment may be repeated again. That is, a molded product of a predetermined shape made of a lactic acid-based polymer is deformed into a molded product of another shape at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature), and as it is. After cooling to a temperature lower than the glass transition temperature and fixing its shape, this molded body is deformed into a molded body of another shape at a temperature higher than the glass transition temperature and lower than the above deformation treatment temperature, and the glass transition is performed as it is. A biodegradable and absorbable material having a fixed shape by cooling to a temperature lower than the temperature may be used.
【0041】このような形状記憶生体内分解吸収性材料
は、再加熱の途中の段階において、該形状記憶材料の温
度が二度目の変形処理温度を越えた時点で、最初の変形
処理を行った後の成形体の形状に復元し、更に、該形状
記憶材料の温度が最初の変形処理温度以上になると、最
終的に元の所定形状の成形体に形状が復元する。従っ
て、この形状記憶材料は、中間段階における形状の復元
を有効に利用できる利点がある。Such a shape memory biodegradable and absorbable material was subjected to the first deformation treatment when the temperature of the shape memory material exceeded the second deformation treatment temperature in the middle of reheating. When the shape of the subsequent molded body is restored, and when the temperature of the shape memory material becomes equal to or higher than the initial deformation processing temperature, the shape is finally restored to the original molded body having a predetermined shape. Therefore, this shape memory material has an advantage that the shape restoration in the intermediate stage can be effectively utilized.
【0042】本発明の形状記憶生体内分解吸収性材料に
おいては、元の成形体として、溶融成形その他の種々の
成形手段で成形された乳酸系ポリマーのソリッド(緻密
体)の成形体が使用されるが、多孔質の発泡成形体も好
適に使用される。斯かる多孔質の成形体を、そのガラス
転移温度(Tg)より高く結晶化温度(Tc)(結晶化
温度がない場合は100℃)より低い温度(Tf)で別
の形状の実質的に無孔質の成形体に変形処理(例えば圧
縮変形処理)し、そのままガラス転移温度より低い温度
に冷却してその形状を固定した生体内分解吸収性材料
は、上記の変形処理温度(Tf)以上に再び加熱すると
元の所定形状の多孔質の成形体に形状が復元される。こ
のように生体内分解吸収性材料が元の多孔質の成形体に
復元して生体内に埋入されると、連続した気孔を通じて
体液が該材料内に浸透して速やかに該材料が加水分解さ
れる一方、体液と共に周囲組織の組織細胞が該気孔を通
じて該材料内に侵入して増殖するため、比較的短期間の
うちに該材料が組織細胞と置換して消失する。従って、
この材料は組織再建用の足場(scafflold)等として好
適に使用することができる。In the shape memory biodegradable and absorbable material of the present invention, a solid (dense) molded body of a lactic acid polymer molded by melt molding or other various molding means is used as the original molded body. However, a porous foamed molded product is also preferably used. Such a porous molded article is substantially free of another shape at a temperature (Tf) higher than its glass transition temperature (Tg) and lower than its crystallization temperature (Tc) (100 ° C. when there is no crystallization temperature). The biodegradable and absorbable material in which the shape is fixed by deforming (for example, compressing and deforming) the porous molded body and cooling it to a temperature lower than the glass transition temperature as it is to the above deformation processing temperature (Tf) or higher. When heated again, the shape is restored to the original porous body having a predetermined shape. Thus, when the biodegradable and absorbable material is restored to the original porous molded body and embedded in the living body, the body fluid penetrates into the material through the continuous pores and the material is rapidly hydrolyzed. On the other hand, since the tissue cells of the surrounding tissue enter the material through the pores and grow together with the body fluid, the material replaces the tissue cells and disappears within a relatively short period of time. Therefore,
This material can be suitably used as a scaffold for tissue reconstruction.
【0043】元の多孔質の成形体は、発泡倍率が2〜3
倍程度で空隙率が略50〜70%のものが好適に使用さ
れる。2倍より低い発泡倍率の成形体を変形処理した形
状記憶材料は、これを復元させて生体内に埋入しても体
液や組織細胞の該材料内への侵入が不充分であり、逆
に、3倍より高い発泡倍率の成形体を変形処理した形状
記憶材料は、これを復元させて生体内の骨等の硬組織の
欠損部分に埋入すると強度が不足する懸念がある。但
し、軟組織に適用の場合には、その限りではない。The original porous molded body has a foaming ratio of 2 to 3
A material having a porosity of about 50 to 70% is preferably used. A shape memory material obtained by subjecting a molded body having a foaming ratio lower than 2 times to a deformation treatment has insufficient penetration of body fluid or tissue cells into the material even if it is restored and embedded in a living body. A shape memory material obtained by subjecting a molded body having a foaming ratio higher than 3 times to a deformation treatment may have insufficient strength if it is restored and embedded in a defect portion of hard tissue such as bone in a living body. However, this is not the case when applied to soft tissue.
【0044】また、本発明の形状記憶生体内分解吸収性
材料には、生体活性なバイオセラミックス粉体や、各種
の薬物を含有させることもできる。The shape memory biodegradable and absorbable material of the present invention may contain bioactive bioceramic powder and various drugs.
【0045】バイオセラミックス粉体としては、表面生
体活性なハイドロキシアパタイト、バイオガラス系もし
くは結晶化ガラス系の生体用ガラス、生体内吸収性の湿
式ハイドロキシアパタイト、ジカルシウムホスフェー
ト、トリカルシウムホスフェート、テトラカルシウムホ
スフェート、オクタカルシウムホスフェート、カルサイ
ト、ジオプサイトなどの粉体が好適であり、これらは単
独で又は二種以上混合して使用される。斯かるバイオセ
ラミックス粉体を含有させた形状記憶生体内分解吸収性
材料は、生体内の骨組織に埋入するとバイオセラミック
ス粉体によって骨組織が材料表面に誘導形成され、短期
間で骨組織と結合して固定あるいは置換されるので、骨
接合用材料として好適に使用でき、特に、上記の多孔質
成形体を圧縮変形処理した形状記憶材料にバイオセラミ
ックス粉体を含有させたものは、骨組織再建に極めて有
効である。As the bioceramic powder, surface bioactive hydroxyapatite, bioglass or crystallized glass biomedical glass, bioabsorbable wet hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate. Powders of octacalcium phosphate, calcite, diopsite and the like are suitable, and these are used alone or in combination of two or more kinds. The shape memory biodegradable and absorbable material containing such bioceramics powder, when embedded in the bone tissue in the living body, the bone tissue is induced and formed on the material surface by the bioceramics powder, and the bone tissue becomes Since it is bonded and fixed or replaced, it can be suitably used as a bone-bonding material. In particular, a shape memory material obtained by compressing and deforming the above-mentioned porous molded body containing bioceramic powder is a bone tissue. It is extremely effective for reconstruction.
【0046】一方、薬物としては各種の治療薬のほか
に、抗菌剤、骨の増殖因子、各種ホルモン、生理活性物
質、各種サイトカインなどが使用される。斯かる薬物を
含有させた形状記憶生体内分解吸収性材料は、生体内に
埋入すると薬物がほぼ一定の速度で放出することも工夫
できるので、DDS(Drug Deliverly System) の基材
として好適に使用することができる。そして、上記の骨
の増殖因子やサイトカイン等の成長因子を含有させた形
状記憶材料は、殊に骨接合用あるいは骨組織再建用の材
料として極めて有効である。On the other hand, as the drug, in addition to various therapeutic agents, antibacterial agents, bone growth factors, various hormones, physiologically active substances, various cytokines, etc. are used. Such a shape-memory biodegradable and absorbable material containing a drug can be devised so that the drug can be released at a substantially constant rate when implanted in a living body, and thus is suitable as a base material for DDS (Drug Deliverly System). Can be used. The shape memory material containing the growth factors such as bone growth factors and cytokines is extremely effective especially as a material for osteosynthesis or bone tissue reconstruction.
【0047】次に、本発明の形状記憶生体内分解吸収性
材料の具体的な実施形態について、図面を参照しながら
詳述する。Next, specific embodiments of the shape memory biodegradable and absorbable material of the present invention will be described in detail with reference to the drawings.
【0048】[0048]
【発明の実施の形態】図1は血管吻合用の形状記憶生体
内分解吸収性材料(以下、血管吻合用形状記憶材料と記
す)の説明図である。1 is an explanatory view of a shape memory biodegradable and absorbable material for blood vessel anastomosis (hereinafter referred to as a shape memory material for blood vessel anastomosis).
【0049】この血管吻合用形状記憶材料1は、前述し
た乳酸系ポリマーの円筒形状の成形体からなるもので、
所定温度(後述する変形処理温度(Tf))以上に加熱
すると、その形状が外力を加えなくても記憶した小径円
筒形状に復元される材料である。The shape memory material 1 for blood vessel anastomosis is made of the above-mentioned cylindrical shaped body of lactic acid-based polymer,
It is a material whose shape is restored to a memorized small-diameter cylindrical shape even when an external force is not applied, when heated above a predetermined temperature (deformation processing temperature (Tf) described later).
【0050】即ち、この血管吻合用形状記憶材料1は、
乳酸系ポリマーからなる小径円筒形状の成形体1aを、
そのガラス転移温度(Tg)より高く結晶化温度(T
c)(結晶化温度がない場合は100℃)より低い温度
(Tf)で径方向に拡張変形処理して大径円筒形状とな
し、そのままガラス転移温度(Tg)より低い温度に冷
却して常温でその大径円筒形状を固定することによっ
て、元の成形体1aの小径円筒形状を記憶させたもので
ある。That is, the shape memory material 1 for blood vessel anastomosis is
A small-diameter cylindrical molded body 1a made of lactic acid-based polymer
Crystallization temperature (T) higher than its glass transition temperature (Tg)
c) Radial expansion at a temperature (Tf) lower than (100 ° C when there is no crystallization temperature) to form a large diameter cylindrical shape, and then cooled to a temperature lower than the glass transition temperature (Tg) at room temperature. By fixing the large-diameter cylindrical shape, the small-diameter cylindrical shape of the original molded body 1a is memorized.
【0051】元の小径円筒形状の成形体1aは、乳酸系
ポリマーを熱成形可能な温度(融点がないときは軟化温
度(Ts)、融点のあるときは溶融温度(Tm)以上の温
度)に加熱して押出成形機などの成形手段によって小径
円筒形状(チューブ形状)に成形し、常温で冷却固化さ
せることによって、その小径円筒形状を固定したもので
あり、固定相も可逆相も固化されている。この小径円筒
形状の成形体1aの内径は、血管の外径よりも小さく設
定する必要があり、吻合する血管の太さに応じて内径を
設定するのが適当である。また、この成形体1aの肉厚
は0.5〜3mm程度あれば強度的に充分である。The original compact 1a having a cylindrical shape has a temperature at which the lactic acid-based polymer can be thermoformed (a softening temperature (Ts) when there is no melting point, and a melting temperature (Tm) or higher when there is a melting point). By heating and molding into a small-diameter cylindrical shape (tube shape) by a molding means such as an extruder, and then cooling and solidifying at room temperature, the small-diameter cylindrical shape is fixed. Both the stationary phase and the reversible phase are solidified. There is. The inner diameter of the small-diameter cylindrical molded body 1a needs to be set smaller than the outer diameter of the blood vessel, and it is appropriate to set the inner diameter according to the thickness of the blood vessel to be anastomosed. Further, if the thickness of the molded body 1a is about 0.5 to 3 mm, the strength is sufficient.
【0052】この成形体1aの拡張変形処理の手段とし
ては種々の手段を採用できるが、最も簡便な手段は、成
形体1aを上記の変形処理温度(Tf)に加熱しなが
ら、先端の尖った金属製や合成樹脂製の拡張用ロッド1
01を成形体1aに通して拡張させる方法である。成形
体1aの変形倍率(内径の拡張倍率)は最大15倍程度
まで可能であるが、倍率が高すぎると乳酸系ポリマーが
ポリマー組成によってはフィブリル化したり、不均質化
し、逆に、倍率が低すぎると形状復元の効果が不充分と
なるので、1.3〜10倍程度にするのが望ましい。更
に好ましい変形倍率の範囲は1.5〜6倍程度である。Various means can be adopted as a means for expanding and deforming the molded body 1a, but the simplest means is to heat the molded body 1a to the above deformation processing temperature (Tf) while sharpening the tip. Expansion rod 1 made of metal or synthetic resin
This is a method in which 01 is expanded through the molded body 1a. The deformation ratio (expansion ratio of the inner diameter) of the molded body 1a can be up to about 15 times, but if the ratio is too high, the lactic acid-based polymer becomes fibrillated or heterogeneous depending on the polymer composition, and conversely the ratio is low. If it is too much, the effect of restoring the shape becomes insufficient, so it is desirable to make the ratio approximately 1.3 to 10 times. A more preferable range of the deformation magnification is about 1.5 to 6 times.
【0053】元の成形体1aの小径円筒形状を記憶させ
るためには、ガラス転移温度(Tg)より高く結晶化温
度(Tc)より低い温度(Tf)で拡張変形処理を行う
ことが必要であるが、本発明に用いる乳酸系ポリマーの
大部分は、ガラス転移温度(Tg)が45〜70℃の範
囲内にあり、先述の理由により拡張変形処理のための温
度(Tf)は高くても100℃迄である。通常は50〜
75℃程度の比較的低い変形処理温度で拡張変形処理す
る。In order to memorize the small-diameter cylindrical shape of the original molded body 1a, it is necessary to perform the expansion deformation treatment at a temperature (Tf) higher than the glass transition temperature (Tg) and lower than the crystallization temperature (Tc). However, most of the lactic acid-based polymers used in the present invention have a glass transition temperature (Tg) in the range of 45 to 70 ° C., and for the reason described above, the temperature (Tf) for extended deformation treatment is 100 at the highest. Up to ℃. Usually 50 ~
Extended deformation processing is performed at a relatively low deformation processing temperature of about 75 ° C.
【0054】上記のように小径円筒形状の成形体1aを
ガラス転移温度(Tg)より高く結晶化温度(Tc)よ
り低い変形処理温度(Tf)に加熱しながら拡張用ロッ
ド101を挿通すると、基本的に成形体1aの可逆相の
みが溶融してポリマー自体が見掛上成形可能な程度に軟
化するので、大径円筒形状に拡張変形できる。そして拡
張変形したままガラス転移温度(Tg)より低い常温で
冷却すると、可逆相が再び固化して大径円筒形状に強制
的に形状が固定された血管吻合用形状記憶材料1が得ら
れる。このような大径円筒形状の血管吻合用形状記憶材
料1を上記の変形処理温度(Tf)以上に再び加熱する
と、可逆相のみが溶融し、固定相によって元の小径円筒
形状の成形体1aに形状が速やかに復元される。但し、
固定相と可逆相は独立したブロック相を形成しているも
のに限らず、分子間の相互作用によって相構造をつくら
ずに同様の機能を示す構造形態であってもよい。As described above, when the expansion rod 101 is inserted while heating the small-diameter cylindrical shaped body 1a to a deformation treatment temperature (Tf) higher than the glass transition temperature (Tg) and lower than the crystallization temperature (Tc), Since only the reversible phase of the molded body 1a is melted and the polymer itself is softened to the extent that it can be molded apparently, it can be expanded and deformed into a large diameter cylindrical shape. Then, when it is cooled at a normal temperature lower than the glass transition temperature (Tg) while being expanded and deformed, the reversible phase is solidified again, and the shape memory material 1 for blood vessel anastomosis in which the shape is forcibly fixed in a large-diameter cylindrical shape is obtained. When such a large-diameter cylindrical shape memory material 1 for blood vessel anastomosis is heated again to the deformation treatment temperature (Tf) or higher, only the reversible phase is melted and the stationary phase is transformed into the original small-diameter cylindrical shaped body 1a. The shape is quickly restored. However,
The stationary phase and the reversible phase are not limited to those forming an independent block phase, and may have a structural form showing a similar function without forming a phase structure due to interaction between molecules.
【0055】この血管吻合用形状記憶材料1は、最終的
にガス滅菌されて保管されるが、既述したようにガラス
転移温度が45〜70℃の範囲内にある乳酸系ポリマー
を用いているので、ガス滅菌時の温度(40〜45℃)
で形状が復元したり、保管中に形状が復元する恐れはな
い。The shape memory material 1 for blood vessel anastomosis is finally gas sterilized and stored, but as described above, a lactic acid-based polymer having a glass transition temperature within the range of 45 to 70 ° C. is used. So, the temperature at the time of gas sterilization (40-45 ℃)
There is no risk that the shape will be restored by or will be restored during storage.
【0056】図2は、上記の血管吻合用形状記憶材料1
の使用方法の説明図である。FIG. 2 shows the shape memory material 1 for vascular anastomosis described above.
It is explanatory drawing of the usage method of.
【0057】まず、切断された双方の血管102,10
2の端部を大径円筒形状の血管吻合用形状記憶材料1の
両端開口から挿入し、次いで、血管吻合用形状記憶材料
1を上記の変形処理温度(Tf)以上に再び加熱する。
再加熱の手段としては、上記の変形処理温度(Tf)以
上の温風や温水(滅菌した生理食塩水等)を血管吻合用
形状記憶材料1に吹きつけるなどして接触する手段が簡
便であるが、その他、レーザー加熱、高周波加熱、超音
波加熱、赤外線加熱などの手段も採用可能である。First, the cut blood vessels 102, 10
The ends of 2 are inserted from both end openings of the large-diameter cylindrical shape memory material 1 for blood vessel anastomosis, and then the shape memory material 1 for blood vessel anastomosis is heated again to the above deformation treatment temperature (Tf) or higher.
As a means for reheating, a means for contacting by blowing hot air or warm water (sterilized physiological saline or the like) having a temperature above the deformation treatment temperature (Tf) onto the shape memory material 1 for vascular anastomosis is convenient. However, other means such as laser heating, high frequency heating, ultrasonic heating, infrared heating and the like can also be adopted.
【0058】このように再加熱すると、大径円筒形状の
血管吻合用形状記憶材料1は速やか(数秒以内)に元の
小径円筒形状の成形体1aに形状を復元し、双方の血管
102,102の端部を抱え込んで固定するため、極め
て簡単に血管102,102を吻合することができる。
従って、従来のように縫合糸で血管を縫いあわせる場合
に比べると、血管の吻合処置が極めて簡単且つ容易とな
り、手術の効率を大幅に向上させることが可能となる。
しかも、再加熱の温度が高くなく、加熱時間も数秒と極
めて短いので、血管や周囲組織を火傷させる恐れは皆無
であり、安全である。When reheated in this manner, the large-diameter cylindrical shape memory material 1 for blood vessel anastomosis promptly (within a few seconds) restores the shape to the original small-diameter cylindrical shaped body 1a, and both blood vessels 102, 102 are formed. Since the ends of the blood vessels are held and fixed, the blood vessels 102 and 102 can be anastomosed very easily.
Therefore, compared to the conventional case where a blood vessel is sewn together with a suture, the anastomotic procedure for the blood vessel is extremely simple and easy, and the efficiency of the operation can be significantly improved.
Moreover, since the reheating temperature is not high and the heating time is as short as several seconds, there is no risk of burning the blood vessels and surrounding tissues, and it is safe.
【0059】尚、場合によっては、再加熱により血管吻
合用形状記憶材料1の形状を復元させた後、適宜のかし
め治具等で血管吻合用形状記憶材料1をやや偏平にかし
めて冷却固化させるようにしてもよい。このようにする
と、血管吻合用形状記憶材料1による血管の抱持固定力
が一層向上する利点がある。また、血管吻合用形状記憶
材料1を復元させる前に、該材料1の内面にフィブリン
糊などの接着剤を塗り、再加熱により復元した該材料1
と血管102、あるいは血管102同士を接着するよう
にしてもよい。In some cases, after the shape of the shape-memory material 1 for vascular anastomosis is restored by reheating, the shape-memory material 1 for vascular anastomosis is cautiously flattened by a suitable caulking jig to cool and solidify. You may do it. By doing so, there is an advantage that the holding and fixing force of the blood vessel by the shape memory material for blood vessel anastomosis 1 is further improved. Further, before restoring the shape memory material 1 for blood vessel anastomosis, an adhesive such as fibrin glue is applied to the inner surface of the material 1 and the material 1 is restored by reheating.
The blood vessel 102 or the blood vessels 102 may be adhered to each other.
【0060】上記のように血管吻合用形状記憶材料1を
用いて血管102,102を吻合すると、自然治癒によ
って血管がつながる。その後、血管吻合用形状記憶材料
1は体液との接触により経時的に加水分解が進行し、や
がては体内に吸収されて完全に消滅する。その速さはポ
リマーの種類によって異なるが、ポリ−D,L−乳酸は
ポリ−L−乳酸よりはかなり分解が速いので、この用途
には好適である。When the blood vessels 102, 102 are anastomosed using the shape memory material 1 for blood vessel anastomosis as described above, the blood vessels are connected by natural healing. After that, the shape memory material 1 for blood vessel anastomosis is hydrolyzed over time due to contact with body fluid, and is eventually absorbed into the body and completely disappeared. Although its speed depends on the type of polymer, poly-D, L-lactic acid decomposes considerably faster than poly-L-lactic acid, and is suitable for this application.
【0061】この実施形態の血管吻合用形状記憶材料1
は、溶融押出成形の手段で元の小径円筒形状の成形体1
aを作製しているが、射出成形などの他の溶融成形手段
で作製してもよい。また、揮発性溶媒に乳酸系ポリマー
を溶解したポリマー溶液を芯材の周囲に塗布又は吹付け
て厚肉の円筒膜を芯材の周囲に形成し、乾燥固化後に芯
材を抜き取って成形体1aを作製してもよい。このよう
にポリマー溶液の塗布又は吹付けによって成形体1aを
作製する場合は、薬物等を熱で変質させずにポリマー溶
液に配合できるので、薬物等を含んだ血管吻合用形状記
憶材料1を得たい場合には特に有効である。Shape memory material 1 for blood vessel anastomosis of this embodiment
Is the original small-diameter cylindrical shaped molded body 1 by means of melt extrusion molding.
Although a is manufactured, it may be manufactured by other melt molding means such as injection molding. Further, a polymer solution in which a lactic acid-based polymer is dissolved in a volatile solvent is applied or sprayed around the core material to form a thick cylindrical film around the core material, and after the solidification is dried and solidified, the core material is extracted and molded body 1a. May be produced. When the molded body 1a is produced by applying or spraying the polymer solution in this manner, the drug or the like can be blended in the polymer solution without being deteriorated by heat, so that the shape memory material 1 for blood vessel anastomosis containing the drug or the like is obtained. It is especially effective when you want to.
【0062】また、上記の溶媒として、乳酸系ポリマー
を溶解できる溶剤と、この溶剤より高い沸点を有する非
溶剤との混合溶媒を使用し、これに乳酸系ポリマーを溶
解して調製したポリマー溶液を上記芯材に塗布又は吹付
けて乾燥させると、連続気泡を有する小径円筒形状の多
孔質の発泡成形体1aが得られる。このような発泡成形
体1aを拡張変形処理した血管吻合用形状記憶材料1
は、再加熱により元の発泡成形体1aに形状を復元させ
て血管を吻合したまま生体内に埋入すると、体液が連続
気泡を通じて該記憶材料1の内部まで浸透し、連続した
気孔をもたないものに比べて体液との接触面積が大幅に
増大するため、加水分解の進行が速くなって1〜3ケ月
程度で体内に吸収される利点を有する。A polymer solution prepared by dissolving a lactic acid-based polymer in a mixed solvent of a solvent capable of dissolving the lactic acid-based polymer and a non-solvent having a boiling point higher than this solvent is used as the above solvent. When the core material is applied or sprayed and dried, a small-diameter cylindrical porous foam molded body 1a having open cells is obtained. Shape memory material 1 for blood vessel anastomosis obtained by subjecting such a foamed molded body 1a to an expansion deformation process
When the foamed body 1a was reheated to restore its original shape and was embedded in the living body with the blood vessels anastomosed, the body fluid penetrated into the memory material 1 through continuous bubbles and had continuous pores. Since the contact area with the body fluid is significantly increased as compared with the case where there is no one, it has an advantage that the hydrolysis proceeds rapidly and is absorbed into the body in about 1 to 3 months.
