JP3494952B2 - PM sampling measurement device using metal mesh filter and voltage application - Google Patents
PM sampling measurement device using metal mesh filter and voltage applicationInfo
- Publication number
- JP3494952B2 JP3494952B2 JP2000139665A JP2000139665A JP3494952B2 JP 3494952 B2 JP3494952 B2 JP 3494952B2 JP 2000139665 A JP2000139665 A JP 2000139665A JP 2000139665 A JP2000139665 A JP 2000139665A JP 3494952 B2 JP3494952 B2 JP 3494952B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- sampling
- metal mesh
- fine particles
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Electrostatic Separation (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は環境大気中の微粒子や
ディーゼル排気ガスなど燃焼排気の微粒子測定に関する
もので、環境技術の分野に利用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of fine particles in combustion air such as fine particles in ambient air and diesel exhaust gas, and is used in the field of environmental technology.
【0002】[0002]
【従来の技術】環境大気やディーゼル排気ガスなどの微
粒子のサンプリングには一般にテフロン(登録商標)コ
ーテングしたガラスファィバーなどの繊維状濾紙が用い
られてきた。2. Description of the Related Art Fibrous filter papers such as glass fibers coated with Teflon (registered trademark) have generally been used for sampling fine particles such as ambient air and diesel exhaust gas.
【0003】[0003]
【従来技術の問題点】従来のフィルタでは個数濃度とし
て重要な0.05μm(50nm)程度以下の粒径の微
粒子の捕集は効率が悪く、最近問題にされている個数濃
度には十分な対応ができない状況にある。またフィルタ
が再利用できないなどの欠点があった。[Problems of the prior art] In the conventional filter, the collection of fine particles having a particle size of about 0.05 μm (50 nm) or less, which is important as the number concentration, is inefficient, and it is sufficient to cope with the number concentration which has become a problem recently. You are in a situation where you cannot. Moreover, there is a defect that the filter cannot be reused.
【0004】[0004]
【発明が解決しようとする課題】ディーゼル排気ガスな
ど燃焼排気には0.05μm程度以下の粒子も多く含ま
れており、こうした流体的にはサンプリング困難な微粒
子を効率良く捕集し、また測定時間内の濃度変化を知る
ことが主な課題であり、さらにフィルタを繰り返し利用
できるようにすることも重要な課題である。The combustion exhaust gas such as diesel exhaust gas contains a lot of particles of about 0.05 μm or less, which efficiently collects fine particles which are difficult to sample in terms of fluidity, and the measurement time. The main problem is to know the change in the internal concentration, and it is also an important problem to make it possible to use the filter repeatedly.
【0005】[0005]
【課題を解決するための手段】0.05μm程度以下の
粒子を効率よく捕集するためにはレイノルズ数の小さい
すなわち比較的遅い流速の試料ガスの流れにおいて粒子
の運動に荷電を利用して導電性のあるフィルタに付着さ
せる方法を採用した。微粒子濃度の変化を測定するため
には一定流量においてフィルタ前後の圧力を連続測定す
る方法を選んだ。さらにフィルタ材質が耐蝕性があり、
構造が比較的に単純で強度にも問題の少ない金属メッシ
ュを利用して洗浄によるフィルタの再生利用が可能であ
る手段を用いた。とくに微粒子の捕集量を大きくできる
ようにする場合はより細い金属線ファイバーを利用して
表面積増大ができるようにした。さらに微粒子の付着に
よるフィルタ前後の圧力の増加を適当に大きくして測定
を容易にして感度を良くするために、金属メッシュフィ
ルタの下流側に通常のガラス繊維濾紙などのフィルタを
合わせて利用する手段も可能とした。Means for Solving the Problems In order to efficiently collect particles of about 0.05 μm or less, charge is used for the motion of particles in the flow of a sample gas having a small Reynolds number, that is, a relatively slow flow velocity to conduct electricity. Adopted a method of attaching to a filter having properties. In order to measure the change in particle concentration, a method of continuously measuring the pressure before and after the filter at a constant flow rate was selected. Furthermore, the filter material has corrosion resistance,
A means that can recycle the filter by washing was used by using a metal mesh having a relatively simple structure and less problem in strength. In particular, in order to increase the collection amount of fine particles, a thinner metal wire fiber was used to increase the surface area. Further, in order to appropriately increase the pressure before and after the filter due to the adhesion of fine particles to facilitate the measurement and improve the sensitivity, a means for using a filter such as a normal glass fiber filter paper on the downstream side of the metal mesh filter. Also made possible.
【0006】[0006]
【実施例】図1、図2、図3、図4、図5および図6に
ついて説明する。図1の測定装置1の構成例では、微粒
子を含む燃焼排気の試料ガス11は一定温度に保たれ温
度計17で温度を測定されたサンプリング経路12を経
由して測定捕集部10に導かれる。測定捕集部10では
図2(a)に示すような耐蝕性に富む金属材料で50μ
m以下の線径の細線を用いて200メッシュ以上の高い
密度で組み編んで構成した金網を単層または複数層利用
して微粒子を捕集する補集用フィルタ100(以下単に
「フィルタ100」と称する)を構成して用いる。この
フィルタ100の周辺部105の端部はレーザや電子ビ
ームなどによる溶断によって形成されて、端部の細線の
離脱などを防ぐと共に外周寸法の精度確保を図ってい
る。フィルタ100はその周辺部105を耐熱性O−リ
ング106などを用いて気密に保持して用いる。フィル
タ100は絶縁フィルタホルダ7に配置され、装脱着が
容易で測定前後に重量の精密測定が可能な構造である。
フィルタ100は金網を単層で用いることもあるが、細
線の方向を考慮して複層にして用いることが多い。測定
捕集部10ではフィルタ100の上流側の圧力P1と下
流側の圧力P2を測定する導管14と導管15が配置さ
れ、さらにフィルタ100は電気的に絶縁されて、高圧
電源(負)2、高圧電源(正)3、電圧計4、電圧計
5、高圧ケーブル6をもつ回路から高圧接触端子16に
よって高電圧が加えられるようにしてある。フィルタ1
00の上流側にはフィルタ100と適当な距離を保ち、
適切な形状の針状電極50が配置されている。フィルタ
100を通過した試料ガス11は保護用フィルタ21を
経由し、マスフローコントローラ22によって質量流量
を一定に制御されながら、ポンプ23で吸引され排出管
24から排出される。試料ガス11の中に含まれる粒子
は針状電極50の近辺において電界強度の急激な変化か
ら帯電して、荷電粒子となる。針状電極50には例えば
−2kV程度の負電圧を加えフィルタ100には+1.
5kV程度の正電圧を加える。測定捕集部10の内部で
はフィルタ100と針状電極50以外は電位0に保ち、
針状電極50の外周には放電を防止する絶縁部材55が
配置される。針状電極50とフィルタ100との間には
僅かな電流が流れる状態におかれて、微粒子は荷電され
た状況で流れる。これらの粒子のうち大粒子の一部31
は形状の関係から図2(b)の拡大図に示すようにフィ
ルタ100の第1層の流路110を構成する金属線10
1と金属線102との間に捕集されるが、多くの微粒子
32は遅い流速と粒子の荷電に影響されて電気的な引力
でフィルタ100の金属線の表面の各部位に付着する。
とくに0.1μm以下の粒子は流体的な力よりも電気的
な力の影響がより大きくなって効率的に捕集される。フ
ィルタ100の第1層の金属線101と102および第
2層の金属線103と104に付着した微粒子はフィル
タの流路110を逐次狭めて、一定流量におけるフィル
タ100の抵抗すなわち差圧ΔP=(P1−P2)を図
3の例のように増大させる。図3の例では微粒子の濃度
cが一定な試料ガスの場合であり、横軸の時間軸が捕集
された微粒子の質量に対応している。捕集された微粒子
の質量とΔPとの関係は図3の例のようにある捕集量以
下の範囲では一定の直線的な関係が成り立ち差圧ΔPか
ら捕集量を求めることが容易にできる。このようにして
差圧の時間微分値が微粒子の濃度に比例することから、
測定時間内の微粒子濃度の変化をリアルタイムで連続的
に測定することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1, 2, 3, 4, 5, and 6. In the configuration example of the measuring apparatus 1 of FIG. 1, the sample gas 11 of the combustion exhaust gas containing fine particles is guided to the measurement collecting unit 10 via the sampling path 12 whose temperature is kept constant and whose temperature is measured by the thermometer 17. . In the measurement collecting unit 10, a metal material having a high corrosion resistance as shown in FIG.
A collecting filter 100 (hereinafter, simply referred to as a collecting filter 100 for collecting fine particles using a single layer or a plurality of layers of a wire net formed by braiding a fine wire having a wire diameter of m or less at a high density of 200 mesh or more
"Filter 100") is configured and used. The edge of the peripheral portion 105 of the filter 100 is formed by fusing with a laser, an electron beam, or the like to prevent the fine wire at the edge from coming off and to secure the accuracy of the outer peripheral dimension. The filter 100 is used by holding the peripheral portion 105 thereof airtight by using a heat resistant O-ring 106 or the like. The filter 100 is arranged in the insulating filter holder 7 and has a structure that can be easily attached / detached and allows the weight to be precisely measured before and after the measurement.
The wire mesh may be used as a single layer in the filter 100, but it is often used in a plurality of layers in consideration of the direction of the thin wire. In the measuring and collecting unit 10, a conduit 14 and a conduit 15 for measuring the pressure P1 on the upstream side and the pressure P2 on the downstream side of the filter 100 are arranged, and the filter 100 is electrically insulated, so that the high voltage power source (negative) 2, A high voltage is applied by a high-voltage contact terminal 16 from a circuit having a high-voltage power source (positive) 3, a voltmeter 4, a voltmeter 5, and a high-voltage cable 6. Filter 1
On the upstream side of 00, keep an appropriate distance from the filter 100,
An appropriately shaped needle electrode 50 is arranged. The sample gas 11 that has passed through the filter 100 passes through the protective filter 21 and is sucked by the pump 23 and discharged from the discharge pipe 24 while the mass flow controller 22 controls the mass flow rate to be constant. The particles contained in the sample gas 11 are charged in the vicinity of the needle electrode 50 due to the abrupt change in the electric field strength, and become charged particles. For example, a negative voltage of about −2 kV is applied to the needle electrode 50, and the filter 100 has a +1.
A positive voltage of about 5 kV is applied. Inside the measurement and collection unit 10, except for the filter 100 and the needle electrode 50, the potential is kept at 0,
An insulating member 55 for preventing discharge is arranged on the outer periphery of the needle electrode 50. With a slight electric current flowing between the needle electrode 50 and the filter 100, the fine particles flow in a charged state. Some of these particles are large particles 31
The metal wire 10 that constitutes the first-layer flow passage 110 of the filter 100 as shown in the enlarged view of FIG.
Although many particles 32 are trapped between the metal wire 1 and the metal wire 102, many of the particles 32 are affected by the slow flow velocity and the electric charge of the particles, and attach to each part of the surface of the metal wire of the filter 100 by an electric attractive force.
In particular, particles of 0.1 μm or less are more efficiently collected because the influence of electric force is larger than that of fluid force. The particles adhering to the metal wires 101 and 102 of the first layer and the metal wires 103 and 104 of the second layer of the filter 100 successively narrow the channel 110 of the filter, and the resistance of the filter 100 at a constant flow rate, that is, the differential pressure ΔP = ( P1-P2) is increased as in the example of FIG. In the example of FIG. 3, the sample gas has a constant concentration c of fine particles, and the time axis of the horizontal axis corresponds to the mass of the collected fine particles. As for the relationship between the mass of the collected fine particles and ΔP, a constant linear relationship is established within the range below a certain collection amount as in the example of FIG. 3, and the collection amount can be easily obtained from the differential pressure ΔP. . In this way, since the time differential value of the differential pressure is proportional to the concentration of fine particles,
It is possible to continuously measure the change in the particle concentration within the measurement time in real time.
【0007】差圧の測定には導管14と導管15とに連
結された圧カセンサ8が用いられ、測定値はデータ処理
用コンピュータ9において計算され、微粒子濃度などが
求められる。A pressure sensor 8 connected to a conduit 14 and a conduit 15 is used to measure the differential pressure, and the measured value is calculated by a data processing computer 9 to obtain the particle concentration and the like.
【0008】金属メッシュフィルタでは表面積が制約と
なって捕集できる微粒子の量を高い測定精度で測定する
のに困難なことがある。図4の例ではフィルタの表面積
を格段に増大できる手段としてステンレス線の極めて細
いものをファイバー110として不織布状111にして
2枚の金属メッシュ101´,102´と103´,1
04´との間に挟んで構成したフィルタの構造を示して
いる。この場合はフィルタとして厚みがあり、微粒子の
捕集量を大きくすることができる。[0008] With a metal mesh filter, it may be difficult to measure the amount of fine particles that can be collected with high measurement accuracy due to the limited surface area. In the example of FIG. 4, as a means for remarkably increasing the surface area of the filter, an extremely thin stainless wire is used as a fiber 110 to form a non-woven fabric 111, and two metal meshes 101 ', 102' and 103 ', 1
The structure of the filter sandwiched between 04 'and 04' is shown. In this case, the filter has a large thickness, and the amount of collected fine particles can be increased.
【0009】図5の例は金属メッシュフィルタ101´
´,102´´の下流側に通常のガラス繊維濾紙112
を重ねて利用する例を示す。この場合細かい粒子が荷電
の効果で金属メッシュに付着し、凝集などでやや径の大
きい粒子が主にガラス繊維濾紙に付着して全体のフィル
タによる圧力増加を主に支配する。そして金属メッシュ
に捕集される微粒子の割合を電極と金属メッシュに印加
する電圧を適当に選定することによって適切に選定でき
る。The example shown in FIG. 5 is a metal mesh filter 101 '.
A glass fiber filter 112 is provided on the downstream side of ′ and 102 ″.
The following shows an example of using and overlapping. In this case, fine particles adhere to the metal mesh due to the effect of charging, and particles having a slightly larger diameter mainly adhere to the glass fiber filter paper due to agglomeration or the like, and mainly control the pressure increase by the entire filter. Then, the ratio of the fine particles collected in the metal mesh can be appropriately selected by appropriately selecting the voltage applied to the electrode and the metal mesh.
【0010】測定捕集部10の温度Tsは温度計2bで
測定され、外部のヒータ25などによって制御される
が、温度Tsを200℃以上の高温度に保つことによっ
て、微粒子の内でも高沸点成分だけを捕集する事も可能
であり、簡単な成分分析の可能性を秘めている。フィル
タ100の温度は微粒子のフィルタへの吸脱着に関係し
て重要な要素である。The temperature Ts of the measuring and collecting unit 10 is measured by the thermometer 2b and controlled by an external heater 25 or the like. By keeping the temperature Ts at a high temperature of 200 ° C. or higher, even the fine particles have a high boiling point. It is also possible to collect only the components, which has the potential for simple component analysis. The temperature of the filter 100 is an important factor related to adsorption / desorption of fine particles to / from the filter.
【0011】図6はディーゼル排気ガスなどのダィリュ
ーショントンネル60から同じサンプリングプローブ6
1を経由して、測定装置1と測定装置1´を並列的に配
置し、それぞれの測定装置でフィルタの温度を含む測定
捕集部10の温度を異なるように設定して温度による微
粒子成分に関する情報を得ようとする装置の構成を示す
例である。例えば一方の測定装置1の測定部温度を35
℃に設定し、他の測定装置1´の測定部温度を250℃
とすると微粒子に含まれる低沸点成分の量や比率を簡便
に測定することが可能となる。FIG. 6 shows the same sampling probe 6 from a dilution tunnel 60 for diesel exhaust gas.
1, the measuring device 1 and the measuring device 1 ′ are arranged in parallel, and the temperature of the measurement collecting unit 10 including the temperature of the filter is set to be different in each measuring device, and the fine particle component depending on the temperature It is an example which shows the composition of the device which tries to obtain information. For example, if the measuring unit temperature of one measuring device 1 is set to 35
Set the temperature to ℃ and set the temperature of the measuring part of the other measuring device 1'to 250 ℃.
Then, it becomes possible to easily measure the amount and ratio of the low boiling point component contained in the fine particles.
【0012】微粒子を捕集したフィルタ100は測定捕
集部から外されて、重量測定され、捕集前の測定重量と
の比較から測定時間内の捕集量すなわち平均微粒子濃度
の実測定値が求められる。また捕集された微粒子は適切
な溶剤などで抽出され、分析などに供試することができ
る。さらにこのフィルタ100は適当な洗剤や洗浄器の
利用によって捕集した微粒子などを完全に除去すること
が可能で、再使用することもできる。The filter 100 which has collected the fine particles is removed from the measuring and collecting section, weighed, and an actual measured value of the collected amount within the measuring time, that is, the average fine particle concentration is obtained by comparison with the measured weight before collecting. To be Further, the collected fine particles can be extracted with an appropriate solvent or the like and used for analysis or the like. Further, the filter 100 can completely remove the fine particles collected by using an appropriate detergent or washing machine, and can be reused.
【0013】[0013]
【発明の効果】この発明によるPMサンプリング装置で
は環境大気やディーゼル排気ガスなどの微粒子につい
て、荷電を利用して0.01μm以下の極めて細かい微
粒子までを含めて効率良く耐蝕性の金属メッシュフィル
タに捕集することができ、フィルタ前後の差圧測定から
測定時間中の微粒子濃度の変化を知ることもできる。フ
ィルタは再生利用することが可能であり、環境負荷の軽
減とコスト面でも有利な装置といえる。In the PM sampling device according to the present invention, fine particles such as ambient air and diesel exhaust gas are efficiently captured by the corrosion-resistant metal mesh filter including extremely fine particles of 0.01 μm or less. Also, it is possible to know the change in the particle concentration during the measurement time by measuring the differential pressure before and after the filter. The filter can be reused and can be said to be an advantageous device in terms of environmental load reduction and cost.
【0014】[0014]
【図1】本発明によるPMサンプリング装置を示す構成
説明図FIG. 1 is a structural explanatory view showing a PM sampling device according to the present invention.
【図2】(a)本発明に用いる金属メッシュフィルタの
構造例を示す説明図
(b)本発明に用いる金属メッシユフィルタの構造と微
粒子付着の拡大図FIG. 2A is an explanatory view showing a structural example of a metal mesh filter used in the present invention. FIG. 2B is an enlarged view of the structure of a metal mesh filter used in the present invention and adhesion of fine particles.
【図3】本発明によるフィルタ前後の差圧と微粒子捕集
量の関係の測定例を示すグラフFIG. 3 is a graph showing a measurement example of the relationship between the differential pressure before and after the filter and the amount of collected fine particles according to the present invention.
【図4】他の金属メッシュフィルタを示す構成説明図FIG. 4 is a structural explanatory view showing another metal mesh filter.
【図5】濾紙を組み込んだ金属メッシュフィルタを示す
構成説明図FIG. 5 is a structural explanatory view showing a metal mesh filter incorporating a filter paper.
【図6】本発明の他の実施例に係るPMサンプリング装
置を示す構成説明図FIG. 6 is a structural explanatory view showing a PM sampling device according to another embodiment of the present invention.
1 測定装置 2 高圧電源(負) 3 高圧電源(正) 4 電圧計 5 電流計 6 高圧ケーブル 7 絶縁フィルタホルダ 8 圧力センサ 9 コンピュータ 10 測定捕集部 11 試料ガス 12 サンプリング経路 14 導管 15 導管 16 高圧接触端子 17 温度計 21 保護用フィルタ 22 マスフローコントローラ 23 ポンプ 24 排出管 25 外部のヒータ 26 温度計 30 微粒子 31 大粒子の一部 32 多くの微粒子 50 針状電極 60 ダィリューショントンネル 61 サンプリングプローブ 100 フィルタ 101 金属線 102 金属線 103 金属線 104 金属線 105 周辺部 106 耐熱性O−リング 110 流路 111 不織布状111 101´ 金属メッシュ 102´ 金属メッシュ 103´ 金属メッシュ 104´ 金属メッシュ 112 ガラス繊維濾紙 1 Measuring device 2 High voltage power supply (negative) 3 High voltage power supply (positive) 4 voltmeter 5 ammeter 6 high voltage cable 7 Insulation filter holder 8 Pressure sensor 9 computers 10 Measurement collection unit 11 sample gas 12 sampling paths 14 conduits 15 conduits 16 High voltage contact terminal 17 Thermometer 21 Protective filter 22 Mass flow controller 23 pumps 24 discharge pipe 25 External heater 26 Thermometer 30 particles 31 Part of large particles 32 many particles 50 needle electrodes 60 Dilution Tunnel 61 Sampling probe 100 filters 101 metal wire 102 metal wire 103 metal wire 104 metal wire 105 peripheral area 106 Heat resistant O-ring 110 channel 111 Non-woven fabric 111 101 'metal mesh 102 'metal mesh 103 'metal mesh 104 'metal mesh 112 glass fiber filter paper
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B03C 3/47 B03C 3/14 A (72)発明者 浦川 英俊 東京都世田谷区玉堤1丁目19番4号 株 式会社司測研内 (72)発明者 斎藤 敬三 茨城県つくば市並木1丁目2番地 工業 技術院機械技術研究所内 (72)発明者 篠崎 修 茨城県つくば市並木1丁目2番地 工業 技術院機械技術研究所内 (72)発明者 瀬戸 章文 茨城県つくば市並木1丁目2番地 工業 技術院機械技術研究所内 (56)参考文献 特開 平11−230888(JP,A) 特開 昭62−5626(JP,A) 特開 平9−294940(JP,A) 特開 平8−33856(JP,A) 特開 平5−117837(JP,A) 特開 平11−142301(JP,A) 特公 平5−11899(JP,B2) 特公 昭59−10046(JP,B2) 特公 平6−21546(JP,B2) 柳原茂、浦川英俊、賀羽常道、上坂仲 宏、篠崎修、斉藤慶子、斉藤敬三,“1 ディーゼル排気粒状物質のニッケル板 フィルタによるサンプリング”,自動車 技術会学術講演会前刷集,日本,社団法 人自動車技術会,1999年 5月19日,第 1−99号,p.1−4 柳原茂、岡田道雄、成沢和幸,“CO 2変換を利用したディーゼル排気粒状物 質の測定”,自動車技術会学術講演会前 刷集,日本,社団法人自動車技術会, 1994年 4月20日,第943号,p.113− 116 (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 - 1/44 B03C 3/00 - 3/88 G01N 5/00 - 5/04 G01N 15/00 - 15/14 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI B03C 3/47 B03C 3/14 A (72) Inventor Hidetoshi Urakawa 1-19-4 Tamazutsumi, Setagaya-ku, Tokyo JIJI Kennai (72) Inventor Keizo Saito 1-2, Namiki, Tsukuba-shi, Ibaraki Institute of Mechanical Engineering, Institute of Industrial Technology (72) Inventor Osamu Shinozaki 1-2-2 Namiki, Tsukuba, Ibaraki Institute of Mechanical Engineering (72) ) Inventor Akifumi Seto, 1-2, Namiki, Tsukuba, Ibaraki, Institute of Mechanical Engineering, Institute of Industrial Technology (56) Reference JP-A-11-230888 (JP, A) JP-A-62-5626 (JP, A) Special Kaihei 9-294940 (JP, A) JP-A-8-33856 (JP, A) JP-A-5-117837 (JP, A) JP-A-11-142301 (JP, A) JP-B-5-11899 ( JP, B2) Special public 59-10046 (JP, B2) Japanese Patent Publication 6-21546 (JP, B2) Shigeru Yanagihara, Hidetoshi Urakawa, Tsunemichi Kaba, Nakahiro Uesaka, Osamu Shinozaki, Keiko Saito, Keizo Saito, "1 Nickel of diesel exhaust particulate matter" Sampling with a plate filter ”, Preprints of the Automotive Engineering Conference, Japan, Japan Society of Automotive Engineers, May 19, 1999, No. 1-99, p. 1-4 Shigeru Yanagihara, Michio Okada, Kazuyuki Naruzawa, "Measurement of Diesel Exhaust Particulate Matter Using CO 2 Conversion," Preprints for Academic Conferences of the Society of Automotive Engineers of Japan, Japan Society of Automotive Engineers, April 1994. 20th, 943, p. 113-116 (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 1/00-1/44 B03C 3/00-3/88 G01N 5/00-5/04 G01N 15/00-15 / 14 JISST file (JOIS)
Claims (6)
50μm以下の線径の細線を用いて200メッシュ以上
の密度で組み編んで構成した金網を単層または複数層利
用した金属メッシュフィルタからなる導電性のある捕集
用フィルタを構成して試料捕集部内の試料ガスの流路中
に配置してPM(微粒子)をサンプリング測定する装置
において、捕集用フィルタの上流に針状の電極を単数ま
たは複数配置して電圧を印加し、捕集用フィルタに逆の
電圧を印加して0.1μm以下の粒径の微粒子を含む微
粒子を捕集用フィルタにサンプリングして質量を測定す
ると共に、一定流量と一定温度を維持した条件において
微粒子をサンプリングしながら捕集用フィルタの前後圧
力を連続測定して、サンプリング経過中の微粒子濃度変
化をも検出することができる金属メッシュフィルタと電
圧印加を利用したPMサンプリング測定装置。1. A metal mesh filter using a single layer or a plurality of layers of a wire mesh made of a metal material having strength, heat resistance and corrosion resistance, which is braided at a density of 200 mesh or more using a fine wire having a wire diameter of 50 μm or less. In a device for sampling and measuring PM (particulates) by configuring a conductive collecting filter made of, which is arranged in the flow path of the sample gas in the sample collecting section, a needle-like filter is provided upstream of the collecting filter. A single electrode or a plurality of electrodes are arranged, a voltage is applied, a reverse voltage is applied to the collection filter, and fine particles containing fine particles having a particle size of 0.1 μm or less are sampled by the collection filter to measure the mass. At the same time, while continuously sampling the particles under the condition of maintaining a constant flow rate and a constant temperature, the pressure before and after the collection filter is continuously measured to detect the change in the particle concentration during the sampling process. PM sampling measurement apparatus utilizing metal mesh filter and a voltage application possible.
金属メッシュフィルタの金網を複数層用いてその金網層
の間に10μm以下の線径の金属線を含む耐熱性と耐蝕
性がある金属ファイバーを不織布状の層として配置して
捕集用フィルタを構成し、0.1μm以下の粒径の微粒
子を含む微粒子を捕集用フィルタにサンプリングして質
量を測定すると共に、一定流量と一定温度を維持した条
件において微粒子をサンプリングしながら捕集用フィル
タの前後圧力を連続測定して、サンプリング経過中の微
粒子濃度変化をも検出することができる金属メッシュフ
ィルタと電圧印加を利用したPMサンプリング測定装
置。2. The PM sampling apparatus according to claim 1, wherein a plurality of metal mesh filter metal meshes are used, and between the metal mesh layers, metal fibers having a wire diameter of 10 μm or less and having heat resistance and corrosion resistance are used as a non-woven fabric. Conditions for maintaining a constant flow rate and a constant temperature while sampling the fine particles containing fine particles having a particle diameter of 0.1 μm or less by the collecting filter to determine the mass. A PM sampling measuring device using a metal mesh filter and voltage application capable of continuously measuring the front-back pressure of a collecting filter while sampling fine particles and detecting a change in fine particle concentration during sampling.
金属メッシュフィルタの金網を一層以上用いてその下流
側に非導電性のガラス繊維などの非導電性ファイバーで
作られた非導電性ファイバーフィルタを合わせて捕集用
フィルタを構成し、0.1μm以下の粒径の微粒子は主
として金網の金属メッシュフィルタに捕集され、残りの
微粒子は非導電性ファイバーフィルタに捕集されるよう
に構成し、微粒子をサンプリングして質量を測定すると
ともに、一定流量と一定温度を維持した条件において捕
集用フィルタの前後圧力を連続測定して、サンプリング
経過中の微粒子濃度変化をも検出することができる金属
メッシュフィルタと電圧印加を利用したPMサンプリン
グ測定装置。3. The PM sampling apparatus according to claim 1, wherein one or more metal mesh filter wire meshes are used, and a non-conductive fiber filter made of non-conductive fiber such as non-conductive glass fiber is provided on the downstream side thereof. The filter for collection is constituted so that fine particles having a particle size of 0.1 μm or less are mainly collected by the metal mesh filter of the wire mesh, and the remaining fine particles are collected by the non-conductive fiber filter. A metal mesh filter capable of detecting the change in particle concentration during sampling by continuously measuring the front and rear pressures of the collection filter under the condition that a constant flow rate and a constant temperature are maintained while sampling and measuring the mass. PM sampling measurement device using voltage application.
のPMサンプリング装置において温度条件を常温から2
00℃以上の範囲に亘って変更設定できるようにし、温
度の相違による捕集量の変化からPM成分の解析が可能
となるようにした、一定流量と一定温度を維持した条件
において微粒子をサンプリングしながら捕集用フィルタ
の前後圧力を連続測定して、サンプリング経過中の微粒
子濃度変化をも検出することができる金属メッシュフィ
ルタと電圧印加を利用したPMサンプリング測定装置。4. In the PM sampling apparatus according to any one of the above 1, 2 and 3, the temperature condition is from room temperature to 2
Fine particles were sampled under the condition that a constant flow rate and a constant temperature were maintained so that the PM component could be analyzed from the change in the trapped amount due to the difference in temperature, so that it could be changed and set over the range of 00 ° C or higher. Meanwhile, a PM sampling measuring device using a metal mesh filter and voltage application capable of continuously measuring the front and rear pressures of the collecting filter to detect even a change in particle concentration during sampling.
2組以上の測定装置を並列的に配置し、それぞれのフィ
ルタの温度条件を含む測定捕集部の温度条件を相違のあ
る条件に設定し、連続測定の実時間にPM成分の解析が
可能となるようにした、前記2組以上の測定装置により
一定の流量と温度条件において微粒子をサンプリングし
ながらフィルタの前後圧力を連続測定して、サンプリン
グ経過中の微粒子濃度変化をも検出することができる金
属メッシュフィルタと電圧印加を利用したPMサンプリ
ング測定装置。5. The PM sampling device according to claim 3, wherein two or more sets of measuring devices are arranged in parallel, and the temperature conditions of the measuring and collecting section including the temperature conditions of each filter are set to different conditions, and continuous. The PM pressure component can be analyzed in real time of measurement, and the pressure before and after the filter is continuously measured while sampling fine particles under a constant flow rate and temperature condition by the two or more sets of measuring devices, and the sampling is in progress. PM sampling measurement device that uses a metal mesh filter and voltage application that can detect changes in the concentration of fine particles.
れか一項の金属メッシュフィルタにおいて耐熱性と耐蝕
性がある金属材料としてSUS 316,304などの
ステンレス鋼を用いたことを特徴とする金属メッシュフ
ィルタと電圧印加を利用したPMサンプリング装置。6. A stainless steel such as SUS 316, 304 is used as the metal material having heat resistance and corrosion resistance in the metal mesh filter according to any one of the above 1, 2, 3, 4 and 5. A PM sampling device using a characteristic metal mesh filter and voltage application.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000139665A JP3494952B2 (en) | 2000-05-12 | 2000-05-12 | PM sampling measurement device using metal mesh filter and voltage application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000139665A JP3494952B2 (en) | 2000-05-12 | 2000-05-12 | PM sampling measurement device using metal mesh filter and voltage application |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001324422A JP2001324422A (en) | 2001-11-22 |
JP3494952B2 true JP3494952B2 (en) | 2004-02-09 |
Family
ID=18647073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000139665A Expired - Fee Related JP3494952B2 (en) | 2000-05-12 | 2000-05-12 | PM sampling measurement device using metal mesh filter and voltage application |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3494952B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4674071B2 (en) * | 2004-09-29 | 2011-04-20 | シャープ株式会社 | Gas purifier |
DE102013001163B3 (en) * | 2013-01-24 | 2014-04-30 | Chemin Gmbh | Grid probe for measuring deposit-forming components in gas streams in boilers of incinerators, has probe body, which is designed as pipe, where pipe has device for heating or cooling interior of grid probe or grid |
CN114460195B (en) * | 2022-01-27 | 2023-09-22 | 河北科技大学 | Sampling detection method for perfluoro and polyfluoroalkyl compounds in atmospheric particulates |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5910046B2 (en) * | 1977-03-28 | 1984-03-06 | 新田ベルト株式会社 | Charge retention structure of electrified air filter media |
JPS625626A (en) * | 1985-07-02 | 1987-01-12 | 東レ株式会社 | Antistatic electret sheet and making thereof |
JPS63261137A (en) * | 1987-04-17 | 1988-10-27 | Agency Of Ind Science & Technol | Mass measuring instrument for fine particulate material |
JPH0621546B2 (en) * | 1988-03-11 | 1994-03-23 | 工業技術院長 | Method and apparatus for treating particulate matter in exhaust gas |
JP2977970B2 (en) * | 1991-10-28 | 1999-11-15 | 松下電器産業株式会社 | Sample collecting filter, method for producing the same, and sample measuring device |
JP3445372B2 (en) * | 1994-07-25 | 2003-09-08 | 日本バイリーン株式会社 | Charged filter |
JPH09294940A (en) * | 1996-05-07 | 1997-11-18 | Morita Denko Kk | Electrostatic air cleaner |
JP3491732B2 (en) * | 1997-11-12 | 2004-01-26 | 日野自動車株式会社 | Device for collecting trace components in exhaust gas |
JPH11230888A (en) * | 1998-02-16 | 1999-08-27 | Tsukasa Sokken:Kk | Apparatus for measuring granular substance in gas |
-
2000
- 2000-05-12 JP JP2000139665A patent/JP3494952B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
柳原茂、岡田道雄、成沢和幸,"CO2変換を利用したディーゼル排気粒状物質の測定",自動車技術会学術講演会前刷集,日本,社団法人自動車技術会,1994年 4月20日,第943号,p.113−116 |
柳原茂、浦川英俊、賀羽常道、上坂仲宏、篠崎修、斉藤慶子、斉藤敬三,"1 ディーゼル排気粒状物質のニッケル板フィルタによるサンプリング",自動車技術会学術講演会前刷集,日本,社団法人自動車技術会,1999年 5月19日,第1−99号,p.1−4 |
Also Published As
Publication number | Publication date |
---|---|
JP2001324422A (en) | 2001-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10364717B2 (en) | Methods and systems for increasing particulate matter deposition in an exhaust particulate matter sensor | |
Zukeran et al. | Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes | |
US6737286B2 (en) | Apparatus and method for fabricating arrays of atomic-scale contacts and gaps between electrodes and applications thereof | |
Han et al. | Unipolar charging of fine and ultra-fine particles using carbon fiber ionizers | |
US20010035044A1 (en) | Measuring arrangement and method for determination of soot concentrations | |
Choi et al. | Highly sensitive hydrogen sensor based on suspended, functionalized single tungsten nanowire bridge | |
Fierz et al. | Theoretical and experimental evaluation of a portable electrostatic TEM sampler | |
Leith et al. | Development of a transfer function for a personal, thermophoretic nanoparticle sampler | |
CN102095781A (en) | Carbon nano tube film ionizing sensor and method for detecting concentration of single gas based on same | |
Järvinen et al. | Particle charge-size distribution measurement using a differential mobility analyzer and an electrical low pressure impactor | |
JP3494952B2 (en) | PM sampling measurement device using metal mesh filter and voltage application | |
JP2011033577A (en) | Fine particle sensor | |
CN102095787B (en) | Carbon nanotube film three-electrode ethylene sensor and its concentration measurement method | |
CN102095783B (en) | Carbon nano tube film three-electrode sensor array and method for detecting concentration of mixed gas | |
Montrose et al. | Impedimetric immunosensor for the detection of circulating pro-inflammatory monocytes as infection markers | |
de Aquino Lima et al. | Collection of nanoparticles by electrostatic precipitation operating over a wide range of electric fields | |
CN102095786B (en) | Carbon nanotube film three-electrode hydrogen sensor and its concentration measurement method | |
Li et al. | Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor | |
Wardoyo et al. | A DC low electrostatic filtering system for PM2. 5 motorcycle emission | |
Kuuluvainen et al. | Triboelectric charging of fungal spores during resuspension and rebound | |
CN102095788A (en) | Carbon nano tube film three-electrode oxygen sensor and concentration measuring method thereof | |
CN102095791A (en) | Carbon nano tube film three-electrode sensor and method for detecting concentration of two-component gas | |
CN102095789B (en) | Carbon nanotube film ionizing sensor and method for detecting concentration of bi-component gas | |
JP5140493B2 (en) | Gas sensor and gas sensor manufacturing method | |
Asbach et al. | Development of an electrostatic partitioner for highly efficient partitioning of gas and particles with minimal effect on the gas phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |