[go: up one dir, main page]

JP3500062B2 - Fe-based amorphous alloy ribbon with ultra-thin oxide layer - Google Patents

Fe-based amorphous alloy ribbon with ultra-thin oxide layer

Info

Publication number
JP3500062B2
JP3500062B2 JP12273598A JP12273598A JP3500062B2 JP 3500062 B2 JP3500062 B2 JP 3500062B2 JP 12273598 A JP12273598 A JP 12273598A JP 12273598 A JP12273598 A JP 12273598A JP 3500062 B2 JP3500062 B2 JP 3500062B2
Authority
JP
Japan
Prior art keywords
ribbon
oxide layer
thickness
amorphous alloy
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12273598A
Other languages
Japanese (ja)
Other versions
JPH11300450A (en
Inventor
利男 山田
広明 坂本
宜治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12273598A priority Critical patent/JP3500062B2/en
Publication of JPH11300450A publication Critical patent/JPH11300450A/en
Application granted granted Critical
Publication of JP3500062B2 publication Critical patent/JP3500062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力用トランス、
高周波トランスなどの鉄心材に用いられるFe基非晶質
合金薄帯に関するものである。
TECHNICAL FIELD The present invention relates to a power transformer,
The present invention relates to an Fe-based amorphous alloy ribbon used for an iron core material such as a high frequency transformer.

【0002】[0002]

【従来の技術】非晶質合金薄帯は、合金を溶融状態から
急冷することによって得られる。薄帯を製造する方法と
しては、遠心急冷法、単ロール法、双ロール法、等が知
られている。これらの方法は、高速回転する金属製ドラ
ムの内周面または外周面に溶融金属をオリフィス等から
噴出させることによって、急速に溶融金属を凝固させて
薄帯や線材を製造するものである。さらに、合金組成を
適正に選ぶことによって、磁気的性質、機械的性質、あ
るいは耐食性に優れた非晶質合金薄帯を得ることができ
る。
Amorphous alloy ribbons are obtained by quenching an alloy from its molten state. Known methods for producing a ribbon include a centrifugal quenching method, a single roll method, a twin roll method, and the like. In these methods, molten metal is jetted from an orifice or the like onto an inner peripheral surface or an outer peripheral surface of a metal drum rotating at high speed to rapidly solidify the molten metal to produce a ribbon or a wire. Further, by properly selecting the alloy composition, an amorphous alloy ribbon having excellent magnetic properties, mechanical properties, or corrosion resistance can be obtained.

【0003】この非晶質合金薄帯は、その優れた特性か
ら多くの用途において工業材料として有望視されてい
る。その中でも、電力トランスや高周波トランスなどの
鉄心材料の用途としては、鉄損が低く、かつ、飽和磁束
密度および透磁率が高いこと、などの理由からFe系非
晶質合金薄帯、例えば、Fe−Si−B系などが採用さ
れている。
The amorphous alloy ribbon is regarded as a promising industrial material in many applications because of its excellent properties. Among them, Fe-based amorphous alloy ribbons, such as Fe, are used for iron core materials such as power transformers and high-frequency transformers because of their low iron loss, high saturation magnetic flux density and high magnetic permeability. -Si-B system etc. are adopted.

【0004】鉄心材料の磁気特性向上を目的として最も
多く開示されているのが絶縁被膜を持つ非晶質合金薄帯
である。絶縁被膜は非晶質合金薄帯を巻き回したり積層
して作られるトランス磁心において、層間の絶縁性を高
め、渡り磁束によって生じる渦電流損失を減少させる効
果をもつ。従来、鉄心材料に使用されるFe基非晶質合
金薄帯の層間絶縁性を高めることを目的としたものとし
て、以下のものが開示されている。薄帯の熱処理過程で
20%以下の酸素を導入して薄帯表面に数10〜100
nmの酸化膜を付けてトロイダルコアにした時の層間の
絶縁性を高めて透磁率を改善する方法(特開平6-346219
号公報)があるが、この方法では酸化層厚が厚すぎて、
十分な鉄損改善ができない。
The most widely disclosed for the purpose of improving the magnetic properties of the iron core material is an amorphous alloy ribbon having an insulating coating. The insulating coating has the effect of enhancing the insulating property between layers and reducing the eddy current loss caused by the crossover magnetic flux in a transformer core made by winding or laminating amorphous alloy ribbons. Conventionally, the followings have been disclosed for the purpose of improving the interlayer insulating property of the Fe-based amorphous alloy ribbon used for the iron core material. In the heat treatment process of the ribbon, oxygen of 20% or less is introduced and the surface of the ribbon is several tens to 100.
A method of improving the magnetic permeability by increasing the insulating property between layers when a toroidal core is formed by attaching an oxide film of nm (JP-A-6-346219).
However, the oxide layer is too thick with this method,
Cannot sufficiently improve iron loss.

【0005】一方、薄帯に応力を付与して鉄損などを改
善することを目的としたものとしては以下のものが開示
されている。薄帯面内方向に圧縮応力を与えるために薄
帯表面に厚さ20〜300nmの酸化皮膜層を形成させ
るため、熱処理を不活性ガスと酸素の混合雰囲気中で行
う方法(特開昭61-250162 号公報)があるが、この方法
では、酸化層が厚すぎて、鉄損が十分に改善されない。
On the other hand, the followings have been disclosed for the purpose of applying stress to the ribbon to improve iron loss and the like. A method of performing heat treatment in a mixed atmosphere of an inert gas and oxygen in order to form an oxide film layer having a thickness of 20 to 300 nm on the surface of the ribbon in order to apply a compressive stress in the in-plane direction of the ribbon (JP-A-61- 250162), but this method does not sufficiently improve iron loss because the oxide layer is too thick.

【0006】その他の効果を狙った薄帯表面の酸化物に
関しては、以下のものが開示されている。コロイド状ア
ルミナ水和物を主成分とする水性処理液を焼き付けて得
たアルミナ絶縁皮膜付き鉄基非晶質合金薄帯の焼鈍に際
し、焼鈍雰囲気に酸素を導入して薄帯表面にSiの酸化
皮膜を形成させることによってBの酸化を防ぎ、薄帯表
面の結晶化を防止する方法(特開平2-4913号公報)、蒸
着によって10nm〜3.7μm厚のTi、Zr、C
r、Al、Siの酸化物、もしくは、Al、Siの窒化
物を非晶質材表面に形成させて耐磨耗性を改善する方法
(特開昭59-150081 号公報)、などがある。
Regarding the oxide on the surface of the ribbon aimed at other effects, the followings have been disclosed. When annealing an iron-based amorphous alloy ribbon with an alumina insulating film obtained by baking an aqueous treatment liquid containing colloidal alumina hydrate as a main component, oxygen was introduced into the annealing atmosphere to oxidize Si on the ribbon surface. A method for preventing the oxidation of B by forming a film and preventing the crystallization of the ribbon surface (Japanese Patent Laid-Open No. 2-4913), and Ti, Zr, C having a thickness of 10 nm to 3.7 μm by vapor deposition.
There is a method of improving the wear resistance by forming an oxide of r, Al, Si or a nitride of Al, Si on the surface of an amorphous material (Japanese Patent Laid-Open No. 59-150081).

【0007】[0007]

【発明が解決しようとする課題】上述の如く、従来技術
として、薄帯の鉄損を改善する目的で薄帯表面に酸化層
を形成させた薄帯はあるものの、その酸化層厚みの制御
が十分ではなく、十分な鉄損改善には至っていない。さ
らに、従来技術では、酸化層を形成するために、複雑な
表面処理などを必要としている。
As described above, as a conventional technique, there is a ribbon having an oxide layer formed on the surface of the ribbon for the purpose of improving iron loss of the ribbon, but it is possible to control the thickness of the oxide layer. It is not sufficient and the iron loss has not been sufficiently improved. Furthermore, in the prior art, in order to form an oxide layer, complicated surface treatment etc. are required.

【0008】本発明は、厚みが制御された極薄酸化層を
有する低鉄損Fe基非晶質合金薄帯、または、厚みが制
御された極薄酸化層の下部にPおよびSの少なくとも一
種を含む偏析層を有する低鉄損Fe基非晶質合金薄帯を
提供することを目的とするものである。
According to the present invention, a low iron loss Fe-based amorphous alloy ribbon having an ultrathin oxide layer with a controlled thickness, or at least one of P and S under the ultrathin oxide layer with a controlled thickness is provided. It is an object of the present invention to provide a low iron loss Fe-based amorphous alloy ribbon having a segregation layer containing Fe.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)移動する冷却基板上に、スロット状の開口部を有
する注湯ノズルを介して溶融金属を噴出し、急冷凝固さ
せて得られる急冷金属薄帯において、薄帯の組成が、F
a Si b c d であり、重量%で0.0003%以上
0.1%以下のPまたはSの少なくとも一種を含み、
なくとも片側の薄帯表面に厚みが5nm以上20nm以
下のの極薄酸化層を有し、さらに該酸化層の下部にPお
よびSの少なくとも一種を含む、厚みが0.2nm以上
の偏析層を有することを特徴とするFe基非晶質合金薄
帯。ただし、a、b、cおよびdは原子%で、 70≦a≦86、1≦b≦19、7≦c≦20、0.0
2≦d≦4、 a+b+c+d=100 である。
The gist of the present invention is as follows. (1) In a quenched metal ribbon obtained by jetting molten metal onto a moving cooling substrate through a pouring nozzle having a slot-shaped opening and rapidly cooling and solidifying the molten metal, the composition of the ribbon is F
a e a Si b B c C d , 0.0003% or more by weight%
Wherein at least one of 0.1% or less of P or S, have at least the thickness of 5nm or more 20nm or less on one side of the ribbon surface ultrathin oxide layer, contact P further the bottom of the oxide layer
Containing at least one of S and S and having a thickness of 0.2 nm or more
Fe-based amorphous alloy ribbon according to claim Rukoto that having a segregation layer. However, a, b, c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.0
2 ≦ d ≦ 4 and a + b + c + d = 100 .

【0010】 (2)少なくとも冷却基板に接触しない
側の薄帯表面に極薄酸化層を有することを特徴とする
記(1)記載のFe基非晶質合金薄帯。
[0010] (2) above, characterized in that it has an ultra-thin oxide layer on the ribbon surface on the side not in contact with at least the cooling substrate
The Fe-based amorphous alloy ribbon according to item (1) .

【0011】 (3)極薄酸化層がFe系酸化物、Si
酸化物、B系酸化物あるいはそれらの複合体から構成
されることを特徴とする上記(1)または(2)記載の
Fe基非晶質合金薄帯。
(3) The ultra-thin oxide layer is a Fe-based oxide , Si
System oxide, B-based oxide or above, characterized in that is composed of a complex thereof (1) or (2) Fe-based amorphous alloy ribbon according.

【0012】 (4)薄帯の板厚が10μm以上100
μm以下であることを特徴とする上記(1)、(2)ま
たは(3)記載のFe基非晶質合金薄帯。
(4) The thickness of the ribbon is 10 μm or more and 100
The above (1), (2) or (2) characterized in that
Alternatively, the Fe-based amorphous alloy ribbon according to (3) .

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明の特徴とするところは、厚みが制御された極薄酸
化層を有するFe基非晶質合金薄帯、または、厚みが制
御された極薄酸化層の下部にPおよびSの少なくとも一
種を含む偏析層を有する非晶質合金薄帯によって低鉄損
が得られることである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
A feature of the present invention is that a Fe-based amorphous alloy ribbon having an ultrathin oxide layer having a controlled thickness, or at least one of P and S is provided below the ultrathin oxide layer having a controlled thickness. A low iron loss can be obtained by the amorphous alloy ribbon having the segregation layer containing.

【0014】非晶質合金薄帯を大気中で鋳造する過程に
おいて、薄帯表面には酸化層が形成される。この酸化層
は薄帯の温度や薄帯近傍の雰囲気によってその厚みが変
化する。本発明者らは薄帯表面の極めて薄い酸化層が鉄
損に影響を及ぼすことを見出した。図1(a)、(b)
および図2(a)、(b)はFe−Si−B−C(P、
S)系において、剥離温度と雰囲気中の酸素濃度を変え
て極薄酸化層厚みを制御した場合の薄帯の鉄損とSEM
法で撮影した磁区を示したものである。図1(a)は極
薄酸化層厚みが5.8nmの場合、図1(b)は極薄酸
化層厚みが7.0nmの場合、図2(a)は極薄酸化層
厚みが8.3nmの場合、図2(b)は極薄酸化層厚み
が9.0nmの場合の磁区の状態を示した図である。図
1(a)、(b)および図2(a)、(b)から酸化層
の厚みの増加と共に磁区が細分化し、鉄損が小さくなっ
ていることがわかる。
During the process of casting the amorphous alloy ribbon in the atmosphere, an oxide layer is formed on the surface of the ribbon. The thickness of this oxide layer changes depending on the temperature of the ribbon and the atmosphere near the ribbon. The present inventors have found that an extremely thin oxide layer on the surface of the ribbon affects the iron loss. 1 (a), (b)
2 (a) and 2 (b) show Fe-Si-B-C (P,
S) system, the core loss and SEM of the ribbon when the ultrathin oxide layer thickness was controlled by changing the stripping temperature and the oxygen concentration in the atmosphere.
The magnetic domains taken by the method are shown. 1A shows the case where the ultrathin oxide layer has a thickness of 5.8 nm, FIG. 1B shows the case where the ultrathin oxide layer has a thickness of 7.0 nm, and FIG. In the case of 3 nm, FIG. 2B is a diagram showing the state of the magnetic domains when the ultrathin oxide layer thickness is 9.0 nm. From FIGS. 1A and 1B and FIGS. 2A and 2B, it can be seen that the magnetic domain is subdivided and the iron loss is reduced as the thickness of the oxide layer is increased.

【0015】さらに、本発明者らは種々の極薄酸化層の
厚みを持つFe−Si−B−C系、Fe−Si−B−C
(P、S)系の非晶質合金薄帯の極薄酸化層の厚みと鉄
損分離によって得たヒステリシス損失および渦電流損失
の関係を調査した。この中で本発明者らは、Fe基非晶
質薄帯が極薄酸化層と非晶質層の間にPおよびSの少な
くとも一種を含む偏析層を有する3層構造になると、極
薄酸化層のみの場合よりもさらに低鉄損が得られること
を新たに見出した。図3はその結果を示したものであ
る。Fe−Si−B−C(P、S)系についてはPおよ
びSを含む場合の結果を示した。Fe−Si−B−C系
の場合は、極薄酸化層の厚みの増加にともなって鉄損が
減少している。また、極薄酸化層厚みの増加にともなっ
てヒステリシス損失も減少している。しかし、渦電流損
失は殆んど変化がない。一方、Fe−Si−B−C
(P、S)系の場合は極薄酸化層の厚みの増加にともな
って鉄損が減少しているが、Fe−Si−B−C系の場
合よりも低鉄損を示している。また、極薄酸化層厚みの
増加にともなってヒステリシス損失も減少しているが、
Fe−Si−B−C系の場合よりもさらに低減してい
る。このヒステリシス損失の低減は、PおよびSの少な
くとも一種を含む偏析層が非晶質層と極薄酸化層の間に
形成されることによって、両者の界面を滑らかにして、
磁壁の移動をより容易にする結果によると推定される。
さらにFe−Si−B−C(P、S)系の場合は極薄酸
化層厚みの増加に伴なって渦電流損失も減少する傾向を
示す。この傾向は、上述の磁区観察の結果と良く一致し
ている。
Further, the inventors of the present invention have Fe--Si--B--C system and Fe--Si--B--C having various ultrathin oxide layer thicknesses.
The relationship between the thickness of the ultra-thin oxide layer of the (P, S) -based amorphous alloy ribbon and the hysteresis loss and eddy current loss obtained by iron loss separation was investigated. Among them, the present inventors have found that when the Fe-based amorphous ribbon has a three-layer structure having a segregation layer containing at least one of P and S between the ultrathin oxide layer and the amorphous layer, the ultrathin oxidation is observed. It was newly found that lower iron loss can be obtained than in the case of only the layer. FIG. 3 shows the result. Regarding the Fe-Si-B-C (P, S) system, the results when P and S are included are shown. In the case of the Fe-Si-BC system, the iron loss decreases as the thickness of the ultrathin oxide layer increases. In addition, the hysteresis loss also decreases as the thickness of the ultrathin oxide layer increases. However, the eddy current loss remains almost unchanged. On the other hand, Fe-Si-BC
In the case of the (P, S) system, the iron loss decreases with an increase in the thickness of the ultrathin oxide layer, but it shows a lower iron loss than in the case of the Fe-Si-B-C system. In addition, the hysteresis loss decreases with the increase of the ultrathin oxide layer thickness,
It is further reduced as compared with the case of the Fe-Si-BC system. This reduction in hysteresis loss is achieved by forming a segregation layer containing at least one of P and S between the amorphous layer and the ultrathin oxide layer, thereby smoothing the interface between them.
It is presumed that this is due to the result of facilitating the movement of the domain wall.
Further, in the case of the Fe-Si-B-C (P, S) system, the eddy current loss tends to decrease as the ultrathin oxide layer thickness increases. This tendency is in good agreement with the above-mentioned magnetic domain observation result.

【0016】本発明者らは種々の厚みを持つFe−Si
−B−C系、Fe−Si−B−C(P、S)系の非晶質
合金薄帯の極薄酸化層および極薄酸化層と非晶質層の間
にあるPおよびSの少なくとも一種を含む偏析層につい
て、その厚みと鉄損の関係をさらに詳細に調査した。そ
の結果、極薄酸化層の厚みが5nm以上20nm以下の
範囲で鉄損低減の効果が認められた。極薄酸化層が20
nmより厚くなってもそれ以上の鉄損低減の効果がみら
れなかった。従って、極薄酸化層の厚みは20nm以下
とした。また、極薄酸化層の厚みが5nm未満の場合も
鉄損低減の効果が認められなかった。これは極薄酸化層
の厚みが5nm未満の場合には薄帯表面に均一な極薄酸
化層を生成することが困難となり、磁区細分化が行われ
ないためと考えられる。従って、極薄酸化層の厚みは5
nm以上とした。磁区細分化の機構は、極薄酸化層によ
って生じる張力効果によるものと推定される。更に良好
な鉄損が得られる極薄酸化層の厚みは8nm以上14n
m以下の範囲であり、W13/50で0.10W/kg
以下の鉄損が得られる。また、PおよびSの少なくとも
一種を含む偏析層も、その厚みが0.2nm未満では鉄
損低減の効果が認められなかったため、PおよびSの少
なくとも一種を含む偏析層の厚みは0.2nm以上は必
要である。これらの偏析層の厚みは0.2nmから15
nm程度が好ましい。15nm超の厚みになっても余り
鉄損低減効果が期待できないからである。PおよびSの
少なくとも一種を含む偏析層がある3層構造の薄帯の場
合は、極薄酸化層の厚みが100nm程度まで鉄損低減
効果がみられる。
The present inventors have found that Fe--Si having various thicknesses
-B-C system, Fe-Si-B-C (P, S) system ultra-thin oxide layer of the amorphous alloy ribbon and at least P and S between the ultra-thin oxide layer and the amorphous layer. The relationship between the thickness and the iron loss of the segregation layer containing one kind was investigated in more detail. As a result, the effect of reducing iron loss was confirmed when the thickness of the ultrathin oxide layer was in the range of 5 nm to 20 nm. 20 ultra-thin oxide layers
Even if the thickness was thicker than nm, the effect of further reducing iron loss was not observed. Therefore, the thickness of the ultrathin oxide layer is set to 20 nm or less. Further, when the thickness of the ultrathin oxide layer was less than 5 nm, the effect of reducing iron loss was not recognized. This is considered to be because when the thickness of the ultrathin oxide layer is less than 5 nm, it becomes difficult to form a uniform ultrathin oxide layer on the surface of the ribbon, and the magnetic domain is not subdivided. Therefore, the thickness of the ultrathin oxide layer is 5
It was set to nm or more. The mechanism of domain fragmentation is presumed to be due to the tension effect generated by the ultrathin oxide layer. The thickness of the ultra-thin oxide layer that can obtain more favorable iron loss is 8 nm or more and 14 n
m is less than or equal to 0.10 W / kg at W13 / 50
The following iron loss is obtained. Further, the segregation layer containing at least one of P and S also had no effect of reducing iron loss when the thickness was less than 0.2 nm. Therefore, the thickness of the segregation layer containing at least one of P and S is 0.2 nm or more. Is necessary. The thickness of these segregation layers is from 0.2 nm to 15
About nm is preferable. Even if the thickness exceeds 15 nm, the effect of reducing iron loss cannot be expected so much. In the case of a thin ribbon having a three-layer structure having a segregation layer containing at least one of P and S, an iron loss reducing effect is observed up to a thickness of the ultrathin oxide layer of about 100 nm.

【0017】極薄酸化層は、必ずしも薄帯の両面に存在
しなくてもよく、少なくとも薄帯のどちらかの面に存在
すれば鉄損低減の効果が得られる。しかし、製造時に極
薄酸化層の制御がしやすいこと、また冷却基板に接触す
る面はエアーポケットがあり極薄酸化層が均一になりに
くいことから、少なくとも冷却基板に接触しない面に極
薄酸化層を有する方が望ましい。
The ultrathin oxide layer does not necessarily need to be present on both sides of the ribbon, and if it exists on at least one of the sides of the ribbon, the effect of reducing iron loss can be obtained. However, since it is easy to control the ultra-thin oxide layer during manufacturing, and the surface that contacts the cooling substrate has air pockets, it is difficult to make the ultra-thin oxide layer uniform. It is desirable to have layers.

【0018】本発明で好ましい薄帯の板厚は、10μm
以上100μm以下である。板厚が10μm未満では、
薄帯を安定して製造するのが困難なためであり、また、
板厚が100μmを超える場合も薄帯を安定して製造す
ることが難しく、さらに、薄帯が脆くなるためである。
さらに好ましくは、10μm以上70μm以下の板厚の
場合、薄帯の鋳造がより安定するため好ましい。薄帯幅
は特に制限されないが、20mm以上が好ましい。
In the present invention, the preferred strip thickness is 10 μm.
It is 100 μm or less. If the plate thickness is less than 10 μm,
This is because it is difficult to manufacture ribbons in a stable manner.
This is because it is difficult to stably manufacture the ribbon even when the plate thickness exceeds 100 μm, and the ribbon becomes brittle.
More preferably, a plate thickness of 10 μm or more and 70 μm or less is preferable because the casting of the ribbon becomes more stable. The thin strip width is not particularly limited, but is preferably 20 mm or more.

【0019】 本発明の薄帯の組成は、FeaSibc
d、ただし、a、b、cおよびdは原子%で、70≦
a≦86、1≦b≦19、7≦c≦20、0.02≦d
≦4、a+b+c+d=100、または上記組成に重量
%で0.0003%以上0.1%以下のPまたはSの少
なくとも一種を含むものである。さらに好ましくは、P
は重量%で0.003%以上0.1%以下、Sは0.0
003%以上0.01%以下である。薄帯を鉄心に使用
する場合、鉄心の飽和磁束密度は1.5T以上の高い値
にする必要がある。そのためにはFeの含有量を70原
子%以上にしなければならない。また、Feの含有量が
86原子%超になると非晶質の形成が困難になって良好
な薄帯特性が得られなくなる。従って、Feを70原子
%以上86原子%以下にする。
The set formed of a thin strip of the present invention, Fe a Si b B c
C d , where a, b, c and d are atomic% and 70 ≦
a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.02 ≦ d
≦ 4, a + b + c + d = 100, or at least 0.0003% to 0.1% by weight of at least one of P and S in the above composition. More preferably, P
Is 0.003% to 0.1% by weight, and S is 0.0
It is 003% or more and 0.01% or less. When the thin ribbon is used for the iron core, the saturation magnetic flux density of the iron core needs to be a high value of 1.5 T or more. For that purpose, the content of Fe must be 70 atomic% or more. On the other hand, if the Fe content exceeds 86 atom%, it becomes difficult to form an amorphous material, and good ribbon characteristics cannot be obtained. Therefore, Fe is set to 70 atomic% or more and 86 atomic% or less.

【0020】SiおよびBは非晶質形成能および熱安定
性を向上させるためのものである。Siが1原子%未
満、Bが7原子%未満では非晶質が安定して形成され
ず、一方、Siが19原子%超、Bが20原子%超とし
ても原料コストが高くなるだけで、非晶質形成能および
熱的安定性の向上は認められない。従って、Siは1原
子%以上19原子%以下、Bは7原子%以上20原子%
以下が好ましい。Cは薄帯の鋳造性向上に効果がある元
素である。Cを含有させることによって、溶湯と冷却基
板の濡性が向上して良好な薄帯を形成することができ
る。0.02原子%未満ではこの効果が得られない。ま
た、Cを4原子%超としてもこの効果の向上は認められ
ない。従って、Cを0.02原子%以上4原子%以下に
した。更なる磁気特性の安定化を図るには、Feを77
原子%以上83原子%以下、Siを2原子%以上9原子
%以下、Bを11原子%以上17原子%以下にするのが
好ましい。
Si and B are for improving amorphous forming ability and thermal stability. If Si is less than 1 atomic% and B is less than 7 atomic%, amorphous is not stably formed. On the other hand, if Si is more than 19 atomic% and B is more than 20 atomic%, the raw material cost is high. No improvement in amorphous forming ability and thermal stability is observed. Therefore, Si is 1 atom% or more and 19 atom% or less, B is 7 atom% or more and 20 atom% or more.
The following are preferred. C is an element effective in improving the castability of the ribbon. By containing C, the wettability of the molten metal and the cooling substrate is improved, and a good ribbon can be formed. If it is less than 0.02 atomic%, this effect cannot be obtained. Further, even if C exceeds 4 atom%, the improvement of this effect is not recognized. Therefore, C is set to 0.02 atomic% or more and 4 atomic% or less. To further stabilize the magnetic characteristics, Fe is added to 77
It is preferable that the atomic percentage is 83 atomic% or more and 83 atomic% or less, the Si content is 2 atomic% or more and 9 atomic% or less, and the B content is 11 atomic% or more and 17 atomic% or less.

【0021】好ましい極薄酸化層は、Fe系、Si系、
B系の酸化物、あるいは、それらの極薄複合酸化物であ
る。これらの極薄酸化物が、室温以上の高温で薄帯表面
に形成されることによって、非晶質合金薄帯に最適な張
力を生じるものと考えられる。中でも、Fe系、Si系
の酸化物を主体とすることがより好ましい。本発明の薄
帯は、例えばFe80.5Si6.5 121 (原子%)、あ
るいは、Fe80.5Si2.5 161 (原子%)に、重量
%で0.05%のPを添加した組成の合金溶湯を雰囲気制御
が可能なチャンバーを持つ単ロール装置を用い、チャン
バー内の酸素濃度を制御することによって製造すること
ができる。同様に雰囲気制御が可能なチャンバーを持つ
双ロール装置、ドラムの内壁を使う遠心急冷装置、エン
ドレスタイプのベルトを使う装置によっても製造するこ
とができる。また、大気鋳造装置で、薄帯の板厚と剥離
温度を厳密に制御する方法、あるいは、ノズル近傍の雰
囲気を制御することによっても製造することができる。
Preferred ultra-thin oxide layers are Fe-based, Si-based,
It is a B-based oxide or an ultrathin composite oxide thereof. It is considered that these ultrathin oxides produce optimum tension on the amorphous alloy ribbon by being formed on the ribbon surface at a temperature higher than room temperature. Of these, Fe-based and Si-based oxides are more preferable. The ribbon of the present invention is, for example, Fe 80.5 Si 6.5 B 12 C 1 (atomic%) or Fe 80.5 Si 2.5 B 16 C 1 (atomic%) alloy with 0.05% by weight of P added. The molten metal can be manufactured by controlling the oxygen concentration in the chamber using a single roll device having a chamber whose atmosphere can be controlled. Similarly, it can be manufactured by a twin roll device having a chamber whose atmosphere can be controlled, a centrifugal quenching device using the inner wall of the drum, and a device using an endless type belt. It can also be manufactured by a method of strictly controlling the strip thickness and the peeling temperature with an atmospheric casting apparatus, or by controlling the atmosphere near the nozzle.

【0022】極薄酸化層の厚みは例えばGDS(グロー
放電発光分光法)を用いた表面解析方法によって、迅速
に計測できる。
The thickness of the ultrathin oxide layer can be quickly measured by a surface analysis method using GDS (glow discharge emission spectroscopy), for example.

【0023】[0023]

【実施例】以下の実施例に基づき、本発明をさらに説明
する。 (実施例1)母材は合金組成が原子%でFe80.5Si
2.5 161 原子%に配合されたものを用いた。この母
合金で雰囲気制御が可能なチャンバー内に外径が300
mmのCu製冷却ロールを持つ単ロール装置を用い、チ
ャンバー内の酸素濃度を少量ずつ変化させ、種々の極薄
酸化層の厚みを持つ薄帯を製造した。薄帯の幅は25m
mである。極薄酸化層の厚みはGDS(グロー放電発光
分光法、スパッタ速度50nm/sec)によって得ら
れた各元素の濃度プロファイルから求めた。図4にその
例を示す。酸素ピークと重なる位置にFe,Si,Bの
ピークが観察されることから、Fe系、Si系、および
B系の酸化物を含む極薄酸化層であることが分かる。
The present invention will be further described based on the following examples. (Example 1) The base material has an alloy composition of atomic% of Fe 80.5 Si
A mixture of 2.5 B 16 C and 1 atom% was used. This mother alloy has an outer diameter of 300
Using a single roll device having a Cu cooling roll of mm, the oxygen concentration in the chamber was changed little by little to produce ribbons having various ultrathin oxide layer thicknesses. The width of the ribbon is 25m
m. The thickness of the ultrathin oxide layer was determined from the concentration profile of each element obtained by GDS (glow discharge emission spectroscopy, sputtering rate 50 nm / sec). FIG. 4 shows an example thereof. Since Fe, Si, and B peaks are observed at positions overlapping with the oxygen peak, it can be seen that the oxide layer is an ultrathin oxide layer containing Fe-based, Si-based, and B-based oxides.

【0024】これらの薄帯を360℃で1時間、窒素雰
囲気中で磁場中焼鈍した後、SST(Single S
trip Tester)で鉄損を測定した。極薄酸化
層の厚みは焼鈍の前後で殆んど変化がなかった。結果を
表1に示す。表1に示すように、極薄酸化層厚みが5n
m未満ではW13/50の鉄損が0.135W/kg以
上であるが、少なくとも薄帯表面のいずれかの極薄酸化
層が5nmを越えて極薄酸化層が厚くなるに伴って鉄損
は減少し、10nm近傍では0.10W/kg程度まで
鉄損が低減する。しかし、さらに極薄酸化層の厚みが増
すと鉄損は増加し、20nmを越えると再び0.135
W/kg以上の鉄損になる。この結果から解るように、
厚みが5nm以上20nm以下の極薄酸化層が、鉄損を
低減させる効果をもつことは明らかである。
After these ribbons were annealed at 360 ° C. for 1 hour in a nitrogen atmosphere in a magnetic field, SST (Single S
The iron loss was measured by a trip tester). The thickness of the ultra-thin oxide layer was almost unchanged before and after annealing. The results are shown in Table 1. As shown in Table 1, the thickness of the ultrathin oxide layer is 5n.
If it is less than m, the iron loss of W13 / 50 is 0.135 W / kg or more, but at least any one of the ultrathin oxide layers on the surface of the ribbon exceeds 5 nm and the iron loss increases as the ultrathin oxide layer becomes thicker. The core loss decreases to about 0.10 W / kg in the vicinity of 10 nm. However, as the thickness of the ultra-thin oxide layer further increases, the iron loss increases, and when the thickness exceeds 20 nm, the iron loss becomes 0.135
Iron loss of W / kg or more. As you can see from this result,
It is clear that an ultrathin oxide layer having a thickness of 5 nm or more and 20 nm or less has an effect of reducing iron loss.

【0025】 また、表1に示したNo.2−aはN
o.2の薄帯の自由面にマスキングをした後エッチング
を施し、ロール面の極薄酸化層を除去したものであり、
No.2−bはNo.2の薄帯のロール面にマスキング
をし、自由面の極薄酸化層を除去したものである。N
o.2、No.2−aおよびNo.2−bの鉄損は殆ん
ど変化がない。
In addition, No. 1 shown in Table 1 2-a is N
o. The free surface of the ribbon 2 was masked and then etched to remove the ultrathin oxide layer on the roll surface.
No. 2-b is No. The roll surface of the thin ribbon of No. 2 was masked to remove the ultrathin oxide layer on the free surface. N
o. 2, No. 2-a and No. The iron loss of 2-b is almost unchanged.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2) 実施例1で用いた合金組成がFe80.5Si2.5161
原子%に配合された母材に、0.01〜0.05重量%
の範囲のP、0.007重量%のSを単独あるいは複合
して添加し、実施例1と同様に薄帯を製造した。偏析層
の厚みはP量、および薄帯の冷却速度を変えて変化させ
た。得られた薄帯のGDSの各元素の濃度プロファイル
のうちP、Sを複合添加した例を図5に示す。この図5
は図4のプロファイルとは異なり、酸素ピークの右側
(薄帯内面方向)にPおよびSのピークが観察される。
この事実は極薄酸化層と非晶質層の間にPおよびSの偏
析層が存在し、3層構造になっていることを意味してい
る。また酸素ピークと重なる位置にFe、Si、Bのピ
ークが観察されることから、Fe系、Si系およびB系
の酸化物を含む極薄酸化層であることが分かる。
Example 2 The alloy composition used in Example 1 is Fe 80.5 Si 2.5 B 16 C 1
0.01 to 0.05 wt% in the base material blended to atomic%
In the same manner as in Example 1, P was added in the range of P and 0.007% by weight of S, either alone or in combination, to produce a ribbon. The thickness of the segregation layer was changed by changing the amount of P and the cooling rate of the ribbon. FIG. 5 shows an example in which P and S are added together in the concentration profile of each element of GDS of the obtained ribbon. This Figure 5
Is different from the profile of FIG. 4, P and S peaks are observed on the right side of the oxygen peak (inward direction of the ribbon).
This fact means that there is a P and S segregation layer between the ultrathin oxide layer and the amorphous layer, and the layer has a three-layer structure. Further, since peaks of Fe, Si, and B are observed at positions overlapping with the oxygen peak, it can be seen that the oxide layer is an extremely thin oxide layer containing Fe-based, Si-based, and B-based oxides.

【0028】これらの薄帯を実施例1と同様に熱処理
し、SSTで鉄損を測定した。結果を表2に示す。P,
S偏析層の厚みが0.2nm未満ではW13/50の鉄
損が0.135W/kg以上であるが、0.2nm以上
にP,S偏析層が厚くなるに伴って鉄損は減少する。偏
析層の厚みが4〜12nmの範囲では0.10W/kg
以下の低鉄損を示す。この後偏析層の厚みが増すと鉄損
は増加するが、15nm程度までは0.135W/kg
以下の鉄損を示す。この時の極薄酸化層の厚みは26n
mであり、極薄酸化層のみの場合に比べて低鉄損を示す
極薄酸化層厚みの範囲が広くなっていることが分かる。
These ribbons were heat treated in the same manner as in Example 1 and the iron loss was measured by SST. The results are shown in Table 2. P,
When the thickness of the S segregation layer is less than 0.2 nm, the iron loss of W13 / 50 is 0.135 W / kg or more, but the iron loss decreases as the P, S segregation layer becomes thicker than 0.2 nm. 0.10 W / kg when the thickness of the segregation layer is in the range of 4 to 12 nm
The following low iron loss is shown. After that, the iron loss increases as the thickness of the segregation layer increases, but 0.135 W / kg up to about 15 nm.
The following iron loss is shown. At this time, the thickness of the ultra-thin oxide layer is 26n.
It can be seen that the range of the thickness of the ultrathin oxide layer exhibiting low iron loss is wider than that in the case of only the ultrathin oxide layer.

【0029】このように、極薄酸化層と非晶質層の間に
PおよびSの偏析層を持つ3層構造の薄帯において、厚
みが0.2nm以上のPおよびS偏析層が、鉄損を低減
させる効果をもつことは明らかである。また、実施例1
同様に、表2中のNo.25−aはNo.25の薄帯の
自由面にマスキングをした後エッチングを施し、ロール
面の極薄酸化層とPおよびS偏析層を除去したものであ
り、No.25−bはNo.25の薄帯のロール面にマ
スキングをし、自由面の極薄酸化層とPおよびS偏析層
を除去したものである。表2の結果から分かるように、
No.25、No.25−aおよびNo.25−bの鉄
損はほとんど変化がなく、極薄酸化層とPおよびS偏析
層は薄帯の少なくともどちらかの表面にあれば良いこと
がわかる。
As described above, in the thin ribbon having a three-layer structure having the P and S segregation layers between the ultrathin oxide layer and the amorphous layer, the P and S segregation layers having a thickness of 0.2 nm or more are iron. It is clear that it has the effect of reducing loss. In addition, Example 1
Similarly, No. 1 in Table 2 No. 25-a is No. The free surface of the thin strip of No. 25 was masked and then etched to remove the ultrathin oxide layer and the P and S segregation layers on the roll surface. No. 25-b is No. The roll surface of 25 ribbon was masked to remove the ultrathin oxide layer and the P and S segregation layers on the free surface. As can be seen from the results in Table 2,
No. 25, no. 25-a and No. The iron loss of 25-b shows almost no change, and it is understood that the ultrathin oxide layer and the P and S segregation layers should be on at least one surface of the ribbon.

【0030】[0030]

【表2】 [Table 2]

【0031】(実施例3)実施例1および実施例2で用
いた母材を用い、外径600mmのCu製冷却ロールを
持つ単ロール装置を使用し、大気中で薄帯の製造を行っ
た。シングルおよびマルチスリット有するノズルを用い
種々の板厚の薄帯を製造した。製造の際、薄帯の剥離位
置を変え薄帯の剥離温度を変えることで極薄酸化層の厚
みを制御した。薄帯の板幅は25mmであった。得られ
た薄帯の極薄酸化層とPおよびS偏析層の厚みをGDS
で調査した。また、GDSの結果から極薄酸化層はFe
系,Si系,B系の酸化物を含む酸化層であった。得ら
れた薄帯を実施例1および実施例2と同様に熱処理し、
SSTで鉄損を測定した。結果を表3に示す。表3に示
すように、板厚が10μm〜100μmの広い板厚範囲
でW13/50が0.135W/kg以下の低鉄損が得
られていることが分かり、また比較のために製造したN
o.41の薄帯は薄帯全体に無数の穴があき、また、N
o.51の薄帯は脆く、安定製造が困難であった。
(Example 3) Using the base material used in Examples 1 and 2, a single roll apparatus having a Cu cooling roll having an outer diameter of 600 mm was used to produce a ribbon in the atmosphere. . Thin strips of various thicknesses were produced using nozzles with single and multiple slits. During the production, the peeling position of the ribbon was changed and the peeling temperature of the ribbon was changed to control the thickness of the ultrathin oxide layer. The strip width was 25 mm. The thickness of the ultrathin oxide layer and the P and S segregation layers of the obtained ribbon was measured by GDS.
I researched in. Moreover, from the result of GDS, the ultrathin oxide layer was Fe.
It was an oxide layer containing a system-based, Si-based, and B-based oxide. The obtained ribbon was heat treated in the same manner as in Example 1 and Example 2,
The iron loss was measured by SST. The results are shown in Table 3. As shown in Table 3, it was found that a low iron loss with W13 / 50 of 0.135 W / kg or less was obtained in a wide plate thickness range of 10 μm to 100 μm, and N produced for comparison was used.
o. The 41 ribbon has an innumerable number of holes throughout the ribbon, and N
o. The thin ribbon of 51 was brittle, and stable production was difficult.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】以上述べたように、本発明の極薄酸化層
を有する低鉄損Fe基非晶質合金薄帯、または、厚みが
制御された極薄酸化層の下部にPおよびSの少なくとも
一種を含む偏析層を有する低鉄損Fe基非晶質合金薄帯
によって,低鉄損薄帯の特性バラツキが改善されるとと
もに,安定製造が容易になる。
As described above, the low iron loss Fe-based amorphous alloy ribbon having the ultrathin oxide layer of the present invention, or P and S in the lower portion of the ultrathin oxide layer having a controlled thickness. The low iron loss Fe-based amorphous alloy ribbon having the segregation layer containing at least one kind improves the characteristic variation of the low iron loss ribbon and facilitates stable production.

【図面の簡単な説明】[Brief description of drawings]

【図1】薄帯の磁区観察写真であり、(a)は極薄酸化
層厚みが5.8nmの場合で、W13/50が0.12
7W/kg、磁区幅が1.7mmである場合の磁区観察
写真、(b)は極薄酸化層厚みが7.0nmの場合で、
W13/50が0.097W/kg、磁区幅が1.3m
mである場合の磁区観察写真である。
FIG. 1 is a magnetic domain observation photograph of a ribbon, (a) shows the case where the ultrathin oxide layer thickness is 5.8 nm, and W13 / 50 is 0.12.
A magnetic domain observation photograph at 7 W / kg and a magnetic domain width of 1.7 mm, (b) is a case where the ultrathin oxide layer thickness is 7.0 nm,
W13 / 50 is 0.097 W / kg, magnetic domain width is 1.3 m
It is a magnetic domain observation photograph in case of m.

【図2】薄帯の磁区観察写真であり、(a)は極薄酸化
層厚みが8.3nmの場合で、W13/50が0.08
0W/kg、磁区幅が0.8mmである場合の磁区観察
写真、(b)は極薄酸化層厚みが9.0nmの場合で、
W13/50が0.077W/kg、磁区幅が0.5m
mである場合の磁区観察写真である。
FIG. 2 is a magnetic domain observation photograph of a ribbon, (a) shows the case where the ultrathin oxide layer thickness is 8.3 nm, and W13 / 50 is 0.08.
A magnetic domain observation photograph at 0 W / kg and a magnetic domain width of 0.8 mm, (b) is a case where the ultrathin oxide layer thickness is 9.0 nm,
W13 / 50 is 0.077 W / kg, magnetic domain width is 0.5 m
It is a magnetic domain observation photograph in case of m.

【図3】極薄酸化層の厚みと鉄損の関係を示した図であ
る。
FIG. 3 is a diagram showing the relationship between the thickness of an ultrathin oxide layer and iron loss.

【図4】GDS(グロー放電発光分光法)による元素濃
度プロファイルの例を示す図である。
FIG. 4 is a diagram showing an example of an element concentration profile by GDS (glow discharge emission spectroscopy).

【図5】母合金にPおよびSを添加して製造した非晶質
合金薄帯のGDSの元素濃度プロファイルの例を示す図
である。
FIG. 5 is a diagram showing an example of an element concentration profile of GDS of an amorphous alloy ribbon produced by adding P and S to a mother alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−194503(JP,A) 特開 昭61−250162(JP,A) 特開 平9−95760(JP,A) 特開 平9−202946(JP,A) 特開 平8−283919(JP,A) 特開 平6−100999(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/06 360 C22C 45/02 C23C 8/14 H01F 1/153 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-2-194503 (JP, A) JP-A-61-250162 (JP, A) JP-A-9-95760 (JP, A) JP-A-9- 202946 (JP, A) JP 8-283919 (JP, A) JP 6-100999 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/06 360 C22C 45/02 C23C 8/14 H01F 1/153

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移動する冷却基板上に、スロット状の開
口部を有する注湯ノズルを介して溶融金属を噴出し、急
冷凝固させて得られる急冷金属薄帯において、薄帯の組
成が、Fe a Si b c d であり、重量%で0.0003
%以上0.1%以下のPまたはSの少なくとも一種を含
み、少なくとも片側の薄帯表面に厚みが5nm以上20
nm以下の極薄酸化層を有し、さらに該酸化層の下部に
PおよびSの少なくとも一種を含む、厚みが0.2nm
以上の偏析層を有することを特徴とするFe基非晶質合
金薄帯。ただし、a、b、cおよびdは原子%で、 70≦a≦86、1≦b≦19、7≦c≦20、0.0
2≦d≦4、 a+b+c+d=100 である。
To 1. A mobile cooling substrate, spewing molten metal through a pouring nozzle having a slot-like opening, in quenched metal strip obtained by rapid solidification, the ribbon set
Fe a Si b B c C d is 0.0003% by weight.
% Or more and 0.1% or less of at least one P or S
The thickness of at least one side of the ribbon is 5 nm or more 20
nm have a following ultrathin oxide layer, the bottom of the further oxide layer
A thickness of 0.2 nm containing at least one of P and S
Fe-based amorphous alloy ribbon according to claim Rukoto to have a more segregation layer. However, a, b, c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20, 0.0
2 ≦ d ≦ 4 and a + b + c + d = 100 .
【請求項2】 少なくとも冷却基板に接触しない側の薄
帯表面に極薄酸化層を有することを特徴とする請求項
記載のFe基非晶質合金薄帯。
2. A method according to claim 1, characterized in that it comprises an ultra-thin oxide layer on the ribbon surface on the side not in contact with at least the cooling substrate
The Fe-based amorphous alloy ribbon described.
【請求項3】 極薄酸化層がFe系酸化物、Si系酸化
、B系酸化物あるいはそれらの複合体から構成される
ことを特徴とする請求項1または2記載のFe基非晶質
合金薄帯。
3. The ultra-thin oxide layer is a Fe-based oxide or a Si-based oxide.
The Fe-based amorphous alloy ribbon according to claim 1 or 2, wherein the ribbon is composed of a substance , a B-based oxide, or a composite thereof.
【請求項4】 薄帯の板厚が10μm以上100μm以
下であることを特徴とする請求項1、2または3記載の
Fe基非晶質合金薄帯。
4. The Fe-based amorphous alloy ribbon according to claim 1, 2 or 3, wherein the ribbon has a plate thickness of 10 μm or more and 100 μm or less.
JP12273598A 1998-04-17 1998-04-17 Fe-based amorphous alloy ribbon with ultra-thin oxide layer Expired - Lifetime JP3500062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12273598A JP3500062B2 (en) 1998-04-17 1998-04-17 Fe-based amorphous alloy ribbon with ultra-thin oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12273598A JP3500062B2 (en) 1998-04-17 1998-04-17 Fe-based amorphous alloy ribbon with ultra-thin oxide layer

Publications (2)

Publication Number Publication Date
JPH11300450A JPH11300450A (en) 1999-11-02
JP3500062B2 true JP3500062B2 (en) 2004-02-23

Family

ID=14843301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12273598A Expired - Lifetime JP3500062B2 (en) 1998-04-17 1998-04-17 Fe-based amorphous alloy ribbon with ultra-thin oxide layer

Country Status (1)

Country Link
JP (1) JP3500062B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745177B2 (en) 1999-11-18 2006-02-15 Ykk株式会社 Surface-cured amorphous alloy molded article and method for producing the same
JP4402960B2 (en) 2002-04-05 2010-01-20 新日本製鐵株式会社 Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
JP2008071982A (en) 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Transformer
JP5645108B2 (en) * 2010-07-14 2014-12-24 日立金属株式会社 Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
CN106676432A (en) * 2016-11-15 2017-05-17 北京科技大学 Low-cost and high-forming-capability large iron-base amorphous alloy and composite material thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079057B2 (en) * 1985-04-26 1995-02-01 株式会社東芝 Amorphous alloy magnetic core manufacturing method
JP2844202B2 (en) * 1989-01-23 1999-01-06 ティーディーケイ株式会社 Core for noise filter
JPH06100999A (en) * 1992-09-18 1994-04-12 Nippon Steel Corp Method for producing amorphous alloy having excellent constant magnetic permeability characteristics
JP3379059B2 (en) * 1995-07-27 2003-02-17 新日本製鐵株式会社 Inexpensive Fe-B-Si-C amorphous alloy ribbon
JPH08283919A (en) * 1995-04-11 1996-10-29 Nippon Steel Corp Fe-based amorphous alloy ribbon and method for producing the same
JP3432661B2 (en) * 1996-01-24 2003-08-04 新日本製鐵株式会社 Fe-based amorphous alloy ribbon

Also Published As

Publication number Publication date
JPH11300450A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
EP0695812B1 (en) Nanocrystalline alloy with insulating coating, magnetic core made thereof, and process for forming insulating coating on a nanocrystalline alloy
JP2008231533A5 (en)
JPH01242757A (en) Alloy for low-frequency transformer and low-frequency transformer using said alloy
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
WO2009096382A1 (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP2008231534A5 (en)
JP3342767B2 (en) Fe-based soft magnetic alloy
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP3500062B2 (en) Fe-based amorphous alloy ribbon with ultra-thin oxide layer
JP2010150602A (en) Fe-BASED SOFT MAGNETIC THIN STRIP AND HIGH-FREQUENCY MAGNETIC CORE USING THE SAME
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP4437563B2 (en) Magnetic alloy with excellent surface properties and magnetic core using the same
JP4037989B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
US6420042B1 (en) Fe-based amorphous alloy thin strip with ultrathin oxide layer
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4037988B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
JP2007204817A (en) Oriented electrical steel sheet with ferrite coating
CN100432270C (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
JPH08283919A (en) Fe-based amorphous alloy ribbon and method for producing the same
JP4787613B2 (en) Oriented electrical steel sheet with ferrite coating
JPH06287721A (en) Amorphous alloy thin strip enhanced in crystallization resistance on surface
CN114341372B (en) Oriented electrical steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term