【0063】この実施形態では、元の成形体1aも、拡
張変形処理した形状記憶材料1も、断面が真円状の円筒
形状に形成されているが、これに限定されるものではな
く、例えば楕円状、三角形以上の多角形状、異形状など
種々の断面を有する筒形状に形成することが可能であ
る。In this embodiment, both the original molded body 1a and the shape-memory material 1 subjected to the expansion and deformation treatment are formed in a cylindrical shape having a perfect circular cross section, but the invention is not limited to this, and for example, It is possible to form a tubular shape having various cross sections such as an elliptical shape, a polygonal shape of a triangle or more, and an irregular shape.
【0064】図3は本発明の他の実施形態に係る血管吻
合用形状記憶材料の説明図である。FIG. 3 is an explanatory view of a shape memory material for blood vessel anastomosis according to another embodiment of the present invention.
【0065】この血管吻合用形状記憶材料2は、乳酸系
ポリマーからなる元の小径円筒形状の成形体2aが凸凹
のある内面21aを有しており、この成形体2aをガラ
ス転移温度(Tg)より高く結晶化温度(Tc)(結晶
化温度がない場合は100℃)より低い変形処理温度
(Tf)で大径円筒形状に拡張変形処理して、そのまま
ガラス転移温度(Tg)より低い温度に冷却することに
より、その大径円筒形状を固定したものである。In the shape memory material 2 for blood vessel anastomosis, the original small-diameter cylindrical shaped body 2a made of lactic acid-based polymer has an inner surface 21a having irregularities, and this shaped body 2a has a glass transition temperature (Tg). Expanded and deformed into a large-diameter cylindrical shape at a higher deformation temperature (Tf) lower than the crystallization temperature (Tc) (100 ° C. when there is no crystallization temperature), and then directly lower than the glass transition temperature (Tg). The large diameter cylindrical shape is fixed by cooling.
【0066】このような血管吻合用形状記憶材料2を用
いて、前記と同様に再加熱により形状を復元させて血管
を吻合すると、元の小径円筒形状の成形体2aが凸凹の
ある内面21aを有するため、この凸凹のある内面21
によって血管を周囲から強固に抱持固定することができ
る。従って、血管吻合用材料2から血管が抜け出す心配
はなくなる。When such a shape memory material 2 for vascular anastomosis is used to restore the shape by reheating in the same manner as described above and the blood vessel is anastomosed, the original small-diameter cylindrical shaped body 2a has an uneven inner surface 21a. Because of having this uneven inner surface 21
This makes it possible to firmly hold and fix the blood vessel from the surroundings. Therefore, there is no concern that the blood vessel will come out of the blood vessel anastomosing material 2.
【0067】尚、この凸凹は小径円筒形状の成形体2a
の長軸方向に限らず、再加熱時に切断した血管の両端が
近づいて接触、密着しやすいように、該成形体2aの内
面の直角方向に襞状の凸凹をつけておくのもよい。It should be noted that the unevenness is formed by a small-diameter cylindrical shaped body 2a.
Not only in the long axis direction, but also in the direction perpendicular to the inner surface of the molded body 2a, fold-shaped irregularities may be formed so that both ends of the blood vessel cut at the time of reheating can approach and come into contact with each other easily.
【0068】図4は本発明の更に他の実施形態に係る血
管吻合用形状記憶材料の説明図、図5は同形状記憶材料
の使用方法の説明図である。FIG. 4 is an explanatory view of a shape memory material for blood vessel anastomosis according to still another embodiment of the present invention, and FIG. 5 is an explanatory view of a method of using the same shape memory material.
【0069】この血管吻合用形状記憶材料3は、乳酸系
ポリマーからなる小径円筒形状の成形体3aを、そのガ
ラス転移温度(Tg)より高く結晶化温度(Tc)(結
晶化温度がない場合は100℃)より低い変形処理温度
(Tf1 )で、上記成形体3aより長い小径円筒形状の
成形体3bに延伸変形処理し、そのままガラス転移温度
より低い温度に冷却してその形状を固定した後、更に、
この成形体3bをガラス転移温度(Tg)より高く上記
の変形処理温度(Tf1 )より低い変形処理温度(Tf
2 )で大径円筒形状に拡張変形処理し、そのままガラス
転移温度より低い温度に冷却してその形状を固定したも
のである。The shape memory material 3 for blood vessel anastomosis comprises a small-diameter cylindrical shaped body 3a made of a lactic acid-based polymer, which has a crystallization temperature (Tc) higher than its glass transition temperature (Tg) (when there is no crystallization temperature). At a deformation treatment temperature (Tf1) lower than 100 ° C., a small diameter cylindrical shaped body 3b longer than the shaped body 3a is stretched and deformed, and then cooled to a temperature lower than the glass transition temperature to fix the shape. Furthermore,
This molded body 3b is subjected to a deformation treatment temperature (Tf) higher than the glass transition temperature (Tg) and lower than the above deformation treatment temperature (Tf1).
In 2), it was expanded and deformed into a large-diameter cylindrical shape, then cooled to a temperature lower than the glass transition temperature and the shape was fixed.
【0070】このような血管吻合用形状記憶材料3は、
最初の変形処理温度(Tf1 )以上の温度で再加熱する
と、再加熱の途中の段階において、該形状記憶材料3の
温度が二度目の変形処理温度(Tf2 )を越えた時点
で、長い小径円筒形状の成形体3bに形状が復元し、更
に該形状記憶材料3の温度が最初の変形処理温度(Tf
1 )以上になると、最終的に元の短い小径円筒形状の成
形体3aに形状が復元する。The shape memory material 3 for blood vessel anastomosis as described above is
When reheated at a temperature equal to or higher than the first deformation treatment temperature (Tf1), a long small-diameter cylinder is reached when the temperature of the shape memory material 3 exceeds the second deformation treatment temperature (Tf2) in the middle of reheating. The shape is restored to the shaped body 3b, and the temperature of the shape memory material 3 is changed to the first deformation processing temperature (Tf).
1) When the above is reached, the shape is finally restored to the original small-diameter cylindrical molded body 3a.
【0071】従って、図5に示すように、この血管吻合
用形状記憶材料3の両端開口から血管102,102を
差し込んで再加熱すると、まず、該形状記憶材料3が径
方向に収縮することにより長い小径円筒形状の成形体3
bに復元して血管102,102を強く抱持固定し、こ
のように血管102,102を強く抱持固定したまま更
に長さ方向に収縮して、元の短い小径円筒形状の成形体
3aに形状が復元し、双方の血管102,102を引き
寄せた状態で吻合することができる。Therefore, as shown in FIG. 5, when the blood vessels 102, 102 are inserted from both end openings of the shape memory material 3 for blood vessel anastomosis and reheated, first, the shape memory material 3 contracts in the radial direction. Long, small diameter cylindrical shaped body 3
Then, the blood vessels 102, 102 are strongly held and fixed in this way, and the blood vessels 102, 102 are further strongly held and fixed, and further contracted in the longitudinal direction to form the original compact body 3a having a small diameter. The shape is restored, and both blood vessels 102, 102 can be anastomosed in a state of being pulled together.
【0072】二度目の変形処理温度(Tf2 )は最初の
変形処理温度(Tf1 )よりも10℃以上低く設定する
ことが望ましく、双方の温度差が10℃より小さい場合
は、上記の血管吻合用形状記憶材料3を再加熱したとき
に、成形体3bへの復元と成形体3aへの復元とがほぼ
同時に進行するようになり、血管102,102を抱持
固定してから引き寄せることが困難となる。これに対
し、双方の温度差が10℃以上あると、再加熱の際、該
記憶材料3の温度が変形処理温度(Tf2 )を越えてか
ら変形処理温度(Tf1 )に到達するまでの時間内に成
形体3bへの復元が完了するので、成形体3bへの復元
と更に成形体3aへの復元が段階的に生じ、血管10
2,102を抱持固定したのち引き寄せて吻合すること
ができる。最初の変形処理温度(Tf1 )と二度目の変
形処理温度(Tf2 )のより好ましい温度差は20〜3
0℃である。この例に適する材料は、一部の結晶相をも
つ乳酸系ポリマーか、結晶性の乳酸系ポリマーを一部混
合したものである。It is desirable to set the second deformation treatment temperature (Tf2) lower than the first deformation treatment temperature (Tf1) by 10 ° C. or more. If the temperature difference between the two is less than 10 ° C., the above-mentioned vascular anastomosis is performed. When the shape memory material 3 is reheated, the restoration to the molded body 3b and the restoration to the molded body 3a will proceed almost at the same time, and it will be difficult to hold and hold the blood vessels 102, 102 and then draw them. Become. On the other hand, when the temperature difference between the two is 10 ° C. or more, during reheating, the time from when the temperature of the memory material 3 exceeds the deformation processing temperature (Tf2) to when it reaches the deformation processing temperature (Tf1). Since the restoration to the molded body 3b is completed, the restoration to the molded body 3b and the restoration to the molded body 3a occur stepwise, and the blood vessel 10
It is possible to hold and fix the 2, 102 and then draw them together for anastomosis. The more preferable temperature difference between the first deformation treatment temperature (Tf1) and the second deformation treatment temperature (Tf2) is 20 to 3.
It is 0 ° C. A material suitable for this example is a lactic acid-based polymer having a part of a crystalline phase or a part of a mixture of crystalline lactic acid-based polymers.
【0073】また、この血管吻合用形状記憶材料3にお
いても、元の小径円筒形状の成形体3aとして凸凹のあ
る内面を有する成形体を使用し、再加熱により形状が復
元したときに凸凹のある内面で血管をより強く抱持固定
できるようにすることが望ましい。Also in the shape memory material 3 for blood vessel anastomosis, a molded body having an uneven inner surface is used as the original molded body 3a having a small diameter cylinder, and when the shape is restored by reheating, there is unevenness. It is desirable to be able to hold and fix blood vessels more strongly on the inner surface.
【0074】図6は本発明の更に他の実施形態に係る血
管結紮用の形状記憶生体内分解吸収性材料(以下、血管
結紮用形状記憶材料と記す)の説明図、図7はその使用
方法の説明図である。FIG. 6 is an explanatory view of a shape memory biodegradable and absorbable material for blood vessel ligation (hereinafter referred to as a shape memory material for blood vessel ligation) according to still another embodiment of the present invention, and FIG. 7 is a method of using the same. FIG.
【0075】この血管結紮用形状記憶材料4は、乳酸系
ポリマーのリング形状の成形体からなるもので、所定温
度(後述する変形処理温度(Tf))以上に加熱すると
その形状が外力を加えなくても記憶した小径リング形状
に復元される材料である。The shape-memory material 4 for ligating blood vessels is made of a ring-shaped molded body of lactic acid-based polymer, and its shape does not exert an external force when heated above a predetermined temperature (deformation processing temperature (Tf) described later). However, it is a material that is restored to the memorized small diameter ring shape.
【0076】即ち、この血管結紮用形状記憶材料4は、
乳酸系ポリマーからなる小径リング形状の成形体4a
を、そのガラス転移温度(Tg)より高く結晶化温度
(Tc)(結晶化温度がない場合は100℃)より低い
変形処理温度(Tf)で大径リング形状に拡張変形処理
し、そのままガラス転移温度(Tg)より低い温度に冷
却して常温でその大径リング形状を固定したものであ
る。That is, the shape memory material 4 for ligating blood vessels is
Small-diameter ring-shaped molded body 4a made of lactic acid-based polymer
Is expanded and deformed into a large-diameter ring shape at a deformation treatment temperature (Tf) higher than the glass transition temperature (Tg) and lower than the crystallization temperature (Tc) (100 ° C. when there is no crystallization temperature), and the glass transition is performed as it is. The large-diameter ring shape is fixed at room temperature by cooling to a temperature lower than the temperature (Tg).
【0077】このような大径リング形状の血管結紮用形
状記憶材料4は、変形処理温度(Tf)以上の温度で再
加熱すると、速やかに元の小径リング形状の成形体4a
に形状が復元する。従って、図7に示すように、結紮す
べき血管102の端部にこの血管結紮用形状記憶材料4
を嵌挿し、変形処理温度(Tf)以上の温風や温水(滅
菌した生理食塩水)に接触させて再加熱すると、瞬時に
元の小径リング形状の成形体4aに形状が復元して血管
102の端部を周囲から締付けて結紮し、止血すること
ができる。その場合、同時に形状記憶材料をかしめ治具
等で偏平にかしめて冷却固化すると、血管102の端部
をより強く結紮することができるので安全である。ま
た、必要に応じて止血剤などを血管102の結紮端部に
塗り付けてもよい。Such a large-diameter ring-shaped shape-memory material 4 for ligating blood vessels is promptly reheated at a temperature equal to or higher than the deformation processing temperature (Tf) to promptly produce the original small-diameter ring-shaped molded body 4a.
The shape is restored to. Therefore, as shown in FIG. 7, the shape memory material 4 for vascular ligation is attached to the end of the blood vessel 102 to be ligated.
When it is inserted and contacted with warm air or warm water (sterilized physiological saline) having a deformation treatment temperature (Tf) or higher and reheated, the shape is instantly restored to the original small-diameter ring-shaped molded body 4a and the blood vessel 102. The end of the can be tightened from the surroundings and ligated to stop the bleeding. In that case, if the shape memory material is simultaneously flattened by crimping with a crimping jig or the like to be cooled and solidified, the end portion of the blood vessel 102 can be ligated more strongly, which is safe. If necessary, a hemostatic agent or the like may be applied to the ligated end of the blood vessel 102.
【0078】元の小径リング形状の成形体4aは、血管
102を充分に締付けて結紮できる小さな内径を有する
必要があり、具体的には、結紮すべき血管の太さを考慮
して0.1〜1.5mm程度の内径を有する成形体4a
に成形することが望ましい。その場合、この成形体4a
の内面を凸凹のある内面に形成すると、血管102を一
層強く結紮することができる。なお、この成形体4aの
幅寸法は、0.3〜5mm程度あれば充分である。The original small-diameter ring-shaped molded body 4a needs to have a small inner diameter capable of sufficiently tightening and ligating the blood vessel 102. Specifically, in consideration of the thickness of the blood vessel to be ligated, the diameter is 0.1. Molded body 4a having an inner diameter of about 1.5 mm
It is desirable to mold it. In that case, this molded body 4a
If the inner surface of the blood vessel is formed into an uneven inner surface, the blood vessel 102 can be ligated more strongly. It is sufficient that the width of the molded body 4a is about 0.3 to 5 mm.
【0079】元の成形体4aの拡張変形処理は、前記と
同様に拡張用ロッド101を成形体4aに挿入する等の
簡便な手段によって、その内径が3〜10倍程度の大径
リング形状の血管結紮用形状記憶材料4となるように拡
張変形することが望ましい。内径の拡張倍率が3倍未満
の形状記憶材料4は血管への嵌挿が容易でなく、また1
0倍を越える拡張倍率の形状記憶材料4は不均質化現象
により強度低下を招く恐れがあるので、いずれも好まし
くない。The expansion deformation processing of the original molded body 4a is performed by a simple means such as inserting the expansion rod 101 into the molded body 4a in the same manner as described above, and a large-diameter ring shape whose inner diameter is about 3 to 10 times is formed. It is desirable that the shape memory material 4 for blood vessel ligation is expanded and deformed. The shape memory material 4 having an expansion ratio of the inner diameter of less than 3 is not easy to fit into a blood vessel, and
The shape memory material 4 having an expansion ratio of more than 0 times is not preferable because it may cause a decrease in strength due to the non-uniformization phenomenon.
【0080】この実施形態では、元の成形体4aも、拡
張変形処理した形状記憶材料4も、真円状のリング形状
に形成されているが、真円状以外の例えば楕円状、多角
形状、異形状などのリング形状に形成しても勿論よい。In this embodiment, both the original molded body 4a and the shape memory material 4 subjected to the expansion and deformation process are formed in a perfect circular ring shape. However, for example, an elliptical shape, a polygonal shape other than the perfect circular shape, Of course, it may be formed in a ring shape such as an irregular shape.
【0081】図8は本発明の更に他の実施形態に係る血
管結紮用形状記憶材料の説明図である。FIG. 8 is an explanatory view of a shape memory material for blood vessel ligation according to still another embodiment of the present invention.
【0082】この血管結紮用形状記憶材料5は、乳酸系
ポリマーからなる小径円筒形状の成形体5aを、そのガ
ラス転移温度(Tg)より高く結晶化温度(Tc)(結
晶化温度がない場合は100℃)より低い変形処理温度
(Tf)で大径円筒形状の成形体5bに拡張変形処理
し、そのままガラス転移温度より低い温度に冷却してそ
の大径円筒形状を固定した該成形体5bを、更に輪切り
にして大径リング形状としたものである。The shape-memory material 5 for ligating blood vessels comprises a small-diameter cylindrical shaped body 5a made of a lactic acid-based polymer, which has a crystallization temperature (Tc) higher than its glass transition temperature (Tg) (when there is no crystallization temperature). The large-diameter cylindrical shaped body 5b is expanded and deformed at a deformation treatment temperature (Tf) lower than 100 ° C., and cooled to a temperature lower than the glass transition temperature as it is to fix the large-diameter cylindrical shape 5b. Further, it is further sliced into a large diameter ring.
【0083】このような大径リング形状の血管結紮用形
状記憶材料5は、変形処理温度(Tf)以上の温度で再
加熱すると、元の小径円筒形状の成形体5aを輪切りに
した小径リング形状に形状が復元される。従って、この
大径リング形状の形状記憶材料5を血管の端部に嵌挿
し、変形処理温度(Tf)以上の温風や温水(滅菌した
生理食塩水)と接触させて再加熱すると、瞬時に小径リ
ング形状に復元して血管の端部を結紮し、止血すること
ができる。Such a large-diameter ring-shaped shape memory material 5 for ligating blood vessels, when reheated at a temperature equal to or higher than the deformation processing temperature (Tf), has a small-diameter ring shape in which the original small-diameter cylindrical shaped body 5a is sliced. The shape is restored to. Therefore, when the large-diameter ring-shaped shape memory material 5 is inserted into the end portion of the blood vessel and brought into contact with warm air or warm water (sterilized physiological saline) having a temperature higher than the deformation treatment temperature (Tf) and reheated, it is instantly It can be restored to a small-diameter ring shape and the ends of blood vessels can be ligated to stop bleeding.
【0084】元の小径円筒形状の成形体5aの内径は、
結紮すべき血管の太さを考慮して、0.1〜1.5mm
程度に設定することが望ましく、また、血管の結紮性を
良くするために該成形体5aの内面を凸凹のある内面に
形成することが望ましい。そして、この成形体5aの拡
張変形処理は、前記と同様、その内径が3〜10倍程度
の大径円筒形状の成形体5bとなるように行うことが望
ましい。なお、成形体5bを輪切りにした大径リング形
状の形状記憶材料5の幅寸法は、0.3〜5mm程度あ
れば充分である。The inner diameter of the original small-diameter cylindrical shaped body 5a is
0.1 to 1.5 mm considering the thickness of the blood vessel to be ligated
It is desirable to set the degree to some extent, and it is desirable to form the inner surface of the molded body 5a to have an uneven inner surface in order to improve the ligation property of blood vessels. Then, it is desirable that the expansion deformation processing of the molded body 5a is performed so that the molded body 5b has a large-diameter cylindrical shape having an inner diameter of about 3 to 10 times, as described above. It is sufficient that the width dimension of the large-diameter ring-shaped shape memory material 5 in which the molded body 5b is sliced is approximately 0.3 to 5 mm.
【0085】図9は本発明の更に他の実施形態に係る腱
接合用の形状記憶生体内分解吸収性材料(以下、腱接合
用形状記憶材料と記す)の説明図、図10はその使用方
法の説明図である。FIG. 9 is an explanatory view of a shape memory biodegradable and absorbable material for tendon junction (hereinafter referred to as a shape memory material for tendon junction) according to still another embodiment of the present invention, and FIG. 10 is a method of using the same. FIG.
【0086】この腱接合用形状記憶材料6は、乳酸系ポ
リマーからなる開口面積の小さい偏平な略角筒形状の成
形体6aを、そのガラス転移温度(Tg)より高く結晶
化温度(Tc)(結晶化温度がない場合は100℃)よ
り低い変形処理温度(Tf1)で、上記の成形体6aよ
り長い開口面積の小さな略角筒形状の成形体6bに延伸
変形処理し、そのままガラス転移温度より低い温度に冷
却してその形状を固定した後、この成形体6bをガラス
転移温度(Tg)より高く上記の変形処理温度(Tf1
)より低い変形処理温度(Tf2 )で更に開口面積の
大きい略角筒形状に拡張変形処理し、そのままガラス転
移温度(Tg)より低い温度に冷却してその形状を固定
したものである。This tendon-joining shape memory material 6 comprises a flat, substantially rectangular tubular shaped body 6a made of a lactic acid-based polymer having a small opening area and having a crystallization temperature (Tc) (Tc) higher than its glass transition temperature (Tg). At a deformation treatment temperature (Tf1) lower than 100 ° C. when there is no crystallization temperature), a stretch deformation treatment is performed on a substantially rectangular tubular shaped body 6b having a smaller opening area than that of the above-mentioned shaped body 6a, and the temperature is lower than the glass transition temperature. After being cooled to a low temperature to fix its shape, the molded body 6b is heated to a temperature higher than the glass transition temperature (Tg) and the deformation treatment temperature (Tf1).
) At a lower deformation processing temperature (Tf2), the material is expanded and deformed into a substantially rectangular tube shape having a larger opening area, and then cooled to a temperature lower than the glass transition temperature (Tg) to fix the shape.
【0087】このような腱接合用形状記憶材料6は、最
初の変形処理温度(Tf1 )以上の温度で再加熱する
と、再加熱の途中の段階において、該形状記憶材料6の
温度が二度目の変形処理温度(Tf2 )を越えた時点
で、中間の成形体6bに形状が復元し、更に該形状記憶
材料6の温度が最初の変形処理温度(Tf1 )以上にな
ると、最終的に元の成形体6aに形状が復元する。When such a shape memory material 6 for tendon junction is reheated at a temperature equal to or higher than the first deformation treatment temperature (Tf1), the temperature of the shape memory material 6 is changed to the second temperature during the reheating process. When the deformation processing temperature (Tf2) is exceeded, the shape is restored to the intermediate molded body 6b, and when the temperature of the shape memory material 6 becomes equal to or higher than the initial deformation processing temperature (Tf1), the original molding is finally performed. The shape is restored to the body 6a.
【0088】従って、図10に示すように、この腱接合
用形状記憶材料6の両端開口から切断した帯状の腱10
3,103を差し込んで再加熱すると、まず、該形状記
憶材料6が縦横方向に収縮し、長い偏平な開口面積の小
さい略角筒形状の成形体6bに復元して腱103,10
3を強く抱持固定する。そして、腱103,103を強
く抱持固定したまま更に長さ方向に収縮し、元の短い偏
平な開口面積の小さい略角筒形状の成形体6aに形状が
復元して、双方の腱103,103を引き寄せた状態で
接合することができる。Therefore, as shown in FIG. 10, the band-shaped tendon 10 cut from both ends of the shape memory material 6 for joining tendons.
When 3, 103 are inserted and reheated, first, the shape memory material 6 contracts in the longitudinal and lateral directions, and is restored to the long flat, substantially rectangular tubular shaped molded body 6b having a small opening area, and the tendons 103, 10 are formed.
Hold 3 firmly. Then, the tendons 103 and 103 are contracted further in the lengthwise direction while being strongly held and fixed, and the shape is restored to the original short flat, substantially rectangular tubular shaped molded body 6a having a small opening area. It is possible to join them in a state where 103 is pulled up.
【0089】元の成形体6aは、帯状の腱103をしっ
かりと抱持固定できるように、帯状の腱103の縦横の
寸法より小さい内寸法を有する偏平な略角筒形状とする
必要があり、具体的には、内寸法が縦2〜10mm、横
7〜30mm、肉厚が0.1〜3mm程度の偏平な略角
筒形状の成形体6aであることが望ましい。そして、抱
持固定性を更に向上させるために、この成形体6aの内
面を凸凹のある内面に形成することが望ましい。The original molded body 6a needs to have a flat, substantially rectangular tube shape having an inner dimension smaller than the longitudinal and lateral dimensions of the band-shaped tendon 103 so that the band-shaped tendon 103 can be firmly held and fixed. Specifically, it is preferable that the molded body 6a has a flat, substantially rectangular tube shape with an inner dimension of 2 to 10 mm, a width of 7 to 30 mm, and a wall thickness of about 0.1 to 3 mm. Then, in order to further improve the holding and fixing property, it is desirable to form the inner surface of the molded body 6a into an uneven inner surface.
【0090】また、この成形体6aの最初の延伸変形処
理は、その長さが1.5〜10倍、好ましくは2〜6倍
程度となるように行うのが良く、二度目の拡張変形処理
は、その縦横寸法が3〜10倍程度となるように行うの
が望ましい。尚、最初の変形処理温度(Tf1 )と二度
目の変形処理温度(Tf2 )との温度差は、前述した血
管吻合用形状記憶材料3の場合と同様に10℃以上とす
る必要があり、20〜30℃の温度差とするのが望まし
い。The first stretching deformation treatment of the molded body 6a is preferably performed so that the length thereof is about 1.5 to 10 times, preferably about 2 to 6 times. Is preferably performed so that its vertical and horizontal dimensions are about 3 to 10 times. The temperature difference between the first deformation treatment temperature (Tf1) and the second deformation treatment temperature (Tf2) needs to be 10 ° C. or higher as in the case of the shape memory material 3 for vascular anastomosis described above. It is desirable to set the temperature difference to -30 ° C.
【0091】この実施形態の腱接合用形状記憶材料6
は、上記のように二度の変形処理を行っているが、元の
偏平な開口面積の小さい略角筒形状の成形体6aを、そ
のガラス転移温度(Tg)より高く結晶化温度(Tc)
(結晶化温度がない場合は100℃)より低い変形処理
温度(Tf)で縦横方向に一度だけ拡張変形処理して冷
却することにより、元の成形体6aより開口面積の大き
い略角筒形状の記憶材料としてもよい。このように拡張
変形処理をしただけの腱接合用形状記憶材料も、ガラス
転移温度以上の温度に再加熱すると、縦横方向に収縮し
て元の偏平な開口面積の小さい略角筒形状の成形体6a
に形状が復元するので、切断した腱をしっかりと抱持固
定して接合することができる。Shape memory material 6 for tendon junction of this embodiment
Is subjected to the deformation treatment twice as described above, the original rectangular flat shaped compact 6a having a small opening area has a crystallization temperature (Tc) higher than its glass transition temperature (Tg).
By expanding and deforming only once in the vertical and horizontal directions at a deformation processing temperature (Tf) lower than (100 ° C. when there is no crystallization temperature) and cooling, a substantially rectangular tubular shape having an opening area larger than that of the original molded body 6a is obtained. It may be used as a memory material. Even the shape memory material for tendon junction that has just undergone expansion deformation in this way, when reheated to a temperature above the glass transition temperature, contracts in the longitudinal and lateral directions and has the original flat tubular shape with a small opening area 6a
Since the shape is restored, the cut tendons can be firmly held and fixed and joined.
【0092】図11は本発明の更に他の実施形態に係る
腱接合用形状記憶材料の説明図である。FIG. 11 is an explanatory view of a shape memory material for tendon junction according to still another embodiment of the present invention.
【0093】この腱接合用形状記憶材料は、上述した開
口面積の大きい略角筒形状の腱接合用形状記憶材料6の
上下両面に、内側に向かって多数のV字状の切り起こし
部61を形成し、各切り起こし部61をガラス転移温度
(Tg)以上に加熱してその形状を予め収縮、復元さ
せ、冷却固化したものである。This tendon-joining shape memory material has a large number of V-shaped cut-and-raised parts 61 inwardly on both upper and lower sides of the above-mentioned generally rectangular tubular shape memory material for tendon-joining 6 having a large opening area. Each of the cut-and-raised parts 61 is formed, heated to a glass transition temperature (Tg) or higher to shrink and restore its shape in advance, and cooled and solidified.
【0094】このような腱接合用形状記憶材料は、再加
熱により形状を復元させて腱を接合するとき、予め収
縮、固化した切り起こし部61が腱の上下両面に食い込
むため、接合後に腱が抜け出すのを確実に防止できる利
点がある。In such a shape memory material for tendon joining, when the shape is restored by reheating and the tendon is joined, the cut-and-raised portions 61 that have been contracted and solidified in advance bite into the upper and lower surfaces of the tendon, so that the tendon is There is an advantage that it can be surely prevented from coming out.
【0095】尚、V字状の切り起こし部61は、図11
に示すように、その先端が形状記憶材料6の中央を向く
ように形成することが好ましく、このようにすると腱に
対する引掛かりが良くなるため、腱の抜止め防止効果が
更に向上する。The V-shaped cut and raised portion 61 is shown in FIG.
It is preferable to form the tip of the shape memory material 6 so as to face the center of the shape memory material 6, as shown in FIG.
【0096】この腱接合用形状記憶材料の他の構成は、
前述した腱接合用形状記憶材料6と同様であるので、説
明を省略する。Another constitution of the shape memory material for tendon junction is as follows:
Since it is the same as the shape memory material 6 for tendon junction described above, description thereof will be omitted.
【0097】図12は本発明の更に他の実施形態に係る
縫合用の形状記憶生体内分解吸収性材料(以下、縫合用
形状記憶材料と記す)の説明図、図13はその使用方法
の説明図である。FIG. 12 is an explanatory view of a shape memory biodegradable and absorbable material for suturing (hereinafter referred to as a shape memory material for suturing) according to still another embodiment of the present invention, and FIG. 13 is a description of its usage. It is a figure.
【0098】この縫合用形状記憶材料7は、切開された
リング形状の乳酸系ポリマーの成形体からなるもので、
所定温度(後述する変形処理温度(Tf))以上に加熱
すると、その形状が外力を加えなくても記憶した小径の
切開されたリング形状に復元される材料である。The shape memory material 7 for suturing is made of a dissected ring-shaped lactic acid polymer molding.
It is a material that, when heated above a predetermined temperature (deformation processing temperature (Tf) to be described later), restores its shape to a memorized small-diameter cut ring shape without applying external force.
【0099】即ち、この縫合用形状記憶材料7は、乳酸
系ポリマーからなる小径リング形状の成形体7aを、そ
のガラス転移温度(Tg)より高く結晶化温度(Tc)
(結晶化温度がない場合は100℃)より低い変形処理
温度(Tf)で、大径リング形状の成形体7bに拡張変
形処理し、これを切開した大径リング形状の成形体7c
の一端部を、縫合針と係合可能な形状に曲げ変形処理し
てフック部71を形成し、そのままガラス転移温度(T
g)より低い温度に冷却してその形状を固定したもので
ある。That is, the shape memory material 7 for suturing has a crystallization temperature (Tc) higher than the glass transition temperature (Tg) of the small-diameter ring-shaped molding 7a made of a lactic acid polymer.
At a deformation treatment temperature (Tf) lower than (100 ° C. when there is no crystallization temperature), the large-diameter ring-shaped compact 7b is subjected to the expansion deformation treatment, and the large-diameter ring-shaped compact 7c is cut out and expanded.
One end of the hook is bent and deformed into a shape that can be engaged with the suture needle to form the hook portion 71, and the glass transition temperature (T
g) The shape is fixed by cooling to a lower temperature.
【0100】このような縫合用形状記憶材料7は、変形
処理温度(Tf)以上の温度で再加熱すると、元の小径
リング形状の成形体7aを切開した形状に復元する。従
ってこの縫合用形状記憶材料7の一端のフック部71に
縫合針を係着し、図13に示すように生体の切開した部
位104を必要な針数だけ縫って、各形状記憶材料7を
切開した部位104の両側縁に通すことにより仮縫合
し、このように仮縫合した状態で各形状記憶材料7に変
形処理温度Tf以上の温水又は温風などの熱源を接触さ
せて再加熱すると、各形状記憶材料7が速やかに元の小
径リング形状の成形体7aを切開した形状に復元して生
体の切開部位104を閉じ、簡単且つ確実に縫合するこ
とができる。When the shape memory material 7 for suturing as described above is reheated at a temperature equal to or higher than the deformation processing temperature (Tf), the original small-diameter ring-shaped molded body 7a is restored to the cut shape. Therefore, a suture needle is attached to the hook portion 71 at one end of the shape memory material 7 for suturing, and the incised part 104 of the living body is sewn by the required number of needles as shown in FIG. Temporary suturing is performed by passing through both side edges of the formed portion 104, and when the shape memory material 7 is brought into contact with a heat source such as hot water or hot air having a deformation processing temperature Tf or higher in the state of temporary suturing to reheat, The shape memory material 7 can quickly restore the original small-diameter ring-shaped molded body 7a to the incised shape, close the incision site 104 of the living body, and perform suture easily and reliably.
【0101】切開部位104をしっかりと縫合するため
には、元の小径リング形状の成形体7aの内径を0.1
〜5mm程度、外径を0.3〜7mm程度、長さを0.
3〜5mm程度に設定することが望ましく、また、この
成形体7aの拡張変形処理は、その内径が3〜10倍程
度の大径リング形状の成形体7bとなるように行うこと
が望ましい。尚、リング形状については、この実施形態
のような真円状のもののほか、楕円状、三角形以上の多
角形状、異形状など種々のリング形状となし得ることは
言うまでもない。また、元の成形体7aの形状を、切開
された小径リングの双方の切断端部をオーバーラップさ
せた形状にしておくと、再加熱により形状を復元させた
ときに切開部位104を一層しっかりと縫合できる利点
があるので望ましい。In order to firmly suture the incision site 104, the inner diameter of the original small-diameter ring-shaped molded body 7a is set to 0.1.
.About.5 mm, outer diameter of 0.3 to 7 mm, length of 0.
It is desirable to set it to about 3 to 5 mm, and it is desirable to perform the expansion deformation processing of this molded body 7a so that the inner diameter of the molded body 7a becomes a large diameter ring shaped molded body 7b. Needless to say, the ring shape may be various ring shapes such as an elliptical shape, a polygonal shape of a triangle or more, and an irregular shape, in addition to the perfect circular shape as in this embodiment. If the original shape of the molded body 7a is set such that both cut ends of the cut small-diameter ring are overlapped with each other, the cut site 104 is more firmly fixed when the shape is restored by reheating. It is desirable because it has the advantage of suturing.
【0102】この実施形態では、切開した大径リング形
状の成形体7cの一端部を更に曲げ変形処理してフック
部71を形成しているが、小径リング形状の成形体7a
を上記の変形処理温度(Tf)で大径リング形状の成形
体7bに拡張変形処理して、そのままガラス転移温度
(Tg)より低い温度に冷却してその形状を固定し、こ
れを成形体7cのように切開して縫合用形状記憶材料と
してもよい。In this embodiment, the hook portion 71 is formed by further bending and deforming one end of the incised large-diameter ring-shaped formed body 7c, but the small-diameter ring-shaped formed body 7a is formed.
Is expanded and deformed into a large-diameter ring-shaped molded body 7b at the above deformation processing temperature (Tf), cooled to a temperature lower than the glass transition temperature (Tg) to fix the shape, and this is molded body 7c. Alternatively, the shape memory material for suturing may be formed by incising.
【0103】図14は本発明の更に他の実施形態に係る
縫合用形状記憶材料の説明図であって、この縫合用形状
記憶材料70は乳酸系ポリマーの糸形状の成形体より成
り、所定温度(後述する変形処理温度(Tf))以上に
加熱すると、外力を加えなくても短縮して記憶した太い
糸形状に復元されるものである。FIG. 14 is an explanatory view of a shape memory material for suturing according to still another embodiment of the present invention. The shape memory material for suturing 70 is a thread-shaped molded body of lactic acid-based polymer and has a predetermined temperature. When heated above the (deformation processing temperature (Tf) to be described later), the thick yarn shape is shortened and restored without applying an external force.
【0104】即ち、この縫合用形状記憶材料70は、乳
酸系ポリマーを例えば溶融押出成形して太い糸形状の成
形体70aを造り、この成形体70aをガラス転移温度
(Tg)より高く結晶化温度(Tc)(結晶化温度がな
い場合は100℃)より低い温度(Tf)で、上記の糸
形状より細くて長い糸形状に延伸変形処理し、そのまま
ガラス転移温度(Tg)より低い温度に冷却してその細
い糸形状を固定したものである。That is, for the shape memory material 70 for suturing, for example, a lactic acid-based polymer is melt-extruded to form a thick thread-shaped molded body 70a, and the molded body 70a is crystallized at a temperature higher than the glass transition temperature (Tg). At a temperature (Tf) lower than (Tc) (100 ° C. when there is no crystallization temperature), the yarn is stretched and deformed into a thread shape thinner and longer than the above thread shape, and cooled to a temperature lower than the glass transition temperature (Tg) as it is. Then, the thin thread shape is fixed.
【0105】このような糸形状の縫合用形状記憶材料7
0は、従来の縫合糸と同様に生体の切開部分等の縫合に
使用されるが、従来の縫合糸のように強く縛る必要はな
く、ゆるく縛った状態で仮縫合し、ガラス転移温度(T
g)以上の温風や温水(滅菌した生理食塩水)などの熱
源を接触させて再加熱するだけで、該材料70が瞬時に
短縮して元の太い糸形状に復元し、強く縛った縫合状態
となるため、縫合に要する労力を大幅に軽減することが
できる。Such a thread-shaped shape memory material for suture 7
0 is used for suturing an incised part of a living body like a conventional suture, but it does not need to be tightly tied like a conventional suture, and temporarily sutured in a loosely tied state, and the glass transition temperature (T
g) By simply contacting with a heat source such as warm air or warm water (sterilized physiological saline) and reheating, the material 70 is instantly shortened and restored to the original thick thread shape, and the suture is tightly bound. As a result, the labor required for suturing can be significantly reduced.
【0106】元の糸形状の成形体70aの太さは0.2
〜1mm程度に設定するのが適当であり、この程度の太
さがあれば充分な引張り強度を有するので切断の心配は
解消される。また、この成形体70aの延伸変形処理
は、その延伸倍率が1.5〜10倍、好ましくは2〜6
倍程度となるように行うことが望ましい。The thickness of the original thread-shaped molded body 70a is 0.2.
It is appropriate to set the thickness to about 1 mm, and if the thickness is about this, the tensile strength is sufficient, so that the concern of cutting is eliminated. Further, the stretching deformation treatment of the molded body 70a has a stretching ratio of 1.5 to 10 times, preferably 2 to 6 times.
It is desirable to do so as to double.
【0107】この実施形態では、元の成形体70aも縫
合用形状記憶材料70も、断面が真円状の糸形状とされ
ているが、楕円状や長方形の断面を有する糸形状にして
もよい。長方形断面を備えた糸形状の縫合用形状記憶材
料を得る場合は、元の長方形断面を有する成形体の厚み
を0.2〜0.4mm程度、幅を0.5〜1.5mm程
度に設定するのが適当である。In this embodiment, both the original molded body 70a and the shape memory material for suturing 70 have a thread shape with a perfect circular cross section, but they may have a thread shape with an elliptical or rectangular cross section. . When obtaining a thread-shaped shape memory material for suturing having a rectangular cross section, the thickness of the molded article having the original rectangular cross section is set to about 0.2 to 0.4 mm and the width is set to about 0.5 to 1.5 mm. It is appropriate to do.
【0108】図15は本発明の更に他の実施形態に係る
骨接合用の形状記憶生体内分解吸収性材料(以下、骨接
合用形状記憶材料と記す)の説明図、図16は圧縮変形
処理の説明図、図17は同骨接合用形状記憶材料の使用
方法の説明図である。FIG. 15 is an explanatory view of a shape memory biodegradable and resorbable material for osteosynthesis (hereinafter referred to as a shape memory material for osteosynthesis) according to still another embodiment of the present invention, and FIG. 16 is a compression deformation process. And FIG. 17 are explanatory views of a method of using the shape memory material for osteosynthesis.
【0109】この骨接合用形状記憶材料8は、乳酸系ポ
リマーの棒形状の成形体からなるもので、所定温度(後
述する変形処理温度(Tf))以上に加熱するとその形
状が外力を加えなくても上記の棒形状より太くて短い記
憶した棒形状に復元される材料である。The bone-bonding shape memory material 8 is made of a rod-shaped molded body of lactic acid-based polymer, and its shape does not apply an external force when heated to a temperature higher than a predetermined temperature (deformation processing temperature (Tf) described later). However, it is a material that is restored to a memorized bar shape that is thicker and shorter than the above bar shape.
【0110】即ち、この骨接合用形状記憶材料8は、乳
酸系ポリマーからなる太い丸棒形状の成形体8aを、そ
のガラス転移温度(Tg)より高く結晶化温度(Tc)
(結晶化温度がない場合は100℃)より低い変形処理
温度(Tf)で、上記の成形体より長くて細い丸棒形状
の成形体に圧縮変形処理し、そのままガラス転移温度
(Tg)より低い温度に冷却してその細い丸棒形状を固
定したものである。That is, in the shape memory material 8 for bone bonding, the thick round bar shaped body 8a made of lactic acid-based polymer has a crystallization temperature (Tc) higher than its glass transition temperature (Tg).
At a deformation treatment temperature (Tf) lower than (100 ° C. when there is no crystallization temperature), a compression deformation treatment is performed on a round bar-shaped molded body that is longer and thinner than the above-mentioned molded body, and is lower than the glass transition temperature (Tg) as it is. The thin round bar shape is fixed by cooling to temperature.
【0111】このような骨接合用形状記憶材料8は、変
形処理温度(Tf)以上の温度に再加熱すると、瞬時に
元の太い丸棒形状の成形体8aに形状が復元される。従
って、図17に示すように、この骨接合用形状記憶材料
8を従来の髄内釘の代替品として使用し、骨折又は切断
した骨106の髄腔106a,106aに該形状記憶材
料8を半分づつ挿入して、その部分に変形処理温度(T
f)以上の温水(滅菌した生理食塩水)等を接触させて
再加熱すると、骨接合用形状記憶材料8が元の太い丸棒
形状の成形体8aに形状が復元して髄腔106a,10
6aの内面に密着し、抜出し不能に固定されるため、骨
106,106を簡単且つ確実に接合することができ
る。When the shape memory material 8 for osteosynthesis is reheated to a temperature equal to or higher than the deformation treatment temperature (Tf), the shape is instantly restored to the original thick round bar shaped body 8a. Therefore, as shown in FIG. 17, the shape memory material 8 for osteosynthesis is used as a substitute for a conventional intramedullary nail, and the shape memory material 8 is halved in the medullary canals 106a, 106a of the fractured or cut bone 106. Insert one by one, and the deformation processing temperature (T
f) When the above warm water (sterilized physiological saline) or the like is contacted and reheated, the shape memory material 8 for osteosynthesis restores its shape to the original thick round bar shaped body 8a and the medullary canals 106a, 10a.
The bones 106 and 106 can be easily and surely joined because they are closely attached to the inner surface of 6a and are fixed so as not to be extracted.
【0112】また、この骨接合用形状記憶材料8を従来
の骨接合ピンの代替品として使用し、接合すべき骨片に
ドリル等で少し大きい直径の孔をあけて、上記の骨接合
用形状記憶材料8を該孔に挿入し、同様に再加熱により
形状を復元させて骨片を接合することもできる。Further, the shape-memory material 8 for osteosynthesis is used as a substitute for a conventional osteosynthesis pin, and a hole having a slightly larger diameter is made in a bone piece to be joined by a drill etc. It is also possible to insert the memory material 8 into the hole and similarly reheat it to restore its shape to join the bone fragments.
【0113】元の太い丸棒形状の成形体8aは、溶融押
出成形、射出成形、加圧(プレス)成形など種々の成形
手段で成形すればよく、その寸法は従来の髄内釘や骨接
合ピンとほぼ同様とすればよい。The original thick round bar shaped body 8a may be molded by various molding means such as melt extrusion molding, injection molding, pressure (press) molding, and its size is the same as that of conventional intramedullary nails and bone joints. It may be almost the same as the pin.
【0114】元の成形体8aの圧縮変形手段としては、
例えば図16に示すような手段が好適に採用される。即
ち、この圧縮変形手段は、横断面の開口面積が大きい大
径円筒形の収容キャビティ105aと、横断面の開口面
積が小さい小径円筒形の有底の成形キャビティ105c
との間に、内周面が下窄まりのテーパー面とされた絞り
部105bを同軸的に設けた成形形105を使用し、そ
の収容キャビティ105aに上記の成形体8aを収容し
て、加圧用の雄形105dにより成形体8aを上記の変
形処理温度(Tf)で成形キャビティ105cに連続的
又は断続的に圧入充填し、そのまま冷却して形状を固定
することにより、細い丸棒形状の形状記憶材料8を得る
ものである。As the means for compressing and deforming the original molded body 8a,
For example, the means as shown in FIG. 16 is preferably adopted. That is, the compression deformation means includes a large-diameter cylindrical storage cavity 105a having a large cross-sectional opening area and a small-diameter cylindrical bottomed molding cavity 105c having a small cross-sectional opening area.
Between the inner peripheral surface and the tapered portion 105b whose inner peripheral surface is a tapered surface is coaxially provided, the molded body 8a is housed in the housing cavity 105a, and A thin round bar shape is obtained by continuously or intermittently press-fitting the molded body 8a into the molding cavity 105c at the above-mentioned deformation processing temperature (Tf) by the male shape 105d for pressure, and then cooling it to fix the shape. The memory material 8 is obtained.
【0115】その場合、収容キャビティ105aと成形
キャビティ105cの開口面積の比を1.5〜6.0の
範囲内に設定し、変形比(成形体8aの断面積/形状記
憶材料8の断面積)が実質的に1.5〜6.0の範囲と
なるように調節することが望ましい。変形比が1.5未
満では、形状復元の効果が不充分な形状記憶材料とな
り、6.0を越えると多孔化またはフィブリル化などの
材料の不均質化を招くといった不都合を生じるからであ
る。In that case, the ratio of the opening area of the housing cavity 105a and the molding cavity 105c is set within the range of 1.5 to 6.0, and the deformation ratio (cross-sectional area of the molded body 8a / cross-sectional area of the shape memory material 8) is set. ) Is preferably adjusted to be substantially in the range of 1.5 to 6.0. This is because if the deformation ratio is less than 1.5, the effect of shape restoration becomes insufficient, and if it exceeds 6.0, there arises such a disadvantage that the material becomes inhomogeneous such as porosity or fibrillation.
【0116】この骨接合用形状記憶材料8には、生体活
性なバイオセラミックス粉体を10〜60重量%、好ま
しくは20〜50重量%の範囲内で含有させることも有
用な方法である。このようにバイオセラミックス粉体を
含有させた骨接合用形状記憶材料8を、上記のように髄
孔やドリルであけた孔に挿入すると、形状復元によって
周囲組織とよく密着するので、該材料8の表面に露出し
ているバイオセラミックス粉体や、該材料8の乳酸系ポ
リマーの表面からの加水分解によって露出してくるバイ
オセラミックス粉体によって、骨組織が該材料8の表層
部に確実に再現性をもって誘導形成され、短期間で該材
料8が生体骨と結合して固定される利点がある。It is also a useful method to incorporate the bioactive bioceramic powder in the range of 10 to 60% by weight, preferably 20 to 50% by weight in the shape memory material 8 for bone bonding. When the shape-memory material 8 for osteosynthesis containing the bioceramics powder is inserted into the medullary hole or the hole drilled as described above, the shape-recovering material adheres well to the surrounding tissue. The bone tissue is reliably reproduced on the surface layer of the material 8 by the bioceramic powder exposed on the surface of the material 8 and the bioceramic powder exposed by the hydrolysis of the lactic acid-based polymer of the material 8 from the surface. The material 8 has an advantage that it is formed by induction, and the material 8 is fixed by being combined with living bone in a short period of time.
【0117】バイオセラミックス粉体としては前述のも
のが使用されるが、そのなかでも、骨組織の誘導形成能
が高く使用実績の多い湿式ハイドロキシアパタイト、ト
リカルシウムホスフェートの粉体などは特に有用であ
る。As the bioceramic powder, the above-mentioned powders are used. Among them, wet hydroxyapatite, tricalcium phosphate powder and the like, which have a high ability to induce and form bone tissue and have been widely used, are particularly useful. .
【0118】なお、この実施形態では、元の成形体8a
も骨接合用形状記憶材料8も丸棒形状であるが、例えば
髄内釘の代替品とする場合には角棒形状にしてもよく、
また適当に湾曲した形状を持つ異形体でもよい。要する
に、中実で長い棒形状であれば、どのような断面形状を
有するものでもよく、また曲がっていてもよいものであ
る。In this embodiment, the original molded body 8a
Although the shape memory material 8 for bone attachment is also a round bar shape, for example, when it is used as a substitute for an intramedullary nail, it may be a square bar shape.
Alternatively, a deformed body having an appropriately curved shape may be used. In short, as long as it is solid and has a long rod shape, it may have any cross-sectional shape and may be curved.
【0119】図18は本発明の更に他の実施形態に係る
骨接合プレート固定用の形状記憶生体内分解吸収性材料
(以下、骨接合プレート固定用形状記憶材料と記す)の
説明図、図19はその使用方法の説明図である。FIG. 18 is an explanatory view of a shape memory biodegradable and absorbable material for fixing an osteosynthesis plate (hereinafter, referred to as a shape memory material for fixing an osteosynthesis plate) according to still another embodiment of the present invention. Is an explanatory view of a method of using the same.
【0120】この骨接合プレート固定用形状記憶材料9
は、前述の丸棒形状の骨接合用形状記憶材料8を切削し
て、一端面の直径が他端面の直径より小さいテーパー付
きピンに加工したものである。このものは、前記の変形
処理温度(Tf)以上の温度に再加熱すると、一点鎖線
で示すように、長さ方向に収縮しながら径方向に拡張
し、直径が大きく長さが短いテーパー付きピンに形状が
復元する。Shape memory material 9 for fixing the bone joint plate
Is obtained by cutting the above-described round bar-shaped shape memory material 8 for bone attachment and processing it into a tapered pin having a diameter of one end surface smaller than the diameter of the other end surface. When this is reheated to a temperature above the deformation treatment temperature (Tf), it expands in the radial direction while contracting in the lengthwise direction, as shown by the chain line, and it has a large diameter and a short length. The shape is restored to.
【0121】このテーパー付きピン形状の形状記憶材料
9は、そのままで骨接合用のピンとして使用できるもの
であるが、更に、図19に示すように骨接合プレート1
07の固定に好適に使用されるものである。The tapered pin-shaped shape memory material 9 can be used as it is as a bone-joining pin, and as shown in FIG.
It is preferably used for fixing 07.
【0122】即ち、この形状記憶材料9の直径より少し
大きい口径を有する複数の孔106bを骨106にあ
け、各孔106bにテーパー付きピン形状の形状記憶材
料9を、直径が大きい他端面の方から挿入する。そし
て、上記の孔106bと同数の孔107aをあけた骨接
合プレート107を載置し、骨106の表面から突き出
した形状記憶材料9の上端部を骨接合プレート107の
各孔107aに通して、骨接合プレート107をセット
する。次いで、変形処理温度(Tf)以上の温水(生理
食塩水)などの熱源を各形状記憶材料9に接触させ、そ
の形状を復元させて、骨106と骨接合プレート107
のそれぞれの孔106b,107aに形状記憶材料9を
密着させることにより、骨接合プレート107を骨10
6の表面に固定する。そして、予め加熱していたコテ1
08を、骨接合プレート107の表面から出ている各形
状記憶材料9の上端面に接触させ、該上端面が骨接合プ
レート107の表面と面一になるように圧着して、骨接
合プレート107を強固に固定する。なお、熱コテによ
るピン上端部の処理に代えて、予めプレート107を固
定できる形状にピン上端部を形状記憶させておく方法
も、一つの有効な方法である。That is, a plurality of holes 106b having a diameter slightly larger than the diameter of the shape memory material 9 are bored in the bone 106, and the tapered pin-shaped shape memory material 9 is inserted in each hole 106b toward the other end surface having a larger diameter. Insert from. Then, the bone joint plate 107 having the same number of holes 107a as the holes 106b is placed, and the upper end of the shape memory material 9 protruding from the surface of the bone 106 is passed through each hole 107a of the bone joint plate 107. The osteosynthesis plate 107 is set. Next, a heat source such as hot water (physiological saline) having a deformation processing temperature (Tf) or higher is brought into contact with each shape memory material 9 to restore its shape, and the bone 106 and the bone joint plate 107 are restored.
When the shape memory material 9 is brought into close contact with the respective holes 106b and 107a of the
Fix on the surface of 6. And iron 1 which had been preheated
08 is brought into contact with the upper end surface of each shape memory material 9 protruding from the surface of the osteosynthesis plate 107, and is crimped so that the upper end surface is flush with the surface of the osteosynthesis plate 107. Firmly fix. It should be noted that a method of storing the shape of the upper end of the pin in advance so that the plate 107 can be fixed is also an effective method, instead of the treatment of the upper end of the pin by the heat iron.
【0123】このような骨接合プレート固定用形状記憶
材料9には、前述したバイオセラミックス粉体を含有さ
せて、短期間で骨106と結合できるようにすると、よ
り有効である。It is more effective if the shape memory material 9 for fixing the bone-bonding plate is made to contain the above-mentioned bioceramic powder so that it can be bonded to the bone 106 in a short period of time.
【0124】図20は本発明の更に他の実施形態に係る
骨接合用形状記憶材料の説明図、図21はその使用方法
の説明図である。FIG. 20 is an explanatory diagram of a shape memory material for osteosynthesis according to still another embodiment of the present invention, and FIG. 21 is an explanatory diagram of its usage.
【0125】この骨接合用形状記憶材料10は、乳酸系
ポリマーからなる円柱状成形ブロック10dを切削加工
することにより、円柱部10aの両端面の周縁から2本
以上(この実施形態では8本)のアーム部10bが外側
へ傾斜して突き出した形状の成形体10cを作製し、こ
の成形体10cを、ガラス転移温度(Tg)より高く結
晶化温度(Tc)(結晶化温度がない場合は100℃)
より低い変形処理温度(Tf)で、各アーム部10bが
円柱部10aの軸線方向と平行になるように各アーム部
10bの付け根部分で内側へ曲げ変形処理し、そのまま
ガラス転移温度より低い温度に冷却してその形状を固定
したものである。This bone-shape shape memory material 10 has two or more pieces (eight pieces in this embodiment) from the peripheral edges of both end surfaces of the columnar portion 10a by cutting the cylindrical molding block 10d made of a lactic acid-based polymer. A molded body 10c having a shape in which an arm portion 10b of the above is inclined and projected to the outside is manufactured, and this molded body 10c is crystallized at a temperature higher than the glass transition temperature (Tg) (Tc) (or 100 if there is no crystallization temperature). ℃)
At a lower deformation processing temperature (Tf), bending processing is performed inward at the base of each arm 10b so that each arm 10b is parallel to the axial direction of the column 10a, and the temperature is lower than the glass transition temperature as it is. It is cooled to fix its shape.
【0126】このような骨接合用形状記憶材料10は、
上記の変形処理温度(Tf)以上に再加熱すると、各ア
ーム部10bが外側へ傾斜して開いた元の成形体10c
に形状が復元される。The shape memory material 10 for osteosynthesis as described above is
When reheated to the deformation processing temperature (Tf) or higher, the original molded body 10c in which each arm portion 10b is inclined and opened outward
The shape is restored to.
【0127】従って、この骨接合用形状記憶材料10を
従来のハーバートスクリューの代替品などの類似の用途
に使用し、図21に示すように、ドリル等で骨106,
106の接合すべき面にあけた孔106c,106cへ
該形状記憶材料10を挿入して、上記の変形処理温度
(Tf)以上の温水(生理食塩水)等で加熱すると、該
形状記憶材料10は元の成形体10cに形状が復元して
アーム部10bが外側へ傾斜するように開き、各アーム
部10bの先端が双方の孔106c,106cの内面に
圧接して固定されるため、双方の骨106,106を簡
単に接合することができる。Therefore, the shape-memory material 10 for bone joining is used for a similar application such as a substitute of a conventional Herbert screw, and as shown in FIG.
When the shape memory material 10 is inserted into the holes 106c, 106c formed in the surfaces to be joined of 106 and heated with warm water (physiological saline) or the like above the deformation treatment temperature (Tf), the shape memory material 10 is formed. Is opened so that the shape is restored to the original molded body 10c and the arm portions 10b are inclined outward, and the tips of the arm portions 10b are pressed into contact with the inner surfaces of the holes 106c and 106c to be fixed. The bones 106, 106 can be easily joined.
【0128】かかる骨接合用形状記憶材料10は、図2
0に示すように、各アーム部10bの先端に爪片を外側
へ突出させて形成することが望ましい。このような爪片
が形成されていると、形状が復元したとき、上記の孔1
06cの内面と爪片との引掛かりが良くなり、より強固
に骨106,106を接合できる利点がある。The shape memory material 10 for osteosynthesis shown in FIG.
As shown in FIG. 0, it is desirable to form a claw piece at the tip of each arm portion 10b so as to project outward. When such a claw piece is formed, when the shape is restored, the hole 1 described above is formed.
There is an advantage that the inner surface of 06c and the claw piece can be easily caught, and the bones 106 can be joined more firmly.
【0129】尚、この骨接合用形状記憶材料10におい
ても、前述したバイオセラミックス粉体を含有させて、
短期間で骨106と結合できるようにすることが望まし
い。The shape memory material 10 for osteosynthesis also contains the above-mentioned bioceramic powder,
It is desirable to be able to bond with the bone 106 in a short period of time.
【0130】図22は本発明の更に他の実施形態に係
る、髄腔内でのボーンセメント或は骨の細片の流出防止
用の形状記憶生体内分解吸収性材料(以下、ボーンセメ
ント流出防止用形状記憶材料と記す)の説明図、図23
はその使用方法の説明図である。FIG. 22 shows a shape memory biodegradable and absorbable material (hereinafter referred to as bone cement outflow prevention) for preventing outflow of bone cement or bone debris in the medullary cavity according to still another embodiment of the present invention. 23 is a shape memory material for use in manufacturing)
Is an explanatory view of a method of using the same.
【0131】このボーンセメント流出防止用形状記憶材
料11は、乳酸系ポリマーからなる円柱状成形ブロック
11dを切削加工することにより、半球面状の下面を有
する円柱状プラグ部11aの上面の周縁から2以上(こ
の実施形態では4つ)の花弁状突起部11bが外側へ傾
斜して突き出した形状の成形体11cを作製し、この成
形体11cを、ガラス転移温度(Tg)より高く結晶化
温度(Tc)(結晶化温度がない場合は100℃)より
低い変形処理温度(Tf)で、各花弁状突起部11bが
円柱状プラグ部11aの軸線方向と平行になるように各
花弁状突起部11bの付け根部分で内側へ曲げ変形処理
し、そのままガラス転移温度より低い温度に冷却してそ
の形状を固定したものである。This bone cement outflow-preventing shape memory material 11 is formed by cutting a cylindrical molding block 11d made of a lactic acid-based polymer to cut the cylindrical plug portion 11a having a hemispherical lower surface from the peripheral edge of the upper surface of the cylindrical plug section 11a. The above-mentioned (four in this embodiment) petal-shaped projections 11b are formed into a shape in which the petals 11b are inclined and protruded to the outside, and the shaped body 11c is produced. At a deformation processing temperature (Tf) lower than Tc (100 ° C. when there is no crystallization temperature), each petal-shaped protrusion 11b is arranged such that each petal-shaped protrusion 11b is parallel to the axial direction of the cylindrical plug 11a. The shape is fixed by bending and deforming the inner part at the root part and cooling it to a temperature lower than the glass transition temperature.
【0132】かかる形状記憶材料11は、変形処理温度
(Tf)以上に再加熱すると、各花弁状突起部11bが
外側へ傾斜して開いた元の成形体11cに形状が速やか
に復元される。従って、図23に示すようにこのボーン
セメント流出防止用形状記憶材料11を骨106の髄腔
106aへ挿入し、変形処理温度(Tf)以上の温水
(生理食塩水)等を接触させて再加熱すると、該形状記
憶材料11は元の成形体10cに形状が復元して、各花
弁状突起部11bが外側へ傾斜するように開き、各花弁
状突起部11bの先端が髄腔106aの内面に圧接して
固定される。When the shape memory material 11 is reheated to a temperature higher than the deformation treatment temperature (Tf), the shape of the petaloid projections 11b is quickly restored to the original molded body 11c which is opened by inclining outward. Therefore, as shown in FIG. 23, the bone cement outflow-preventing shape memory material 11 is inserted into the medullary cavity 106a of the bone 106, and hot water (physiological saline) having a temperature higher than the deformation treatment temperature (Tf) is brought into contact therewith to reheat the same. Then, the shape-memory material 11 restores its shape to the original molded body 10c and opens so that each petal-shaped protrusion 11b is inclined outward, and the tip of each petal-shaped protrusion 11b is located on the inner surface of the medullary cavity 106a. It is pressed and fixed.
【0133】このように形状記憶材料11を復元させて
髄腔106a内に固定し、ボーンセメント108を髄腔
106aの一端(上端)から充填すると、ボーンセメン
ト108は各花弁状突起部11bによって髄腔106a
の下部へ流出することが防止される。従って、このボー
ンセメント108を充填した髄腔106aに人工関節の
ステム(不図示)を挿入すると、ボーンセメント108
によって該ステムを確実に固定することができる。When the shape memory material 11 is restored and fixed in the medullary canal 106a in this way, and the bone cement 108 is filled from one end (upper end) of the medullary canal 106a, the bone cement 108 is marrowed by each petaloid protrusion 11b. Cavity 106a
It is prevented from flowing out to the lower part of. Therefore, when a stem (not shown) of an artificial joint is inserted into the medullary cavity 106a filled with this bone cement 108, the bone cement 108
With this, the stem can be securely fixed.
【0134】このボーンセメント流出防止用形状記憶材
料11も、前述したバイオセラミックス粉体を含有させ
て、短期間で骨106と結合できるようにすることが望
ましく、また、各花弁状突起部11bの先端に外側へ突
出する爪片を形成して、髄腔106aの内面との引掛か
りを良くすることが望ましい。This bone cement outflow-preventing shape memory material 11 also preferably contains the above-mentioned bioceramic powder so that it can be bonded to the bone 106 in a short period of time. It is desirable to form a claw piece that projects outward at the tip to improve the catching with the inner surface of the medullary cavity 106a.
【0135】尚、元の成形体11cの各部の寸法は、挿
入する髄腔の大きさに応じて適宜設定すればよい。The dimensions of each part of the original molded body 11c may be appropriately set according to the size of the medullary cavity to be inserted.
【0136】図24は本発明の更に他の実施形態に係る
血管再狭窄防止用の形状記憶生体内分解吸収性材料(以
下、血管再狭窄防止用形状記憶材料と記す)の説明図、
図25はその使用方法の説明図である。この血管再狭窄
防止用形状記憶材料12は、多数の孔12bを形成した
孔開き円筒形状の乳酸系ポリマーからなる成形体12a
を、そのガラス転移温度(Tg)より高く結晶化温度
(Tc)(結晶化温度がない場合は100℃)より低い
変形処理温度(Tf)で、偏平に折り畳んで丸く巻いて
褶曲させた筒形状に曲げ変形処理し、そのままガラス転
移温度より低い温度に冷却してその形状を固定したもの
である。FIG. 24 is an explanatory view of a shape memory biodegradable and absorbable material for preventing vascular restenosis (hereinafter, referred to as a shape memory material for preventing vascular restenosis) according to still another embodiment of the present invention.
FIG. 25 is an explanatory diagram of how to use it. The shape memory material 12 for preventing vascular restenosis is a molded body 12a made of a perforated cylindrical lactic acid-based polymer in which a large number of holes 12b are formed.
At a deformation treatment temperature (Tf) higher than its glass transition temperature (Tg) and lower than its crystallization temperature (Tc) (100 ° C when there is no crystallization temperature), it is flatly folded and rolled into a cylindrical shape. It is bent and deformed and then cooled to a temperature lower than the glass transition temperature to fix its shape.
【0137】かかる形状記憶材料12は、上記の変形処
理温度(Tf)以上に再加熱すると、元の孔開き円筒形
状の成形体12aに形状が復元される。従って、この血
管再狭窄防止用形状記憶材料12を従来の再狭窄防止用
のステントの代替品として使用し、図25に示すように
冠動脈などの血管110に該形状記憶材料12を挿入し
て、変形処理温度(Tf)以上の温水(生理食塩水)等
を接触させて再加熱すると、該形状記憶材料12が元の
円筒形状の成形体12aに復元し、血管110を内側か
ら押拡げて再狭窄を防止することができる。When the shape memory material 12 is reheated to the deformation processing temperature (Tf) or higher, the shape of the shape memory material 12 is restored to the original shape of the perforated cylindrical shaped body 12a. Therefore, this shape memory material 12 for preventing vascular restenosis is used as a substitute for a conventional stent for preventing restenosis, and the shape memory material 12 is inserted into a blood vessel 110 such as a coronary artery as shown in FIG. When hot water (physiological saline) having a deformation temperature (Tf) or higher is contacted and reheated, the shape memory material 12 is restored to the original cylindrical shaped body 12a, and the blood vessel 110 is expanded and expanded again from the inside. Stenosis can be prevented.
【0138】この血管再狭窄防止用形状記憶材料12に
は再狭窄防止薬を含有させ、上記のように血管110内
に固定したときに再狭窄防止薬が該形状記憶材料12か
ら一定速度で放出されるように工夫することができる。
このように薬剤を含有させる場合には、元の孔開き円筒
形状の成形体12aを溶融押出成形等の手段で作製する
と、高い成形温度によって薬剤が変質する恐れが多分に
あるため、薬剤が変質しないように次の方法で元の孔開
き円筒形状の成形体12aを作製することが望ましい。This shape-memory material 12 for preventing vascular restenosis contains a restenosis-preventing drug, and when fixed in the blood vessel 110 as described above, the restenosis-preventing drug is released from the shape-memory material 12 at a constant rate. Can be devised to be done.
When the drug is contained in this way, if the original molded product 12a having a perforated cylindrical shape is produced by means such as melt extrusion molding, there is a possibility that the drug will deteriorate due to a high molding temperature. In order not to do so, it is desirable to manufacture the original perforated cylindrical molded body 12a by the following method.
【0139】即ち、乳酸系ポリマーと薬剤を溶剤に溶解
してポリマー溶液を調製し、これを芯棒109に吹きつ
けて溶剤を揮散させることにより、芯棒109の回りに
厚肉の円筒膜を形成し、この円筒膜に多数の孔12bを
開けてから芯棒109を抜き取って、孔開き円筒形状の
成形体12aを得るようにする。That is, a lactic acid-based polymer and a drug are dissolved in a solvent to prepare a polymer solution, which is sprayed onto the core rod 109 to volatilize the solvent, thereby forming a thick cylindrical film around the core rod 109. After forming a large number of holes 12b in this cylindrical film, the core rod 109 is extracted to obtain a cylindrical formed body 12a.
【0140】その場合、乳酸系ポリマーを溶解できる溶
剤と、この溶剤より高い沸点を有する非溶剤との混合溶
媒を用いて、これに乳酸系ポリマーと薬剤を溶解してポ
リマー溶液を調製し、上記と同様にすると、連続気泡を
有する孔開き円筒形状の発泡成形体が得られる。このよ
うな孔開き円筒形状の発泡成形体を曲げ変形処理した血
管再狭窄用形状記憶材料は、形状を復元させて血管内に
固定すると、無発泡のものに比べて表面積が遥かに大き
いため加水分解の進行が速く、薬剤の放出量も多くなる
利点がある。In this case, a mixed solvent of a solvent capable of dissolving the lactic acid type polymer and a non-solvent having a boiling point higher than this solvent is used to dissolve the lactic acid type polymer and the drug to prepare a polymer solution. In the same manner as above, a perforated cylindrical foamed molded product having open cells can be obtained. The shape-memory material for vascular restenosis, which is obtained by bending and deforming such a perforated cylindrical foamed molded product, has a much larger surface area than a non-foamed product when the shape is restored and fixed in the blood vessel. There are advantages that the progress of decomposition is fast and the amount of drug released is large.
【0141】この実施形態の血管再狭窄防止用形状記憶
材料12は、孔開き円筒形状の元の成形体12aを褶曲
した筒形状に曲げ変形処理したものであるが、例えば、
網目を備えたメッシュ状円筒形状の元の成形体を作製し
て同様に曲げ変形処理してもよい。また、大径コイル
(ラセン)形状の元の成形体を作製し、これを小径コイ
ル(ラセン)形状に縮小(引張り)変形処理して血管再
狭窄防止用形状記憶材料としてもよい。The shape memory material 12 for preventing vascular restenosis of this embodiment is obtained by subjecting the original molded body 12a having a perforated cylindrical shape to bending deformation processing into a folded cylindrical shape.
An original molded body having a mesh-like cylindrical shape with a mesh may be produced and similarly subjected to bending deformation treatment. Alternatively, an original molded body having a large-diameter coil (helix) shape may be produced, and this may be subjected to reduction (pulling) deformation processing into a small-diameter coil (helix) shape to obtain a shape memory material for preventing vascular restenosis.
【0142】以上、用途を具体的に幾つか挙げて説明し
たが、これら以外にも多くの用途があり、それらが本発
明の内容を逸脱しない限り全て本発明に包含されること
は言うもまでもない。Although some specific uses have been described above, there are many uses other than these, and it goes without saying that all of them are included in the present invention without departing from the scope of the present invention. Nor.
【0143】次に、本発明の更に具体的な実施例を挙げ
る。Next, more specific examples of the present invention will be described.
【0144】[実施例1]DL−ラクチドの開環重合よ
り得た粘度平均分子量40万、25万、15万、10
万、および7万のポリ−D,L−乳酸(PDLLA)を
160℃、100kg/cm2 でそれぞれ加圧成形し
て、直径10.0mm、長さ20mmの丸棒形状の夫々
のPDLLAからなる5本の成形体を得た。これらの成
形体のガラス転移温度は、いずれも50〜56℃の範囲
であった。[Example 1] Viscosity average molecular weight obtained by ring-opening polymerization of DL-lactide 400,000, 250,000, 150,000, 10
10,000 and 70,000 poly-D, L-lactic acid (PDLLA) were respectively pressure-molded at 160 ° C. and 100 kg / cm 2 to form round bar-shaped PDLLA having a diameter of 10.0 mm and a length of 20 mm. Five compacts were obtained. The glass transition temperatures of these molded bodies were all in the range of 50 to 56 ° C.
【0145】次いで、これらの成形体を60℃に加熱
し、直径5.8mm、長さ60mmの細長い丸棒形状の
成形体となるようにそれぞれ圧縮塑性変形処理した後、
冷却して常温で形状を固定し、元の丸棒形状を記憶した
5本の形状記憶生体内分解吸収性材料を得た。これらの
形状記憶材料の断面積をS1 、長さをL1 とし、塑性変
形前の元の成形体の断面積をS0 、長さをL0 とする
と、いずれの形状記憶材料も、断面積の変形度RS =S
0 /S1 =3.0、長さの変形度RL =L0 /L1=
3.0である。Next, these molded bodies were heated to 60 ° C. and subjected to compression plastic deformation treatment so as to form elongated round bar-shaped molded bodies having a diameter of 5.8 mm and a length of 60 mm, respectively.
By cooling and fixing the shape at room temperature, five shape memory biodegradable and absorbable materials having the original round bar shape memorized were obtained. Assuming that the cross-sectional area of these shape memory materials is S 1 , the length is L 1 , the cross-sectional area of the original molded body before plastic deformation is S 0 , and the length is L 0 , any shape memory material is cut. Deformation of area R S = S
0 / S 1 = 3.0, degree of deformation of length R L = L 0 / L 1 =
It is 3.0.
【0146】次いで、これらの形状記憶材料を65℃の
生理食塩水中に浸漬して形状を回復させ、回復後の断面
積S2 と長さL2 を測定して、断面積の回復率[(S2
/S0 )×100](%)と、長さの回復率[(L2 /
L0 )×100](%)を求めた。その結果を表1に示
す。Next, these shape memory materials were immersed in physiological saline at 65 ° C. to recover the shape, and the cross-sectional area S 2 and length L 2 after the recovery were measured, and the recovery rate of the cross-sectional area [( S 2
/ S 0 ) × 100] (%) and the length recovery rate [(L 2 /
L 0 ) × 100] (%) was determined. The results are shown in Table 1.
【表1】 [Table 1]
【0147】それぞれの形状記憶材料の形状は、65℃
の生理食塩水中に浸漬後、瞬時に回復した。そして、い
ずれの分子量の形状記憶材料も、その断面積の回復率お
よび長さの回復率が96.7%以上と高く、変形前の元
の丸棒形状にほぼ完全に回復することが確認できた。The shape of each shape memory material is 65 ° C.
After being dipped in the physiological saline solution, it recovered instantly. It can be confirmed that the shape memory materials of any molecular weight have a high cross-sectional area recovery rate and length recovery rate of 96.7% or more, and almost completely recover the original round bar shape before deformation. It was
【0148】また、形状の回復率は形状記憶材料の分子
量に幾分依存した。このことは、分子量が高くなるほ
ど、PDLLAの流動性が悪くなるために、元の成形体
の塑性変形時に内部歪みが生じて形状が記憶されたため
であると考えられる。しかし、本質的には元の丸棒形状
に完全に回復するものであると思われる。The shape recovery rate was somewhat dependent on the molecular weight of the shape memory material. It is considered that this is because as the molecular weight becomes higher, the fluidity of PDLLA becomes worse, and internal strain occurs during plastic deformation of the original molded body, and the shape is memorized. However, in essence, it seems that the original round bar shape is completely restored.
【0149】DL−ラクチドの開環重合より得たPDL
LAは、一般にアモルファスポリマーであるため、結晶
性ポリマーであるポリ−L−乳酸(PLLA)と比較し
て生体に埋入後の加水分解が速いことはよく知られてい
る。また、その成形体の強度は、PLLAを配向等の処
理によって分子鎖(結晶軸)を配向させた高い強度のも
のより低い。PDLLAは配向などの処理によってアモ
ルファス相と部分的な結晶相の配向を生じる場合があ
り、それによって幾分かの強度の向上がある。それは、
D−体とL−体のラクチドの比率の違い(どちらかを高
くする)、共重合体の種類の選択とそのときのモノマー
の比率の変換、分子量の大小によって左右される。PDL obtained by ring-opening polymerization of DL-lactide
Since LA is generally an amorphous polymer, it is well known that hydrolysis after implantation in a living body is faster than that of poly-L-lactic acid (PLLA) which is a crystalline polymer. Further, the strength of the molded product is lower than that of a high strength product in which molecular chains (crystal axes) are oriented by a treatment such as orientation of PLLA. PDLLA may cause an orientation of an amorphous phase and a partial crystalline phase due to a treatment such as orientation, which results in some strength improvement. that is,
It depends on the difference in the lactide ratio between the D-form and the L-form (whichever is higher), the selection of the type of copolymer and the conversion of the monomer ratio at that time, and the magnitude of the molecular weight.
【0150】形状記憶材料の必要な強度、その維持期
間、あるいは吸収の速さなどは、これらの要因を変換す
ることで調節することができる。また、ポリマーに含ま
れるラクチドモノマーの含有量を調整することによって
も、分解速度を調節することができる。The required strength of the shape memory material, its maintenance period, the speed of absorption, and the like can be adjusted by converting these factors. Further, the decomposition rate can also be adjusted by adjusting the content of the lactide monomer contained in the polymer.
【0151】[実施例2]D−ラクチドとL−ラクチド
を25:75、40:60、50:50の重量比で重合
して得た3種類の粘度平均分子量15万のPDLLA
を、160℃、100kg/cm2 でそれぞれ加圧成形
して、直径10mm、長さ10mmの丸棒形状の三本の
成形体を得た。これらの成形体のガラス転移温度は、い
ずれも50〜60℃の範囲であった。Example 2 Three kinds of PDLLA having a viscosity average molecular weight of 150,000, obtained by polymerizing D-lactide and L-lactide in a weight ratio of 25:75, 40:60 and 50:50.
Were respectively pressure-molded at 160 ° C. and 100 kg / cm 2 to obtain three round bar-shaped molded bodies having a diameter of 10 mm and a length of 10 mm. The glass transition temperatures of these molded bodies were all in the range of 50 to 60 ° C.
【0152】次いで、これらの成形体を65℃に加熱
し、直径5mm、長さ40mmの細長い丸棒形状の成形
体となるようにそれぞれ圧縮塑性変形処理した後、冷却
して常温で形状を固定し、元の丸棒形状を記憶した変形
度RS =RL =4.0の3本の形状記憶材料を得た。Next, these compacts were heated to 65 ° C., respectively subjected to compression plastic deformation treatment so as to obtain elongated slender rod-shaped compacts having a diameter of 5 mm and a length of 40 mm, and then cooled to fix the shape at room temperature. Then, three shape memory materials having a deformation degree R S = R L = 4.0 in which the original round bar shape was memorized were obtained.
【0153】これらの形状記憶材料を実施例1より温度
が高い70℃の生理食塩水中に浸漬して、それぞれの形
状回復率(断面積の回復率と長さの回復率)を測定し
た。その測定結果を表2に示す。These shape memory materials were immersed in a physiological saline solution having a temperature higher than that of Example 1 at 70 ° C., and the shape recovery rate (recovery rate of cross-sectional area and recovery rate of length) of each was measured. The measurement results are shown in Table 2.
【表2】 [Table 2]
【0154】それぞれの形状記憶材料の形状は、70℃
の生理食塩水中に浸漬後、瞬時に回復した。形状回復率
の大きさは、D−ラクチドとL−ラクチドの重合時の比
率に依存し、等しい比率の方が形状回復率の値が増加
し、塑性変形前の状態に回復しやすい傾向が明らかにな
った。D−ラクチドかL−ラクチドのどちらかの割合が
多いPDLLAは、ポリマーの構成分子鎖内にL−乳酸
あるいはD−乳酸が連続している鎖の部分が存在するの
で、分子鎖内で水素結合が生じ易いのでわずかに結晶化
するため、70℃での回復率がやや小さくなったことが
一因であると考えられる。The shape of each shape memory material is 70 ° C.
After being dipped in the physiological saline solution, it recovered instantly. The size of the shape recovery rate depends on the ratio of D-lactide and L-lactide at the time of polymerization, and when the ratio is equal, the value of the shape recovery rate increases, and it tends to easily recover to the state before plastic deformation. Became. PDLLA, which has a high proportion of either D-lactide or L-lactide, has a hydrogen bond in the molecular chain because a chain portion in which L-lactic acid or D-lactic acid is continuous is present in the polymer molecular chain. It is considered that one of the reasons is that the recovery rate at 70 ° C. was slightly small because the crystallization occurred slightly and the crystallization occurred slightly.
【0155】[実施例3]粘度平均分子量20万のD,
L−乳酸−グリコール酸共重合体(D,L−乳酸:グリ
コール酸=97.5:2.5)を180℃、100kg
/cm2 で加圧成形して、直径13.0mm、長さ30
mmの丸棒形状の成形体を得た。この成形体のガラス転
移温度は51℃であった。[Example 3] D having a viscosity average molecular weight of 200,000,
L-lactic acid-glycolic acid copolymer (D, L-lactic acid: glycolic acid = 97.5: 2.5) at 180 ° C., 100 kg
/ Cm 2 pressure molding, diameter 13.0mm, length 30
A round bar-shaped molded body of mm was obtained. The glass transition temperature of this molded product was 51 ° C.
【0156】次いで、この成形体を65℃に加熱し、直
径7.5mm、長さ90mmの細長い丸棒形状の成形体
となるように圧縮塑性変形処理した後、冷却してその形
状を固定し、元の丸棒形状を記憶した変形度RS =RL
=3.0の形状記憶材料を得た。Next, this molded body was heated to 65 ° C., subjected to compression plastic deformation treatment so as to obtain a molded body having an elongated round bar shape having a diameter of 7.5 mm and a length of 90 mm, and then cooled to fix the shape. , Deformation degree R S = RL that remembers the original round bar shape
= 3.0 of the shape memory material was obtained.
【0157】そして、この形状記憶材料を67℃の生理
食塩水に浸漬して、その形状回復率(断面積の回復率と
長さの回復率)を測定した。その結果を表3に示す。Then, this shape memory material was immersed in a physiological saline solution at 67 ° C., and its shape recovery rate (recovery rate of cross-sectional area and recovery rate of length) was measured. The results are shown in Table 3.
【表3】 [Table 3]
【0158】この形状記憶材料の形状は、67℃の生理
食塩水に浸漬後、瞬時に回復した。その断面積の回復率
および長さの回復率は98%以上であり、塑性変形前の
元の丸棒形状にほぼ完全に復元することができた。The shape of this shape memory material was recovered instantly after being immersed in a physiological saline solution at 67 ° C. The recovery rate of its cross-sectional area and the recovery rate of its length were 98% or more, and it was possible to almost completely restore the original round bar shape before plastic deformation.
【0159】[実施例4]粘度平均分子量10万のPL
LAと、D,L−ラクチドの開環重合により得た粘度平
均分子量10万のPDLLAを重量比で70:30とな
るように混合した顆粒を、185℃、100kg/cm
2 で加圧成形して、直径10mm、長さ20mmの丸棒
形状の成形体を得た。この成形体の見掛け上のガラス転
移温度は60℃付近であった。[Example 4] PL having a viscosity average molecular weight of 100,000
Granules obtained by mixing LA and PDLLA having a viscosity average molecular weight of 100,000 obtained by ring-opening polymerization of D, L-lactide in a weight ratio of 70:30 were prepared at 185 ° C. and 100 kg / cm.
By pressure molding in 2 , a round bar shaped body having a diameter of 10 mm and a length of 20 mm was obtained. The apparent glass transition temperature of this molded product was around 60 ° C.
【0160】次いで、この成形体を85℃に加熱し、直
径6.3mm、長さ50mmの細長い丸棒形状の成形体
となるように圧縮塑性変形処理した後、冷却して形状を
固定し、元の丸棒形状を記憶した変形度RS =RL =
2.5の形状記憶材料を得た。Next, this molded body was heated to 85 ° C., subjected to compression plastic deformation treatment so as to form a slender round bar-shaped molded body having a diameter of 6.3 mm and a length of 50 mm, and then cooled to fix the shape. Deformation degree R S = RL = where the original round bar shape is memorized
A shape memory material of 2.5 was obtained.
【0161】この形状記憶材料を85℃の生理食塩水中
に浸漬して、その形状回復率(断面積の回復率と長さの
回復率)を測定した。その測定結果を表4に示す。This shape memory material was immersed in physiological saline at 85 ° C., and its shape recovery rate (recovery rate of cross-sectional area and recovery rate of length) was measured. The measurement results are shown in Table 4.
【表4】 [Table 4]
【0162】この形状記憶材料の形状は、85℃の生理
食塩水中に浸漬後、瞬時に回復した。形状回復率は、実
施例1の粘度平均分子量10万のPDLLAの形状記憶
材料と比較してやや下回ったが、ほぼ塑性変形前の丸棒
形状に復元した。下回った理由は、形状記憶材料のPL
LAの部分が二次賦形の塑性変形による配向によって、
わずかに結晶化したためであると考えられる。The shape of this shape memory material was instantly recovered after immersion in 85 ° C. physiological saline. The shape recovery rate was slightly lower than that of the shape memory material of PDLLA having a viscosity average molecular weight of 100,000 of Example 1, but the shape was restored to a round bar shape before plastic deformation. The reason for the decrease was PL of shape memory material
Due to the orientation of the LA part due to the plastic deformation of the secondary shaping,
It is thought that this was due to slight crystallization.
【0163】[実施例5]D−ラクチドとL−ラクチド
を50:50の重量比で重合して得た粘度平均分子量1
5万のPDLLA(実施例2で使用のもの)をジクロロ
メタンに溶解し、この溶液に未焼成のハイドロキシアパ
タイト(u−HA)を加えた後、撹拌しながらエチルア
ルコールを加えてPDLLAとu−HAを共沈させた。
次いで、これを濾過し、完全に乾燥して、u−HAが4
0重量%と50重量%の割合で均一に分散している2種
類のPDLLAの顆粒を得た。[Example 5] Viscosity average molecular weight 1 obtained by polymerizing D-lactide and L-lactide in a weight ratio of 50:50.
50,000 PDLLA (used in Example 2) was dissolved in dichloromethane, unbaked hydroxyapatite (u-HA) was added to this solution, and then ethyl alcohol was added with stirring to add PDLLA and u-HA. Was co-precipitated.
It was then filtered and dried completely to give u-HA 4
Two types of PDLLA granules were obtained which were uniformly dispersed at a ratio of 0% by weight and 50% by weight.
【0164】これらの顆粒をそれぞれ実施例2と同様の
条件で加圧成形して、直径10mm、長さ10mmの丸
棒形状の2種類の成形体を得た。次いで、これらの成形
体を70℃に加熱して、直径6.0mm、長さ28mm
の細長い丸棒形状の成形体(変形度RS =RL =2.
8)に圧縮塑性変形処理し、冷却して形状を固定した
後、更にこの成形体を切削加工して、一端面の直径が
1.2mm、他端面の直径が1.5mm、長さが25m
mの2種類のテーパー付き形状記憶ピン(記憶形状材
料)を作製した。そして、これらのテーパー付き形状記
憶ピンを70℃の生理食塩水に浸漬して、その形状回復
率(一端面の断面積の回復率、他端面の断面積の回復
率、長さの回復率)を測定した。その結果を表5に示
す。Each of these granules was pressure-molded under the same conditions as in Example 2 to obtain two types of round bar-shaped compacts having a diameter of 10 mm and a length of 10 mm. Then, these molded bodies are heated to 70 ° C. to have a diameter of 6.0 mm and a length of 28 mm.
Elongated bar shape (deformation degree R S = R L = 2.
After compression plastic deformation treatment in 8), cooling and fixing the shape, this molded body is further cut to have a diameter of 1.2 mm on one end surface, a diameter of 1.5 mm on the other end surface, and a length of 25 m.
Two types of tapered shape memory pins (memory shape material) of m were manufactured. Then, these tapered shape memory pins are immersed in a physiological saline solution at 70 ° C., and the shape recovery rate (recovery rate of cross-sectional area of one end surface, recovery rate of cross-sectional area of other end surface, length recovery rate). Was measured. The results are shown in Table 5.
【表5】 [Table 5]
【0165】それぞれのテーパー付き形状記憶ピンの形
状は、70℃の生理食塩水中に浸漬後、瞬時に太くて短
いテーパー付きピン形状に回復し、該ピンの一端面の断
面積の回復率、他端面の断面積の回復率、長さの回復率
はいずれも約93%以上と高かった。本実施例から、バ
イオセラミックス粉粒体とPDLLAとの複合体の形状
記憶材料が得られることが判る。The shape of each tapered shape memory pin was instantaneously restored to a thick and short tapered pin shape after being immersed in saline at 70 ° C., and the recovery rate of the cross-sectional area of one end surface of the pin, etc. The recovery rate of the cross-sectional area of the end face and the recovery rate of the length were both high at about 93% or more. From this example, it can be seen that a shape memory material of a composite of bioceramic powder and PDLLA can be obtained.
【0166】次に、上記のテーパー付き形状記憶ピンの
うち、u−HA/PDLLA=50/50(重量%)の
複合体からなるピンを、骨接合用のプレート固定ピンと
して使用することを試みた。Next, of the above-mentioned tapered shape memory pins, an attempt was made to use a pin made of a composite of u-HA / PDLLA = 50/50 (wt%) as a plate fixing pin for osteosynthesis. It was
【0167】図19に示すように、まず家兎の大腿骨1
06に直径2.0mmの孔106bをドリルで5mm間
隔で直線上に4箇所あけ、u−HA/PDLLA=50
/50(重量%)の複合体からなるテーパー付き形状記
憶ピン9を、直径が大きい他端面の方から各孔106b
に挿入した。次いで、直径2.2mmの孔を5mm間隔
で直線上に4箇所穿孔したHA/PDLLA=50/5
0(重量%)の複合体からなる骨接合用のプレート10
7を大腿骨106に重ね、大腿骨106の表面から突き
出したテーパー付き形状記憶ピン9の他端部(上端部)
をプレート107の各孔107aに通してプレート10
7を設置した。そして、70℃の生理食塩水をテーパー
付き形状記憶ピン9に流しかけ、該ピン9の形状を回復
させることによって、プレート107を大腿骨106の
表面に固定した。更に、予め150℃に加熱していたコ
テ108を、プレート107の表面から出ている該ピン
9の上端に接触させ、ピンの上端がプレート107の表
面と面一になるように圧着して、プレート107を強固
に固定した。As shown in FIG. 19, first, the femur 1 of the rabbit
Holes 106b having a diameter of 2.0 mm are drilled at 6 points on a straight line at a distance of 5 mm in 06, and u-HA / PDLLA = 50.
The tapered shape memory pin 9 made of a composite of 50/50 (% by weight) is provided in each hole 106b from the other end face having a large diameter.
Inserted in. Next, HA / PDLLA = 50/5, in which holes having a diameter of 2.2 mm were perforated at 4 positions on a straight line at intervals of 5 mm.
Plate 10 for osteosynthesis consisting of 0 (wt%) composite
7 on the femur 106, and the other end (upper end) of the tapered shape memory pin 9 protruding from the surface of the femur 106
Through the holes 107a of the plate 107
7 was installed. Then, physiological saline at 70 ° C. was poured onto the tapered shape memory pin 9 to recover the shape of the pin 9, thereby fixing the plate 107 to the surface of the femur 106. Further, the trowel 108 that has been heated to 150 ° C. in advance is brought into contact with the upper end of the pin 9 protruding from the surface of the plate 107, and crimped so that the upper end of the pin is flush with the surface of the plate 107, The plate 107 was firmly fixed.
【0168】次ぎに、大腿骨に固定したプレートの引き
抜き試験を行った。まず、プレートを固定した大腿骨を
万能試験機に設置し、固定したプレートを特殊な治具で
挟んでプレートを引き抜く方向に応力を加えた。その結
果、プレートはピンと離脱することなく、プレートが折
損した。Next, a pull-out test of the plate fixed to the femur was conducted. First, the femur with the plate fixed was installed in a universal testing machine, and the fixed plate was sandwiched by a special jig to apply stress in the direction of pulling out the plate. As a result, the plate did not separate from the pin, and the plate was broken.
【0169】以上のことから、このテーパー付き形状記
憶ピンは、骨接合用のプレートを生体骨に簡単且つ確実
に固定できるものであることが実証されたので、従来の
スクリューでプレートを骨折部分に固定する骨接合法に
比べると、遥かに容易な骨接合法が可能となった。From the above, it was proved that this tapered shape memory pin can easily and surely fix the bone-bonding plate to the living bone, so that the conventional screw can be used to fix the plate to the fractured part. Compared with the fixed bone joining method, a much easier bone joining method has become possible.
【0170】[実施例6]実施例1で用いた粘度平均分
子量25万のPDLLAを160℃、100kg/cm
2 で加圧成形して、直径15mm、長さ50mmの丸棒
形状の成形体を得た。そして、この成形体を切削加工し
て、図22に示すような、円柱状プラグ部11aの上面
周縁から4つの花弁状突起部11bが外側へ傾斜して突
き出した形状の成形体11cを作製した。Example 6 The PDLLA having a viscosity average molecular weight of 250,000 used in Example 1 was used at 160 ° C. and 100 kg / cm.
By pressure molding in 2 , a round bar shaped body having a diameter of 15 mm and a length of 50 mm was obtained. Then, this molded body was cut to produce a molded body 11c having a shape in which four petal-shaped protrusions 11b were inclined and protruded outward from the peripheral edge of the upper surface of the cylindrical plug portion 11a as shown in FIG. .
【0171】この成形体11cを60℃の生理食塩水中
に浸漬し、各花弁状突起部11bがプラグ部11aの軸
線方向と平行になるように、各花弁状突起部11bの付
根部分を内側に曲げ変形処理して花弁状突起部11bが
閉じた形状となし、そのまま冷却して形状を固定するこ
とによって、元の成形体11cの形状を記憶したボーン
セメント流出防止用形状記憶材料11を得た。The molded body 11c was dipped in a physiological saline solution at 60 ° C., and the roots of the petal-shaped projections 11b were placed inward so that the petal-shaped projections 11b were parallel to the axial direction of the plug 11a. A shape memory material 11 for preventing bone cement outflow which memorized the shape of the original molded body 11c was obtained by bending and deforming the petaloid protrusions 11b to form a closed shape and then cooling and fixing the shape. .
【0172】この形状記憶材料11を家兎大腿骨の髄腔
内に挿入し、60℃の生理食塩水を形状記憶材料11に
流しかけると、形状記憶材料11の各花弁状突起部11
bが元の開いた形状に回復して、形状記憶材料11が髄
腔内に固定された。This shape memory material 11 was inserted into the medullary cavity of the rabbit femur, and physiological saline at 60 ° C. was poured onto the shape memory material 11. Each petal-shaped protrusion 11 of the shape memory material 11
b was restored to its original open shape, and the shape memory material 11 was fixed in the medullary cavity.
【0173】次いで、プラグが下に、セメントが上にな
るように縦にして髄腔内にボーンセメントを注入し、硬
化させてから大腿骨を縦に割って、髄腔内のボーンセメ
ントの洩出しの有無を確認した。その結果、ボーンセメ
ントは形状記憶材料11より上の髄腔内で硬化してお
り、下側の髄腔内へは漏れていないことが確認された。
また、挿入したボーンセメント流出防止用形状記憶材料
11は髄腔内で強固に固定されていた。Next, bone cement was injected into the medullary canal with the plug facing down and the cement on top, and after hardening, the femur was split lengthwise to prevent leakage of bone cement in the medullary canal. It was confirmed whether or not it was taken out. As a result, it was confirmed that the bone cement was hardened in the medullary cavity above the shape memory material 11 and did not leak into the lower medullary cavity.
The inserted bone cement outflow-preventing shape memory material 11 was firmly fixed in the medullary cavity.
【0174】[実施例7]L−ラクチドとD,L−ラク
チドを95:5の重量比で重合して得た粘度平均分子量
15万の共重合体を、実施例6と同じ方法でハイドロキ
シアパタイト(HA)と共沈させて乾燥し、u−HAが
40重量%の割合で均一に分散している共重合体の顆粒
を得た。Example 7 A copolymer having a viscosity average molecular weight of 150,000, obtained by polymerizing L-lactide and D, L-lactide in a weight ratio of 95: 5, was used to prepare hydroxyapatite in the same manner as in Example 6. Coprecipitated with (HA) and dried to obtain copolymer granules in which u-HA was uniformly dispersed at a ratio of 40% by weight.
【0175】これを、185℃、100kg/cm2 で
加圧成形して、直径10mm、長さ40mmの丸棒状の
成形体を得た。この成形体の見掛け上のガラス転移温度
は62℃であった。This was pressure-molded at 185 ° C. and 100 kg / cm 2 to obtain a round bar-shaped molded body having a diameter of 10 mm and a length of 40 mm. The apparent glass transition temperature of this molded product was 62 ° C.
【0176】次いで、この成形体を切削加工して、図2
0に示す形状の成形体10c(L:35mm、d:3m
m、D:5mm)を作製した。そして、この成形体10
cを85℃に加熱して、各アーム部10bが円柱部10
aの軸線方向と平行になるように、各アーム部10bの
付根部分で内側に曲げ変形処理し、元の成形体10cの
形状を記憶した骨接合用形状記憶材料10を得た。Next, this molded body was cut to obtain the shape shown in FIG.
Molded body 10c having a shape shown in 0 (L: 35 mm, d: 3 m
m, D: 5 mm) was produced. And this molded body 10
c is heated to 85 ° C. so that each arm portion 10b becomes a cylindrical portion 10.
Bending deformation processing was performed inward at the root portion of each arm portion 10b so as to be parallel to the axial direction of a, and the shape memory material 10 for osteosynthesis in which the shape of the original molded body 10c was stored was obtained.
【0177】次ぎに、家兎頸骨を中間で骨切りして、二
つの骨片を得た。そして、これらの骨片の切断面にそれ
ぞれ直径4mm、深さ18mmの孔を開け、そこへ骨接
合用形状記憶材料10を挿入して二つの骨片を接合した
後、85℃の生理食塩水を流しかけて、骨接合用形状記
憶材料10の形状を復元させ、双方の骨片を強固に接合
固定した。この接合固定した骨片に引抜き方向の応力を
加えたが、骨片は強固に接合されており、骨接合用形状
記憶材料10が骨片の孔から抜けることはなかった。Next, the tibia of the rabbit was cut in the middle to obtain two bone fragments. Then, a hole having a diameter of 4 mm and a depth of 18 mm is made in each of the cut surfaces of these bone pieces, the shape memory material 10 for osteosynthesis is inserted thereinto to join the two bone pieces, and then a physiological saline solution of 85 ° C. Was poured to restore the shape of the shape-memory material 10 for bone bonding, and both bone fragments were firmly bonded and fixed. A stress in the pulling direction was applied to the bonded and fixed bone fragments, but the bone fragments were firmly bonded and the bone-bonding shape memory material 10 did not come out from the holes of the bone fragments.
【0178】このことから、上記の骨接合用形状記憶材
料10は、骨片を充分固定できることが実証された。From this, it was demonstrated that the above-described shape-memory material 10 for osteosynthesis can sufficiently fix bone fragments.
【0179】[実施例8]DL−ラクチドの開環重合で
得た粘度平均分子量10万のポリ−DL−乳酸(ガラス
転移温度:51℃)を180℃で内径1mm、外径5m
mの小径円筒形状に押出成形し、冷却したのち切断して
内径1mm、外径5mm、長さ(幅)2mmの小径リン
グ形状の成形体を得た。そして、この小径リング形状の
成形体を60℃の雰囲気下で内径10mm、外径11.
5mm、長さ(幅)1.5mmの大径リング形状に拡張
変形した後、冷却して形状を固定し、元の小径リング形
状を記憶した形状記憶材料を作製した。Example 8 Poly-DL-lactic acid (glass transition temperature: 51 ° C.) having a viscosity average molecular weight of 100,000 obtained by ring-opening polymerization of DL-lactide (180 ° C., inner diameter 1 mm, outer diameter 5 m).
A small-diameter ring-shaped molded body having an inner diameter of 1 mm, an outer diameter of 5 mm, and a length (width) of 2 mm was obtained by extrusion molding into a small-diameter cylindrical shape of m, cooling and cutting. Then, this small-diameter ring-shaped molded body was subjected to an atmosphere of 60 ° C. and an inner diameter of 10 mm and an outer diameter of
After being expanded and deformed into a large-diameter ring shape having a length of 5 mm and a length (width) of 1.5 mm, the shape was fixed by cooling to produce a shape memory material in which the original small-diameter ring shape was memorized.
【0180】この形状記憶材料を70℃の温水に浸漬す
ると、内径、外径、長さ(幅)ともに瞬時に元の小径リ
ングと殆ど同じ形状に復元した。When this shape memory material was immersed in hot water at 70 ° C., the inner diameter, outer diameter and length (width) were instantly restored to almost the same shape as the original small diameter ring.
【0181】[実施例9]DL−ラクチドの開環重合で
得た粘度平均分子量7万のポリ−DL−乳酸(ガラス転
移温度:50℃)を180℃で内径0.5mm、外径
3.2mmの小径円筒形状に押出成形し、冷却したのち
切断して内径0.5mm、外径3.2mm、長さ(幅)
1.0mmの小径リング形状の成形体を得た。この小径
リング形状の成形体を55℃の雰囲気下で内径5.0m
m、外径6.1mm、長さ(幅)0.8mmの大径リン
グ形状に拡張変形した後、冷却して形状を固定し、元の
小径リング形状を記憶した血管結紮用リング(形状記憶
材料)を作製した。Example 9 Poly-DL-lactic acid having a viscosity average molecular weight of 70,000 (glass transition temperature: 50 ° C.) obtained by ring-opening polymerization of DL-lactide at 180 ° C. has an inner diameter of 0.5 mm and an outer diameter of 3. Extruded into a small cylindrical shape with a diameter of 2 mm, cooled and then cut to an inner diameter of 0.5 mm, an outer diameter of 3.2 mm, and a length (width).
A ring-shaped compact having a diameter of 1.0 mm was obtained. This small-diameter ring-shaped molded body has an inner diameter of 5.0 m in an atmosphere of 55 ° C.
m, outer diameter 6.1 mm, length (width) 0.8 mm, expanded and deformed into a large-diameter ring shape, and then cooled to fix the shape, and the original small-diameter ring shape was memorized. Material) was prepared.
【0182】この血管結紮用リングを、家兎の腹部の切
断された血管(太さ約1mm)の端部に嵌挿した後、6
0℃の生理食塩水を吹きかけた。すると、血管結紮用リ
ングは瞬時に元の小径リング形状に形状が回復して血管
を結紮し、完全に止血することができた。念のために、
形状が回復したリングを、80℃に加熱したペンチで偏
平にかしめて完全に血管を封止した。そして、12週
後、家兎を屠殺し、その血管を調べた結果、リングはほ
とんど消失していたが、血管は閉塞され止血が継続され
ていた。After this blood vessel ligation ring was inserted into the end of the cut blood vessel (thickness: about 1 mm) in the abdomen of the rabbit, 6
The physiological saline of 0 degreeC was sprayed. Then, the blood vessel ligation ring was instantly restored to its original small-diameter ring shape, and the blood vessel was ligated, and hemostasis could be completely stopped. To be on the safe side,
The shape-recovered ring was flatly crimped with pliers heated to 80 ° C. to completely seal the blood vessel. Then, 12 weeks later, the rabbit was slaughtered and the blood vessel was examined. As a result, the ring was almost disappeared, but the blood vessel was occluded and hemostasis was continued.
【0183】[実施例10]D−ラクチドとL−ラクチ
ドを50:50の重量比で重合して得た粘度平均分子量
15万のポリ−D,L−乳酸(ガラス転移温度:52
℃)を、180℃で内径3mm、外径5mmの小径円筒
形状に押出成形し、冷却したのち切断して内径3mm、
外径5mm、長さ(幅)1mmの小径リング形状の成形
体を得た。この小径リング形状の成形体を60℃の雰囲
気下で内径15mm、外径15.7mm、長さ(幅)
0.7mmの大径リング形状に拡張変形して切開し、そ
の一端部を縫合針と係合し得るフック形状に曲げ加工し
て冷却することにより、その形状を固定し、図12に示
すようなフック部71を有する縫合用形状記憶材料7を
作製した。Example 10 Poly-D, L-lactic acid having a viscosity average molecular weight of 150,000 (glass transition temperature: 52) obtained by polymerizing D-lactide and L-lactide in a weight ratio of 50:50.
(° C) is extruded at 180 ° C into a small-diameter cylindrical shape having an inner diameter of 3 mm and an outer diameter of 5 mm, cooled and then cut to have an inner diameter of 3 mm,
A small-diameter ring-shaped molded product having an outer diameter of 5 mm and a length (width) of 1 mm was obtained. This small-diameter ring-shaped molded body was subjected to an atmosphere of 60 ° C., an inner diameter of 15 mm, an outer diameter of 15.7 mm, and a length (width).
The shape is fixed by expanding and deforming into a 0.7 mm large-diameter ring shape, incising it, and bending and cooling one end into a hook shape that can engage with the suture needle, and fixing the shape, as shown in FIG. A shape memory material for suture 7 having a simple hook portion 71 was produced.
【0184】この縫合用形状記憶材料7の一端のフック
部71に縫合針を係合させ、家兎腹部の切開した部位を
数針縫って、図13に示すように縫合用形状記憶材料7
で切開部位104を数箇所縫合した。そして、それぞれ
の縫合用形状記憶材料7に65℃の生理食塩水を吹きか
けると、各縫合用形状記憶材料7は瞬時に元の小径リン
グ形状の成形体を切開した形状に復元し、切開部位10
4をしっかりと縫合することができた。A suture needle is engaged with the hook portion 71 at one end of the shape memory material 7 for suturing, and several incised portions of the abdomen of the rabbit are sewn, and as shown in FIG.
Several incision sites 104 were sewn together with. Then, when 65 ° C. physiological saline is sprayed on each of the suture shape memory materials 7, each suture shape memory material 7 instantly restores the original small-diameter ring-shaped molded body to the incised shape, and the incision site 10 is formed.
4 could be firmly sutured.
【0185】[実施例11]DL−ラクチドの開環重合
で得た粘度平均分子量25万のポリ−D,L−乳酸(ガ
ラス転移温度:54℃)をジクロロメタンに溶解した溶
液を、縦0.5mm、横2mm、長さ50mmのポリエ
チレン製の角棒の周囲に塗布して、ジクロロメタンを揮
散させ、長さ20mm、肉厚0.75mm、内寸法が縦
0.5mm、横2mmである偏平な角筒形状の成形体を
得た。Example 11 A solution of poly-D, L-lactic acid (glass transition temperature: 54 ° C.) having a viscosity average molecular weight of 250,000 (glass transition temperature: 54 ° C.) obtained by ring-opening polymerization of DL-lactide was dissolved in dichloromethane. 5 mm, width 2 mm, length 50 mm, applied to the periphery of a polyethylene square bar to volatilize dichloromethane to a length of 20 mm, wall thickness 0.75 mm, internal dimension 0.5 mm, width 2 mm flat. A rectangular tubular shaped body was obtained.
【0186】この成形体を80℃の雰囲気下で長さ40
mmの偏平な角筒形状に延伸し、冷却して形状を固定し
た後、更に、60℃の雰囲気下で長さ40mm、肉厚
0.1mm、内寸法が縦5mm、横10mmである開口
面積の大きい偏平な角筒形状の成形体に拡張変形し、冷
却してその形状を固定することにより、元の角筒形状を
記憶した腱接合用の形状記憶材料を作製した。This molded body was made to have a length of 40 at 80 ° C.
After being stretched into a flat rectangular tube of mm, cooled, and fixed in shape, the opening area is 40 mm in length, 0.1 mm in wall thickness, 5 mm in length, and 10 mm in width in an atmosphere of 60 ° C. By expanding and deforming it into a flat rectangular tube-shaped molded body having a large size, cooling and fixing the shape, a shape memory material for tendon junction in which the original rectangular tube shape was memorized was produced.
【0187】この形状記憶材料の両端開口に、切断した
家兎の足の腱の切断端を両側から挿入して、60℃の生
理食塩水を吹きかけると、該形状記憶材料は瞬時に内寸
法が縦0.5mm、横2mmの偏平な開口面積の小さい
角筒形状に収縮して腱の切断端を周囲から強固に抱持固
定し、更に、80℃の生理食塩水を吹きかけると、長さ
が20mmの元の短い角筒形状に復元して、腱の切断端
を引き寄せた状態で接合することができた。When the cut ends of the tendon of the cut rabbit foot were inserted into both ends of this shape memory material from both sides and physiological saline at 60 ° C. was sprayed on the shape memory material, the internal dimensions of the shape memory material were instantaneously changed. By contracting into a rectangular tube shape with a small opening area of 0.5 mm in length and 2 mm in width and tightly holding and holding the cut end of the tendon from the surroundings, and further spraying a physiological saline solution at 80 ° C. It was possible to restore the original short tubular shape of 20 mm and join the cut ends of the tendon in a state of being pulled together.
【0188】[実施例12]DL−ラクチドの開環重合
で得た粘度平均分子量7万のポリ−D,L−乳酸(ガラ
ス転移温度:50℃)100重量部と、血管の再狭窄防
止薬トラニラスト150重量部をクロロホルムに溶解し
て、固形分が3重量%の溶液を調製し、これを直径5.
0mmのポリエチレン製の丸棒に8.0kgf/cm2
の吐出圧で吹きつけてクロロホルムを揮散させ、厚さ
0.3mmの円筒膜を作製した。そしてこの円筒膜を1
5mmの長さに切断し、該円筒膜の周囲に直径1.5m
mの孔を多数あけてから丸棒を抜き取って、図24に示
すような孔開き円筒形状の成形体12aを得た。このも
のは総重量が36mg、封入された薬剤の重量が21.
6mgであった。[Example 12] 100 parts by weight of poly-D, L-lactic acid (glass transition temperature: 50 ° C) having a viscosity average molecular weight of 70,000 obtained by ring-opening polymerization of DL-lactide, and an agent for preventing restenosis of blood vessels. 150 parts by weight of tranilast was dissolved in chloroform to prepare a solution having a solid content of 3% by weight, which had a diameter of 5.
8.0 kgf / cm 2 on a 0 mm polyethylene round bar
It was sprayed at a discharge pressure of 1 to volatilize chloroform to produce a cylindrical membrane having a thickness of 0.3 mm. And this cylindrical membrane 1
Cut to a length of 5 mm and have a diameter of 1.5 m around the cylindrical membrane.
After forming a large number of m holes, the round bar was pulled out to obtain a perforated cylindrical molded body 12a as shown in FIG. This product has a total weight of 36 mg and the encapsulated drug weighs 21.
It was 6 mg.
【0189】この孔開き円筒形状の成形体を55℃の雰
囲気下で、図24に示すように偏平に折り畳んで丸く巻
いて褶曲させた筒形状(外径略1.0mm)に曲げ変形
処理し、急冷してその形状を固定させることにより、元
の孔開き円筒形状を記憶した細い巻物状の血管再狭窄防
止用のステント(形状記憶材料)12を得た。In the atmosphere of 55 ° C., this molded product having a perforated cylindrical shape was bent and deformed into a cylindrical shape (outer diameter of about 1.0 mm) which was flatly folded, rolled up and folded as shown in FIG. By rapidly cooling and fixing the shape, a thin scroll-shaped stent (shape memory material) 12 for preventing the restenosis of the blood vessel having a memory of the original perforated cylindrical shape was obtained.
【0190】このステントが元の形状を記憶しているこ
との確認と、薬剤放出速度の測定を行うために、in
vitroで次の試験を行った。In order to confirm that this stent remembers the original shape and to measure the drug release rate,
The following tests were performed in vitro.
【0191】内径4.0mmのシリコンチューブにステ
ントを挿入し、60℃の温水を流入した。すると、ステ
ントは温度の上昇に伴い元の円筒形状まで拡張、復元
し、チューブの内壁を圧迫する力によってチューブ内面
をライニングした状態で固定することができた。これを
37℃に調整したpH7.4、0.2モルのリン酸緩衝
液中に浸し、ポリ−D,L−乳酸の分解とともに緩衝液
中に放出されるトラニラストの量を定期的に測定した。
その結果、図26に示すように、12週間にわたり一定
速度で薬剤の放出が見られ、初めに封入したトラニラス
トの68%がこの間に放出されていることが確認でき
た。ポリ−D,L−乳酸はまだわずかに残存しているの
が確認できた。The stent was inserted into a silicone tube having an inner diameter of 4.0 mm, and warm water at 60 ° C. was introduced. Then, the stent was expanded and restored to its original cylindrical shape as the temperature increased, and it was possible to fix the inner surface of the tube with the inner surface of the tube being lined by the force of pressing the inner wall of the tube. This was immersed in a 0.2 mol phosphate buffer having a pH of 7.4 and adjusted to 37 ° C., and the amount of tranilast released into the buffer along with the decomposition of poly-D, L-lactic acid was periodically measured. .
As a result, as shown in FIG. 26, it was confirmed that the drug was released at a constant rate for 12 weeks, and that 68% of tranilast initially encapsulated was released during this period. It could be confirmed that poly-D, L-lactic acid still slightly remained.
【0192】以上より、この形状記憶生体内分解吸収性
のステントがDDSの基材として優れた性能を発揮する
ことが判った。From the above, it was found that this shape memory biodegradable and absorbable stent exhibits excellent performance as a base material for DDS.
【0193】[0193]
【発明の効果】以上の説明から明らかなように、本発明
の形状記憶生体内分解吸収性材料は、変形処理温度以上
の温度で再加熱することによって、切断された血管の結
紮(止血)や吻合、切開部位の縫合、切断された腱の接
合、骨の接合、血管再狭窄の防止など、生体組織の結
紮、吻合、縫合、接合、再狭窄防止、その他の処置を極
めて簡単且つ確実に行うことができ、再加熱のとき形状
回復の温度が低温であるために生体組織を火傷させる心
配がなく、また、MRIやCTのハレーション現象を生
ぜず、生体内で分解吸収されて生体内に残らないといっ
た顕著な効果を奏する。As is apparent from the above description, the shape memory biodegradable and absorbable material of the present invention is reheated at a temperature not lower than the deformation treatment temperature to ligate (hemostatic) a cut blood vessel or Performing ligation, anastomosis, suturing, joining, restenosis prevention, and other procedures of living tissues such as anastomosis, suturing of incision site, joining of cut tendons, joining of bones, prevention of vascular restenosis, etc. are extremely simple and reliable. Since the temperature of shape recovery is low at the time of reheating, there is no fear of burning the biological tissue, and it does not cause halation phenomenon of MRI or CT, is decomposed and absorbed in the body and remains in the body. There is a remarkable effect that there is no.
【0194】 そして、バイオセラミックス粉体を含有
させているので、生体骨と結合して強固に固定させるこ
とができ、また、薬剤を含有させたものは一定速度で薬
剤を除放するように工夫できるのでDDSの基材として
の役目を果たすことができるといった効果を奏する。 Since it contains the bioceramics powder, it can be firmly fixed by being combined with the living bone, and the one containing the drug is devised so as to release the drug at a constant rate. As a result, there is an effect that it can serve as a base material for DDS.
【図1】本発明の一実施形態に係る血管吻合用形状記憶
材料の説明図である。FIG. 1 is an explanatory diagram of a shape memory material for blood vessel anastomosis according to an embodiment of the present invention.
【図2】同形状記憶材料の使用方法の説明図である。FIG. 2 is an explanatory diagram of a method of using the same shape memory material.
【図3】本発明の他の実施形態に係る血管吻合用形状記
憶材料の説明図である。FIG. 3 is an explanatory view of a shape memory material for blood vessel anastomosis according to another embodiment of the present invention.
【図4】本発明の更に他の実施形態に係る血管吻合用形
状記憶材料の説明図である。FIG. 4 is an explanatory view of a shape memory material for blood vessel anastomosis according to still another embodiment of the present invention.
【図5】同形状記憶料の使用方法の説明図である。FIG. 5 is an explanatory diagram of a method of using the same shape memory material.
【図6】本発明の更に他の実施形態に係る血管結紮用形
状記憶材料の説明図である。FIG. 6 is an explanatory view of a shape memory material for blood vessel ligation according to still another embodiment of the present invention.
【図7】同形状記憶材料の使用方法の説明図である。FIG. 7 is an explanatory diagram of a method of using the same shape memory material.
【図8】本発明の更に他の実施形態に係る血管結紮用形
状記憶材料の説明図である。FIG. 8 is an explanatory view of a shape memory material for blood vessel ligation according to still another embodiment of the present invention.
【図9】本発明の更に他の実施形態に係る腱接合用形状
記憶材料の説明図である。FIG. 9 is an explanatory diagram of a shape memory material for tendon junction according to still another embodiment of the present invention.
【図10】同形状記憶材料の使用方法の説明図である。FIG. 10 is an explanatory diagram of a method of using the same shape memory material.
【図11】本発明の更に他の実施形態に係る腱接合用形
状記憶材料の説明図である。FIG. 11 is an explanatory view of a shape memory material for tendon junction according to still another embodiment of the present invention.
【図12】本発明の更に他の実施形態に係る縫合用形状
記憶材料の説明図である。FIG. 12 is an explanatory diagram of a shape memory material for suturing according to still another embodiment of the present invention.
【図13】同形状記憶材料の使用方法の説明図である。FIG. 13 is an explanatory diagram of a method of using the same shape memory material.
【図14】本発明の更に他の実施形態に斯かる縫合用形
状記憶材料の説明図である。FIG. 14 is an explanatory view of a shape memory material for suturing according to still another embodiment of the present invention.
【図15】本発明の更に他の実施形態に係る骨接合用形
状記憶材料の説明図である。FIG. 15 is an explanatory diagram of a shape memory material for osteosynthesis according to still another embodiment of the present invention.
【図16】同形状記憶材料の圧縮変形処理の説明図であ
る。FIG. 16 is an explanatory diagram of a compression deformation process of the same shape memory material.
【図17】同形状記憶材料の使用方法の説明図である。FIG. 17 is an explanatory diagram of a method of using the same shape memory material.
【図18】本発明の更に他の実施形態に係る骨接合プレ
ート固定用形状記憶材料の説明図である。FIG. 18 is an explanatory view of a shape memory material for fixing an osteosynthesis plate according to still another embodiment of the present invention.
【図19】同形状記憶材料の使用方法の説明図である。FIG. 19 is an explanatory diagram of a method of using the same shape memory material.
【図20】本発明の更に他の実施形態に係る骨接合用形
状記憶材料の説明図である。FIG. 20 is an explanatory diagram of a shape memory material for osteosynthesis according to still another embodiment of the present invention.
【図21】同形状記憶材料の使用方法の説明図である。FIG. 21 is an explanatory diagram of a method of using the same shape memory material.
【図22】本発明の更に他の実施形態に係るボーンセメ
ント塞止め用形状記憶材料の説明図である。FIG. 22 is an explanatory diagram of a bone cement blocking shape memory material according to still another embodiment of the present invention.
【図23】同形状記憶材料の使用方法の説明図である。FIG. 23 is an explanatory diagram of a method of using the same shape memory material.
【図24】本発明の更に他の実施形態に係る血管再狭窄
防止用形状記憶材料の説明図である。FIG. 24 is an explanatory diagram of a shape memory material for preventing vascular restenosis according to still another embodiment of the present invention.
【図25】同形状記憶材料の使用方法の説明図である。FIG. 25 is an explanatory diagram of a method of using the same shape memory material.
【図26】トラニラストを含有した血管再狭窄防止用形
状記憶材料のトラニラスト放出量と経過時間との関係を
示すグラフである。FIG. 26 is a graph showing the relationship between the amount of tranilast released and the elapsed time of the shape memory material for preventing vascular restenosis containing tranilast.
1,2,3 血管吻合用形状記憶材料
21a 凸凹のある内面
4,5 血管結紮用形状記憶材料
6 腱接合用形状記憶材料
61 切り起こし部
7,70 縫合用形状記憶材料
71 フック部
8,10 骨接合用形状記憶材料
9 骨接合プレート固定用形状記憶材料
10a 円柱部
10b アーム部
11 ボーンセメント流出防止用形状記憶材料
11a 円柱状プラグ部
11b 花弁状突起部
12 血管再狭窄防止用形状記憶材料
12b 孔
1a,2a,3a,4a,5a,6a,7a,8a,1
0c,11c,12a,70a 元の成形体1, 2 and 3 Shape memory material for blood vessel anastomosis 21a Inner surface with irregularities 4, 5 Shape memory material for blood vessel ligation 6 Shape memory material for tendon junction 61 Cut and raised portion 7,70 Shape memory material for suture 71 Hook portion 8, 10 Shape memory material for bone attachment 9 Shape memory material for fixing bone attachment plate 10a Column portion 10b Arm portion 11 Shape memory material for preventing bone cement outflow 11a Cylindrical plug portion 11b Petal protrusion 12 Shape memory material for preventing vascular restenosis 12b Holes 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 1
0c, 11c, 12a, 70a Original molded body
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61L 15/00 - 33/18 A61B 17/04 A61B 17/58 C08G 63/08 C08L 67/04 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) A61L 15/00-33/18 A61B 17/04 A61B 17/58 C08G 63/08 C08L 67/04
Claims (24)
を含有させた成形体であって、乳酸系ポリマーがポリ−
D,L−乳酸、又は、D−ラクチド、L−ラクチド、D
L(メソ)−ラクチドのいずれかのラクチドと、グリコ
リドによる共重合体、カプロラクトンによる共重合体、
ジオキサノンによる共重合体、エチレンオキシドによる
共重合体、プロピレンオキシドによる共重合体、エチレ
ンオキシド/プロピレンオキシドによる共重合体のいず
れか単独もしくはこれらの共重合体の複数の混合物であ
る成形体からなり、所定温度以上に加熱するとその形状
が外力を加えなくても記憶した形状に復元されることを
特徴とする形状記憶生体内分解吸収性材料。1. A lactic acid-based polymer and bioceramic powder
Is a molded product containing a lactic acid-based polymer
D, L-lactic acid, or D-lactide, L-lactide, D
Any lactide of L (meso) -lactide and glyco
Lido copolymer, caprolactone copolymer,
Copolymer with dioxanone, with ethylene oxide
Copolymer, copolymer with propylene oxide, ethylene
Of all oxide / propylene oxide copolymers
Either alone or as a mixture of several of these copolymers
A shape-memory biodegradable and absorbable material, which is formed of a molded body , and whose shape is restored to a memorized shape even when an external force is not applied, when heated above a predetermined temperature.
を含有させた所定形状の成形体であって、乳酸系ポリマ
ーがポリ−D,L−乳酸、又は、D−ラクチド、L−ラ
クチド、DL(メソ)−ラクチドのいずれかのラクチド
と、グリコリドによる共重合体、カプロラクトンによる
共重合体、ジオキサノンによる共重合体、エチレンオキ
シドによる共重合体、プロピレンオキシドによる共重合
体、エチレンオキシド/プロピレンオキシドによる共重
合体のいずれか単独もしくはこれらの共重合体の複数の
混合物である成形体を、そのガラス転移温度より高く結
晶化温度(結晶化温度がない場合は100℃)より低い
温度で別の形状の成形体に変形処理し、そのままガラス
転移温度より低い温度に冷却してその形状を固定した生
体内分解吸収性材料であって、上記の変形処理温度以上
に再び加熱すると元の所定形状の成形体に形状が復元さ
れることを特徴とする形状記憶生体内分解吸収性材料。2. A lactic acid-based polymer and bioceramic powder
A molded product of a predetermined shape containing lactic acid-based polymer
Is poly-D, L-lactic acid, or D-lactide, L-la.
Lactide of any one of Ctide and DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymers, copolymers with dioxanone, ethylene oxide
Copolymer with side, Copolymer with propylene oxide
Body, ethylene oxide / propylene oxide copolymerization
Any one of these copolymers alone or multiple of these copolymers
A molded body that is a mixture is deformed into a molded body of another shape at a temperature higher than its glass transition temperature and lower than its crystallization temperature (100 ° C when there is no crystallization temperature), and then the temperature is lower than the glass transition temperature as it is. A biodegradable and bioabsorbable material that has been cooled and fixed in shape, and is restored to its original shape in a predetermined shape when heated again above the deformation treatment temperature. Degradable absorbent material.
を含有させた所定形状の成形体であって、乳酸系ポリマ
ーがポリ−D,L−乳酸、又は、D−ラクチド、L−ラ
クチド、DL(メソ)−ラクチドのいずれかのラクチド
と、グリコリドによる共重合体、カプロラクトンによる
共重合体、ジオキサノンによる共重合体、エチレンオキ
シドによる共重合体、プロピレンオキシドによる共重合
体、エチレンオキシド/プロピレンオキシドによる共重
合体のいずれか単独もしくはこれらの共重合体の複数の
混合物である成形体を、そのガラス転移温度より高く結
晶化温度(結晶化温度がない場合は100℃)より低い
温度で別の形状の成形体に変形処理し、そのままガラス
転移温度より低い温度に冷却してその形状を固定した
後、この成形体をガラス転移温度より高く上記の変形処
理温度より低い温度で更に別の形状の成形体に変形処理
し、そのままガラス転移温度より低い温度に冷却してそ
の形状を固定した生体内分解吸収性材料であって、最初
の変形処理温度以上に再び加熱すると元の所定形状の成
形体に形状が復元されることを特徴とする形状記憶生体
内分解吸収性材料。3. A lactic acid-based polymer and bioceramic powder
A molded product of a predetermined shape containing lactic acid-based polymer
Is poly-D, L-lactic acid, or D-lactide, L-la.
Lactide of any one of Ctide and DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymers, copolymers with dioxanone, ethylene oxide
Copolymer with side, Copolymer with propylene oxide
Body, ethylene oxide / propylene oxide copolymerization
Any one of these copolymers alone or multiple of these copolymers
A molded body that is a mixture is deformed into a molded body of another shape at a temperature higher than its glass transition temperature and lower than its crystallization temperature (100 ° C when there is no crystallization temperature), and then the temperature is lower than the glass transition temperature as it is. After cooling and fixing the shape, this molded body is deformed into a molded body of another shape at a temperature higher than the glass transition temperature and lower than the above deformation treatment temperature, and cooled to a temperature lower than the glass transition temperature as it is. A shape memory biodegradable and absorbable material, which is a biodegradable and absorbable material whose shape is fixed and is restored to the original shape of the molded body when heated again above the initial deformation treatment temperature. Material.
を含有させた所定形状の多孔質の成形体であって、乳酸
系ポリマーがポリ−D,L−乳酸、又は、D−ラクチ
ド、L−ラクチド、DL(メソ)−ラクチドのいずれか
のラクチドと、グリコリドによる共重合体、カプロラク
トンによる共重合体、ジオキサノンによる共重合体、エ
チレンオキシドによる共重合体、プロピレンオキシドに
よる共重合体、エチレンオキシド/プロピレンオキシド
による共重合体のいずれか単独もしくはこれらの共重合
体の複数の混合物である成形体を、そのガラス転移温度
より高く結晶化温度(結晶化温度がない場合は100
℃)より低い温度で別の形状の実質的に無孔質の成形体
に変形処理し、そのままガラス転移温度より低い温度に
冷却してその形状を固定した生体内分解吸収性材料であ
って、上記の変形処理温度以上に再び加熱すると元の所
定形状の多孔質の成形体に形状が復元されることを特徴
とする形状記憶生体内分解吸収性材料。4. A lactic acid-based polymer and bioceramic powder
A porous compact of a predetermined shape which contains the lactate
-Based polymer is poly-D, L-lactic acid or D-lacti
De L-lactide, DL (meso) -lactide
Of lactide and glycolide, caprolact
Tonnes of copolymer, dioxanone copolymer,
Copolymer with Tylene Oxide, Propylene Oxide
Copolymer, ethylene oxide / propylene oxide
Of any one of the copolymers by
A shaped body , which is a mixture of a plurality of bodies, has a crystallization temperature higher than its glass transition temperature (100 in the absence of crystallization temperature).
(° C) is a biodegradable and absorbable material in which a shape is fixed to a substantially non-porous molded body having another shape at a lower temperature, and then cooled to a temperature lower than the glass transition temperature as it is, A shape memory biodegradable and absorbable material, wherein the shape is restored to the original porous body having a predetermined shape when heated again above the deformation treatment temperature.
を含有させた筒形状の成形体であって、乳酸系ポリマー
がポリ−D,L−乳酸、又は、D−ラクチド、L−ラク
チド、DL(メソ)−ラクチドのいずれかのラクチド
と、グリコリドによる共重合体、カプロラクトンによる
共重合体、ジオキサノンによる共重合体、エチレンオキ
シドによる共重合体、プロピレンオキシドによる共重合
体、エチレンオキシド/プロピレンオキシドによる共重
合体のいずれか単独もしくはこれらの共重合体の複数の
混合物である成形体からなり、所定温度以上に加熱する
とその形状が外力を加えなくても記憶した小径筒形状に
復元されることを特徴とする血管吻合用の形状記憶生体
内分解吸収性材料。5. A lactic acid-based polymer and bioceramic powder
A lactic acid-based polymer, which is a cylindrical shaped body containing
Is poly-D, L-lactic acid, or D-lactide or L-lactide.
Lactide, either tide or DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymers, copolymers with dioxanone, ethylene oxide
Copolymer with side, Copolymer with propylene oxide
Body, ethylene oxide / propylene oxide copolymerization
Any one of these copolymers alone or multiple of these copolymers
A shape-memory biodegradable and absorbable material for blood vessel anastomosis , which comprises a molded body which is a mixture, and when heated to a temperature higher than a predetermined temperature, the shape is restored to a memorized small-diameter tubular shape without applying external force.
を含有させた小径筒形状の成形体であって、乳酸系ポリ
マーがポリ−D,L−乳酸、又は、D−ラクチド、L−
ラクチド、DL(メソ)−ラクチドのいずれかのラクチ
ドと、グリコリドによる共重合体、カプロラクトンによ
る共重合体、ジオキサノンによる共重合体、エチレンオ
キシドによる共重合体、プロピレンオキシドによる共重
合体、エチレンオキシド/プロピレンオキシドによる共
重合体のいずれか単独もしくはこれらの共重合体の複数
の混合物である成形体を、そのガラス転移温度より高く
結晶化温度(結晶化温度がない場合は100℃)より低
い温度で大径筒形状の成形体に拡張変形処理し、そのま
まガラス転移温度より低い温度に冷却してその大径筒形
状を固定した生体内分解吸収性材料であって、上記の変
形処理温度以上に再び加熱すると元の小径筒形状の成形
体に形状が復元されることを特徴とする血管吻合用の形
状記憶生体内分解吸収性材料。6. A lactic acid-based polymer and bioceramic powder
A molded body of the small-diameter tubular shape which contains the lactic acid based poly
Is a poly-D, L-lactic acid, or D-lactide, L-
Lactide, either lactide of DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymer, dioxanone-based copolymer, ethylene oxide
Copolymers with oxidants, Copolymers with propylene oxide
Combined, ethylene oxide / propylene oxide
Any one of the polymers or a plurality of these copolymers
The molded body , which is a mixture of the above, is expanded and deformed into a large-diameter cylindrical molded body at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature), and then the glass transition temperature is maintained. It is a biodegradable and absorbable material that has been cooled to a low temperature and fixed in its large-diameter tubular shape, and that when it is heated again above the above deformation treatment temperature, the shape is restored to the original small-diameter tubular shaped body. A shape memory biodegradable and absorbable material for vascular anastomosis.
を含有させたリング形状の成形体であって、乳酸系ポリ
マーがポリ−D,L−乳酸、又は、D−ラクチド、L−
ラクチド、DL(メソ)−ラクチドのいずれかのラクチ
ドと、グリコリドによる共重合体、カプロラクトンによ
る共重合体、ジオキサノンによる共重合体、エチレンオ
キシドによる共重合体、プロピレンオキシドによる共重
合体、エチレンオキシド/プロピレンオキシドによる共
重合体のいずれか単独もしくはこれらの共重合体の複数
の混合物である成形体からなり、所定温度以上に加熱す
るとその形状が外力を加えなくても記憶した小径リング
形状に復元されることを特徴とする血管結紮用の形状記
憶生体内分解吸収性材料。7. A lactic acid-based polymer and bioceramic powder
A molded body ring shape obtained by containing, lactic acid-based poly
Is a poly-D, L-lactic acid, or D-lactide, L-
Lactide, either lactide of DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymer, dioxanone-based copolymer, ethylene oxide
Copolymers with oxidants, Copolymers with propylene oxide
Combined, ethylene oxide / propylene oxide
Any one of the polymers or a plurality of these copolymers
A shape memory biodegradable and absorbable material for ligating blood vessels, characterized in that the shape is restored to a memorized small-diameter ring shape without applying an external force when it is formed of a molded body that is a mixture of .
を含有させた小径筒形状の成形体であって、乳酸系ポリ
マーがポリ−D,L−乳酸、又は、D−ラクチド、L−
ラクチド、DL(メソ)−ラクチドのいずれかのラクチ
ドと、グリコリドによる共重合体、カプロラクトンによ
る共重合体、ジオキサノンによる共重合体、エチレンオ
キシドによる共重合体、プロピレンオキシドによる共重
合体、エチレンオキシド/プロピレンオキシドによる共
重合体のいずれか単独もしくはこれらの共重合体の複数
の混合物である成形体を、そのガラス転移温度より高く
結晶化温度(結晶化温度がない場合は100℃)より低
い温度で大径筒形状の成形体に拡張変形処理し、そのま
まガラス転移温度より低い温度に冷却してその大径筒形
状を固定したものを輪切りにした大径リング形状の生体
内分解吸収性材料であって、上記の変形処理温度以上に
再び加熱すると元の小径筒形状の成形体を輪切りにした
小径リング形状に形状が復元されることを特徴とする血
管結紮用の形状記憶生体内分解吸収性材料。8. A lactic acid-based polymer and bioceramic powder
A molded body of the small-diameter tubular shape which contains the lactic acid based poly
Is a poly-D, L-lactic acid, or D-lactide, L-
Lactide, either lactide of DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymer, dioxanone-based copolymer, ethylene oxide
Copolymers with oxidants, Copolymers with propylene oxide
Combined, ethylene oxide / propylene oxide
Any one of the polymers or a plurality of these copolymers
The molded body , which is a mixture of the above, is expanded and deformed into a large-diameter cylindrical molded body at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature), and then the glass transition temperature is maintained. A large-diameter ring-shaped biodegradable and absorbable material that has been cooled to a low temperature and fixed in its large-diameter tubular shape in round slices, and when reheated to above the deformation treatment temperature, the original small-diameter tubular shape A shape-memory biodegradable and absorbable material for ligating blood vessels, characterized in that the shape is restored to a small-diameter ring shape in which the molded body is cut into slices.
を含有させた小径リング形状の成形体であって、乳酸系
ポリマーがポリ−D,L−乳酸、又は、D−ラクチド、
L−ラクチド、DL(メソ)−ラクチドのいずれかのラ
クチドと、グリコリドによる共重合体、カプロラクトン
による共重合体、ジオキサノンによる共重合体、エチレ
ンオキシドによる共重合体、プロピレンオキシドによる
共重合体、エチレンオキシド/プロピレンオキシドによ
る共重合体のいずれか単独もしくはこれらの共重合体の
複数の混合物である成形体を、そのガラス転移温度より
高く結晶化温度(結晶化温度がない場合は100℃)よ
り低い温度で大径リング形状の成形体に拡張変形処理
し、そのままガラス転移温度より低い温度に冷却してそ
の大径リング形状を固定した生体内分解吸収性材料であ
って、上記の変形処理温度以上に再び加熱すると元の小
径リング形状の成形体に形状が復元されることを特徴と
する血管結紮用の形状記憶生体内分解吸収性材料。9. A lactic acid-based polymer and bioceramic powder
A shaped body of a small diameter ring-shaped which contains a lactic acid-based
The polymer is poly-D, L-lactic acid, or D-lactide,
Either L-lactide or DL (meso) -lactide
Copolymer with cutide and glycolide, caprolactone
Copolymer, dioxanone copolymer, ethylene
Copolymer with propylene oxide, with propylene oxide
By copolymer, ethylene oxide / propylene oxide
Of any one of these copolymers alone or
The molded product, which is a mixture of a plurality of materials, is expanded and deformed into a large-diameter ring-shaped molded product at a temperature higher than the glass transition temperature and lower than the crystallization temperature (100 ° C when there is no crystallization temperature), and the glass transition temperature is maintained as it is. It is a biodegradable and absorbable material that has been cooled to a lower temperature and fixed with its large-diameter ring shape, and the shape can be restored to the original small-diameter ring-shaped molded body when heated again above the above deformation treatment temperature. A shape memory biodegradable and absorbable material for ligating blood vessels, characterized by:
体を含有させた偏平な開口面積の小さい略角筒形状の成
形体であって、乳酸系ポリマーがポリ−D,L−乳酸、
又は、D−ラクチド、L−ラクチド、DL(メソ)−ラ
クチドのいずれかのラクチドと、グリコリドによる共重
合体、カプロラクトンによる共重合体、ジオキサノンに
よる共重合体、エチレンオキシドによる共重合体、プロ
ピレンオキシドによる共重合体、エチレンオキシド/プ
ロピレンオキシドによる共重合体のいずれか単独もしく
はこれらの共重合体の 複数の混合物である成形体を、そ
のガラス転移温度より高く結晶化温度(結晶化温度がな
い場合は100℃)より低い温度で開口面積の大きい略
角筒形状の成形体に拡張変形処理し、そのままガラス転
移温度より低い温度に冷却してその開口面積の大きい略
角筒形状を固定した生体内分解吸収性材料であって、上
記の変形処理温度以上に再び加熱すると元の偏平な開口
面積の小さい略角筒形状の成形体に形状が復元されるこ
とを特徴とする腱接合用の形状記憶生体内分解吸収性材
料。10. A lactic acid-based polymer and bioceramic powder
A flat body having a small opening area and a substantially rectangular tubular shape containing a body , wherein the lactic acid-based polymer is poly-D, L-lactic acid,
Alternatively, D-lactide, L-lactide, DL (meso) -la
Co-weighing with one of the lactides and glycolide
Copolymer, copolymer with caprolactone, dioxanone
Copolymer, ethylene oxide copolymer,
Pyrene oxide copolymer, ethylene oxide / prepolymer
Either of the copolymers of ropylene oxide, either alone or
Is a mixture of a plurality of these copolymers , formed into a substantially rectangular tube shape having a large opening area at a temperature higher than its glass transition temperature and lower than its crystallization temperature (100 ° C. when there is no crystallization temperature). It is a biodegradable and absorbable material in which the body is expanded and deformed, cooled to a temperature lower than the glass transition temperature as it is, and a substantially square tubular shape having a large opening area is fixed, and heated again above the deformation processing temperature. A shape memory biodegradable and absorbable material for tendon junction, characterized in that the shape is restored to the original shape of a substantially rectangular tube having a small flat opening area.
体を含有させた切開されたリング形状の成形体であっ
て、乳酸系ポリマーがポリ−D,L−乳酸、又は、D−
ラクチド、L−ラクチド、DL(メソ)−ラクチドのい
ずれかのラクチドと、グリコリドによる共重合体、カプ
ロラクトンによる共重合体、ジオキサノンによる共重合
体、エチレンオキシドによる共重合体、プロピレンオキ
シドによる共重合体、エチレンオキシド/プロピレンオ
キシドによる共重合体のいずれか単独もしくはこれらの
共重合体の複数の混合物である成形体からなり、所定温
度以上に加熱するとその形状が外力を加えなくても記憶
した小径の切開されたリング形状に復元されることを特
徴とする縫合用の形状記憶生体内分解吸収性材料。11. A lactic acid-based polymer and bioceramic powder
It is an incised ring-shaped molded body containing the body .
The lactic acid-based polymer is poly-D, L-lactic acid, or D-
Lactide, L-lactide, DL (meso) -lactide
Copolymers and caps of lactide and glycolide
Copolymer with Lactone, Copolymer with Dioxanone
Copolymer, ethylene oxide copolymer, propylene oxide
SID copolymer, ethylene oxide / propylene oxide
Either of the copolymers with xydone or these
It consists of a molded body that is a mixture of multiple copolymers, and when heated above a predetermined temperature, its shape is restored to a memorized small ring incision ring shape without applying external force. Shape memory biodegradable and absorbable material.
体を含有させた小径リング形状の成形体であって、乳酸
系ポリマーがポリ−D,L−乳酸、又は、D−ラクチ
ド、L−ラクチド、DL(メソ)−ラクチドのいずれか
のラクチドと、グリコリドによる共重合体、カプロラク
トンによる共重合体、ジオキサノンによる共重合体、エ
チレンオキシドによる共重合体、プロピレンオキシドに
よる共重合体、エチレンオキシド/プロピレンオキシド
による共重合体のいずれか単独もしくはこれらの共重合
体の複数の混合物である成形体を、そのガラス転移温度
より高く結晶化温度(結晶化温度がない場合は100
℃)より低い温度で大径リング形状の成形体に拡張変形
処理し、そのままガラス転移温度より低い温度に冷却し
てその大径リング形状を固定し、この大径リング形状の
成形体を切開した生体内分解吸収性材料であって、上記
の変形処理温度以上に再び加熱すると元の小径リング形
状の成形体を切開した形状に復元されることを特徴とす
る縫合用の形状記憶生体内分解吸収性材料。12. A lactic acid-based polymer and bioceramic powder
A shaped body of a small diameter ring-shaped which contains the body, lactic acid
-Based polymer is poly-D, L-lactic acid or D-lacti
De L-lactide, DL (meso) -lactide
Of lactide and glycolide, caprolact
Tonnes of copolymer, dioxanone copolymer,
Copolymer with Tylene Oxide, Propylene Oxide
Copolymer, ethylene oxide / propylene oxide
Of any one of the copolymers by
A shaped body , which is a mixture of a plurality of bodies, has a crystallization temperature higher than its glass transition temperature (100 in the absence of crystallization temperature).
(° C), a large-diameter ring-shaped compact was expanded and deformed, cooled to a temperature lower than the glass transition temperature to fix the large-diameter ring, and the large-diameter ring-shaped compact was incised. A biodegradable and bioabsorbable material, which is restored to the original shape by cutting the small-diameter ring-shaped molded product when heated again above the above deformation treatment temperature. Material.
体を含有させた小径リング形状の成形体であって、乳酸
系ポリマーがポリ−D,L−乳酸、又は、D−ラクチ
ド、L−ラクチド、DL(メソ)−ラクチドのいずれか
のラクチドと、グリコリドによる共重合体、カプロラク
トンによる共重合体、ジオキサノンによる共重合体、エ
チレンオキシドによる共重合体、プロピレンオキシドに
よる共重合体、エチレンオキシド/プロピレンオキシド
による共重合体のいずれか単独もしくはこれらの共重合
体の複数の混合物である成形体を、そのガラス転移温度
より高く結晶化温度(結晶化温度がない場合は100
℃)より低い温度で大径リング形状の成形体に拡張変形
処理し、この大径リング形状の成形体を切開してその一
端部を縫合針と係合可能な形状に曲げ変形処理して、そ
のままガラス転移温度より低い温度に冷却してその形状
を固定した生体内分解吸収性材料であって、上記の変形
処理温度以上に再び加熱すると元の小径リング形状の成
形体を切開した形状に復元されることを特徴とする縫合
用の形状記憶生体内分解吸収性材料。13. A lactic acid-based polymer and bioceramic powder
A shaped body of a small diameter ring-shaped which contains the body, lactic acid
-Based polymer is poly-D, L-lactic acid or D-lacti
De L-lactide, DL (meso) -lactide
Of lactide and glycolide, caprolact
Tonnes of copolymer, dioxanone copolymer,
Copolymer with Tylene Oxide, Propylene Oxide
Copolymer, ethylene oxide / propylene oxide
Of any one of the copolymers by
A shaped body , which is a mixture of a plurality of bodies, has a crystallization temperature higher than its glass transition temperature (100 in the absence of crystallization temperature).
(° C) at a temperature lower than that of the large-diameter ring-shaped formed body by expansion deformation processing, the large-diameter ring-shaped formed body is incised, and one end portion thereof is bent and deformed into a shape that can be engaged with the suture needle, It is a biodegradable and absorbable material that is cooled to a temperature lower than the glass transition temperature and fixed in its shape, and when it is heated again above the above deformation treatment temperature, the original small-diameter ring-shaped molded body is restored to the cut shape. A shape memory biodegradable and absorbable material for suturing, which is characterized in that:
体を含有させた糸形状の成形体であって、乳酸系ポリマ
ーがポリ−D,L−乳酸、又は、D−ラクチド、L−ラ
クチド、DL(メソ)−ラクチドのいずれかのラクチド
と、グリコリドによる共重合体、カプロラクトンによる
共重合体、ジオキサノンによる共重合体、エチレンオキ
シドによる共重合体、プロピレンオキシドによる共重合
体、エチレンオキシド/プロピレンオキシドによる共重
合体のいずれか単独もしくはこれらの共重合体の複数の
混合物である成形体からなり、所定温度以上に加熱する
と外力を加えなくても短縮して記憶した太い糸形状に復
元されることを特徴とする縫合用の形状記憶生体内分解
吸収性材料。14. A lactic acid-based polymer and bioceramic powder
A lactic acid-based polymer, which is a thread-shaped molded body containing a body
Is poly-D, L-lactic acid, or D-lactide, L-la.
Lactide of any one of Ctide and DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymers, copolymers with dioxanone, ethylene oxide
Copolymer with side, Copolymer with propylene oxide
Body, ethylene oxide / propylene oxide copolymerization
Any one of these copolymers alone or multiple of these copolymers
A shape-memory biodegradable and absorbable material for suture , comprising a molded body which is a mixture, and when heated to a predetermined temperature or higher, the shape is shortened and restored to a stored thick thread shape without applying external force.
体を含有させた太い糸形状の成形体であって、乳酸系ポ
リマーがポリ−D,L−乳酸、又は、D−ラクチド、L
−ラクチド、DL(メソ)−ラクチドのいずれかのラク
チドと、グリコリドによる共重合 体、カプロラクトンに
よる共重合体、ジオキサノンによる共重合体、エチレン
オキシドによる共重合体、プロピレンオキシドによる共
重合体、エチレンオキシド/プロピレンオキシドによる
共重合体のいずれか単独もしくはこれらの共重合体の複
数の混合物である成形体を、そのガラス転移温度より高
く結晶化温度(結晶化温度がない場合は100℃)より
低い温度で上記の成形体より長くて細い糸形状の成形体
に延伸変形処理し、そのままガラス転移温度より低い温
度に冷却してその細い糸形状を固定した生体内分解吸収
性材料であって、上記の変形処理温度以上に再び加熱す
ると短縮して元の太い糸形状の成形体に形状が復元され
ることを特徴とする縫合用の形状記憶生体内分解吸収性
材料。15. A lactic acid-based polymer and bioceramic powder
A thick thread-shaped molded body containing a body ,
The limer is poly-D, L-lactic acid, or D-lactide, L
-Lactide, DL (meso) -lactide
Caprolactone, a copolymer of tide and glycolide
Copolymer, dioxanone copolymer, ethylene
Oxide copolymer, propylene oxide copolymer
Polymer, ethylene oxide / propylene oxide
Any one of these copolymers or a mixture of these copolymers
A mixture of several shaped bodies is stretched and deformed at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature) into a shape of a filament longer and thinner than the above-mentioned shaped bodies. However, it is a biodegradable and absorbable material in which the thin thread shape is fixed by cooling it to a temperature lower than the glass transition temperature as it is, and when it is heated again above the deformation treatment temperature, it shortens to form the original thick thread shape. A shape memory biodegradable and absorbable material for suturing, wherein the shape is restored to the body.
体を含有させた棒形状の成形体であって、乳酸系ポリマ
ーがポリ−D,L−乳酸、又は、D−ラクチド、L−ラ
クチド、DL(メソ)−ラクチドのいずれかのラクチド
と、グリコリドによる共重合体、カプロラクトンによる
共重合体、ジオキサノンによる共重合体、エチレンオキ
シドによる共重合体、プロピレンオキシドによる共重合
体、エチレンオキシド/プロピレンオキシドによる共重
合体のいずれか単独もしくはこれらの共重合体の複数の
混合物である成形体からなり、所定温度以上に加熱する
とその形状が外力を加えなくても上記棒形状より太くて
短い記憶した棒形状に復元されることを特徴とする骨接
合用の形状記憶生体内分解吸収性材料。16. A lactic acid-based polymer and bioceramic powder
A rod-shaped molded body containing a body , which is a lactic acid-based polymer
Is poly-D, L-lactic acid, or D-lactide, L-la.
Lactide of any one of Ctide and DL (meso) -lactide
And glycolide copolymer, caprolactone
Copolymers, copolymers with dioxanone, ethylene oxide
Copolymer with side, Copolymer with propylene oxide
Body, ethylene oxide / propylene oxide copolymerization
Any one of these copolymers alone or multiple of these copolymers
A shape memory raw material for osteosynthesis, characterized by comprising a molded body that is a mixture, and when heated above a predetermined temperature, its shape is restored to a memorized rod shape thicker and shorter than the above rod shape without applying external force. Biodegradable and absorbable material.
体を含有させた太い棒形状の成形体であって、乳酸系ポ
リマーがポリ−D,L−乳酸、又は、D−ラクチド、L
−ラクチド、DL(メソ)−ラクチドのいずれかのラク
チドと、グリコリドによる共重合体、カプロラクトンに
よる共重合体、ジオキサノンによる共重合体、エチレン
オキシドによる共重合体、プロピレンオキシドによる共
重合体、エチレンオキシド/プロピレンオキシドによる
共重合体のいずれか単独もしくはこれらの共重合体の複
数の混合物である成形体を、そのガラス転移温度より高
く結晶化温度(結晶化温度がない場合は100℃)より
低い温度で上記の成形体より長くて細い棒形状の成形体
に変形処理し、そのままガラス転移温度より低い温度に
冷却してその細い棒形状を固定した生体内分解吸収性材
料であって、上記の変形処理温度以上に再び加熱すると
元の太い棒形状の成形体に形状が復元されることを特徴
とする骨接合用の形状記憶生体内分解吸収性材料。17. A lactic acid-based polymer and bioceramic powder
A molded article of a thick rod shape which contains the body, lactic acid-based port
The limer is poly-D, L-lactic acid, or D-lactide, L
-Lactide, DL (meso) -lactide
Caprolactone, a copolymer of tide and glycolide
Copolymer, dioxanone copolymer, ethylene
Oxide copolymer, propylene oxide copolymer
Polymer, ethylene oxide / propylene oxide
Any one of these copolymers or a mixture of these copolymers
A mixture of a number of molded bodies is deformed into a rod-shaped molded body longer and thinner than the above-mentioned molded body at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature). , A biodegradable and absorbable material in which the thin rod shape is fixed by cooling to a temperature lower than the glass transition temperature as it is, and when heated again above the deformation treatment temperature, the shape of the original thick rod-shaped molded body is changed. A shape memory biodegradable and absorbable material for osteosynthesis characterized by being restored.
を冷却してその形状を固定し、更に切削して所定のピン
形状にしたことを特徴とする請求項17に記載の形状記
憶生体内分解吸収性材料。18. The shape memory material according to claim 17, wherein the molded body which has been deformed into a long and thin rod shape is cooled to fix the shape and further cut into a predetermined pin shape. Biodegradable and absorbable material.
ム部が外側へ傾斜して突き出した形状を有する、乳酸系
ポリマーにバイオセラミックス粉体を含有させた成形体
であって、乳酸系ポリマーがポリ−D,L−乳酸、又
は、D−ラクチド、L−ラクチド、DL(メソ)−ラク
チドのいずれかのラクチドと、グリコリドによる共重合
体、カプロラクトンによる共重合体、ジオキサノンによ
る共重合体、エチレンオキシドによる共重合体、プロピ
レンオキシドによる共重合体、エチレンオキシド/プロ
ピレンオキシドによる共重合体のいずれか単独もしくは
これらの共重合体の複数の混合物である成形体を、その
ガラス転移温度より高く結晶化温度(結晶化温度がない
場合は100℃)より低い温度で、各アーム部が円柱部
の軸線方向と平行になるように各アーム部の付け根部分
で内側へ曲げ変形処理し、そのままガラス転移温度より
低い温度に冷却してその形状を固定した生体内分解吸収
性材料であって、上記の変形処理温度以上に再び加熱す
ると元の成形体に形状が復元されることを特徴とする骨
接合用の形状記憶生体内分解吸収性材料。19. A molded body containing a bioceramic powder in a lactic acid-based polymer , which has a shape in which two or more arm portions are inclined and protruded outward from the peripheral edges of both end faces of a cylindrical portion.
And the lactic acid-based polymer is poly-D, L-lactic acid,
Is D-lactide, L-lactide, DL (meso) -lac
Copolymerization with glycolide with one of the lactides
And copolymers of caprolactone and dioxanone
Copolymer, ethylene oxide copolymer, propene
Copolymer with lenoxide, ethylene oxide / pro
Pyrene oxide copolymer either alone or
A molded body , which is a mixture of a plurality of these copolymers, is treated at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature), and each arm portion is aligned with the axial direction of the cylindrical portion. A biodegradable and absorbable material that is bent and deformed inward at the base of each arm so that it is parallel, and then cooled to a temperature lower than the glass transition temperature to fix its shape. A shape memory biodegradable and absorbable material for osteosynthesis, wherein the shape is restored to the original molded body when heated again.
の上面の周縁から2以上の花弁状突起部が外側へ傾斜し
て突き出した形状を有する、乳酸系ポリマーにバイオセ
ラミックス粉体を含有させた成形体であって、乳酸系ポ
リマーがポリ−D,L−乳酸、又は、D−ラクチド、L
−ラクチド、DL(メソ)−ラクチドのいずれかのラク
チドと、グリコリドによる共重合体、カプロラクトンに
よる共重合体、ジオキサノンによる共重合体、エチレン
オキシドによる共重合体、プロピレンオキシドによる共
重合体、エチレンオキシド/プロピレンオキシドによる
共重合体のいずれか単独もしくはこれらの共重合体の複
数の混合物である成形体を、そのガラス転移温度より高
く結晶化温度(結晶化温度がない場合は100℃)より
低い温度で、各花弁状突起部が円柱状プラグ部の軸線方
向と平行になるように各花弁状突起部の付け根部分で内
側へ曲げ変形処理し、そのままガラス転移温度より低い
温度に冷却してその形状を固定した生体内分解吸収性材
料であって、上記の変形処理温度以上に再び加熱すると
元の成形体に形状が復元されることを特徴とする、髄腔
内でのボーンセメント流出防止用の形状記憶生体内分解
吸収性材料。20. Bioseed to a lactic acid-based polymer having a shape in which two or more petal-shaped protrusions are inclined and protruded outward from the peripheral edge of the upper surface of a cylindrical plug portion having a hemispherical lower surface.
A molded product containing Lamix powder , which is a lactic acid-based powder.
The limer is poly-D, L-lactic acid, or D-lactide, L
-Lactide, DL (meso) -lactide
Caprolactone, a copolymer of tide and glycolide
Copolymer, dioxanone copolymer, ethylene
Oxide copolymer, propylene oxide copolymer
Polymer, ethylene oxide / propylene oxide
Any one of these copolymers or a mixture of these copolymers
A mixture of a number of molded bodies at a temperature higher than the glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature) so that each petal-shaped protrusion is parallel to the axial direction of the cylindrical plug. It is a biodegradable and absorbable material that is bent and deformed inward at the root of each petal-shaped protrusion so that it is cooled to a temperature lower than the glass transition temperature and its shape is fixed. A shape memory biodegradable and absorbable material for preventing bone cement outflow in the medullary cavity, characterized in that the shape is restored to the original molded body when heated again.
網目を備えたメッシュ状円筒形状を有する、乳酸系ポリ
マーにバイオセラミックス粉体を含有させた成形体であ
って、乳酸系ポリマーがポリ−D,L−乳酸、又は、D
−ラクチド、L−ラクチド、DL(メソ)−ラクチドの
いずれかのラクチドと、グリコリドによる共重合体、カ
プロラクトンによる共重合体、ジオキサノンによる共重
合体、エチレンオキシドによる共重合体、プロピレンオ
キシドによる共重合体、エチレンオキシド/プロピレン
オキシドによる共重合体のいずれか単独もしくはこれら
の共重合体の複数の混合物である成形体を、そのガラス
転移温度より高く結晶化温度(結晶化温度がない場合は
100℃)より低い温度で、褶曲した筒形状の成形体に
曲げ変形処理し、そのままガラス転移温度より低い温度
に冷却してその形状を固定した生体内分解吸収性材料で
あって、上記の変形処理温度以上に再び加熱すると元の
成形体に形状が復元されることを特徴とする血管再狭窄
防止用の形状記憶生体内分解吸収性材料。21. having a mesh-like cylindrical shape with a plurality of perforated cylindrical or mesh with a hole was formed, moldings der which contains a bioceramics powder in lactic acid-based polymer
Therefore, the lactic acid-based polymer is poly-D, L-lactic acid, or D
Of lactide, L-lactide, DL (meso) -lactide
Copolymer with either lactide and glycolide
Copolymer with prolactone, Copolymer with dioxanone
Copolymer, copolymer with ethylene oxide, propylene oxide
Copolymer with xide, ethylene oxide / propylene
Oxide copolymers either alone or these
The molded product, which is a mixture of a plurality of copolymers, is bent and deformed at a temperature higher than its glass transition temperature and lower than the crystallization temperature (100 ° C. when there is no crystallization temperature) into a bent cylindrical molded product. However, it is a biodegradable and absorbable material whose shape is fixed by cooling it to a temperature lower than the glass transition temperature as it is, and that the shape is restored to the original molded body when heated again above the deformation treatment temperature. A shape-memory biodegradable and absorbable material for preventing vascular restenosis.
L−ラクチドの混合物を開環重合して得られた共重合
体、DL(メソ)−ラクチドを開環重合して得られた共
重合体、L−乳酸とD−乳酸の混合物を重合して得られ
た共重合体のいずれか単独、又は、これらの混合物であ
ることを特徴とする請求項1ないし請求項21のいずれ
かに記載の形状記憶生体内分解吸収性材料。22. Poly-D, L-lactic acid is obtained by ring-opening polymerization of DL (meso) -lactide, a copolymer obtained by ring-opening polymerization of a mixture of D-lactide and L-lactide. 22. Any one of the following copolymers, a copolymer obtained by polymerizing a mixture of L-lactic acid and D-lactic acid, or a mixture thereof. The shape memory biodegradable and absorbable material according to claim 1.
性なハイドロキシアパタイト、バイオガラス系もしくは
結晶化ガラス系の生体用ガラス、生体内吸収性の湿式ハ
イドロキシアパタイト、ジカルシウムホスフェート、ト
リカルシウムホスフェート、テトラカルシウムホスフェ
ート、オクタカルシウムホスフェート、カルサイト、ジ
オプサイトのいずれか単独又は二種以上を混合したもの
である請求項1ないし請求項22のいずれかに記載の形
状記憶生体内分解吸収性材料。23. The bioceramics powder is a surface bioactive hydroxyapatite, bioglass or crystallized glass biomedical glass, bioabsorbable wet hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium. The shape memory biodegradable and absorbable material according to any one of claims 1 to 22, wherein any one of a phosphate, an octacalcium phosphate, a calcite, and a diopsite, or a mixture of two or more thereof.
請求項1ないし請求項23のいずれかに記載の形状記憶
生体内分解吸収性材料。24. The shape memory biodegradable and absorbable material according to any one of claims 1 to 23, wherein the material contains a drug.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13933997A JP3503045B2 (en) | 1997-05-13 | 1997-05-13 | Shape memory biodegradable absorbent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13933997A JP3503045B2 (en) | 1997-05-13 | 1997-05-13 | Shape memory biodegradable absorbent material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10309313A JPH10309313A (en) | 1998-11-24 |
JP3503045B2 true JP3503045B2 (en) | 2004-03-02 |
Family
ID=15243034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13933997A Expired - Fee Related JP3503045B2 (en) | 1997-05-13 | 1997-05-13 | Shape memory biodegradable absorbent material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3503045B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011110262A (en) * | 2009-11-27 | 2011-06-09 | Kawasumi Lab Inc | Tubular tissue anastomotic instrument |
JP2011110259A (en) * | 2009-11-27 | 2011-06-09 | Kawasumi Lab Inc | Tubular tissue anastomotic instrument |
US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
US9000066B2 (en) | 2007-04-19 | 2015-04-07 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613089B1 (en) * | 2000-10-25 | 2003-09-02 | Sdgi Holdings, Inc. | Laterally expanding intervertebral fusion device |
AU2002243270B2 (en) * | 2000-10-25 | 2006-03-09 | Warsaw Orthopedic, Inc. | Vertically expanding intervertebral body fusion device |
US6972025B2 (en) * | 2003-11-18 | 2005-12-06 | Scimed Life Systems, Inc. | Intravascular filter with bioabsorbable centering element |
US7377939B2 (en) * | 2003-11-19 | 2008-05-27 | Synecor, Llc | Highly convertible endolumenal prostheses and methods of manufacture |
US8703113B2 (en) * | 2004-07-08 | 2014-04-22 | Reva Medical Inc. | Side-chain crystallizable polymers for medical applications |
AU2008240418B2 (en) * | 2007-04-18 | 2013-08-15 | Smith & Nephew Plc | Expansion moulding of shape memory polymers |
WO2008131221A2 (en) * | 2007-04-19 | 2008-10-30 | Smith & Nephew, Inc. | Orientated polymeric devices |
JP2010525113A (en) * | 2007-04-19 | 2010-07-22 | スミス アンド ネフュー インコーポレーテッド | Decomposition accelerator-containing shape memory polymer |
US8152775B2 (en) * | 2007-10-17 | 2012-04-10 | Tyco Healthcare Group Lp | Access port using shape altering anchor |
US20090118747A1 (en) * | 2007-11-05 | 2009-05-07 | Tyco Healthcare Group Lp | Novel surgical fastener |
JP2009136652A (en) * | 2007-11-16 | 2009-06-25 | Takiron Co Ltd | Filling material for bone defect part |
JP2009125439A (en) * | 2007-11-27 | 2009-06-11 | Olympus Corp | Member for anastomosis |
US20150123314A1 (en) * | 2011-10-05 | 2015-05-07 | Smith & Nephew Plc | Process for the manufacture of shape memory polymer material |
MX2015008708A (en) | 2013-01-06 | 2016-02-25 | Medical Connection Technology Mediconntech M C T Ltd | Connector. |
CA3018629A1 (en) * | 2016-03-24 | 2017-09-28 | Locate Therapeutics Limited | Scaffolding material, methods and uses |
JP2017185712A (en) * | 2016-04-07 | 2017-10-12 | 株式会社新興セルビック | Synthetic resin molded product shape correction method and synthetic resin molded product |
EP4084698A4 (en) * | 2020-01-24 | 2024-02-07 | Patchclamp Medtech, Inc. | TISSUE REPAIR AND CLOSURE DEVICES WITH REMOVABLE GRAFT AND CLAP ASSEMBLY AND METHOD OF USE THEREOF |
KR102597476B1 (en) * | 2022-02-11 | 2023-11-02 | 주식회사 티엠디랩 | Microneedle structure containing shape memory polymer and method of manufacturing the same |
-
1997
- 1997-05-13 JP JP13933997A patent/JP3503045B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
US9000066B2 (en) | 2007-04-19 | 2015-04-07 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
JP2011110262A (en) * | 2009-11-27 | 2011-06-09 | Kawasumi Lab Inc | Tubular tissue anastomotic instrument |
JP2011110259A (en) * | 2009-11-27 | 2011-06-09 | Kawasumi Lab Inc | Tubular tissue anastomotic instrument |
Also Published As
Publication number | Publication date |
---|---|
JPH10309313A (en) | 1998-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3503045B2 (en) | Shape memory biodegradable absorbent material | |
US6281262B1 (en) | Shape-memory, biodegradable and absorbable material | |
KR101577602B1 (en) | Self-retaining sutures with bi-directional retainers or uni-directional retainers | |
EP0854734B1 (en) | Under tissue conditions degradable material and a method for its manufacturing | |
JP5518737B2 (en) | Indwelling suture with thermal contact mediator retainer | |
US3620218A (en) | Cylindrical prosthetic devices of polyglycolic acid | |
US3736646A (en) | Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures | |
JP2011518588A5 (en) | ||
JP2006102503A5 (en) | ||
JP2011240134A (en) | Anchoring device | |
BRPI0907787B1 (en) | method for forming a self-retaining suture and apparatus for elevating the retainers in a suture to a desired angle | |
KR20140072170A (en) | Medical devices containing shape memory polymer compositions | |
JP2011240133A (en) | Anchoring device | |
JPH06114067A (en) | Binding button for medical suture | |
KR101279723B1 (en) | Resorbable barrier micro-membranes for attenuation of scar tissue during healing | |
JPH11137694A (en) | In-vivo decomposable and absorbable shape memory stent | |
Ikada | Bioabsorbable fibers for medical use | |
WO2022137003A1 (en) | Adaptive sutures dynamically changing wound holding properties post-implantation | |
JP3259828B2 (en) | Medical ligating material | |
KR101367978B1 (en) | Block-polymer membranes for attenuation of scar tissue | |
JP3010279B2 (en) | Osteosynthesis device | |
JP2011194234A (en) | Looped suture having tapered end | |
von Fraunhofer | Ligating Clips and Staples | |
HOSSAIN | DESIGN AND DEVELOPMENT OF A MICROANASTOMOSIS DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |