JP3500031B2 - Hydrogen storage alloy electrode and method for producing the same - Google Patents
Hydrogen storage alloy electrode and method for producing the sameInfo
- Publication number
- JP3500031B2 JP3500031B2 JP05888397A JP5888397A JP3500031B2 JP 3500031 B2 JP3500031 B2 JP 3500031B2 JP 05888397 A JP05888397 A JP 05888397A JP 5888397 A JP5888397 A JP 5888397A JP 3500031 B2 JP3500031 B2 JP 3500031B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- particles
- conductive metal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003860 storage Methods 0.000 title claims description 112
- 239000000956 alloy Substances 0.000 title claims description 108
- 229910045601 alloy Inorganic materials 0.000 title claims description 108
- 239000001257 hydrogen Substances 0.000 title claims description 108
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 108
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 106
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000002245 particle Substances 0.000 claims description 52
- 239000000843 powder Substances 0.000 claims description 42
- 239000002923 metal particle Substances 0.000 claims description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 239000012298 atmosphere Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 230000004913 activation Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 8
- 238000005551 mechanical alloying Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052987 metal hydride Inorganic materials 0.000 description 4
- 150000004681 metal hydrides Chemical class 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリ蓄電池等
の金属−水素化物蓄電池の負極として利用される水素吸
蔵合金電極に関するものであり、初期活性にすぐれた水
素吸蔵合金電極に関するものである。TECHNICAL FIELD The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal-hydride storage battery such as an alkaline storage battery, and more particularly to a hydrogen storage alloy electrode excellent in initial activity.
【0002】[0002]
【従来の技術】水素を可逆的に吸蔵/放出する水素吸蔵
合金を負極として利用したNi−MH電池等の金属−水
素化物蓄電池が知られている。水素吸蔵合金電極は、水
素吸蔵合金粉末を結着剤と混合してペーストとし、該ペ
ーストをパンチングメタル、発泡メタル、ニッケルメッ
シュ等の集電体に塗着して、その後焼結や乾燥を行なう
ことにより作製される。ペーストには、必要に応じてニ
ッケル粉末などの導電材を混合することもある。2. Description of the Related Art A metal-hydride storage battery such as a Ni-MH battery using a hydrogen storage alloy that stores and releases hydrogen reversibly as a negative electrode is known. The hydrogen storage alloy electrode is formed by mixing hydrogen storage alloy powder with a binder to form a paste, applying the paste to a collector such as punching metal, foam metal, or nickel mesh, and then performing sintering or drying. It is produced by A conductive material such as nickel powder may be mixed with the paste as needed.
【0003】[0003]
【発明が解決しようとする課題】金属−水素化物蓄電池
は、充放電サイクルの初期から長期に亘って高容量を維
持するのが望ましい。しかし、該蓄電池の負極である水
素吸蔵合金電極は、一般的に初期段階の水素吸蔵能力が
十分でない。これは、水素吸蔵合金電極に用いられる水
素吸蔵合金粉末の粒子表面に、ガスが吸着していたり、
稠密な酸化被膜が形成されやすいためである。酸化被膜
等が形成されると、所望の水素吸蔵能力を得ることがで
きないから、初期活性化処理を施して、水素吸蔵合金粉
末の粒子表面を活性化させる必要があった。It is desirable that the metal-hydride storage battery maintain a high capacity from the beginning of the charge / discharge cycle to a long period of time. However, the hydrogen storage alloy electrode, which is the negative electrode of the storage battery, generally does not have sufficient hydrogen storage capacity in the initial stage. This is because the gas is adsorbed on the particle surface of the hydrogen storage alloy powder used for the hydrogen storage alloy electrode,
This is because a dense oxide film is likely to be formed. When an oxide film or the like is formed, a desired hydrogen storage capacity cannot be obtained, so it was necessary to perform an initial activation treatment to activate the particle surface of the hydrogen storage alloy powder.
【0004】特開平5−28989号(H01M 4/
24)は、水素吸蔵合金粒子と導電性金属である粒径の
小さいニッケル微粉末を乳鉢で混合することにより、水
素吸蔵合金粒子の表面にニッケルを付着させて水素吸蔵
合金の高容量化を図っている。しかし、水素吸蔵合金粒
子の表面には、上述のとおり酸化被膜等が形成されてい
るから、図2に示すごとく付着した導電性金属粒子(44)
と水素吸蔵合金粒子(42)との間にも酸化被膜(46)等が残
ることがあった。JP-A-5-28989 (H01M 4 /
In 24), the hydrogen storage alloy particles are mixed with nickel fine powder of a conductive metal having a small particle size in a mortar to adhere nickel to the surface of the hydrogen storage alloy particles to increase the capacity of the hydrogen storage alloy. ing. However, since the oxide film is formed on the surface of the hydrogen storage alloy particles as described above, the conductive metal particles (44) attached as shown in FIG.
An oxide film (46) or the like may remain between the hydrogen storage alloy particles (42) and the hydrogen storage alloy particles (42).
【0005】本発明の目的は、初期充放電特性にすぐれ
る水素吸蔵合金電極を提供することである。An object of the present invention is to provide a hydrogen storage alloy electrode having excellent initial charge / discharge characteristics.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明の水素吸蔵合金電極は、Zr、Ni、V及び
Mnを含む水素吸蔵合金粒子(40)の表面に導電性金属粒
子(44)を一酸化炭素含有還元雰囲気中でメカノケミカル
法により付着させた水素吸蔵合金粉末(40)と集電体を一
体化してなる水素吸蔵合金電極であって、水素吸蔵合金
粉末(40)の酸素濃度を0.5%以下とするものである。
導電性金属粒子(44)は、Ni(ニッケル)、Co(コバル
ト)及びCu(銅)からなる群から選択された少なくとも
1種の金属を含んでいることが望ましい。In order to solve the above-mentioned problems, a hydrogen storage alloy electrode of the present invention is provided with conductive metal particles (40) on the surface of hydrogen storage alloy particles (40) containing Zr, Ni, V and Mn. A hydrogen storage alloy electrode (44) in which a hydrogen storage alloy powder (40) made by adhering 44) by a mechanochemical method in a reducing atmosphere containing carbon monoxide is integrated with a current collector. The oxygen concentration is 0.5% or less.
It is desirable that the conductive metal particles (44) contain at least one metal selected from the group consisting of Ni (nickel), Co (cobalt) and Cu (copper).
【0007】上記水素吸蔵合金電極を構成する水素吸蔵
合金粉末(40)は、水素吸蔵合金粒子(42)と導電性金属粒
子(44)を混合し、一酸化炭素含有還元雰囲気中で撹拌す
ることにより得ることができる。また、水素吸蔵合金電
極は、粒子表面に導電性金属粒子(44)を付着させた水素
吸蔵合金粉末(40)を、集電体と一体化することにより作
製することができる。水素吸蔵合金粒子(42)と導電性金
属粒子(44)の撹拌は、メカノケミカル法により実施する
ことが望ましい。なお、メカノケミカル法については、
後で詳述する。還元性雰囲気として、一酸化炭素を含む
雰囲気を挙げることができる。集電体と水素吸蔵合金粉
末(40)を一体化させる方法は、特に限定されるものでは
なく、例えば、結着剤と水素吸蔵合金粉末を混合して集
電体に塗着する方法を挙げることができる。The hydrogen storage alloy powder (40) constituting the hydrogen storage alloy electrode is obtained by mixing the hydrogen storage alloy particles (42) and the conductive metal particles (44) and stirring in a reducing atmosphere containing carbon monoxide. Can be obtained by Further, the hydrogen storage alloy electrode can be manufactured by integrating the hydrogen storage alloy powder (40) having the conductive metal particles (44) attached to the surface of the particles with the current collector. It is desirable to stir the hydrogen storage alloy particles (42) and the conductive metal particles (44) by a mechanochemical method. Regarding the mechanochemical method,
More on this later. As the reducing atmosphere may include an atmosphere containing carbon monoxide. The method of integrating the current collector and the hydrogen storage alloy powder (40) is not particularly limited, and examples thereof include a method of mixing the binder and the hydrogen storage alloy powder and applying the mixture to the current collector. be able to.
【0008】[0008]
【作用及び効果】水素吸蔵合金粒子と導電性金属粒子の
撹拌を一酸化炭素含有還元性雰囲気で行なうことによ
り、水素吸蔵合金粒子の表面に存在する酸化被膜などが
除去されて、水素吸蔵合金粒子の表面が活性化される。
導電性金属粒子は、水素吸蔵合金粒子の酸化被膜等が除
去された活性表面に付着するから、水素吸蔵合金粒子の
表面改質を効果的に行なうことができる。また、導電性
金属粒子が水素吸蔵合金粒子の表面に直接付着すること
により、水素吸蔵合金粉末の導電性の飛躍的な向上を達
成することができる。[Operation and effect] By stirring the hydrogen storage alloy particles and the conductive metal particles in a reducing atmosphere containing carbon monoxide , the oxide film and the like existing on the surface of the hydrogen storage alloy particles are removed, and the hydrogen storage alloy particles are removed. The surface of is activated.
Since the conductive metal particles adhere to the active surface of the hydrogen storage alloy particles from which the oxide film and the like have been removed, surface modification of the hydrogen storage alloy particles can be effectively performed. Further, the conductive metal particles directly adhere to the surface of the hydrogen storage alloy particles, whereby the conductivity of the hydrogen storage alloy powder can be dramatically improved.
【0009】表面改質が効果的に行なわれた水素吸蔵合
金粉末を、集電体と一体化して水素吸蔵合金電極を作製
すると、得られた水素吸蔵合金電極は、充放電サイクル
の初期からすぐれた充放電特性を有するため、金属−水
素化物蓄電池の性能の向上を達成することができる。ま
た、水素吸蔵合金電極は、水素吸蔵合金粒子の表面に直
接導電性金属粒子が付着した水素吸蔵合金粉末から作製
されていて初期活性度が高いから、従来実施されていた
初期活性処理を省略又は簡便化することができる。When a hydrogen storage alloy powder, which has been effectively surface-modified, is integrated with a current collector to produce a hydrogen storage alloy electrode, the obtained hydrogen storage alloy electrode is excellent from the beginning of the charge / discharge cycle. Since it has excellent charge and discharge characteristics, it is possible to achieve improvement in the performance of the metal-hydride storage battery. Further, the hydrogen-absorbing alloy electrode, since the initial activity is high because it is made of hydrogen-absorbing alloy powder in which the conductive metal particles are directly attached to the surface of the hydrogen-absorbing alloy particles, it is possible to omit the conventional initial activation treatment or It can be simplified.
【0010】[0010]
【発明の実施の形態】水素吸蔵合金粒子(42)の調製に際
しては、その調製方法は特に限定されるものではなく、
種々の方法を用いることができる。例えば、鋳造合金を
熱処理した後粉砕したり、アトマイズ法による調製など
が挙げられる。水素吸蔵合金粒子の平均粒径は、30μ
m〜80μmとなるように調製することが望ましい。BEST MODE FOR CARRYING OUT THE INVENTION When preparing the hydrogen storage alloy particles (42), the preparation method is not particularly limited,
Various methods can be used. For example, the cast alloy may be heat-treated and then crushed, or prepared by an atomizing method. The average particle size of the hydrogen storage alloy particles is 30μ
It is desirable that the thickness is adjusted to m to 80 μm.
【0011】導電性金属粒子(44)は、平均粒径が約10
μm以下となるように調製したものを用いることが望ま
しい。平均粒径が10μmよりも大きくなると、導電性
金属粒子の付着した水素吸蔵合金粉末(40)の粒径も大き
くなり、電極を作製した際に、粒子どうしの接触点数が
少なくなって、導電性向上効果が薄れるためである。ま
た、導電性金属は水素を吸蔵しないから、水素吸蔵合金
電極に占める導電性金属の割合が大きくなると、容量の
低下に繋がるためである。The conductive metal particles (44) have an average particle size of about 10
It is desirable to use the one prepared so as to have a thickness of μm or less. When the average particle size is larger than 10 μm, the particle size of the hydrogen-absorbing alloy powder (40) to which the conductive metal particles are adhered is also large, and the number of contact points between the particles is reduced when the electrode is manufactured, and the conductivity is reduced. This is because the improvement effect is weakened. In addition, since the conductive metal does not store hydrogen, if the ratio of the conductive metal in the hydrogen storage alloy electrode is large, the capacity is reduced.
【0012】調製された水素吸蔵合金粒子(42)と導電性
金属粒子(44)は、混合の後、還元雰囲気中で撹拌され
る。なお、混合も還元性雰囲気中で行なってもよい。還
元性雰囲気に含まれる還元ガスとして、一酸化炭素ガス
などを挙げることができる。なお、一酸化炭素ガスにア
ルゴンガスなどの不活性ガスを混合してもよい。水素吸
蔵合金粒子(42)と導電性金属粒子(44)との撹拌は、メカ
ノケミカル法などにより実施することができる。メカノ
ケミカル法として、メカニカルアロイング法を挙げるこ
とができる。メカニカルアロイング処理装置(50)の一例
を図3、図4に示す。該装置(50)は、セラミクス製の円
筒型ポット(54)(54)が、ターンテーブル(52)の中心から
等距離の位置に2つ配置されており、ターンテーブルが
回転すると、円筒型ポットはターンテーブルの回転方向
とは逆方向に自転する。円筒型ポット(54)の内部には、
図4に示すように、所定量の水素吸蔵合金粒子(42)と導
電性金属粒子(44)、及びセラミクス製のボール(56)が収
容され、該ポットの内部の雰囲気は、還元性雰囲気とな
っている。ターンテーブル(52)と円筒型ポット(54)を夫
々逆方向に回転させると、ポットの内部に収容された水
素吸蔵合金粒子(42)と導電性金属粒子(44)がセラミクス
製ボールと共に撹拌され、水素吸蔵合金粒子が還元され
て表面が活性化されると共に、該水素吸蔵合金粒子の活
性化した表面に導電性金属粒子を直接付着させた水素吸
蔵合金粉末(40)を得ることができる。なお、円筒型ポッ
トの回転数は、50rpm〜200rpmとすることが
望ましい。The hydrogen storage alloy particles (42) and the conductive metal particles (44) thus prepared are mixed and then stirred in a reducing atmosphere. The mixing may be performed in a reducing atmosphere. As the reducing gas contained in the reducing atmosphere, and the like carbon monoxide gas. It may be mixed with an inert gas such as argon gas to carbon monoxide gas. The hydrogen storage alloy particles (42) and the conductive metal particles (44) can be stirred by a mechanochemical method or the like. As a mechanochemical method, a mechanical alloying method can be mentioned. An example of the mechanical alloying processing device (50) is shown in FIGS. The device (50) comprises two ceramic-made cylindrical pots (54) (54) equidistant from the center of the turntable (52), and when the turntable rotates, the cylindrical pot Rotates about the direction opposite to that of the turntable. Inside the cylindrical pot (54),
As shown in FIG. 4, a predetermined amount of hydrogen storage alloy particles (42), conductive metal particles (44), and ceramic balls (56) are housed, and the atmosphere inside the pot is a reducing atmosphere. Has become. When the turntable (52) and the cylindrical pot (54) are respectively rotated in opposite directions, the hydrogen storage alloy particles (42) and the conductive metal particles (44) contained in the pot are agitated together with the ceramic balls. It is possible to obtain the hydrogen storage alloy powder (40) in which the hydrogen storage alloy particles are reduced and the surface is activated, and the conductive metal particles are directly attached to the activated surface of the hydrogen storage alloy particles. The rotation speed of the cylindrical pot is preferably 50 rpm to 200 rpm.
【0013】[0013]
【実施例】以下の方法で水素吸蔵合金電極を作製し、充
放電サイクルを行なって、活性化度を測定比較した。供試No.1
Zr、Ni、V及びMnを所定モル比に秤量し、アルゴ
ン雰囲気のアーク溶解炉で溶解させた後、自然放冷させ
て、成分組成がZrNi1.1V0.2Mn0.7であるAB2型
の水素吸蔵合金を作製した。作製された水素吸蔵合金の
インゴットを1cm角に粗粉砕して、大気雰囲気中で粉
砕ミルにより100μm以下に粉砕した後、ふるいを用
いて分級し、平均粒径が50μmとなるようにした。得
られた水素吸蔵合金粉末の酸素濃度を測定したところ、
0.6%であった。Example A hydrogen storage alloy electrode was produced by the following method, and a charge / discharge cycle was performed to measure and compare the activation degree. Sample No. 1 Zr, Ni, V and Mn were weighed in a predetermined molar ratio, melted in an arc melting furnace in an argon atmosphere, and then allowed to cool naturally to have a composition of ZrNi1.1V0.2Mn0.7. An AB2 type hydrogen storage alloy was produced. The produced hydrogen storage alloy ingot was roughly crushed into 1 cm squares, crushed to 100 μm or less by a crushing mill in an air atmosphere, and then classified using a sieve so that the average particle size was 50 μm. When the oxygen concentration of the obtained hydrogen storage alloy powder was measured,
It was 0.6%.
【0014】上記水素吸蔵合金粉末50gと平均粒径
0.5μmのNi粉末2gを、図3及び図4に示すメカ
ノケミカル処理装置(50)を用いて、メカニカルアロイン
グ処理を行なった。なお、メカニカルアロイング処理条
件は以下のとおりである。
・ポット容積 :250ml
・ポット内雰囲気 :水素ガス
・セラミクス製ボール:直径5mm、50個
・ポット回転数 :80rpm
・処理時間 :20時間50 g of the above hydrogen storage alloy powder and 2 g of Ni powder having an average particle size of 0.5 μm were mechanically alloyed by using the mechanochemical treatment device (50) shown in FIGS. 3 and 4. The mechanical alloying processing conditions are as follows. -Pot volume: 250 ml-Atmosphere inside the pot: Hydrogen gas-Ceramics balls: Diameter 5 mm, 50 pieces-Pot rotation speed: 80 rpm-Processing time: 20 hours
【0015】上記処理を行なうことにより、図1に示す
ように、水素吸蔵合金粒子(42)の表面に導電性金属粒子
(44)であるNi粉末が直接付着した水素吸蔵合金粉末(4
0)が得られた。該水素吸蔵合金粉末(40)の酸素濃度を測
定したところ、0.08%であった(表1参照)。上記水
素吸蔵合金粉末0.5gを、結着剤ポリテトラフルオロ
エチレン(PTFE)0.1gと混合した後、集電体(発泡
ニッケル多孔体)に充填し、1.2ton/cm2で加圧成型
し、直径20mmの円盤状の水素吸蔵合金電極を作製し
た(供試No.1)。By carrying out the above treatment, as shown in FIG. 1, conductive metal particles are formed on the surface of the hydrogen storage alloy particles (42).
Hydrogen storage alloy powder (4) with Ni powder directly attached (4
0) was obtained. The oxygen concentration of the hydrogen storage alloy powder (40) was measured and found to be 0.08% (see Table 1). After mixing 0.5 g of the above hydrogen storage alloy powder with 0.1 g of the binder polytetrafluoroethylene (PTFE), the mixture was filled in a current collector (porous nickel foam) and pressurized at 1.2 ton / cm 2. It was molded to prepare a disk-shaped hydrogen storage alloy electrode having a diameter of 20 mm (test sample No. 1).
【0016】[0016]
【表1】 [Table 1]
【0017】供試No.2
比較のため、Ni粉末を混合せずに、水素吸蔵合金粒子
だけをポットに収容して、撹拌処理を行なった水素吸蔵
合金粉末から、供試No.1と同様の方法で水素吸蔵合金
電極を作製した。For comparison with test sample No. 2, the same hydrogen storage alloy powder as sample No. 1 was prepared by mixing the hydrogen storage alloy particles in the pot without mixing the Ni powder and stirring the mixture. A hydrogen storage alloy electrode was produced by the method described above.
【0018】供試No.3、供試No.4
メカニカルアロイング処理時間を5時間として、供試N
o.1と同じ条件(No.3)、供試No.2と同じ条件(No.4)
で水素吸蔵合金電極を夫々作製した。なお、各水素吸蔵
合金粉末について、酸素濃度を測定したところ、表1に
示すとおりであった。 Sample No. 3 and Sample No. 4 Mechanical alloying treatment time was 5 hours, sample N
Same conditions as o.1 (No.3), same conditions as test No.2 (No.4)
Then, hydrogen storage alloy electrodes were prepared respectively. The oxygen concentration of each hydrogen storage alloy powder was measured, and the results were as shown in Table 1.
【0019】供試No.5、供試No.6
メカニカルアロイング処理のポット内を還元ガスでない
不活性アルゴンガス雰囲気として、供試No.1と同じ条
件(No.5)、供試No.2と同じ条件(No.6)で水素吸蔵合
金電極を夫々作製した。各水素吸蔵合金粉末の酸素濃度
は、還元が行なわれていないため変化なかった(表1参
照)。 Test No. 5 and Test No. 6 Under the same conditions as Test No. 1 (No. 5) and Test No. 1, the inside of the pot of the mechanical alloying treatment was made an inert argon gas atmosphere which was not a reducing gas. Under the same conditions as in No. 2 (No. 6), hydrogen storage alloy electrodes were produced. The oxygen concentration of each hydrogen storage alloy powder did not change because no reduction was performed (see Table 1).
【0020】供試No.7〜供試No.10
導電性金属粒子であるNi粉末の平均粒径を、0.2μ
m(No.7)、2μm(No.8)、5μm(No.9)、12μm
(No.10)に代えて、供試No.1と同じ条件で水素吸蔵合
金電極を作製した。水素吸蔵合金粉末の酸素濃度を同様
に表1に示す。 Sample No. 7 to Sample No. 10 The average particle size of the Ni powder, which is the conductive metal particle, is 0.2 μm.
m (No. 7), 2 μm (No. 8), 5 μm (No. 9), 12 μm
Instead of (No. 10), a hydrogen storage alloy electrode was produced under the same conditions as in Test No. 1. The oxygen concentration of the hydrogen storage alloy powder is also shown in Table 1.
【0021】供試No.11、供試No.12
導電性金属粒子をNi粉末からCu粉末(No.11)、C
o粉末(No.12)に代えて、供試No.1と同じ条件で水素
吸蔵合金電極を作製した。 Test No. 11 and Test No. 12 Conductive metal particles were converted from Ni powder to Cu powder (No. 11), C
In place of the powder (No. 12), a hydrogen storage alloy electrode was produced under the same conditions as the sample No. 1.
【0022】供試No.13、供試No.14
水素吸蔵合金の成分組成をMmNi3.2Co1.0Mn0.6
Al0.2に代えて、供試No.1と同じ条件(No.13)、供
試No.2と同じ条件(No.14)で水素吸蔵合金電極を作製
した。なお、水素吸蔵合金の製法も同じである。The composition of the hydrogen storage alloys of sample No. 13 and sample No. 14 is MmNi3.2Co1.0Mn0.6.
In place of Al0.2, a hydrogen storage alloy electrode was produced under the same conditions (No. 13) as the test No. 1 and the same conditions (No. 14) as the test No. 2. The method for producing the hydrogen storage alloy is also the same.
【0023】供試No.15、供試No.16
水素吸蔵合金の成分組成をMgNi1.9Mn0.1に代え
て、供試No.1と同じ条件(No.15)、供試No.2と同じ
条件(No.16)で水素吸蔵合金電極を作製した。なお、
水素吸蔵合金の製法も同じである。Test No. 15 and Test No. 16 The hydrogen storage alloy was replaced with MgNi1.9Mn0.1, and the same conditions as Test No. 1 (No. 15) and Test No. 2 were used. A hydrogen storage alloy electrode was produced under the same conditions (No. 16). In addition,
The manufacturing method of the hydrogen storage alloy is also the same.
【0024】供試No.17〜供試No.21
メカニカルアロイング処理のポット内雰囲気を表2に示
す雰囲気に代えて、供試No.1と同じ条件で水素吸蔵合
金電極を作製した。なお、供試No.20については、導
電性金属粒子としてCu粉末を用いている。 Test No. 17 to Test No. 21 The hydrogen storage alloy electrodes were prepared under the same conditions as in Test No. 1 by changing the atmosphere in the pot of the mechanical alloying treatment to the atmosphere shown in Table 2. For Test No. 20, Cu powder was used as the conductive metal particles.
【0025】[0025]
【表2】 [Table 2]
【0026】[試験セルの組立]得られた水素吸蔵合金電
極(供試No.1〜供試No.21)を負極(2)として用いた試
験セル(1)を組み立てた。試験セル(1)は、図5に示す
如く、円筒状のポリプロピレン製密閉容器(11)の上蓋(1
2)から、負極(2)である水素吸蔵合金電極、正極(3)で
ある円筒状の焼結式ニッケル極と、参照極(35)である板
状の焼結式ニッケル極が夫々吊り下げ支持されている。
上蓋(12)には、圧力計(15)とリリーフバルブ(逃し弁)(1
6)からなるリリーフ管(14)を具えている。容器(1)の内
部には、30重量%の水酸化カリウム水溶液(L)が充填
されている。正極(3)は、負極の水素吸蔵合金電極より
も充分に大きな電気化学容量を持つ電極であって、上蓋
(12)を貫通する正極リード(31)により支持されている。
また、負極(2)は、正極の円筒内のほぼ中央に垂直に位
置するように、上蓋(12)を貫通する負極リード(21)によ
り支持されている。正極リード(31)、負極リード(21)の
他端は、夫々上蓋の上部で正極端子(32)、負極端子(22)
に接続されている。リリーフ管(14)は、容器の内圧が所
定圧以上に上昇するのを防止するために設けられてお
り、リリーフバルブ(16)の調節により、容器の内圧は一
定に保たれる。[Assembly of Test Cell] A test cell (1) was assembled using the obtained hydrogen storage alloy electrodes (Sample No. 1 to Sample No. 21) as a negative electrode (2). As shown in FIG. 5, the test cell (1) comprises a cylindrical polypropylene closed container (11) with an upper lid (1
From 2), a hydrogen storage alloy electrode as the negative electrode (2), a cylindrical sintered nickel electrode as the positive electrode (3), and a plate-shaped sintered nickel electrode as the reference electrode (35) are suspended. It is supported.
The top lid (12) has a pressure gauge (15) and a relief valve (1
It has a relief tube (14) consisting of 6). The container (1) is filled with a 30 wt% potassium hydroxide aqueous solution (L). The positive electrode (3) is an electrode having an electrochemical capacity sufficiently larger than that of the negative electrode hydrogen storage alloy electrode,
It is supported by a positive electrode lead (31) penetrating the (12).
Further, the negative electrode (2) is supported by a negative electrode lead (21) penetrating the upper lid (12) so as to be vertically positioned substantially in the center of the positive electrode cylinder. The other ends of the positive electrode lead (31) and the negative electrode lead (21) are respectively connected to the positive electrode terminal (32) and the negative electrode terminal (22) at the upper part of the upper lid.
It is connected to the. The relief pipe (14) is provided to prevent the internal pressure of the container from rising above a predetermined pressure, and the internal pressure of the container is kept constant by adjusting the relief valve (16).
【0027】[充放電サイクル試験(単極試験)]上記構
成の試験セルの負極として、各供試電極を使用し、常温
下、50mA/gで8時間充電し、1時間休止した後、50
mA/gで放電休止電圧0.9Vまで放電し、1時間休止す
る工程を1サイクルとする充放電サイクルを行なって、
放電容量(mAh/g)を測定した。結果を表1及び表2に示
す。なお、この試験において、最大容量とは、充放電サ
イクルを100サイクル行なったときの最も大きい放電
容量の値であって、活性化度とは、1サイクル目の放電
容量を最大容量で割った値である。[Charge / Discharge Cycle Test (Unipolar Test)] Each test electrode was used as the negative electrode of the test cell having the above-mentioned constitution, and it was charged at 50 mA / g for 8 hours at room temperature and then left for 1 hour.
Perform a charge / discharge cycle in which the discharge resting voltage is 0.9 V at mA / g and the resting step is 1 cycle.
The discharge capacity (mAh / g) was measured. The results are shown in Tables 1 and 2. In this test, the maximum capacity is the maximum discharge capacity value after 100 charge / discharge cycles, and the activation degree is the value obtained by dividing the first cycle discharge capacity by the maximum capacity. Is.
【0028】供試No.1〜No.6について、表1を参照す
ると、還元処理を施した供試No.1〜No.4は、還元処理
を施していない供試No.5及びNo.6に比べて活性化度が
高くなっていることがわかる。とくに、還元処理時間の
長い供試No.1、No.2は、供試No.3、No.4に比べて、
夫々活性化度が高くなっている。また、水素吸蔵合金粒
子の表面に導電性金属粒子を付着させた供試No.1、N
o.3及びNo.5は、同じ酸素濃度で導電性金属なし
の供試No.2、No.4及びNo.6に比べて、夫々活性化度
が高くなっていることがわかる。つまり、還元処理を施
し、かつ導電性金属粒子を付着させた供試No.1、No.3
は、他に比べて、活性化度が非常に高くなっている。Regarding Test Samples No. 1 to No. 6, referring to Table 1, Test Samples No. 1 to No. 4 which have been subjected to the reduction treatment are Test Samples No. 5 and No. which have not been subjected to the reduction treatment. It can be seen that the degree of activation is higher than that of No. 6. Especially, the test No. 1 and No. 2 which have a long reduction treatment time, compared with the test No. 3 and No. 4,
The degree of activation is high in each case. In addition, test No. 1 and N in which conductive metal particles were attached to the surface of the hydrogen storage alloy particles
o. 3 and No. It can be seen that the sample No. 5 has higher activation degree than the samples No. 2, No. 4 and No. 6 without conductive metal at the same oxygen concentration. In other words, test No. 1 and No. 3 which were subjected to reduction treatment and conductive metal particles were attached
Has a much higher degree of activation than the others.
【0029】供試No.7〜No.10について、同様に表1
を参照すると、水素吸蔵合金粒子の表面に付着させる導
電性金属粒子は、平均粒径が小さいほど活性化度が高く
なっていることがわかる。これは、導電性金属粒子の平
均粒径が大きくなると、粒子どうしの接触点数が少なく
なって、電気抵抗が大きくなるためである。このよう
に、導電性金属粒子の平均粒径が、約12μmにもなる
と、活性化度の低下が大きくなるため、約10μm以下
のものを使用することが望ましい。Similarly, for the test Nos. 7 to 10, Table 1
With reference to, it can be seen that the conductive metal particles attached to the surface of the hydrogen storage alloy particles have a higher degree of activation as the average particle diameter is smaller. This is because when the average particle size of the conductive metal particles increases, the number of points of contact between the particles decreases and the electric resistance increases. As described above, when the average particle diameter of the conductive metal particles is about 12 μm, the activation degree is greatly reduced, so that it is preferable to use particles having a particle size of about 10 μm or less.
【0030】供試No.11及びNo.12について、導電性
金属粒子をCu粉末、Co粉末に代えた場合、Ni粉末
を用いた場合よりも活性化度は劣るが、他に比べて高い
活性化度を有していることがわかる。Regarding test Nos. 11 and 12, when the conductive metal particles were replaced with Cu powder and Co powder, the degree of activation was inferior to the case where Ni powder was used, but the activity was higher than the others. It can be seen that it has a degree of chemical conversion.
【0031】供試No.13〜No.16について、水素吸蔵
合金の組成成分を代えても、還元性雰囲気中で導電性金
属粒子と撹拌することにより、活性化度は同様に向上し
ていることがわかる。Regarding Test Nos. 13 to 16, even if the composition components of the hydrogen storage alloy were changed, the degree of activation was similarly improved by stirring with the conductive metal particles in a reducing atmosphere. I understand.
【0032】供試No.17〜No.21について、表2を参
照すると、還元性雰囲気中の還元ガスの濃度が高いほ
ど、活性化度が高く、水素吸蔵合金粒子の表面改質が十
分に行なわれることがわかる。Regarding Test Nos. 17 to 21, referring to Table 2, the higher the concentration of the reducing gas in the reducing atmosphere, the higher the degree of activation and the sufficient surface modification of the hydrogen storage alloy particles. I know that it will be done.
【0033】以上のように、水素吸蔵合金粒子を還元性
雰囲気中で、導電性金属粒子と撹拌することにより、水
素吸蔵合金粒子の表面改質を効果的に行なうことがで
き、得られた水素吸蔵合金粉末を用いる水素吸蔵合金電
極を負極とする金属−水酸化物蓄電池は、活性化度が高
くなり、充放電サイクルの初期から高容量を実現でき
る。As described above, by stirring the hydrogen storage alloy particles with the conductive metal particles in the reducing atmosphere, the surface modification of the hydrogen storage alloy particles can be effectively performed, and the obtained hydrogen is obtained. A metal-hydroxide storage battery having a hydrogen storage alloy electrode using a storage alloy powder as a negative electrode has a high degree of activation and can realize a high capacity from the beginning of a charge / discharge cycle.
【図1】本発明の水素吸蔵合金粉末の断面図である。FIG. 1 is a sectional view of a hydrogen storage alloy powder of the present invention.
【図2】従来の水素吸蔵合金粉末の断面図である。FIG. 2 is a cross-sectional view of a conventional hydrogen storage alloy powder.
【図3】メカノケミカル処理装置の説明図である。FIG. 3 is an explanatory diagram of a mechanochemical treatment device.
【図4】円筒型ポットの断面図である。FIG. 4 is a sectional view of a cylindrical pot.
【図5】試験セルの一部を断面した斜視図である。FIG. 5 is a perspective view in which a part of a test cell is cross-sectioned.
(40) 水素吸蔵合金粉末 (42) 水素吸蔵合金粒子 (44) 導電性金属粒子 (40) Hydrogen storage alloy powder (42) Hydrogen storage alloy particles (44) Conductive metal particles
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平9−199121(JP,A) 特開 平6−145850(JP,A) 特開 平6−124705(JP,A) 特開 平7−29571(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 H01M 4/24 - 4/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kozo Nogami, 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Denki Co., Ltd. (72) Ikuro Yonezu 2-chome, Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-9-199121 (JP, A) Hei 6-145850 (JP, A) JP 6-124705 (JP, A) JP 7-29571 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4 / 38 H01M 4/24-4/26
Claims (3)
合金粒子(42)の表面に導電性金属粒子(44)を一酸化炭素
含有還元雰囲気中でメカノケミカル法により付着させた
水素吸蔵合金粉末(40)と集電体を一体化してなる水素吸
蔵合金電極であって、水素吸蔵合金粉末(40)は、酸素濃
度が0.5%以下であることを特徴とする水素吸蔵合金
電極。1. Conductive metal particles (44) are formed on the surface of hydrogen storage alloy particles (42) containing Zr, Ni, V and Mn with carbon monoxide.
A hydrogen storage alloy electrode (40) having a hydrogen storage alloy powder (40) attached by a mechanochemical method in a reducing atmosphere and a current collector, wherein the hydrogen storage alloy powder (40) has an oxygen concentration of 0. A hydrogen storage alloy electrode, which is 5% or less.
ル)、Co(コバルト)及びCu(銅)からなる群から選択
された少なくとも1種の金属を含んでいる請求項1に記
載の水素吸蔵合金電極。2. The conductive metal particle (44) according to claim 1, wherein the conductive metal particle (44) contains at least one metal selected from the group consisting of Ni (nickel), Co (cobalt) and Cu (copper). Hydrogen storage alloy electrode.
(44)をメカノケミカル法により混合して撹拌し、表面に
導電性金属粒子(44)が付着された水素吸蔵合金粉末(40)
を調製し、該水素吸蔵合金粉末(40)を集電体と一体化さ
せることにより水素吸蔵合金電極を作製する方法であっ
て、水素吸蔵合金粒子(42)と導電性金属粒子(44)の撹拌
を一酸化炭素含有還元性雰囲気中で行なうことを特徴と
する水素吸蔵合金電極の作製方法。3. Hydrogen storage alloy particles (42) and conductive metal particles
Hydrogen storage alloy powder (40) with conductive metal particles (44) adhered to the surface by mixing (44) with the mechanochemical method and stirring
A method for preparing a hydrogen storage alloy electrode by integrating the hydrogen storage alloy powder (40) with a current collector, comprising the hydrogen storage alloy particles (42) and conductive metal particles (44). A method for producing a hydrogen storage alloy electrode, wherein stirring is performed in a reducing atmosphere containing carbon monoxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05888397A JP3500031B2 (en) | 1997-03-13 | 1997-03-13 | Hydrogen storage alloy electrode and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05888397A JP3500031B2 (en) | 1997-03-13 | 1997-03-13 | Hydrogen storage alloy electrode and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10255783A JPH10255783A (en) | 1998-09-25 |
JP3500031B2 true JP3500031B2 (en) | 2004-02-23 |
Family
ID=13097180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05888397A Expired - Fee Related JP3500031B2 (en) | 1997-03-13 | 1997-03-13 | Hydrogen storage alloy electrode and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3500031B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020122985A1 (en) * | 2001-01-17 | 2002-09-05 | Takaya Sato | Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor |
US7998454B2 (en) | 2007-05-10 | 2011-08-16 | Bio Coke Lab. Co. Ltd. | Method of producing magnesium-based hydrides and apparatus for producing magnesium-based hydrides |
-
1997
- 1997-03-13 JP JP05888397A patent/JP3500031B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10255783A (en) | 1998-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3104230B2 (en) | Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same | |
US5616435A (en) | Hydrogen-absorbing alloy electrode for metal hydride alkaline battery | |
JP3500031B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPS5944748B2 (en) | Chikudenchi | |
JP3373989B2 (en) | Hydrogen storage alloy powder and manufacturing method | |
JP3369825B2 (en) | Hydrogen storage alloy electrode | |
KR100381490B1 (en) | Hydrogen Absorption Alloy Electrode | |
JP3043143B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH0799055A (en) | Hydrogen secondary battery | |
JP3301792B2 (en) | Hydrogen storage alloy electrode | |
JP3369824B2 (en) | Hydrogen storage alloy electrode | |
JP3272226B2 (en) | Hydrogen storage alloy electrode | |
JP3519836B2 (en) | Hydrogen storage alloy electrode | |
JP2000054042A (en) | Production of hydrogen storage alloy | |
JP3043128B2 (en) | Metal-hydrogen alkaline storage battery | |
JPH08236107A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JP3315880B2 (en) | Method for producing hydrogen storage alloy powder | |
JP3369838B2 (en) | Hydrogen storage alloy electrode | |
JP3540378B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
JPH0652855A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JPS60119079A (en) | Hydrogen absorption electrode | |
JPH0773880A (en) | Metal oxide-hydrogen secondary battery | |
JP3013412B2 (en) | Negative electrode for metal hydride battery and method for producing the same | |
JP2962857B2 (en) | Metal-hydrogen alkaline storage battery | |
JP3268013B2 (en) | Hydrogen storage alloy electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031118 |
|
LAPS | Cancellation because of no payment of annual fees |