[go: up one dir, main page]

JP3496514B2 - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JP3496514B2
JP3496514B2 JP13084598A JP13084598A JP3496514B2 JP 3496514 B2 JP3496514 B2 JP 3496514B2 JP 13084598 A JP13084598 A JP 13084598A JP 13084598 A JP13084598 A JP 13084598A JP 3496514 B2 JP3496514 B2 JP 3496514B2
Authority
JP
Japan
Prior art keywords
ignition
titanium oxide
oxide layer
spark plug
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13084598A
Other languages
Japanese (ja)
Other versions
JPH11324879A (en
Inventor
保憲 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13084598A priority Critical patent/JP3496514B2/en
Publication of JPH11324879A publication Critical patent/JPH11324879A/en
Application granted granted Critical
Publication of JP3496514B2 publication Critical patent/JP3496514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Silencers (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動車等の車両に搭
載される内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine mounted on a vehicle such as an automobile.

【0002】[0002]

【従来の技術】内燃機関の中には、例えば特開平8−1
05352号公報に示されているように、表面にリチウ
ム元素を含むセラミック被覆層、チタン被覆層、マグネ
シウム被覆層、耐アルカリ性金属を含む被覆層、等を有
する部材で内燃機関の燃焼室を構成することによって、
該燃焼室表面のデポジット堆積を抑制するようにしたも
のが知られている。
2. Description of the Related Art Some internal combustion engines include, for example, Japanese Patent Laid-Open No. 8-1
As disclosed in Japanese Patent No. 05352, a combustion chamber of an internal combustion engine is configured by a member having a ceramic coating layer containing a lithium element, a titanium coating layer, a magnesium coating layer, a coating layer containing an alkali resistant metal, etc. on the surface. By
It is known to suppress deposit accumulation on the surface of the combustion chamber.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記従来の
技術では燃焼室内での混合気の燃焼によって生じる煤
や、燃焼室内に進入した潤滑油、あるいは燃料の未燃分
が燃焼室内面に付着して生成されるデポジットの離脱
を、該燃焼室を構成する部分の金属表面に設けたセラミ
ックス被覆層等によるデポジットの付着力低下にのみ頼
っているため、長時間の運転により燃焼室表面に、デポ
ジットが付着する核になる前駆物質が生じると急速にデ
ポジットの付着が進行して、燃焼室容積の変化による燃
焼の悪化や、点火プラグによる点火以前の混合気着火に
起因する燃焼の悪化、およびデポジットから発生排出さ
れる未燃HC等の排気成分の増加、等の問題が生じる可
能性がある。
However, in the above-mentioned conventional technique, soot generated by the combustion of the air-fuel mixture in the combustion chamber, lubricating oil that has entered the combustion chamber, or unburned fuel is adhering to the inner surface of the combustion chamber. Desorption of the deposits generated by the method depends only on the decrease in the adhesive force of the deposits due to the ceramic coating layer or the like provided on the metal surface of the portion forming the combustion chamber. When a precursor that becomes a nucleus to adhere to is generated, deposit adhesion progresses rapidly, deterioration of combustion due to changes in the volume of the combustion chamber, deterioration of combustion due to mixture ignition before ignition by the spark plug, and deposit There is a possibility that problems such as an increase in exhaust components such as unburned HC generated and discharged from the engine may occur.

【0004】そこで、本発明はデポジットの原因となる
潤滑油や未燃燃料等の有機物質の分解作用が得られて、
燃焼室内表面へのデポジットの生成を回避することがで
きる内燃機関を提供するものである。
Therefore, the present invention is capable of decomposing the organic substances such as lubricating oil and unburned fuel that cause deposits,
An internal combustion engine capable of avoiding the formation of deposits on the surface of a combustion chamber.

【0005】[0005]

【課題を解決するための手段】請求項1の発明にあって
は、燃焼室の内面を構成する部品の表面に、シリコン被
膜を下地とした酸化チタン層をコーティングする一方、
点火プラグを、圧縮行程における混合気着火のための火
花点火と、排気行程における前記酸化チタン層の光触媒
活性のための火花点火との、多段階の点火作動を行わせ
るようにしたことを特徴としている。
According to the invention of claim 1, the surface of the component forming the inner surface of the combustion chamber is coated with a titanium oxide layer having a silicon coating as a base,
It is characterized in that the spark plug is made to perform a multi-stage ignition operation of spark ignition for air-fuel mixture ignition in the compression stroke and spark ignition for photocatalytic activity of the titanium oxide layer in the exhaust stroke. There is.

【0006】請求項2の発明にあっては、請求項1に記
載の点火プラグの排気行程における点火作動を、長時間
の火花放電を行わせる長時間型点火装置によって行わせ
るようにしたことを特徴としている。
According to a second aspect of the present invention, the ignition operation in the exhaust stroke of the spark plug according to the first aspect is performed by a long-time ignition device for performing a long-time spark discharge. It has a feature.

【0007】請求項3の発明にあっては、請求項1に記
載の点火プラグの排気行程における点火作動を、所要の
点火期間で短時間の火花放電を繰り返す多重型点火装置
によって行わせるようにしたことを特徴としている。
According to the invention of claim 3, the ignition operation in the exhaust stroke of the spark plug according to claim 1 is performed by a multiple ignition device which repeats a short-time spark discharge in a required ignition period. It is characterized by having done.

【0008】請求項4の発明にあっては、請求項1に記
載の点火プラグの排気行程における点火作動を、膨張行
程から継続して行わせるようにしたことを特徴としてい
る。
The invention of claim 4 is characterized in that the ignition operation in the exhaust stroke of the spark plug according to claim 1 is continued from the expansion stroke.

【0009】請求項5の発明にあっては、請求項4に記
載の点火プラグの膨張行程から排気行程に亘る点火作動
を、所要の点火期間で短時間の火花放電を繰り返す多重
型点火装置によって行わせるようにしたことを特徴とし
ている。
According to a fifth aspect of the present invention, the ignition operation from the expansion stroke to the exhaust stroke of the spark plug according to the fourth aspect is performed by a multiple ignition device that repeats a short-time spark discharge for a required ignition period. The feature is that it is done.

【0010】請求項6の発明にあっては、請求項1〜5
に記載の排気行程における点火プラグの点火最終タイミ
ングを、燃焼室に新しい混合気が形成される直前に設定
したことを特徴としている。
In the invention of claim 6, claims 1 to 5 are provided.
It is characterized in that the final ignition timing of the spark plug in the exhaust stroke described in (3) is set just before a new air-fuel mixture is formed in the combustion chamber.

【0011】請求項7の発明にあっては、請求項1〜6
に記載の燃焼室に続く排気ポートの内表面にシリコン被
膜を下地とした酸化チタン層をコーティングしたことを
特徴としている。
According to the invention of claim 7, claims 1 to 6 are provided.
The inner surface of the exhaust port following the combustion chamber described in 1 above is coated with a titanium oxide layer having a silicon film as a base.

【0012】請求項8の発明にあっては、請求項7に記
載の排気ポートに続く排気マニホルドの内表面に、シリ
コン被膜を下地とした酸化チタン層をコーティングした
ことを特徴としている。
The invention of claim 8 is characterized in that the inner surface of the exhaust manifold following the exhaust port of claim 7 is coated with a titanium oxide layer having a silicon film as a base.

【0013】[0013]

【発明の効果】請求項1に記載の発明によれば、燃焼室
での混合気の燃焼によって発生する光で、該燃焼室内面
に設けた酸化チタン層による光触媒作用が得られ、デポ
ジットの原因となる潤滑油や未燃燃料等の有機物が分解
されて、燃焼室内面に生成し、又は、生成しかけたデポ
ジットを離脱させ易くすることができ、しかも、燃焼光
が減少傾向となる排気行程においても点火プラグの点火
作動が行われて放電光が発生されるため、この排気行程
においても酸化チタン層の光触媒作用が活発に行なわれ
て、燃焼室内面のデポジット付着防止を徹底することが
できる。
According to the invention described in claim 1, the light generated by the combustion of the air-fuel mixture in the combustion chamber can obtain the photocatalytic action by the titanium oxide layer provided on the inner surface of the combustion chamber, which causes the deposit. In the exhaust stroke, where organic substances such as lubricating oil and unburned fuel are decomposed and generated on the inner surface of the combustion chamber, or the deposit that is about to be generated can be easily removed, and the combustion light tends to decrease. Also, since the ignition operation of the spark plug is performed and discharge light is generated, the photocatalytic action of the titanium oxide layer is actively performed in this exhaust stroke as well, and it is possible to thoroughly prevent the deposit adhesion on the inner surface of the combustion chamber.

【0014】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、点火プラグの排気行程における
点火作動を、長時間型点火装置によって長時間の火花放
電を行わせるようにしてあるから、該排気行程で点火プ
ラグの放電光を長く維持することができ、特に、排気行
程で長時間放電を行った場合、この排気行程では点火プ
ラグ周辺の圧力が低く点火プラグの放電電圧はこの筒内
圧力の関数となることから放電開始時の初期ピーク電圧
が低くなるため、その後の放電エネルギーが多く残って
長時間の放電維持を確実に行えることと、排気行程の進
行により前記筒内圧力が低下するのに伴って放電エネル
ギーが高くなって放電光を強められるため、排気行程の
終期に亘って酸化チタン層の光触媒作用を確実に、か
つ、より一層活発に行わせることができる。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described above, since the ignition operation in the exhaust stroke of the spark plug is made to perform the spark discharge for a long time by the long-time ignition device, the discharge light of the spark plug is maintained for a long time in the exhaust stroke. In particular, when discharge is performed for a long time in the exhaust stroke, the pressure around the spark plug is low in this exhaust stroke and the discharge voltage of the spark plug becomes a function of this cylinder pressure. Since the peak voltage becomes low, a large amount of discharge energy remains after that, and the discharge can be reliably maintained for a long time, and the discharge energy increases as the cylinder pressure decreases due to the progress of the exhaust stroke. Since the light can be intensified, the photocatalytic action of the titanium oxide layer can be surely and more actively performed over the end of the exhaust stroke.

【0015】請求項3に記載の発明によれば、請求項1
の発明の効果に加えて、点火プラグの排気行程における
点火作動を、多重型点火装置によって所要の点火期間で
短時間の火花放電を繰り返し行わせるようにしてあるか
ら、該排気行程で点火プラグの放電光が所要期間断続的
に得られることと、排気行程の進行により筒内圧力が低
下するのに伴って放電エネルギーが高くなって放電光を
強められるため、排気行程の終期に亘って酸化チタン層
の光触媒作用を確実に、かつ、より一層活発に行わせる
ことができる。
According to the invention of claim 3, claim 1
In addition to the effect of the present invention, since the ignition operation in the exhaust stroke of the spark plug is made to repeatedly perform the short-time spark discharge in the required ignition period by the multiple ignition device, the spark plug of the spark stroke is exhausted in the exhaust stroke. The discharge light is obtained intermittently for the required period, and the discharge energy increases as the cylinder pressure decreases due to the progress of the exhaust stroke, and the discharge light can be intensified, so titanium oxide is used over the end of the exhaust stroke. The photocatalytic action of the layer can be performed reliably and more actively.

【0016】請求項4に記載の発明によれば、請求項1
の発明の効果に加えて、点火プラグの排気行程における
点火作動を、膨張行程から継続して行わせるようにして
あるから、混合気への点火確率を高められて安定した燃
焼を実施できることは勿論、膨張行程から排気行程に亘
って絶え間なく酸化チタン層の光触媒作用に必要な発光
を存在させることができ、該酸化チタン層の光触媒作用
を膨張行程から排気行程に亘って確実に、かつ、活発に
行わせることができる。
According to the invention of claim 4, claim 1
In addition to the effect of the present invention, since the ignition operation in the exhaust stroke of the spark plug is continuously performed from the expansion stroke, the probability of ignition of the air-fuel mixture can be increased and stable combustion can be performed. The light emission necessary for the photocatalysis of the titanium oxide layer can be continuously present from the expansion stroke to the exhaust stroke, and the photocatalysis of the titanium oxide layer can be reliably and actively performed from the expansion stroke to the exhaust stroke. Can be done.

【0017】請求項5に記載の発明によれば、請求項4
の発明の効果に加えて、点火プラグの膨張行程から排気
行程に亘る点火作動を、多重型点火装置によって所要の
点火期間で短時間の火花放電を繰り返し行わせるように
してあるから、膨張行程から排気行程に亘って点火プラ
グの放電光が所要期間断続的に得られることと、膨張行
程から排気行程終期への進行により筒内圧力が低下する
のに伴って放電エネルギーが高くなって放電光を強めら
れるため、膨張行程から排気行程の終期に亘って酸化チ
タン層の光触媒作用を確実に、かつ、より一層活発に行
わせることができる。
According to the invention of claim 5, claim 4
In addition to the effect of the invention, the ignition operation from the expansion stroke to the exhaust stroke of the spark plug is made to repeat the short-time spark discharge in the required ignition period by the multiple ignition device. Discharge light of the spark plug is obtained intermittently over the exhaust stroke for the required period, and as the cylinder pressure decreases due to the progress from the expansion stroke to the end of the exhaust stroke, the discharge energy increases and discharge light is emitted. Since it is strengthened, the photocatalytic action of the titanium oxide layer can be surely and more actively performed from the expansion stroke to the end of the exhaust stroke.

【0018】請求項6に記載の発明によれば、請求項1
〜5の発明の効果に加えて、膨張行程における点火プラ
グの点火最終タイミングを、燃焼室に新しい混合気が形
成される直前に設定してあるため、失火を生じることが
なく機関の安定性を確保することができる。
According to the invention of claim 6, claim 1
In addition to the effects of the inventions of 5 to 5, the ignition final timing of the spark plug in the expansion stroke is set immediately before a new air-fuel mixture is formed in the combustion chamber, so misfire does not occur and engine stability is improved. Can be secured.

【0019】請求項7に記載の発明によれば、請求項1
〜6の発明の効果に加えて、燃焼室に続く排気ポートの
内表面にも、シリコン被膜を下地とした酸化チタン層を
コーティングしてあるため、後期燃焼が持続される排気
ポート内でも燃焼によって発生する光で酸化チタン層で
の光触媒作用が発揮され、煤や未燃燃料の付着に起因す
る排気ポート内面のデポジット付着抑制効果が得られ
る。
According to the invention of claim 7, claim 1
In addition to the effects of the inventions of ~ 6, since the inner surface of the exhaust port continuing to the combustion chamber is coated with a titanium oxide layer having a silicon film as a base, combustion can be performed even in the exhaust port where the late combustion is sustained. The photocatalytic action of the titanium oxide layer is exerted by the generated light, and the effect of suppressing deposit adhesion on the inner surface of the exhaust port due to the adhesion of soot and unburned fuel is obtained.

【0020】請求項8に記載の発明によれば、請求項7
の発明の効果に加えて、排気ポートに続く排気マニホル
ドの内表面にも、シリコン被膜を下地とした酸化チタン
層をコーティングしてあるため、後期燃焼が持続される
排気マニホルド内でも燃焼によって発生する光で酸化チ
タン層での光触媒作用が発揮され、煤や未燃燃料の付着
に起因する排気マニホルド内面のデポジット付着抑制効
果が得られる。
According to the invention described in claim 8, claim 7
In addition to the effect of the invention, since the inner surface of the exhaust manifold that follows the exhaust port is also coated with a titanium oxide layer having a silicon film as a base, it is generated by combustion even in the exhaust manifold in which the late combustion is sustained. The photocatalytic action of the titanium oxide layer is exhibited by the light, and the effect of suppressing deposit adhesion on the inner surface of the exhaust manifold due to the adhesion of soot and unburned fuel is obtained.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0022】図1において、1はシリンダブロック、2
はピストン、3はシリンダヘッド、4はこれらシリンダ
ブロック1,ピストン2,およびシリンダヘッド3で形
成される燃焼室を示す。
In FIG. 1, 1 is a cylinder block, 2
Is a piston, 3 is a cylinder head, and 4 is a combustion chamber formed by these cylinder block 1, piston 2, and cylinder head 3.

【0023】この燃焼室4の内面を構成する部品の表
面、具体的には前記ピストン2の冠面、およびシリンダ
ヘッド3の内面には、図2にも示すように酸化チタン2
1の微粒子を混入したシリカゾルを塗布してこれを焼成
することによってシリコン被膜22を下地とした酸化チ
タン層20を形成して、燃焼室4で混合気の燃焼により
発生する光で該酸化チタン層20で光触媒反応が生じる
よにしてある。
As shown in FIG. 2, titanium oxide 2 is formed on the surfaces of the components forming the inner surface of the combustion chamber 4, specifically, the crown surface of the piston 2 and the inner surface of the cylinder head 3.
The silica sol mixed with the fine particles of No. 1 is applied and fired to form the titanium oxide layer 20 with the silicon coating 22 as a base, and the titanium oxide layer is formed by the light generated by the combustion of the air-fuel mixture in the combustion chamber 4. The photocatalytic reaction occurs at 20.

【0024】酸化チタン層20の形成に用いられる酸化
チタン21としては、光活性能力が最も高いアナターゼ
型結晶の微粒子、より好ましくは粒径が1〜20nmの
微粒子を用いるとよい。
As the titanium oxide 21 used for forming the titanium oxide layer 20, fine particles of anatase type crystal having the highest photoactive ability, more preferably fine particles having a particle diameter of 1 to 20 nm are used.

【0025】酸化チタン21の微粒子の粒径が前記範囲
よりも小さいと、シリカゾルと攪拌した際に酸化チタン
21の微粒子が凝集してしまい、また、粒径が前記範囲
よりも大きいと酸化チタン21の光活性が極端に低下し
てしまう。
If the particle size of the titanium oxide 21 particles is smaller than the above range, the titanium oxide 21 particles will agglomerate when agitated with the silica sol, and if the particle size is larger than the above range, the titanium oxide 21 will be dispersed. Photoactivity is extremely reduced.

【0026】一方、酸化チタン21の微粒子を混入する
シリカゾルの充填割合は5〜40%にすることが好まし
い。
On the other hand, it is preferable that the filling rate of the silica sol mixed with the fine particles of titanium oxide 21 is 5 to 40%.

【0027】これは、酸化チタン層20の前記ピストン
2冠面およびシリンダヘッド3内面等の金属表面との密
着性と、該酸化チタン層20の被膜の均一性および耐久
性を得るためには前記充填割合が5%以上は必要であ
り、また、充填割合が40%を越えてしまうと酸化チタ
ン21の光活性不良を生じてしまう。
In order to obtain the adhesion of the titanium oxide layer 20 to a metal surface such as the crown surface of the piston 2 and the inner surface of the cylinder head 3 and the uniformity and durability of the titanium oxide layer 20 coating, It is necessary that the filling rate is 5% or more, and if the filling rate exceeds 40%, poor photoactivity of the titanium oxide 21 occurs.

【0028】また、酸化チタン層20はシリカゾルが樹
脂化する300℃以上の温度で焼成するが、700℃以
上の高温側では酸化チタン21の結晶がアナターゼ型か
らルチル型に変化してしまうため、700℃よりも低温
側で焼成することが肝要であり、特に、酸化チタン層2
0を前述のようにピストン2,シリンダヘッド3等のア
ルミニウム部品に設ける場合、これらアルミニウム部品
の耐熱性を考慮して焼成温度の上限を350℃〜400
℃とすることが望ましい。
Further, the titanium oxide layer 20 is fired at a temperature of 300 ° C. or higher at which the silica sol becomes a resin, but on the high temperature side of 700 ° C. or higher, the crystal of the titanium oxide 21 changes from anatase type to rutile type. It is important to bake at a temperature lower than 700 ° C, and in particular, the titanium oxide layer 2
When 0 is provided on aluminum parts such as the piston 2 and the cylinder head 3 as described above, the upper limit of the firing temperature is 350 ° C to 400 in consideration of the heat resistance of these aluminum parts.
It is desirable to set the temperature to ° C.

【0029】このようにしてピストン2の冠面とシリン
ダヘッド3の内面とに酸化チタン層20を形成した場
合、燃焼室4内では図7に示すように混合気の燃焼過程
で生じる分子の特定波長の発光が存在し、特に酸化チタ
ン21の光触媒の作用が活発となる約400nm以下の
波長の紫外線発光が生じ、このため、ピストン2冠面や
シリンダヘッド3内面に付着した煤や未燃HCおよび潤
滑油成分等の有機物質が、この酸化チタン21の光触媒
反応によって分解される。
In this way, when the titanium oxide layer 20 is formed on the crown surface of the piston 2 and the inner surface of the cylinder head 3, the molecules generated in the combustion process of the air-fuel mixture are identified in the combustion chamber 4 as shown in FIG. There is light emission of a wavelength, and in particular, ultraviolet light emission of a wavelength of about 400 nm or less at which the photocatalytic action of titanium oxide 21 becomes active is generated. Organic substances such as the lubricating oil component are decomposed by the photocatalytic reaction of the titanium oxide 21.

【0030】図8は同一条件でエンジンを運転した場合
の酸化チタン層20の有無によるピストン2冠面におけ
る有機物付着のガスクロマトグラフによる分析結果を示
しており、酸化チタン層未処理のものでは同図の(ロ)
に示すように、検出時間が9.6分,14.3分,1
6.4分,18.1分,19.6分,23.2分,2
4.4分の各時間帯で分子数の大きな炭化水素(HC)
が検出されるが、酸化チタン層処理のものでは同図の
(イ)に示すように炭化水素(HC)は検出されず、ピ
ストン2冠面の酸化チタン層20での光触媒機能が発揮
されたことが判る。
FIG. 8 shows the results of gas chromatograph analysis of the organic substances deposited on the crown surface of the piston 2 with and without the titanium oxide layer 20 when the engine was operated under the same conditions. (B)
As shown in, the detection time is 9.6 minutes, 14.3 minutes, 1
6.4 minutes, 18.1 minutes, 19.6 minutes, 23.2 minutes, 2
Hydrocarbons (HC) with a large number of molecules in each 4.4-minute period
However, hydrocarbons (HC) were not detected in the titanium oxide layer-treated type as shown in (a) of the figure, and the photocatalytic function was exhibited in the titanium oxide layer 20 on the crown surface of the piston 2. I understand.

【0031】一方、図9はこれら酸化チタン層20の処
理,未処理の各ピストン冠面における金属成分を検出し
た分析結果を示すもので、(イ)は酸化チタン層未処理
品を、(ロ)は酸化チタン層処理品を示し、何れの場合
もピストン2の冠面には潤滑油成分に特徴的なカルシウ
ム(Ca)やリン(P)が略同様に検出されている。
On the other hand, FIG. 9 shows the analysis results of detecting the metallic components on the treated and untreated titanium crown layers of the respective piston crown surfaces. ) Indicates a titanium oxide layer-treated product, and in any case, calcium (Ca) and phosphorus (P) characteristic of the lubricating oil component are detected on the crown surface of the piston 2 in substantially the same manner.

【0032】これらの分析結果から、少なくとも潤滑油
は酸化チタン層20の処理,未処理の何れのピストン2
冠面にも付着するものの、酸化チタン層20の処理品で
は炭化水素(HC)が分解されて清浄化されることが判
る。
From these analysis results, at least the lubricating oil is used for both the treated and untreated pistons 2 of the titanium oxide layer 20.
Although it adheres to the crown surface, it can be seen that hydrocarbons (HC) are decomposed and cleaned in the treated product of the titanium oxide layer 20.

【0033】前述の潤滑油はピストン2とシリンダブロ
ック1との摺動面を伝って燃焼室4内に進入し、従っ
て、この潤滑油の付着はピストン2の冠面でもその外周
部分、およびシリンダヘッド3のシリンダボアとの境界
付近の環状領域部分が多くなる傾向にある。
The above-mentioned lubricating oil enters the combustion chamber 4 along the sliding surface between the piston 2 and the cylinder block 1. Therefore, this lubricating oil adheres to the crown surface of the piston 2 and its outer peripheral portion, and the cylinder. The annular area portion near the boundary of the head 3 with the cylinder bore tends to increase.

【0034】そこで、前記酸化チタン層20はこれらピ
ストン2の冠面の外周部分、およびシリンダヘッド3の
シリンダボアとの境界付近の環状領域部分に設けるだけ
でも有効である。
Therefore, it is effective to provide the titanium oxide layer 20 only on the outer peripheral portion of the crown surface of the piston 2 and the annular region portion near the boundary of the cylinder head 3 with the cylinder bore.

【0035】ここで、燃焼室4内には吸気弁5,排気弁
6の各傘部5a,6aが臨設配置されると共に、点火プ
ラグ7が突出配置され、従って、これら吸,排気弁5,
6および点火プラグも燃焼室4の内面を構成する部品と
なる。
Here, in the combustion chamber 4, the respective umbrella portions 5a, 6a of the intake valve 5 and the exhaust valve 6 are arranged in a standing manner, and the ignition plug 7 is arranged in a projecting manner.
6 and the spark plug are also components that form the inner surface of the combustion chamber 4.

【0036】そこで、これら吸,排気弁5,6および点
火プラグ7にも前述のようにして酸化チタン層20を設
けることにより、燃焼室4内のデポジット対策がより有
効となる。
Therefore, by providing the titanium oxide layer 20 on the intake / exhaust valves 5, 6 and the ignition plug 7 as described above, the measure against deposits in the combustion chamber 4 becomes more effective.

【0037】吸気弁5および排気弁6については、酸化
チタン層20は各傘部5a,6aの燃焼室4側の面だけ
でもよいが、図3に示すように各傘部5a,6aの全表
面と、各ステム5b,6bの吸気ポート8,排気ポート
9に露出する部分に酸化チタン層20を設けることが望
ましい。
Regarding the intake valve 5 and the exhaust valve 6, the titanium oxide layer 20 may be only the surface of each umbrella portion 5a, 6a on the side of the combustion chamber 4, but as shown in FIG. It is desirable to provide the titanium oxide layer 20 on the surface and the portions exposed to the intake port 8 and the exhaust port 9 of each of the stems 5b and 6b.

【0038】また、点火プラグ7については、図4に示
すように中心電極7aとアース側電極7bの放電面以外
の金属部分に酸化チタン層20を形成する。
As for the spark plug 7, as shown in FIG. 4, the titanium oxide layer 20 is formed on the metal portion other than the discharge surface of the center electrode 7a and the ground side electrode 7b.

【0039】このように、吸,排気弁5,6に酸化チタ
ン層20を設けることにより、各傘部5a,6aの燃焼
室4側の表面では煤や未燃燃料等の有機物質が前述のよ
うに酸化チタン層20での光触媒反応によって分解され
てデポジットの付着抑制効果が得られ、また、同様に吸
気弁5の吸気ポート8側の表面では吸気ポート8から燃
焼室4に進入する燃料の付着に起因するデポジットの付
着抑制効果が、および排気弁6の排気ポート9側の表面
では燃焼室4から排気ポート9に流出する燃焼ガス中の
未燃燃料や煤の付着に起因するデポジットの付着抑制効
果が得られ、かつ、デポジットの付着によるこれら吸,
排気弁5,6のスティックを回避することができる。
By providing the titanium oxide layer 20 on the intake and exhaust valves 5 and 6 in this manner, organic substances such as soot and unburned fuel are formed on the surfaces of the umbrellas 5a and 6a on the side of the combustion chamber 4 as described above. As described above, the titanium oxide layer 20 is decomposed by a photocatalytic reaction to obtain a deposit adhesion suppressing effect. Similarly, on the surface of the intake valve 5 on the intake port 8 side, the fuel that enters the combustion chamber 4 from the intake port 8 is also removed. The effect of suppressing the adhesion of deposits due to adhesion and the adhesion of deposits due to the adhesion of unburned fuel and soot in the combustion gas flowing from the combustion chamber 4 to the exhaust port 9 on the surface of the exhaust valve 6 on the exhaust port 9 side. Suppressive effect is obtained, and these suctions due to the adhesion of deposit,
The sticking of the exhaust valves 5, 6 can be avoided.

【0040】また、点火プラグ7にあっては前述と同様
に酸化チタン層20の存在により、該点火プラグ7の放
電面周りへのデポジットの付着を回避することができ
る。
Further, in the spark plug 7, the presence of the titanium oxide layer 20 makes it possible to avoid deposit deposits around the discharge surface of the spark plug 7, as described above.

【0041】前記シリンダブロック1とシリンダヘッド
3との間には金属製のヘッドガスケット10が介装され
る関係上、これらシリンダブロック1とシリンダヘッド
3との間にはヘッドガスケット10の厚み相当のクエン
チ(消炎)隙間Cが生じる。
Since the metal head gasket 10 is interposed between the cylinder block 1 and the cylinder head 3, the thickness of the head gasket 10 is provided between the cylinder block 1 and the cylinder head 3. A quench gap C is created.

【0042】そこで、このクエンチ隙間Cの表面にも図
5に示すように酸化チタン層20を形成することによっ
て、燃焼室4内の総合的なデポジット対策を行うことが
できる。
Therefore, by forming the titanium oxide layer 20 on the surface of the quench gap C as shown in FIG. 5, it is possible to take a comprehensive measure against deposits in the combustion chamber 4.

【0043】即ち、前述のようにシリンダブロック1と
シリンダヘッド2との結合部分にクエンチ隙間Cが存在
していると、該隙間Cに潤滑油や燃料が進入付着してデ
ポジット発生の原因となるが、これらクエンチ隙間Cに
進入して表面に付着する有機物質は、酸化チタン層20
での光触媒反応により分解され、デポジットの堆積が回
避される。
That is, when the quench gap C is present in the connecting portion between the cylinder block 1 and the cylinder head 2 as described above, the lubricating oil and the fuel enter and adhere to the gap C, which causes the deposit. However, the organic substance that enters the quench gap C and adheres to the surface is the titanium oxide layer 20.
It is decomposed by the photocatalytic reaction at 1, thereby avoiding deposit accumulation.

【0044】筒内噴射式火花点火機関では、図1の破線
で示すように燃焼室4内に燃料噴射弁11が設置され
る。
In the cylinder injection type spark ignition engine, the fuel injection valve 11 is installed in the combustion chamber 4 as shown by the broken line in FIG.

【0045】そこで、このような筒内噴射式火花点火機
関にあっては、図6に示すように燃料噴射弁11の燃焼
室4内に露出する部分にも前述と同様に酸化チタン層2
0が形成される。
Therefore, in such a cylinder injection type spark ignition engine, as shown in FIG. 6, the titanium oxide layer 2 is also formed in the portion of the fuel injection valve 11 exposed in the combustion chamber 4 as described above.
0 is formed.

【0046】このように燃料噴射弁11の燃焼室露出部
分に酸化チタン層20を形成することにより、煤および
噴射後の燃料、あるいは潤滑油の付着に起因する燃料噴
射弁先端部へのデポジットの付着抑制効果が得られて、
燃焼室4のデポジット対策を徹底することができる他、
燃料噴射弁先端部分へのデポジット付着に起因する燃料
噴射角度や燃料噴射量等が変化するのを回避できて燃焼
の安定性と出力の向上を図ることができる。
By forming the titanium oxide layer 20 in the exposed portion of the combustion chamber of the fuel injection valve 11 in this way, deposits on the tip of the fuel injection valve due to soot and fuel after injection, or adhesion of lubricating oil. Adhesion suppression effect is obtained,
In addition to being able to thoroughly implement deposit measures for the combustion chamber 4,
It is possible to avoid a change in the fuel injection angle, the fuel injection amount, and the like due to the deposit adhesion to the tip portion of the fuel injection valve, and it is possible to improve the stability and output of combustion.

【0047】一方、前記燃焼室4内の燃焼ガスは排気行
程で排気ポート9へ排出されるが、この排気ポート9お
よびこれに続く排気マニホルド12内でも燃焼が継続さ
れ、酸化チタンの光触媒反応に有効な燃焼光が発光され
る。
On the other hand, the combustion gas in the combustion chamber 4 is discharged to the exhaust port 9 in the exhaust stroke, but the combustion is continued in the exhaust port 9 and the exhaust manifold 12 following the exhaust port 9 to cause a photocatalytic reaction of titanium oxide. Effective combustion light is emitted.

【0048】そこで、これら排気ポート9および排気マ
ニホルド12の内表面にも、図1に示すように前述と同
様にして酸化チタン層20を形成することによって、後
期燃焼が持続されるこれら排気ポート9および排気マニ
ホルド12内でも前記酸化チタン層20での光触媒作用
が発揮され、煤や未燃燃料の付着に起因するデポジット
の堆積を防止でき、筒内圧への影響を回避して燃焼の安
定性および出力の向上を図るこができると共に、有害排
気成分の低減化を図ることができる。
Therefore, the titanium oxide layer 20 is formed on the inner surfaces of the exhaust port 9 and the exhaust manifold 12 in the same manner as described above, as shown in FIG. 1, so that the late combustion is continued. Also, the photocatalytic action of the titanium oxide layer 20 is exerted in the exhaust manifold 12 as well, so that the accumulation of deposits due to the attachment of soot and unburned fuel can be prevented, the influence on the cylinder pressure can be avoided, and the stability of combustion and The output can be improved and harmful exhaust components can be reduced.

【0049】本発明では、このように、燃焼室4の内面
を構成する前記各構成部品の表面、および排気ポート
9、排気マニホルド12の各内表面に、シリコン被膜2
2を下地とする酸化チタン層20を設けて光触媒作用を
発揮できるように構成することと併せて、前記点火プラ
グ7を、圧縮行程における混合気着火のための火花点火
と、排気行程における前記燃焼室4内面の酸化チタン層
20の光触媒活性のための火花点火との、多段階の点火
作動を行わせるようにしてある。
In the present invention, as described above, the silicon coating 2 is formed on the surface of each of the above-mentioned components forming the inner surface of the combustion chamber 4 and the inner surfaces of the exhaust port 9 and the exhaust manifold 12.
In addition to providing a titanium oxide layer 20 having 2 as a base so as to exhibit a photocatalytic action, the ignition plug 7 is provided with spark ignition for air-fuel mixture ignition in the compression stroke and the combustion in the exhaust stroke. A multi-step ignition operation is performed with spark ignition for photocatalytic activity of the titanium oxide layer 20 on the inner surface of the chamber 4.

【0050】点火プラグ7の前記多段階の点火作動は、
図1に示す点火装置23によって制御される。
The multi-stage ignition operation of the ignition plug 7 is as follows.
It is controlled by the ignition device 23 shown in FIG.

【0051】図10〜14はこの点火装置23による点
火プラグ7の点火タイミングの各異なる例を示してい
る。
10 to 14 show different examples of ignition timing of the ignition plug 7 by the ignition device 23.

【0052】図10に示す第1形態では、点火プラグ7
の点火タイミングを圧縮行程の後期における第1点火時
期P1 と、排気行程の後期における第2点火時期P2
に多段に設定して、圧縮行程の後期で混合気着火のため
の火花点火を行わせ、排気行程の後期で燃焼室4内面の
酸化チタン層20の光触媒活性のための火花点火を行わ
せるようにしてある。
In the first embodiment shown in FIG. 10, the spark plug 7
The ignition timing of is set in multiple stages to a first ignition timing P 1 in the latter half of the compression stroke and a second ignition timing P 2 in the latter half of the exhaust stroke, and spark ignition for air-fuel mixture ignition is performed in the latter half of the compression stroke. The spark ignition for the photocatalytic activity of the titanium oxide layer 20 on the inner surface of the combustion chamber 4 is performed in the latter stage of the exhaust stroke.

【0053】従って、この第1形態によれば、圧縮行程
で点火プラグ7の点火作動により混合気に火花点火した
後、膨張行程では前述のように混合気の燃焼により発生
する燃焼光によって、燃焼室4内面の酸化チタン層20
の光触媒反応を活性化させる一方、燃焼光が減少傾向と
なる排気行程ではピストン2が上昇して点火プラグ7に
接近した時に、該点火プラグ7が再び点火作動して放電
光が発生されるため、この排気行程においても酸化チタ
ン層20の光触媒作用を活発に行わせることができ、従
って、燃焼室4内面のデポジット付着防止を徹底するこ
とができる。
Therefore, according to the first embodiment, after the air-fuel mixture is spark ignited by the ignition operation of the spark plug 7 in the compression stroke, the combustion is performed by the combustion light generated by the combustion of the air-fuel mixture in the expansion stroke as described above. Titanium oxide layer 20 on the inner surface of chamber 4
On the other hand, when the piston 2 rises and approaches the ignition plug 7 in the exhaust stroke where the combustion light tends to decrease, the ignition plug 7 is ignited again and discharge light is generated. In this exhaust stroke as well, the photocatalytic action of the titanium oxide layer 20 can be actively carried out, so that the deposit adhesion on the inner surface of the combustion chamber 4 can be thoroughly prevented.

【0054】また、この第1形態では点火プラグ7の排
気行程での点火作動を圧縮行程での点火作動と同じ形態
で行わせるため、点火装置23に特別の改良を施すこと
なく実現することができる。
Further, in the first embodiment, the ignition operation in the exhaust stroke of the ignition plug 7 is performed in the same manner as the ignition operation in the compression stroke, so that the ignition device 23 can be realized without any special improvement. it can.

【0055】図11は点火プラグ7の点火タイミングの
第2形態を示すもので、この第2形態にあっては排気行
程における第2点火時期P2 で、点火プラグ7を長時間
の火花放電を行わせるように作動制御している。
FIG. 11 shows a second mode of ignition timing of the spark plug 7. In this second mode, the spark plug 7 is discharged for a long time at the second ignition timing P 2 in the exhaust stroke. The operation is controlled to be performed.

【0056】この点火プラグ7の長時間の火花放電制御
は、例えば点火装置23として特開平6−66236号
公報に示されているような長時間型点火装置を用いるこ
とによって実現することができる。
The long-time spark discharge control of the spark plug 7 can be realized by using, for example, the long-time ignition device as disclosed in Japanese Patent Laid-Open No. 6-66236 as the ignition device 23.

【0057】このように、点火プラグ7の排気行程にお
ける点火作動を、長時間型点火装置によって長時間の火
花放電を行わせることにより、該排気行程で点火プラグ
7の放電光を長く維持することができ、特に、排気行程
で長時間放電を行った場合、この排気行程では点火プラ
グ7周辺の圧力が低く、点火プラグ7の放電電圧はこの
筒内圧力の関数となることから放電開始時の初期ピーク
電圧が低くなるため、その後の放電エネルギーが多く残
って長時間の放電維持を確実に行えることと、排気行程
の進行により前記筒内圧力が低下するのに伴って放電エ
ネルギーが高くなって放電光を強められるため、排気行
程の終期に亘って燃焼室4内面の酸化チタン層20の光
触媒作用を確実に、かつ、より一層活発に行わせること
ができる。
In this way, the ignition operation in the exhaust stroke of the spark plug 7 is performed by the long-time ignition device to perform the spark discharge for a long time, so that the discharge light of the spark plug 7 is maintained for a long time in the exhaust stroke. In particular, when discharge is performed for a long time in the exhaust stroke, the pressure around the spark plug 7 is low in this exhaust stroke, and the discharge voltage of the spark plug 7 becomes a function of this cylinder pressure. Since the initial peak voltage becomes low, a large amount of discharge energy remains after that, and discharge can be reliably maintained for a long time, and the discharge energy becomes high as the cylinder pressure decreases due to the progress of the exhaust stroke. Since the discharge light can be intensified, the photocatalytic action of the titanium oxide layer 20 on the inner surface of the combustion chamber 4 can be reliably and more actively performed over the end of the exhaust stroke.

【0058】図12は点火プラグ7の点火タイミングの
第3形態を示すもので、この第3形態にあっては、排気
行程における第2点火時期P2 の点火期間を該排気行程
の略全域として設定し、点火プラグ7をこの点火期間で
短時間の火花放電を繰り返し行わせるように作動制御し
ている。
FIG. 12 shows a third form of the ignition timing of the spark plug 7. In this third form, the ignition period of the second ignition timing P 2 in the exhaust stroke is set to be substantially the entire exhaust stroke. The spark plug 7 is set and the operation of the spark plug 7 is controlled so that a short-time spark discharge is repeatedly performed during this ignition period.

【0059】この点火プラグ7の所用の点火期間での多
重放電制御は、例えば点火装置23として特開平6−3
30836号公報に示されているような多重型点火装置
を用いることによって実現することができる。
The multiple discharge control of the ignition plug 7 in the required ignition period is performed by, for example, the ignition device 23 as disclosed in Japanese Patent Laid-Open No. 6-3.
It can be realized by using a multiple ignition device as disclosed in Japanese Patent No. 30836.

【0060】このように、点火プラグ7の排気行程にお
ける点火作動を、多重型点火装置によって排気行程の略
全域で短時間で火花放電を繰り返し行わせて多重放電す
ることにより、排気行程の略全域で点火プラグ7の放電
光が断続的に得られることと、排気行程の進行により筒
内圧が低下するのに伴って放電エネルギーが高くなって
放電光を強められるため、排気行程の略全域に亘って燃
焼室4内面の酸化チタン層20の光触媒作用を確実に、
かつ、より一層活発に行わせることができる。
As described above, the ignition operation of the spark plug 7 in the exhaust stroke is repeatedly performed by the multiple-type ignition device in a short period of time over the entire exhaust stroke, and the multiple discharges are performed. The discharge light of the spark plug 7 is obtained intermittently, and since the discharge energy increases and the discharge light is intensified as the cylinder pressure decreases due to the progress of the exhaust stroke, the discharge light is increased over almost the entire exhaust stroke. To ensure the photocatalytic action of the titanium oxide layer 20 on the inner surface of the combustion chamber 4,
And, it can be performed more actively.

【0061】図13は点火プラグ7の点火タイミングの
第4形態を示すもので、この第4形態にあっては、排気
行程における点火プラグ7の点火作動を膨張行程から継
続して行わせるようにしたものである。
FIG. 13 shows a fourth mode of the ignition timing of the spark plug 7. In this fourth mode, the ignition operation of the spark plug 7 in the exhaust stroke is continued from the expansion stroke. It was done.

【0062】この第4形態では、具体的には点火装置2
3として前述の多重型点火装置を用いて、圧縮行程の後
期から排気行程の終期に亘る範囲を放電期間Paとして
設定し、点火プラグ7をこの放電期間Paで短時間の火
花放電を繰り返し行わせるようにしている。
In the fourth embodiment, specifically, the ignition device 2
The discharge type Pa is set as the range from the latter half of the compression stroke to the end of the exhaust stroke by using the above-mentioned multiple ignition device as 3, and the spark plug 7 is caused to repeatedly perform short-time spark discharge in this discharge period Pa. I am trying.

【0063】従って、この第4形態によれば圧縮行程の
後期に点火プラグ7の点火作動により混合気に火花点火
した後、続いて排気行程の終期に亘る点火期間Paで点
火プラグ7の火花放電が短時間に繰り返される多重放電
が行われるため、混合気への点火確率を高められて安定
した燃焼を実現できることは勿論、膨張行程から排気行
程の終期に亘って点火プラグ7の放電光が絶え間なく断
続的に得られることと、膨張行程から排気行程の終期へ
の進行により筒内圧力が低下するのに伴って放電エネル
ギーが高くなって放電光を強められるため、この膨張行
程から排気行程の終期に亘って燃焼室4内面の酸化チタ
ン層20の光触媒作用を確実に、かつ、より一層活発に
行わせることができる。
Therefore, according to the fourth embodiment, after the spark ignition of the spark plug 7 in the latter stage of the compression stroke, the mixture is spark ignited, and then the spark discharge of the spark plug 7 is performed in the ignition period Pa over the end of the exhaust stroke. Since multiple discharges are repeated in a short time, the probability of ignition of the air-fuel mixture can be increased and stable combustion can be realized, and, of course, the discharge light of the spark plug 7 is continuously discharged from the expansion stroke to the end of the exhaust stroke. The discharge energy increases and the discharge light is intensified as the cylinder pressure decreases due to the progress from the expansion stroke to the end of the exhaust stroke. The photocatalytic action of the titanium oxide layer 20 on the inner surface of the combustion chamber 4 can be reliably and more actively performed over the final period.

【0064】なお、この多重放電制御では例えば図14
に示すように単位放電時間を長くとって、前記放電期間
Paにおける放電サイクルを小さくし、排気行程側の放
電エネルギーがより高まるようにして該排気行程側で放
電光がより強まるようにすることもできる。
In this multiple discharge control, for example, as shown in FIG.
As shown in (1), the unit discharge time may be increased to shorten the discharge cycle in the discharge period Pa so that the discharge energy on the exhaust stroke side becomes higher and the discharge light on the exhaust stroke side becomes stronger. it can.

【0065】ここで、前記何れの点火タイミングを設定
する場合にも、点火プラグ7の点火最終タイミングを、
燃焼室4に新しい混合気が形成される直前に設定して失
火を回避し、機関の安定性を確保することが肝要で、予
混合機関では吸気弁5が開く直前までに、および筒内噴
射機関では燃料噴射弁11の燃料噴射直前までに設定さ
れるもので、因みに、図11に示す点火タイミングでは
第2点火期間P2 における点火最終タイミングが吸入行
程の初期にずれ込んでいるが、これは筒内噴射機関に対
応させた場合を想定したものである。
Here, regardless of which of the above ignition timings is set, the final ignition timing of the ignition plug 7 is
It is important to set the combustion chamber 4 immediately before a new air-fuel mixture is formed to avoid misfiring and ensure the stability of the engine. In a premixed engine, it is necessary to perform injection immediately before the intake valve 5 is opened and in a cylinder. In the engine, it is set until immediately before the fuel injection of the fuel injection valve 11, and by the way, in the ignition timing shown in FIG. 11, the final ignition timing in the second ignition period P 2 is shifted to the beginning of the intake stroke. This is based on the assumption that it is compatible with in-cylinder injection engines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の一実施形態における酸化チタン層の断
面図。
FIG. 2 is a sectional view of a titanium oxide layer according to an embodiment of the present invention.

【図3】本発明の一実施形態における吸,排気弁の説明
図。
FIG. 3 is an explanatory diagram of an intake / exhaust valve according to an embodiment of the present invention.

【図4】本発明の一実施形態における点火プラグの説明
図。
FIG. 4 is an explanatory diagram of a spark plug according to an embodiment of the present invention.

【図5】本発明の一実施形態のヘッドガスケット介装部
分の断面図。
FIG. 5 is a cross-sectional view of a head gasket interposing portion according to the embodiment of the present invention.

【図6】本発明の一実施形態における燃料噴射弁の説明
図。
FIG. 6 is an explanatory diagram of a fuel injection valve according to an embodiment of the present invention.

【図7】燃焼室内における燃焼光の波長特性を示す説明
図。
FIG. 7 is an explanatory view showing wavelength characteristics of combustion light in a combustion chamber.

【図8】有機物質の付着分析結果を示す説明図。FIG. 8 is an explanatory diagram showing the results of adhesion analysis of organic substances.

【図9】ピストン冠面のオイル付着分析結果を示す説明
図。
FIG. 9 is an explanatory diagram showing an oil adhesion analysis result on the piston crown surface.

【図10】点火プラグの点火タイミングの第1形態を示
す説明図。
FIG. 10 is an explanatory diagram showing a first form of ignition timing of an ignition plug.

【図11】点火プラグの点火タイミングの第2形態を示
す説明図。
FIG. 11 is an explanatory diagram showing a second mode of ignition timing of the spark plug.

【図12】点火プラグの点火タイミングの第3形態を示
す説明図。
FIG. 12 is an explanatory view showing a third mode of ignition timing of an ignition plug.

【図13】点火プラグの点火タイミングの第4形態を示
す説明図。
FIG. 13 is an explanatory view showing a fourth mode of ignition timing of the spark plug.

【図14】点火プラグの点火タイミングの第5形態を示
す説明図。
FIG. 14 is an explanatory view showing a fifth mode of ignition timing of an ignition plug.

【符号の説明】[Explanation of symbols]

1 シリンダブロック 2 ピストン 3 シリンダヘッド 4 燃焼室 5 吸気弁 6 排気弁 7 点火プラグ 8 吸気ポート 9 排気ポート 10 ヘッドガスケット 11 燃料噴射弁 12 排気マニホルド 20 酸化チタン層 21 酸化チタン 22 シリコン被膜 1 cylinder block 2 pistons 3 cylinder head 4 Combustion chamber 5 intake valve 6 exhaust valve 7 Spark plug 8 intake ports 9 exhaust port 10 head gasket 11 Fuel injection valve 12 Exhaust manifold 20 Titanium oxide layer 21 Titanium oxide 22 Silicon coating

フロントページの続き (51)Int.Cl.7 識別記号 FI F02F 1/00 F02F 1/00 D 3/12 3/12 (58)調査した分野(Int.Cl.7,DB名) F02P 15/00 C23C 28/00 F01N 7/16 F02B 23/00 - 23/06 F02F 1/00 F02F 3/12 Continuation of front page (51) Int.Cl. 7 identification code FI F02F 1/00 F02F 1/00 D 3/12 3/12 (58) Fields investigated (Int.Cl. 7 , DB name) F02P 15/00 C23C 28/00 F01N 7/16 F02B 23/00-23/06 F02F 1/00 F02F 3/12

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼室の内面を構成する部品の表面に、
シリコン被膜を下地とした酸化チタン層をコーティング
する一方、点火プラグを、圧縮行程における混合気着火
のための火花点火と、排気行程における前記酸化チタン
層の光触媒活性のための火花点火との、多段階の点火作
動を行わせるようにしたことを特徴とする内燃機関。
1. A surface of a component forming an inner surface of a combustion chamber,
While coating a titanium oxide layer with a silicon film as a base, a spark plug is provided with a spark ignition for mixture ignition in the compression stroke and a spark ignition for photocatalytic activity of the titanium oxide layer in the exhaust stroke. An internal combustion engine, characterized in that a stepwise ignition operation is performed.
【請求項2】 点火プラグの排気行程における点火作動
を、長時間の火花放電を行わせる長時間型点火装置によ
って行わせるようにしたことを特徴とする請求項1に記
載の内燃機関。
2. The internal combustion engine according to claim 1, wherein the ignition operation in the exhaust stroke of the spark plug is performed by a long-time ignition device that causes spark discharge for a long time.
【請求項3】 点火プラグの排気行程における点火作動
を、所要の点火期間で短時間の火花放電を繰り返す多重
型点火装置によって行わせるようにしたことを特徴とす
る請求項1に記載の内燃機関。
3. The internal combustion engine according to claim 1, wherein the ignition operation in the exhaust stroke of the spark plug is performed by a multiple ignition device that repeats a short-time spark discharge for a required ignition period. .
【請求項4】 点火プラグの排気行程における点火作動
を、膨張行程から継続して行わせるようにしたことを特
徴とする請求項1に記載の内燃機関。
4. The internal combustion engine according to claim 1, wherein the ignition operation in the exhaust stroke of the spark plug is continued from the expansion stroke.
【請求項5】 点火プラグの膨張行程から排気行程に亘
る点火作動を、所要の点火期間で短時間の火花放電を繰
り返す多重型点火装置によって行わせるようにしたこと
を特徴とする請求項4に記載の内燃機関。
5. The multiple ignition device according to claim 4, wherein the ignition operation from the expansion stroke to the exhaust stroke of the spark plug is performed by a multiple ignition device that repeats a short-time spark discharge in a required ignition period. Internal combustion engine described.
【請求項6】 排気行程における点火プラグの点火最終
タイミングを、燃焼室に新しい混合気が形成される直前
に設定したことを特徴とする請求項1〜5の何れかに記
載の内燃機関。
6. The internal combustion engine according to claim 1, wherein the final ignition timing of the spark plug in the exhaust stroke is set immediately before a new air-fuel mixture is formed in the combustion chamber.
【請求項7】 燃焼室に続く排気ポートの内表面にシリ
コン被膜を下地とした酸化チタン層をコーティングした
ことを特徴とする請求項1〜6の何れかに記載の内燃機
関。
7. The internal combustion engine according to claim 1, wherein the inner surface of the exhaust port continuing from the combustion chamber is coated with a titanium oxide layer having a silicon coating as a base.
【請求項8】 排気ポートに続く排気マニホルドの内表
面に、シリコン被膜を下地とした酸化チタン層をコーテ
ィングしたことを特徴とする請求項7に記載の内燃機
関。
8. The internal combustion engine according to claim 7, wherein the inner surface of the exhaust manifold following the exhaust port is coated with a titanium oxide layer having a silicon coating as a base.
JP13084598A 1998-05-13 1998-05-13 Internal combustion engine Expired - Fee Related JP3496514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13084598A JP3496514B2 (en) 1998-05-13 1998-05-13 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13084598A JP3496514B2 (en) 1998-05-13 1998-05-13 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11324879A JPH11324879A (en) 1999-11-26
JP3496514B2 true JP3496514B2 (en) 2004-02-16

Family

ID=15044047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13084598A Expired - Fee Related JP3496514B2 (en) 1998-05-13 1998-05-13 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP3496514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615698B1 (en) * 2013-03-26 2016-04-26 한국기계연구원 Inter-injection spark ignition control method for direct injection gas engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
DE102005006670A1 (en) * 2005-02-15 2006-08-17 Ks Kolbenschmidt Gmbh Anti-adhesive coating of components to prevent carbon deposits
US7793631B2 (en) 2005-08-30 2010-09-14 Nissan Motor Co., Ltd. Fuel ignition system, fuel igniting method, fuel reforming system and fuel reforming method, for internal combustion engine
JP2007064060A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Fuel reforming system and fuel ignition system for internal combustion engine
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
EP2721270B1 (en) * 2011-06-15 2019-08-28 Henkel AG & Co. KGaA Method and apparatus for reducing emissions and/or reducing friction in an internal combustion engine
WO2016093214A1 (en) * 2014-12-08 2016-06-16 株式会社デンソー Ignition system and method for manufacturing superhydrophilic membrane used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615698B1 (en) * 2013-03-26 2016-04-26 한국기계연구원 Inter-injection spark ignition control method for direct injection gas engine

Also Published As

Publication number Publication date
JPH11324879A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3496514B2 (en) Internal combustion engine
He et al. Late intake valve closing as an emissions control strategy at Tier 2 Bin 5 engine-out NOx level
JP4019484B2 (en) Compression ignition internal combustion engine
US6886548B2 (en) Internal combustion engine
JPH1172039A (en) Compressive ignition type internal combustion engine
JPH0364687B2 (en)
CN1496443A (en) Method of increasing exhaust gas temperature of spark ignition, direct injection internal combustion engine
JP3541665B2 (en) Internal combustion engine
JPS63309706A (en) Coated valve for internal combustion engine
CN1199446A (en) Combined cycle engine
JP2004060582A (en) Engine exhaust emission control device
JP2001317360A (en) Diesel engine
CN100507229C (en) Direct injection gaseous fuel engine with ignition assist
US4059079A (en) Internal combustion engine
US10378464B2 (en) Control device for internal combustion engine
US6240912B1 (en) Method for in-cylinder catalytic oxidation of hydrocarbons in direct injected spark ignition engines
JPS5966618A (en) Parts of combustion chamber with catalyst
JPS6320830Y2 (en)
CN117120716A (en) Internal combustion engine control device and ignition mechanism control method
Andrych-Zalewska Improving the environmental performance of the internal combustion engine by the use of in-cylinder catalyst
EP1188913A1 (en) Heterogeneous catalysis in internal combustion engines
JP2510849B2 (en) Combustion chamber of internal combustion engine
Andrych-Zalewska The possibilities and development of in-cylinder catalytic coating
CN1358928A (en) Layer inflation compression combustion method and device for gasoline engine
JP2000008858A (en) Direct injection engine and its piston

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees