JP3491625B2 - Fe-Cr alloy with excellent initial rust resistance, workability and weldability - Google Patents
Fe-Cr alloy with excellent initial rust resistance, workability and weldabilityInfo
- Publication number
- JP3491625B2 JP3491625B2 JP2001148701A JP2001148701A JP3491625B2 JP 3491625 B2 JP3491625 B2 JP 3491625B2 JP 2001148701 A JP2001148701 A JP 2001148701A JP 2001148701 A JP2001148701 A JP 2001148701A JP 3491625 B2 JP3491625 B2 JP 3491625B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- workability
- toughness
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐初期発錆性、加
工性および溶接性に優れたFe−Cr合金に関し、特に耐初
期発錆性、曲げ加工性および溶接部靱性が要求される土
木・建築構造用材料としての用途に供して好適なもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-Cr alloy excellent in initial rust resistance, workability and weldability, and particularly civil engineering requiring initial rust resistance, bending workability and weld toughness. -It is suitable for use as a material for building structures.
【0002】[0002]
【従来の技術】土木・建築構造用材料としては、従来、
主に SS400等の普通鋼、SM490 等の高張力鋼およびこれ
らの鋼材に塗装やめっきを施した材料が使用されてき
た。しかしながら、近年、設計の多様化に伴い、各種材
料の利用が検討されはじめている。2. Description of the Related Art Conventional materials for civil engineering and construction have
Mainly used are plain steels such as SS400, high-strength steels such as SM490, and materials obtained by painting or plating these steel materials. However, in recent years, with the diversification of designs, the use of various materials has begun to be examined.
【0003】中でも、耐食性や意匠性に優れたFe−Cr合
金は、発銹に対する保守費用がほとんど必要ないため、
ライフサイクルコスト(LCC)の観点から見ると、極
めて魅力的な材料といえる。特に、海岸地帯に建設され
る建築物は、短寿命なことに加え、腐食抑制のための保
守費用が増大するという問題を抱えており、またウォー
ターフロント開発を推進する上でも、耐食性と溶接性、
特に耐初期発錆性に優れた土木・建築構造用耐食性機能
材としてのFe−Cr合金の役割が大いに期待されている。Among them, Fe-Cr alloys having excellent corrosion resistance and designability require almost no maintenance cost for rusting.
From the viewpoint of life cycle cost (LCC), it is an extremely attractive material. In particular, buildings constructed in coastal areas have the problems of short life and increased maintenance costs for corrosion control, and in promoting waterfront development, corrosion resistance and weldability are also high. ,
In particular, the role of Fe-Cr alloys as a corrosion-resistant functional material for civil engineering and building structures, which has excellent initial rust resistance, is highly expected.
【0004】Fe−Cr合金は、その金属組織から、SUS430
に代表されるフェライト系ステンレス鋼、SUS410鋼に代
表されるマルテンサイト系ステンレス鋼、 SUS 304に代
表されるオーステナイト系ステンレス鋼、 SUS 329に代
表される2相ステンレス鋼および SUS 630に代表される
析出硬化型鋼に大別される。このような各種Fe−Cr合金
の中で、従来から土木・建築構造用材料として検討され
てきたのは、材料強度、耐食性、溶接の容易さ、溶接部
靱性および汎用性を含めて使用実績が最も多い、オース
テナイト系ステンレス鋼である。The Fe--Cr alloy is SUS430 because of its metallic structure.
Typified by ferritic stainless steel, martensitic typified by SUS410 steel, austenitic typified by SUS 304, duplex stainless steel typified by SUS 329, and precipitation typified by SUS 630. It is roughly classified into hardened steel. Among such various Fe-Cr alloys, what has been conventionally considered as a material for civil engineering / building structures is material strength, corrosion resistance, ease of welding, weld toughness, and versatility in use. Most common is austenitic stainless steel.
【0005】かようなオーステナイト系ステンレス鋼
は、強度、耐食性、耐火性および溶接部靱性等の土木・
建築用材料に要求される特性を十分に満足する特性を有
している。しかしながら、このオーステナイト系ステン
レス鋼は、
1) NiやCr等の合金元素を多量に含有しているために、
普通鋼に比べると格段に高価であること、
2) 応力腐食割れを生じること、
3) 熱膨張率が普通鋼に比べて大きく、また熱伝導度が
比較的小さいために、溶接時の熱影響に起因した歪みが
蓄積し易く、精度を要求される部材等には適用が難しい
こと、などのため、普通鋼や普通鋼に塗装やめっきを施
した材料が使用されていた汎用構造材への適用は難し
く、適用範囲が制限されるという問題があった。Such an austenitic stainless steel is used for civil engineering such as strength, corrosion resistance, fire resistance and weld toughness.
It has properties that sufficiently satisfy the properties required for building materials. However, this austenitic stainless steel contains 1) a large amount of alloying elements such as Ni and Cr,
It is much more expensive than ordinary steel, 2) causes stress corrosion cracking, 3) has a higher coefficient of thermal expansion than ordinary steel, and has a relatively low thermal conductivity, so thermal effects during welding The strain caused by is easy to accumulate, and it is difficult to apply it to members that require high accuracy, so for general-purpose structural materials where ordinary steel or a material coated or plated on ordinary steel was used. It was difficult to apply and there was a problem that the range of application was limited.
【0006】このため、最近では、めっきや塗装を施し
た普通鋼の代替として、Cr含有量が15mass%以下の低Cr
含有合金鋼の土木・建築用材料への適用が検討されつつ
ある。例えば、マルテンサイト系ステンレス鋼の土木・
建材用途への適用がその例である。Cr量が15mass%以下
のFe−Cr合金は、前述したとおり、Niを含有するFe−Cr
−Ni合金に比べてCr量が少ないだけでなく、Ni含有量も
少ないために、格段に安価であり、また熱膨張率が小さ
くかつ熱伝導率が大きいことの他、普通鋼に比べて耐食
性に優れ、しかも高耐力を有するという特長がある。ま
た、マルテンサイト系ステンレス鋼は、15mass%以上の
Crを含有する高Cr合金で問題になるσ脆化や 475℃脆化
等の心配がなく、さらにオーステナイト系ステンレス鋼
で問題となる塩化物環境下での応力腐食割れの心配もな
いという利点がある。Therefore, recently, as an alternative to plated or coated ordinary steel, a low Cr content of 15 mass% or less
The application of the alloy steel containing is being considered for civil engineering and construction materials. For example, civil engineering martensitic stainless steel
An example is application to building materials. The Fe-Cr alloy having a Cr content of 15 mass% or less is, as described above, Fe-Cr containing Ni.
-Not only is the amount of Cr less than that of Ni alloys, but also the amount of Ni is much less, so it is much cheaper, and has a smaller coefficient of thermal expansion and higher thermal conductivity, and corrosion resistance compared to ordinary steel. It has excellent characteristics and has a high yield strength. In addition, martensitic stainless steel contains 15 mass% or more.
There is no concern about σ embrittlement or 475 ° C embrittlement, which is a problem with high Cr alloys containing Cr, and there is no concern about stress corrosion cracking in a chloride environment, which is a problem with austenitic stainless steel. is there.
【0007】しかしながら、 SUS 410に代表されるマル
テンサイト系ステンレス鋼は、C含有量が 0.1mass%程
度と高いため、溶接部靱性や溶接部の加工性に劣り、し
かも溶接に際しては予熱を必要とし、溶接作業性にも劣
ることから、溶接が必要な部材への適用には問題を残し
ていた。However, the martensitic stainless steel typified by SUS 410 has a high C content of about 0.1 mass%, and therefore has poor weld toughness and workability, and requires preheating during welding. However, since the welding workability is also inferior, there remains a problem in application to members requiring welding.
【0008】上記の問題の対策として、例えば特公昭51
−13463 号公報には、Cr:10〜18mass%,Ni:0.1 〜3.
4 mass%, Si:1.0 mass%以下およびMn:4.0 mass%以
下を含有し、さらにC:0.030 mass%以下, N:0.020
mass%以下に低減し、溶接熱影響部にマッシブマルテン
サイト組織を生成させることによって、溶接部の性能を
向上させた溶接構造用マルテンサイト系ステンレス鋼が
提案されている。As a measure against the above problem, for example, Japanese Patent Publication No. 51
In the −13463 publication, Cr: 10-18 mass%, Ni: 0.1-3.
4 mass%, Si: 1.0 mass% or less and Mn: 4.0 mass% or less, further C: 0.030 mass% or less, N: 0.020
A martensitic stainless steel for welded structures has been proposed in which the performance of the welded portion is improved by reducing the mass% or less and generating a massive martensitic structure in the heat affected zone of the welded material.
【0009】また、特公昭57−28738 号公報には、Cr:
l0〜13.5mass%,Si:0.5 mass%以下およびMn:1.0 〜
3.5 mass%を含有し、またC:0.020 mass%以下, N:
0.020 mass%以下に低減した上で、さらにNiを 0.1mass
%未満と厳しく制限することによって、溶接前後におけ
る予熱、後熱を必要としない、溶接部靱性および加工性
に優れた構造用マルテンサイト系ステンレス鋼が提案さ
れている。In addition, Japanese Patent Publication No. 57-28738 discloses Cr:
l0 to 13.5 mass%, Si: 0.5 mass% or less and Mn: 1.0 to
Contains 3.5 mass%, C: 0.020 mass% or less, N:
After reducing it to 0.020 mass% or less, add 0.1 mass% of Ni.
A martensitic stainless steel for structure, which does not require preheating or postheating before and after welding and is excellent in weld toughness and workability, has been proposed by strictly limiting it to less than 10%.
【0010】しかしながら、特公昭51−13463 号公報や
特公昭57−28738 号公報に開示された技術では、以下に
述べるような、土木・建築構造材に特有の問題に対する
対策が講じられていないところに問題を残していた。す
なわち、土木・建築構造用途への適用を考えた場合、柱
や梁といった部材は、建造物の完成後に外壁材のような
厳しい環境に曝されることがない。ところが、工場にお
いてパイプや形鋼といった構造用部材に加工し出荷した
のち、構造物の施工が終了するまでの数カ月といった短
期間の間は屋外に放置される場合がある。このため、鋼
材の耐初期発錆性を向上させ、出荷後の施工期間中に生
じる初期錆の発生を抑えることは、外観上重要であるば
かりでなく、完成後の構造物の耐久性の観点からも重要
である。また、土木・建築構造材料として用いる場合、
表面性状に対する要求が低いので、熱延まま、あるいは
熱延焼鈍ままで、鋼板の表面にスケールが付着した状態
での使用が可能であることが経済的観点から望ましい。
さらに、種々の形状をもった形鋼などへの加工を考えた
場合、鋼板の靱性、特に母材鋼板や溶接部における伸び
および曲げ加工性の改善に対する要求が大きい。However, in the technology disclosed in Japanese Patent Publication No. 51-13463 and Japanese Patent Publication No. 57-28738, no measures are taken for the following problems peculiar to civil engineering and construction structural materials. Was leaving a problem with. That is, in consideration of application to civil engineering / construction structure applications, members such as columns and beams are not exposed to a severe environment such as outer wall materials after the completion of the building. However, after being processed into structural members such as pipes and shaped steel at the factory and shipped, they may be left outdoors for a short period such as several months until the construction of the structure is completed. Therefore, improving the initial rust resistance of steel materials and suppressing the occurrence of initial rust that occurs during the construction period after shipping is not only important in terms of appearance, but also in terms of durability of the structure after completion. Is also important. When used as a civil engineering / construction structure material,
Since the requirement for surface properties is low, it is desirable from an economical point of view that it can be used as hot-rolled or as hot-rolled annealed and with the scale adhered to the surface of the steel sheet.
Further, when considering processing into shaped steels having various shapes, there is a great demand for improving the toughness of the steel sheet, particularly the elongation and bending workability of the base steel sheet and the welded portion.
【0011】このような問題に対し、特開平11−302796
号公報には、C:0.005 〜0.1 mass%,Si:0.05〜1.5
mass%, Mn:0.05〜1.5 mass%,P:0.04mass%以下,
S:0.05mass%以下,Cr:10〜15mass%,N:0.055 ma
ss%以下で、かつ(C+N):0.1 mass%以下に低減し
た上で、さらにNi, Cuの1種または2種を 0.1mass%以
上、1.0 mass%未満の範囲で含有し、残部はFeおよび不
可避的不純物の成分組成とすることからなる、耐食性に
優れた建築構造用ステンレス熱延鋼帯とその製造方法が
提案されている。To solve such a problem, Japanese Unexamined Patent Publication No. 11-302796
In the publication, C: 0.005 to 0.1 mass%, Si: 0.05 to 1.5
mass%, Mn: 0.05 to 1.5 mass%, P: 0.04 mass% or less,
S: 0.05 mass% or less, Cr: 10-15 mass%, N: 0.055 ma
ss% or less and (C + N): reduced to 0.1 mass% or less, and further contains one or two kinds of Ni and Cu in a range of 0.1 mass% or more and less than 1.0 mass% with the balance being Fe and There has been proposed a stainless hot-rolled steel strip for a building structure having excellent corrosion resistance and a method for producing the same, which has a composition of inevitable impurities.
【0012】また、特開平11−302797号公報には、C:
0.005 〜0.1 mass%,Si:0.05〜1.5 mass%,Mn:0.05
〜1.5 mass%,P:0.04mass%以下,S:0.05mass%以
下,Cr:10〜15mass%,N:0.055 mass%以下で、かつ
(C+N):0.1 mass%以下に低減した上で、さらにN
i,Cuの1種または2種を 0.1mass%以上、1.0 mass%
未満の範囲で含有し、残部はFeおよび不可避的不純物の
成分組成になり、しかも熱延後のスケールを機械的に剥
離した後の熱延鋼帯の表面金属層1μm 当たりの平均Cr
量を7mass%以上とすることからなる、耐食性に優れた
建築構造用ステンレス熱延鋼帯とその製造方法が提案さ
れている。Further, in Japanese Patent Laid-Open No. 11-302797, C:
0.005 to 0.1 mass%, Si: 0.05 to 1.5 mass%, Mn: 0.05
-1.5 mass%, P: 0.04 mass% or less, S: 0.05 mass% or less, Cr: 10-15 mass%, N: 0.055 mass% or less, and (C + N): 0.1 mass% or less, and further N
i, Cu 1 type or 2 types, 0.1 mass% or more, 1.0 mass%
The content of Fe in the balance is less than Fe, the balance is Fe and inevitable impurities, and the average Cr per 1 μm of the surface metal layer of the hot-rolled steel strip after mechanical peeling of the scale after hot-rolling.
There has been proposed a stainless hot-rolled steel strip for a building structure, which is excellent in corrosion resistance, and a method for producing the same, which comprises a content of 7 mass% or more.
【0013】しかしながら、上記した特開平11−302796
号公報および特開平11−302797号公報に開示された技術
では、従来からその効果が知られているNi, Cu添加によ
る耐錆性の改善技術を利用しているだけで、鋼板の靱
性、特に母材鋼板や溶接部における伸びおよび曲げ加工
性を損なうことなく耐初期発錆性を改善する手法に関し
ては、十分な開示はなく、その改善が望まれていた。However, the above-mentioned Japanese Patent Laid-Open No. 11-302796
In the technology disclosed in Japanese Patent Laid-Open No. 11-302797 and JP-A-11-302797, the toughness of steel sheet, There is no sufficient disclosure regarding the method of improving the initial rust resistance without impairing the elongation and bending workability of the base steel sheet and the welded portion, and the improvement thereof has been desired.
【0014】その他、Fe−Cr合金の耐食性や溶接性、溶
接部靱性を改善する方法としては、高純度化、さらには
それに加えて炭素や窒素を炭化物や窒化物として固定す
るためのNb,Tiの添加が有効であることから、かような
手段によって製造した種々の鋼が開発されている。例え
ば、特開昭60−13060 号公報には、炭素・窒素安定化元
素であるNbを適量添加することによって耐食性の改善を
図ったステンレス鋼が開示されており、さらにこれに加
えてMo,Ni,Cu等を添加すると耐食性が一層向上するこ
とが示されている。In addition, as a method for improving the corrosion resistance, weldability, and toughness of the welded portion of the Fe-Cr alloy, it is possible to improve the purity and, in addition to that, Nb and Ti for fixing carbon and nitrogen as carbides and nitrides. Since the addition of Al is effective, various steels produced by such means have been developed. For example, JP-A-60-13060 discloses a stainless steel whose corrosion resistance is improved by adding Nb, which is a carbon / nitrogen stabilizing element, in addition to Mo, Ni. It has been shown that the addition of Cu, Cu, etc. further improves the corrosion resistance.
【0015】しかしながら、例えば溶接構造材用途を考
慮した鋼材に関し、特に出荷から施工時までの耐初期発
錆性を効果的に改善する技術については、十分な検討が
行われておらず、先に延べたような従来から知られてい
るCu,Ni,Mo,TiおよびNbといった合金元素の添加や
C,Nの低減といった技術に加え、さらなる改善方法の
確立が要望されていた。However, for example, with regard to steel materials in consideration of welded structural material applications, a technique for effectively improving the initial rust resistance from shipping to construction has not been sufficiently studied, and it has not been examined before. In addition to the previously known techniques of adding alloying elements such as Cu, Ni, Mo, Ti and Nb and reducing C and N, it has been demanded to establish a further improvement method.
【0016】[0016]
【発明が解決しようとする課題】本発明は、上記の現状
に鑑み開発されたもので、溶接性や耐食性、加工性に優
れるのはいうまでもなく、耐初期発錆性にも優れたFe−
Cr合金を提案することを目的とする。DISCLOSURE OF THE INVENTION The present invention was developed in view of the above situation, and needless to say, it is excellent in weldability, corrosion resistance, and workability, and is also excellent in initial rust resistance. −
The purpose is to propose a Cr alloy.
【0017】[0017]
【課題を解決するための手段】さて、発明者らは、上記
の目的を達成するために、各種元素について綿密な検討
を行った。特にCo,V,Wに注目して、Cr含有量が15ma
ss%未満のFe−Cr合金において、溶接性および溶接部靱
性および初期発錆性に及ぼすこれらの元素の影響につい
て調査した。従来、溶接部の割れ感受性を低下させ、か
つ鋼板の靱性、耐初期発錆性、延性および加工性を確保
するためには、Ni当量(例えば、=Ni+30C+0.5 Mn)
やCr当量(例えば、=Cr+Mo+1.5 Si+0.5 Nb)の適正
化に加え、特にCr,MoNiやC,N,Nb,Ti等の元素の調
整が主に検討されてきた。しかしながら、Co,V,Wに
関しては、耐初期発錆性やフェライト相(α相)および
オーステナイト相(γ相)の安定性に影響を与えるにも
係わらず、Cr当量やNi当量に及ぼす影響、溶接部および
スケールが付着した母材部の初期発錆性に及ぼす影響に
ついての詳細な検討はされていなかった。[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventors have conducted a detailed study on various elements. Paying particular attention to Co, V, and W, the Cr content is 15 ma
In Fe-Cr alloys with less than ss%, the effects of these elements on weldability, weld toughness, and initial rust resistance were investigated. Conventionally, Ni equivalent (for example, = Ni + 30C + 0.5 Mn) is used to reduce crack susceptibility of welds and to secure toughness, initial rust resistance, ductility and workability of steel sheets.
In addition to optimizing Cr and Cr equivalents (eg, = Cr + Mo + 1.5 Si + 0.5 Nb), adjustments of elements such as Cr, MoNi, C, N, Nb, and Ti have been mainly studied. However, with regard to Co, V, and W, the effects on the Cr equivalent and Ni equivalent, despite affecting the initial rust resistance and the stability of the ferrite phase (α phase) and austenite phase (γ phase), No detailed study on the effect of welds and scale on the initial rusting property of the base metal part to which the scale is attached has been made.
【0018】本発明では、相安定性に及ぼすこれら元素
の影響を把握すると共に、特に溶接部近傍の耐初期発錆
性やスケールが付着した状態の鋼板の耐初期発錆性に及
ぼすCo,V,Wの影響を詳細に調査することによって、
靱性や耐初期発錆性に及ぼすこれらの元素の影響を定量
的に評価し、これらの元素の適正な範囲および適正な比
率を明らかにした。In the present invention, the effects of these elements on the phase stability are ascertained, and in particular, Co and V which affect the initial rust resistance near the welded portion and the initial rust resistance of the steel sheet with scale attached. , By examining the effect of W in detail,
The effects of these elements on toughness and initial rust resistance were quantitatively evaluated and the proper range and proper ratio of these elements were clarified.
【0019】すなわち、次式(1)
X値=Cr+Mo+1.5 Si+0.5 Nb+0.2 V+0.3 W+8Al
−Ni−0.6 Co−0.5 Mn−30C−30N−0.5 Cu --- (1)
で示されるX値を用いて、オーステナイト相の安定化ひ
いては溶接部靱性に及ぼすCo, V, Wの影響を評価する
ことが可能であり、この値が所定の範囲を満足するよう
に合金の成分調整を行うことによって、溶接熱影響部が
実質的にマルテンサイト組織となり、溶接部靱性が改善
されることを見出した。ここで、(1) 式中のCr, Mo, S
i, Nb, V, W, Al, Ni, Co, Mn, C, NおよびCuはそ
れぞれ、各元素の含有量(mass%)を意味する。That is, the following expression (1) X value = Cr + Mo + 1.5 Si + 0.5 Nb + 0.2 V + 0.3 W + 8 Al-Ni-0.6 Co-0.5 Mn-30C-30N-0.5 Cu --- (1) It is possible to evaluate the effect of Co, V, and W on the stabilization of the austenite phase and by extension on the toughness of the weld using the X value, and the composition of the alloy is adjusted so that this value satisfies the specified range. As a result, it has been found that the heat-affected zone of the weld has a substantially martensitic structure and the toughness of the weld is improved. Here, Cr, Mo, S in equation (1)
i, Nb, V, W, Al, Ni, Co, Mn, C, N and Cu mean the content (mass%) of each element.
【0020】図1は、この知見を得るに至った実験結果
の例で、X値と溶接部靱性(シャルピー衝撃値試験にお
ける吸収エネルギー)との関係について調べた結果であ
る。同図に示したとおり、X値を11.0以下とすることに
よって、溶接部靱性は格段に向上する。FIG. 1 is an example of the experimental results that led to this finding, and shows the results of examining the relationship between the X value and the toughness of the welded portion (absorbed energy in the Charpy impact value test). As shown in the figure, by setting the X value to 11.0 or less, the weld toughness is remarkably improved.
【0021】さらに、次式(2)
Z値=(Co+1.5 V+4.8 W) --- (2)
で示されるZ値によって、溶接部とスケールの付着した
鋼板の耐初期発錆性に及ぼすCo,V,Wの影響について
調査したところ、上記(1) 式で示されるX値を所定の範
囲に調整した鋼に対し、上記(2) 式が所定の範囲を満足
するように合金の成分調整を行うことによって、溶接部
靱性を損なうことなしに、耐食性、特に耐初期発錆性と
加工性がバランスよく改善されることを究明した。ここ
で、(2) 式中のCo, VおよびWはそれぞれ、各元素の含
有量(mass%)を意味する。Further, the Z value represented by the following equation (2) Z value = (Co + 1.5 V + 4.8 W) --- (2) gives the initial rust resistance of the steel sheet with the welded portion and scale attached. The effects of Co, V, and W on the alloys were investigated, and it was found that for steels whose X value shown in the above formula (1) was adjusted to a predetermined range, By adjusting the composition, it was clarified that the corrosion resistance, particularly the initial rust resistance and the workability are improved in a balanced manner without impairing the toughness of the weld. Here, Co, V and W in the formula (2) mean the contents (mass%) of each element.
【0022】図2および図3は、上記の知見を得るに至
った実験結果の例で、溶接部およびスケールの付着した
母材鋼板における発錆起点数とZ値との関係について調
べた結果を、それぞれ示した図である。図2,3に示し
たとおり、Z値が0.03以上になると発錆起点数は急激に
減少し、耐初期発錆性が改善されることが判る。FIGS. 2 and 3 are examples of the experimental results that lead to the above findings. The results of examining the relationship between the rust starting point number and the Z value in the base material steel sheet with the welded portion and scale attached are shown. , Respectively. As shown in FIGS. 2 and 3, it can be seen that when the Z value is 0.03 or more, the number of rust starting points sharply decreases and the initial rust resistance is improved.
【0023】また、上記成分に調整した鋼に関して、溶
接部や母材鋼板の延性、加工性の向上を目的に、Cおよ
びNに着目して検討を行った。図1には、X値と溶接部
靱性との関係について、C/N比が 0.6以下の場合とC
/N比が 0.6超の場合とに分けて示したが、同図に示し
たとおり、C/N比が0.6以下の場合の方が溶接部靱性
は優れている。Further, with respect to the steels adjusted to the above-mentioned components, an examination was conducted focusing on C and N for the purpose of improving the ductility and workability of the welded portion and the base steel sheet. FIG. 1 shows the relationship between the X value and the toughness of the welded portion when the C / N ratio is 0.6 or less and
The case where the / N ratio exceeds 0.6 is shown separately, but as shown in the figure, the weld toughness is superior when the C / N ratio is 0.6 or less.
【0024】さらに、図4には、C/N比と母材鋼板の
伸びおよび溶接部のシャルピー衝撃値試験から求めた遷
移温度(延性破面率が 100%となる温度における吸収エ
ネルギーの 1/2の値となる吸収エネルギーが得られる温
度)との関係について調べた結果を示す。同図から明ら
かなように、C/N比を 0.6以下に調整することによっ
て、溶接部靱性が向上するだけでなく、母材鋼板の延性
(伸び)が向上し、加工性も改善されることが判る。さ
らに、実施例において後述するように、C/N比を調整
することによって、母材鋼板の靱性も向上する。Further, in FIG. 4, the transition temperature (1 / of the absorbed energy at the temperature at which the ductile fracture surface ratio becomes 100%) was obtained from the C / N ratio, the elongation of the base steel sheet and the Charpy impact value test of the welded portion. The following shows the results of an examination of the relationship with the temperature at which the absorbed energy of 2 is obtained). As is clear from the figure, by adjusting the C / N ratio to 0.6 or less, not only the weld toughness is improved, but also the ductility (elongation) of the base steel sheet is improved and the workability is also improved. I understand. Further, as described later in Examples, adjusting the C / N ratio also improves the toughness of the base steel sheet.
【0025】上述したようにして、高価なNi,Cu,Cr,
Mo等を極端に多く添加したり、Nb,Tiの添加、さらには
C,Nを極端に低減することなしに、溶接部の靱性を確
保し、さらには溶接部およびスケールが付着した鋼板の
耐初期発錆性や加工性をバランス良く有利に改善できる
ことが究明されたのであり、これが本発明の重要な骨子
である。As described above, expensive Ni, Cu, Cr,
The toughness of the welded part is ensured without the addition of extremely large amounts of Mo, Nb and Ti, and the extreme reduction of C and N. Furthermore, the welded part and the resistance of the steel plate with scale attached It has been clarified that the initial rusting property and workability can be improved in a well-balanced manner, and this is an important essence of the present invention.
【0026】 すなわち、本発明の要旨構成は次のとお
りである。
1.C:0.0025mass%超、0.03mass%未満、
N:0.0025mass%超、0.03mass%未満、
Si:0.1 mass%超、2.0 mass%未満、
Mn:0.1 mass%超、3.0 mass%未満、
Cr:8.0 mass%超、15mass%未満、
Al:0.5 mass%未満、
P:0.04mass%未満、
S:0.03mass%未満、
Ni:0.01mass%以上、3.0 mass%未満、
Co:0.01mass%以上、0.5 mass%未満、
V:0.01mass%以上、0.5 mass%未満および
W:0.001 mass%以上、0.05mass%未満
を含有し、残部はFeおよび不可避的不純物からなり、下
記式 (1) で示されるX値が 11.0 以下であることを特徴と
する耐初期発錆性、加工性および溶接性に優れたFe−Cr
合金。
記
That is, the gist of the present invention is as follows. 1. C: more than 0.0025 mass%, less than 0.03 mass%, N: more than 0.0025 mass%, less than 0.03 mass%, Si: more than 0.1 mass%, less than 2.0 mass%, Mn: more than 0.1 mass%, less than 3.0 mass%, Cr: More than 8.0 mass%, less than 15 mass%, Al: less than 0.5 mass%, P: less than 0.04 mass%, S: less than 0.03 mass%, Ni: 0.01 mass% or more, less than 3.0 mass%, Co: 0.01 mass% or more, 0.5 less than mass%, V: 0.01mass% or more, 0.5 mass% and less than W: 0.001 mass% or more, and contains less than 0.05 mass%, balance being Fe and unavoidable impurities, below
Fe-Cr excellent in initial rust resistance, workability and weldability, characterized in that the X value represented by the formula (1) is 11.0 or less.
alloy. Record
【0027】2.上記1において、さらに、下記式(2)
で示されるZ値が、0.03≦Z値≦1.5の範囲を満足する
ことを特徴とする耐初期発錆性、加工性および溶接性に
優れたFe−Cr合金。
記
Z値=(Co+1.5 V+4.8 W) --- (2)2. In the above 1, further the following formula (2)
A Fe-Cr alloy excellent in initial rust resistance, workability and weldability, characterized in that the Z value shown by is satisfied with 0.03 ≦ Z value ≦ 1.5. Note Z value = (Co + 1.5 V + 4.8 W) --- (2)
【0028】3.上記1または2において、さらに、C
とNの比(C/N)が、(C/N)≦0.60の範囲を満足
することを特徴とする耐初期発錆性、加工性および溶接
性に優れたFe−Cr合金。3. In the above 1 or 2, further, C
Fe-Cr alloy excellent in initial rust resistance, workability and weldability, characterized in that the ratio (C / N) of C and N satisfies the range of (C / N) ≦ 0.60.
【0029】4.上記1,2または3において、さらに
Cu:3.0 mass%未満およびMo:3.0 mass%未満のうちか
ら選んだ1種または2種を含有する組成になることを特
徴とする耐初期発錆性、加工性および溶接性に優れたFe
−Cr合金。4. In the above 1, 2 or 3,
Fe excellent in initial rust resistance, workability and weldability, characterized by having a composition containing one or two selected from Cu: less than 3.0 mass% and Mo: less than 3.0 mass%
-Cr alloy.
【0030】5.上記1〜4のいずれかにおいて、さら
にTi:0.7 mass%未満、Nb:0.7 mass%未満、Ta:0.7
mass%未満およびZr:0.5 mass%未満のうちから選んだ
1種または2種以上を含有する組成になることを特徴と
する耐初期発錆性、加工性および溶接性に優れたFe−Cr
合金。5. In any one of the above 1 to 4, Ti: less than 0.7 mass%, Nb: less than 0.7 mass%, Ta: 0.7
Fe-Cr excellent in initial rust resistance, workability and weldability, characterized by having a composition containing one or more selected from less than mass% and less than 0.5 mass% Zr.
alloy.
【0031】6.上記1〜5のいずれかにおいて、さら
に
B:0.0002mass%以上、0.002 mass%以下
を含有する組成になることを特徴とする耐初期発錆性、
加工性および溶接性に優れたFe−Cr合金。6. In any one of 1 to 5 above, the composition further contains B: 0.0002 mass% or more and 0.002 mass% or less, initial rust resistance,
Fe-Cr alloy with excellent workability and weldability.
【0032】[0032]
【発明の実施の形態】以下、本発明について具体的に説
明する。まず、本発明において、合金の成分組成を上記
の範囲に限定した理由について説明する。
C:0.0025mass%超、0.03mass%未満、N:0.0025mass
%超、0.03mass%未満
溶接熱影響部の靱性および加工性の改善および溶接割れ
防止には、従来から知られているとおり、C,Nの低減
が有効である。またC,Nは、マルテンサイト相の硬さ
にも大きな影響を及ぼすだけでなく、炭窒化物の析出に
伴うCr欠乏相の生成により、耐食性劣化の原因にもなる
ため、C,Nの上限はそれぞれ、0.03mass%未満とし
た。ただし、本発明鋼の組成範囲において、C,Nの低
減は溶接部特性や加工性、耐食性等の改善には有効では
あるが、過度の低減は精錬負荷を増大させるだけでな
く、C,Nの低減に伴ってマルテンサイト相が軟質化
し、また粗大なフェライト粒の生成により溶接部靱性が
劣化するので、C,Nはそれぞれ0.0025mass%超を含有
させるものとした。特に好ましい組成範囲は、C,Nと
も 0.005〜0.02mass%である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, in the present invention, the reason why the component composition of the alloy is limited to the above range will be described. C: more than 0.0025mass%, less than 0.03mass%, N: 0.0025mass
%, Less than 0.03 mass% As is conventionally known, reduction of C and N is effective for improving the toughness and workability of the weld heat affected zone and preventing weld cracks. Further, C and N not only have a great influence on the hardness of the martensite phase, but also cause the deterioration of corrosion resistance due to the formation of a Cr-deficient phase due to the precipitation of carbonitride. Was less than 0.03 mass%. However, in the composition range of the steel of the present invention, reduction of C and N is effective for improvement of weld characteristics, workability, corrosion resistance, etc., but excessive reduction not only increases refining load but also C and N. As the martensite phase softens and the toughness of the welded portion deteriorates due to the formation of coarse ferrite grains, C and N are each made to exceed 0.0025 mass%. A particularly preferred composition range is 0.005 to 0.02 mass% for both C and N.
【0033】Si:0.1 mass%超、2.0 mass%未満
Siは、脱酸剤として有用な元素であるが、含有量が 0.1
mass%以下では十分な脱酸効果が得られず、一方 2.0ma
ss%以上の過剰添加は靱性や加工性の低下を招くので、
Si量は 0.1 mass %超、2.0 mass%未満の範囲に限定し
た。特に好ましくは0.03〜0.5 mass%の範囲である。Si: more than 0.1 mass% and less than 2.0 mass% Si is an element useful as a deoxidizer, but its content is 0.1
When mass% or less, sufficient deoxidizing effect cannot be obtained, while 2.0ma
Excessive addition of ss% or more causes deterioration of toughness and workability.
The Si content was limited to the range of more than 0.1 mass% and less than 2.0 mass%. The range of 0.03 to 0.5 mass% is particularly preferable.
【0034】Mn:0.1 mass%超、3.0 mass%未満
Mnは、オーステナイト相(γ相)安定化元素であり、溶
接熱影響部組織をマルテンサイト組織として溶接部靱性
の改善に有効に寄与する。また、Mnは、Siと同様、脱酸
剤としても有用なので、 0.1mass%超の範囲で含有させ
るものとした。しかしながら、過剰に添加すると加工性
の低下やMnS形成による耐食性の低下を招くので、 3.0
mass%未満に限定した。特に好ましくは 0.1mass%超、
1.5 mass%以下の範囲である。Mn: more than 0.1 mass% and less than 3.0 mass% Mn is an austenite phase (γ phase) stabilizing element, and effectively contributes to the improvement of the toughness of the weld zone by making the weld heat affected zone structure a martensite structure. Further, Mn, like Si, is useful as a deoxidizing agent, so Mn is included in the range of more than 0.1 mass%. However, if added excessively, workability and corrosion resistance due to the formation of MnS will decrease, so 3.0
Limited to less than mass%. Particularly preferably more than 0.1 mass%,
It is within the range of 1.5 mass% or less.
【0035】Cr:8mass%超、15mass%未満
Crは、耐食性の改善に有効な元素であるが8mass%以下
では十分な耐食性の確保が難しい。また、Crはフェライ
ト相(α相)安定化元素であり、15mass%以上の添加は
加工性の低下を招くだけでなく、オーステナイト相(γ
相)の安定性が低下し、溶接時に十分な量のマルテンサ
イト相を確保できなくなり、溶接部の強度および靱性の
低下を招く。従って、本発明では、Crは8mass%超、15
mass%未満の範囲で含有させるものとした。なお、耐錆
性や加工性、溶接性を兼備する上で特に好ましい範囲は
9.0〜13.5mass%である。Cr: more than 8 mass% and less than 15 mass% Cr is an element effective for improving the corrosion resistance, but if it is 8 mass% or less, it is difficult to secure sufficient corrosion resistance. Cr is a ferrite phase (α phase) stabilizing element, and addition of 15 mass% or more not only causes deterioration of workability, but also austenite phase (γ
Phase) and the martensite phase cannot be secured in a sufficient amount during welding, resulting in a decrease in strength and toughness of the welded part. Therefore, in the present invention, Cr is more than 8 mass%, 15
The content was set to be less than mass%. In addition, in terms of combining rust resistance, workability, and weldability, a particularly preferable range is
It is 9.0 to 13.5 mass%.
【0036】Al:0.5 mass%未満
Alは、脱酸剤として有用なだけでなく、溶接部の靱性向
上にも有効に寄与するが、含有量が 0.5mass%以上とな
ると介在物が多くなって機械的性質の劣化を招くので、
Alは 0.5mass%未満に限定した。なお、このAlは特に含
有されていなくてもよい。Al: less than 0.5 mass% Al is not only useful as a deoxidizing agent, but also contributes effectively to improving the toughness of the welded portion, but when the content is 0.5 mass% or more, inclusions increase. Since it causes deterioration of mechanical properties,
Al was limited to less than 0.5 mass%. It should be noted that this Al may not be particularly contained.
【0037】P:0.04mass%未満
Pは、熱間加工性や成形性、靱性を低下させるだけでな
く、耐食性に対しても有害な元素であり、特に含有量が
0.04mass%以上になるとその影響が顕著になるので、P
の含有は0.04mass%未満に抑制するものとした。より好
ましくは 0.025mass%以下である。P: less than 0.04 mass% P is an element which not only deteriorates hot workability, formability and toughness but is also harmful to corrosion resistance.
The effect becomes remarkable when the content is 0.04 mass% or more, so P
Content was controlled to less than 0.04 mass%. It is more preferably 0.025 mass% or less.
【0038】S:0.03mass%未満
Sは、Mnと結合してMnSを形成し、初期発銹起点とな
る。またSは、結晶粒界に偏析して、粒界脆化を促進す
る有害元素でもあるので、極力低減することが好まし
い。特に含有量が0.03mass%以上になるとその悪影響が
顕著になるので、Sの含有は0.03mass%未満に抑制する
ものとした。より好ましくは 0.006mass%以下である。S: less than 0.03 mass% S combines with Mn to form MnS and serves as an initial rust initiation point. Further, S is also a harmful element that segregates at the crystal grain boundaries and promotes grain boundary embrittlement, so it is preferable to reduce S as much as possible. Particularly, when the content is 0.03 mass% or more, the adverse effect becomes remarkable, so the content of S is set to be less than 0.03 mass%. More preferably, it is 0.006 mass% or less.
【0039】Ni:0.01mass%以上、3.0 mass%未満
Niは、延性、靱性を向上させる元素であり、本発明では
特に溶接熱影響部の靱性を向上させるため、さらには耐
錆性を改善するために添加する。しかしながら、含有量
が0.01mass%に満たないとその添加効果に乏しく、一
方、3.0 mass%以上になると効果が飽和するだけでな
く、素材が硬質化する不利が生じるので、Ni量は0.01ma
ss%以上、3.0 mass%未満の範囲に限定した。Ni: 0.01 mass% or more and less than 3.0 mass% Ni is an element that improves the ductility and toughness. In the present invention, in particular, the toughness of the heat-affected zone of the weld is improved, and therefore the rust resistance is further improved. To add. However, if the content is less than 0.01 mass%, the effect of addition is poor, while if it is 3.0 mass% or more, not only the effect is saturated, but also the disadvantage of hardening the material occurs, so the Ni content is 0.01 ma.
It was limited to the range of ss% or more and less than 3.0 mass%.
【0040】Co:0.01mass%以上、0.5 mass%未満、
V:0.01mass%以上、0.5 mass%未満、W:0.001 mass
%以上、0.05mass%未満
Co,VおよびWは、本発明において特に重要な元素であ
る。Co,V,Wの添加量は、それぞれ0.01mass%, 0.01
mass%, 0.001mass%を下限とする。これは、X値やZ
値がたとえ適正範囲を満足していても、各々の含有量が
上記の下限値を下回ると、複合添加による効果が得られ
ないためである。一方、上限については、V,Wについ
てはそれぞれ 0.5mass%, 0.05mass%以上になると炭化
物の析出により素材の硬質化が著しいので、それぞれ
0.5mass%未満、0.05mass%未満と定めた。また、Coに
ついても 0.5mass%以上添加すると、鋼の硬質化を招く
ため 0.5mass%未満に限定した。なお、X値およびZ値
との兼ね合いもあるが、これらの元素の好適範囲はそれ
ぞれCo:0.03〜0.2 mass%、V:0.05〜0.2 mass%、
W:0.005 〜0.02mass%である。Co: 0.01 mass% or more and less than 0.5 mass%,
V: 0.01 mass% or more, less than 0.5 mass%, W: 0.001 mass
% And less than 0.05 mass% Co, V and W are particularly important elements in the present invention. The addition amount of Co, V, W is 0.01mass%, 0.01
The lower limit is mass%, 0.001mass%. This is the X value or Z
This is because, even if the values satisfy the appropriate range, if the content of each falls below the above lower limit, the effect of composite addition cannot be obtained. On the other hand, with respect to the upper limits, V and W of 0.5 mass% and 0.05 mass% or more, respectively, cause the precipitation of carbides to significantly harden the material.
It was determined to be less than 0.5 mass% and less than 0.05 mass%. Also, Co is added to 0.5 mass% or more, which causes hardening of the steel, so the Co content is limited to less than 0.5 mass%. Although there is a balance with the X value and the Z value, the preferable ranges of these elements are Co: 0.03 to 0.2 mass%, V: 0.05 to 0.2 mass%,
W: 0.005 to 0.02 mass%.
【0041】X値=Cr+Mo+1.5 Si+0.5 Nb+0.2 V+
0.3 W+8Al−Ni−0.6 Co−0.5 Mn−30C−30N−0.5
Cu:11.0以下
X値は、本発明で最も重要なパラメータの1つである。
X値は、オーステナイト相の安定性に及ぼす各元素の影
響を評価する指標であり、特に本発明で重要となるCo,
V, Wの影響を的確に評価している。この値を11.0以下
に調整することにより、溶接熱影響部が実質的にマルテ
ンサイト組織となり、溶接部靱性が改善される。なお、
8.0mm 以上の板厚の鋼板も考慮した場合には、溶接部に
おけるオーステナイト相の安定性を確保するために、上
記X値は10.7以下とすることがさらに好ましい。X value = Cr + Mo + 1.5 Si + 0.5 Nb + 0.2 V +
0.3 W + 8 Al-Ni-0.6 Co-0.5 Mn-30C-30N-0.5
Cu: 11.0 or less The X value is one of the most important parameters in the present invention.
The X value is an index for evaluating the influence of each element on the stability of the austenite phase, and particularly Co, which is important in the present invention,
The effects of V and W are accurately evaluated. By adjusting this value to 11.0 or less, the weld heat-affected zone has a substantially martensitic structure, and the weld toughness is improved. In addition,
When a steel plate having a plate thickness of 8.0 mm or more is also taken into consideration, the above X value is more preferably 10.7 or less in order to secure the stability of the austenite phase in the welded portion.
【0042】
Z値=(Co+1.5 V+4.8 W):0.03以上、 1.5以下
さらに、本発明では、Z値を0.03〜1.5 の範囲に規制す
ることにより、Co, V, Wの複合添加による効果が適正
化される。このZ値は、溶接部やスケールの付着した鋼
板の耐初期発錆性の指標となるもので、この値が0.03に
満たなかったり、これら元素のうち1元素でも欠落した
場合には、溶接部や酸化スケールが付着した母材鋼板に
ついて十分な耐初期発錆性が得られず、また3元素を複
合添加したとしてもZ値が 1.5を超えた場合には、その
効果は飽和に達するだけでなく、素材が硬質化して加工
性が著しく劣化することから、これら3元素は必須添加
とし、かつZ値を0.03〜1.5 の範囲に限定した。なお、
加工性も考慮したZ値の好適範囲は 0.2〜0.6 である。Z value = (Co + 1.5 V + 4.8 W): 0.03 or more and 1.5 or less Furthermore, in the present invention, by limiting the Z value in the range of 0.03 to 1.5, the combined addition of Co, V, and W results. The effect is optimized. This Z value serves as an index of the initial rust resistance of the welded part and the steel plate with scale attached. If this value is less than 0.03 or even one of these elements is missing, the welded part Sufficient initial rust resistance could not be obtained for base steel sheet with oxide scale or oxide scale, and even if the three elements were added together, if the Z value exceeded 1.5, the effect would only reach saturation. However, since the material hardens and the workability deteriorates remarkably, these three elements were made essential additions, and the Z value was limited to the range of 0.03 to 1.5. In addition,
A preferable range of Z value is 0.2 to 0.6 in consideration of workability.
【0043】なお、Co, V, Wの3元素を複合的に添加
したことにより、耐初期発錆性が改善される機構は明ら
かではないが、鋼板表面あるいはスケール中に濃化した
Co,V, Wが有効に働き、特に炭窒化物の形態やスケー
ル構造、さらにはCrの拡散に影響を与えることにより、
脱Cr層の生成抑制やスケール構造の緻密化を通じて、耐
初期発錆性を改善するものと考えられる。Although the mechanism by which the three elements of Co, V, and W are added in a composite manner improves the initial rust resistance is not clear, it is concentrated on the steel plate surface or scale.
Co, V, and W work effectively, especially by affecting the morphology and scale structure of carbonitride, and also the diffusion of Cr,
It is considered that the initial rust resistance is improved by suppressing the formation of the Cr-free layer and densifying the scale structure.
【0044】(C/N):0.60以下
本発明では、上記の成分調整に加え、CとNの比を0.60
以下とすることにより、溶接部および母材鋼板の延性、
靱性がさらに改善される。(C/N)の調整による延
性、靱性改善機構の詳細は明らかではないが、特に伸び
や曲げ加工性に影響を与えると考えられる(Fe,Cr)系
の炭窒化物、具体的には(Fe,Cr)23C6, (Fe,Cr)7C3, (F
e,Cr)3C, (Fe,Cr)2N, (Fe,Cr)N の量比や析出形態が変
化したことに関連するものと考えられ、窒化物の量が炭
化物の量に比べて多くなるような場合に改善効果が顕著
になるものと推察できる。かくして、炭窒化物の析出形
態を制御し、かつ伸びを改善した鋼板では、良好な曲げ
加工性が得られる。(C / N): 0.60 or less In the present invention, in addition to the above component adjustment, the ratio of C and N is 0.60.
By the following, the ductility of the weld and the base steel sheet,
The toughness is further improved. The details of the mechanism for improving ductility and toughness by adjusting (C / N) are not clear, but (Fe, Cr) -based carbonitrides, which are thought to particularly affect elongation and bending workability, specifically ( Fe, Cr) 23 C 6 , (Fe, Cr) 7 C 3 , (F
e, Cr) 3 C, (Fe, Cr) 2 N, (Fe, Cr) N content ratios and changes in the precipitation morphology. It can be inferred that the improvement effect becomes remarkable when the number increases. Thus, in the steel sheet in which the precipitation form of carbonitride is controlled and the elongation is improved, good bendability can be obtained.
【0045】本発明では、その他にも以下に述べる各種
元素を適宜含有させることができる。
Cu:3.0 mass%未満
Cuは、耐食性を向上させるだけでなく、オーステナイト
相を形成して溶接熱影響部での粒成長を抑制し、溶接部
の靱性改善に有効に寄与する。しかしながら、含有量が
3.0mass%以上になると、熱間割れ感受性が強くなって
脆化のおそれが生じるので、3.0 mass%未満に限定し
た。より好適には、耐食性改善効果が顕在化する0.01ma
ss%を下限とし、熱間割れの観点から 1.0mass%を上限
とすることが好ましい。In the present invention, in addition to the above, various elements described below can be appropriately contained. Cu: less than 3.0 mass% Cu not only improves corrosion resistance, but also forms an austenite phase to suppress grain growth in the heat-affected zone of the weld and effectively contributes to improving the toughness of the weld. However, if the content is
When it is 3.0 mass% or more, the hot cracking sensitivity becomes strong and there is a risk of embrittlement, so the content was limited to less than 3.0 mass%. More preferably, it is 0.01 ma at which the effect of improving corrosion resistance becomes apparent.
It is preferable that the lower limit is ss% and the upper limit is 1.0 mass% from the viewpoint of hot cracking.
【0046】Mo:3.0 mass%未満
Moも、耐食性の改善に有効な元素である。しかしなが
ら、3.0 mass%以上添加すると、X値が上昇してオース
テナイト相の安定性が低下し、靱性や加工性の著しい低
下が見られるので、3.0 mass%未満に限定した。なお、
耐食性と加工性のバランスという観点からは、0.01〜0.
5 mass%の範囲が好適である。Mo: less than 3.0 mass% Mo is also an element effective in improving the corrosion resistance. However, when 3.0 mass% or more is added, the X value is increased, the stability of the austenite phase is lowered, and the toughness and workability are remarkably lowered, so the content is limited to less than 3.0 mass%. In addition,
From the viewpoint of balance between corrosion resistance and workability, 0.01 to 0.
The range of 5 mass% is preferable.
【0047】Nb:0.7 mass%未満、Ti:0.7 mass%未
満、Ta:0.7 mass%未満、Zr:0.5 mass%未満
Ti, Nb,TaおよびZrはいずれも、炭窒化物形成元素であ
り、溶接時や熱処理時にCr炭窒化物の粒界析出を抑制し
て、耐食性の向上に有効に作用する。またTiは、焼入れ
性の改善にも有効な元素である。しかしながら、Ti, N
b,Taは 0.7mass%以上、またZrは 0.5mass%以上にな
ると、素材が著しく硬質化するため、それぞれ0.7 mass
%未満、0.5 mass%未満とした。より好適な範囲はいず
れも 0.001〜0.3 mass%である。Nb: less than 0.7 mass%, Ti: less than 0.7 mass%, Ta: less than 0.7 mass%, Zr: less than 0.5 mass% Ti, Nb, Ta and Zr are all carbonitride forming elements, During the heat treatment and heat treatment, it suppresses the precipitation of Cr carbonitrides at the grain boundaries and effectively acts to improve the corrosion resistance. Ti is also an element effective in improving hardenability. However, Ti, N
When b and Ta are 0.7 mass% or more, and Zr is 0.5 mass% or more, the material is significantly hardened.
% And less than 0.5 mass%. A more preferable range is 0.001 to 0.3 mass% in each case.
【0048】B:0.0002mass%以上、0.002 mass%以下
Bも、鋼の焼入れ性改善に有効な元素である。しかしな
がら、含有量が0.0002mass%未満ではその添加効果に乏
しく、一方 0.002mass%を超える添加では逆に素材が硬
くなり、靱性や加工性を損なうため、0.0002〜0.002 ma
ss%の範囲とした。好ましくは0.0005〜0.001 mass%の
範囲である。B: 0.0002 mass% or more and 0.002 mass% or less B is also an element effective for improving the hardenability of steel. However, if the content is less than 0.0002 mass%, the effect of addition is poor, while if it exceeds 0.002 mass%, the material becomes hard and the toughness and workability are impaired, so 0.0002 to 0.002 ma
The range was ss%. It is preferably in the range of 0.0005 to 0.001 mass%.
【0049】次に、本発明のFe−Cr合金の好適製造方法
について説明する。まず、上記の好適成分組成に調整し
た溶鋼を、転炉または電気炉等の通常公知の溶製炉にて
溶製したのち、真空脱ガス(RH法)、VOD法、AO
D法等の公知の精練方法で精練し、ついで連続鋳造法あ
るいは造塊−分塊法でスラブ等に鋳造して、鋼素材とす
る。鋼素材は、ついで加熱され、熱間圧延工程により熱
延鋼板とされる。熱間圧延工程における加熱温度は特に
限定されないが、加熱温度が高すぎると結晶粒の粗大化
を招き、靱性、加工性を劣化させるので、加熱温度は13
00℃以下とするのが好ましい。また、熱間圧延工程では
所望の板厚の熱延鋼板とすることができればよく、熱間
圧延条件は特に限定されないが、熱間圧延の仕上げ温度
は 700℃以上とすることが、強度、靱性を確保する点か
ら好ましい。しかしながら、加工性や延性、さらには良
好な表面性状が要求される場合には、熱間圧延における
仕上げ温度は 820℃以上、1000℃以下程度とするのが好
ましい。また、巻き取り温度は、焼戻し焼鈍をする場合
には 680℃以下、焼鈍を省略する場合には 690〜750 ℃
とするのが好ましい。Next, a preferred method for producing the Fe-Cr alloy of the present invention will be described. First, the molten steel adjusted to the above-mentioned suitable component composition is melted in a generally known melting furnace such as a converter or an electric furnace, and then vacuum degassing (RH method), VOD method, AO
It is refined by a known refining method such as Method D, and then cast into a slab or the like by a continuous casting method or an ingot-casting method to obtain a steel material. The steel material is then heated and made into a hot rolled steel sheet by a hot rolling process. The heating temperature in the hot rolling step is not particularly limited, but if the heating temperature is too high, it causes coarsening of the crystal grains and deteriorates the toughness and workability.
The temperature is preferably 00 ° C or lower. Further, in the hot rolling process, it is sufficient to obtain a hot-rolled steel sheet having a desired plate thickness, and the hot rolling conditions are not particularly limited, but the finishing temperature of hot rolling should be 700 ° C or higher for strength and toughness. Is preferable in terms of ensuring However, when workability, ductility, and even good surface properties are required, the finishing temperature in hot rolling is preferably about 820 ° C or higher and 1000 ° C or lower. The coiling temperature is 680 ℃ or less when tempering annealing is performed and 690 to 750 ℃ when annealing is omitted.
Is preferred.
【0050】熱間圧延終了後、組織がマルテンサイト相
となり硬質なものについては、マルテンサイト相の焼戻
しによる軟質化のために熱延板焼鈍を施すのが好まし
い。この熱延板焼鈍は、焼鈍温度:650 〜750 ℃、保持
時間:3〜20hとするのが軟質化のみならず、加工性の
改善、延性の確保の観点から好ましい。なお、熱延板焼
鈍後、 600〜730 ℃の温度範囲を冷却速度が50℃/h以下
の徐冷とするのが、軟質化の面でより好ましい。また、
熱延後、あるいは熱延焼鈍後の鋼板は、必要に応じショ
ットブラスト、酸洗等によりスケールを除去した状態
で、あるいはさらに研磨等により所望の表面性状に調整
したのち、製品板としてもよい。必要に応じ、防錆剤等
を塗布することも可能である。本発明による鋼板は、溶
接および曲げ加工等により、種々の形状の形鋼への加工
が可能である。また、本発明による成分鋼は、厚鋼板や
熱間圧延により製造する形鋼、さらには棒鋼といった、
土木・建築分野において利用できる種々の鋼材への適用
が可能である。After the completion of hot rolling, in the case where the structure becomes a martensite phase and is hard, it is preferable to perform hot-rolled sheet annealing in order to soften the martensite phase by tempering. This hot-rolled sheet annealing is preferably performed at an annealing temperature of 650 to 750 ° C. and a holding time of 3 to 20 hours from the viewpoint of not only softening but also improving workability and ensuring ductility. After annealing the hot-rolled sheet, it is more preferable from the viewpoint of softening that the temperature range of 600 to 730 ° C is gradually cooled at a cooling rate of 50 ° C / h or less. Also,
The steel sheet after hot rolling or after hot rolling annealing may be used as a product sheet after the scale is removed by shot blasting, pickling, etc., if necessary, or after being further adjusted to a desired surface texture by polishing or the like. If necessary, a rust preventive agent or the like can be applied. The steel sheet according to the present invention can be processed into shaped steels of various shapes by welding and bending. Further, the component steel according to the present invention, such as steel plate and shaped steel produced by hot rolling, further steel bar,
It can be applied to various steel materials that can be used in the fields of civil engineering and construction.
【0051】[0051]
【実施例】表1,2,3,4に示す成分組成になる溶鋼
を、転炉−2次精練工程で溶製し、連続鋳造法でスラブ
とした。これらのスラブを、1200℃に再加熱後、粗圧延
の最終パスの圧下率を30〜45%とする6パスの粗圧延を
施した後、最終仕上温度が840〜990 ℃となる7パスの
仕上げ圧延により、4.0 mm厚の熱延鋼板とした。なお溶
接部のシャルピー衝撃値試験および曲げ試験用として、
さらに板厚が 2.0,5.0, 8.0, 12.0mmの各種板厚の熱延
鋼板も作製した。これらの熱延鋼板に、熱延板焼鈍を施
したのち、ショットブラストおよび酸洗による脱スケー
ル処理を行ってから、引張試験、衝撃値試験、曲げ試験
および耐食性試験を行った。なお、一部については、脱
スケール処理を施さずに耐食性試験を行い、スケールが
付着した状態での耐初期発錆性を評価した。なお、熱延
板焼鈍は 670℃で10h 保持後、 200℃まで徐冷(平均冷
却速度:10℃/h)する処理とした。引張試験片は、板
厚:4.0 mmの鋼板から引張方向が圧延方向となるように
JIS13号B試験片(JIS Z 2201)を採取して試験に供し
た。EXAMPLES Molten steels having the chemical compositions shown in Tables 1, 2, 3, and 4 were melted in a converter-secondary refining process and made into slabs by a continuous casting method. These slabs are reheated to 1200 ° C and then subjected to 6 passes of rough rolling to make the final pass reduction rate of 30 to 45% of rough rolling, followed by 7 passes of final finishing temperature of 840 to 990 ° C. By finish rolling, a hot rolled steel sheet with a thickness of 4.0 mm was obtained. In addition, for the Charpy impact value test and bending test of the welded part,
Furthermore, hot-rolled steel sheets with various thicknesses of 2.0, 5.0, 8.0 and 12.0 mm were also prepared. These hot-rolled steel sheets were subjected to hot-rolled sheet annealing, descaled by shot blasting and pickling, and then subjected to tensile test, impact value test, bending test and corrosion resistance test. In addition, about one part, the corrosion resistance test was done without performing a descaling process, and the initial rust resistance in the state which the scale adhered was evaluated. The hot-rolled sheet was annealed at 670 ° C for 10 hours and then gradually cooled to 200 ° C (average cooling rate: 10 ° C / h). The tensile test piece is made from a steel plate with a plate thickness of 4.0 mm so that the tensile direction is the rolling direction.
A JIS No. 13 B test piece (JIS Z 2201) was sampled and used for the test.
【0052】また、これらの各板厚の鋼板について、
1.2mmφのY309およびY309L タイプ溶接ワイヤを用い、
半自動MIG溶接機により溶接継ぎ手を作製し、溶接部
の硬さ試験、衝撃試験、曲げ試験を実施し、溶接部の靱
性、加工性および耐食性を評価した。なお、溶接条件
は、雰囲気ガス:100 %Ar(流量:20 l/min)または
(20%CO 2 +80%Ar)(流量:20 l/min)または 100%
CO2 (流量:11 l/min)、電圧:20〜30V、電流:200
〜280 A、溶接速度:1〜20 mm/s の1パス溶接とし
た。溶接方向は、熱間圧延での圧延方向に垂直な方向と
した。Further, with respect to the steel plates having each of these plate thicknesses,
Using 1.2mmφ Y309 and Y309L type welding wire,
Welded joint is made by semi-automatic MIG welding machine and welded part
Hardness test, impact test, and bending test of the weld toughness
The workability, workability and corrosion resistance were evaluated. Welding conditions
Is atmosphere gas: 100% Ar (flow rate: 20 l / min) or
(20% CO 2 + 80% Ar) (Flow rate: 20 l / min) or 100%
CO2 (Flow rate: 11 l / min), voltage: 20-30V, current: 200
~ 280 A, welding speed: 1-pass welding at 1-20 mm / s
It was The welding direction is perpendicular to the rolling direction in hot rolling.
did.
【0053】得られた溶接継ぎ手のうち、5.0 mm厚材か
ら、硬さ試験片、JIS Z 2202に準拠したサブサイズシャ
ルピー衝撃値試験片(厚さ:10mm、幅:5.0 mm、長さ:
55mm)を採取した。なお、衝撃値試験片の切欠きは、試
験片幅方向(5.0 mm:鋼板の板厚方向)に貫通する2mm
Vノッチとし、図5に示すように、クロスボンド部(フ
ュージョンラインを挟んで、溶接金属部分と溶接熱影響
部の割合a:bが1:1となる位置)から採取した。ま
た、曲げ試験片は、各板厚材溶接部から余盛およびルー
トビードを除去したのち、JIS Z 3122に準拠した表曲げ
試験片および裏曲げ試験片(厚さ:鋼板板厚、幅:40m
m、長さ:200 mm)を採用した。なお、JIS では、板厚
が10mmを超える場合、試験片厚さを10mmとするように規
定されているが、12.0mm厚材については減厚は行わず、
試験片厚さを12.0mmとした。曲げ試験では、曲げ半径R
を、JISより厳しい条件であるR=1.0 t(t:鋼板板
厚)とし、 180°曲げ試験を行ったのち、表面を拡大鏡
を用いて観察し、割れ有り(×)または割れなし(○)
により、溶接部の曲げ加工性を評価した。Among the obtained welded joints, a hardness test piece, a sub-size Charpy impact value test piece according to JIS Z 2202 (thickness: 10 mm, width: 5.0 mm, length:
55 mm) was collected. In addition, the notch of the impact value test piece is 2 mm penetrating in the width direction of the test piece (5.0 mm: plate thickness direction of steel plate).
A V-notch was formed, and as shown in FIG. 5, it was sampled from a cross bond portion (a position where the ratio a: b of the weld metal portion and the weld heat affected zone was 1: 1 with the fusion line sandwiched therebetween). In addition, the bending test pieces were prepared by removing the surplus and root beads from the welded parts of each plate, and then the front and back bending test pieces (thickness: steel plate thickness, width: 40 m according to JIS Z 3122).
m, length: 200 mm). In addition, JIS stipulates that the thickness of the test piece shall be 10 mm when the plate thickness exceeds 10 mm, but the thickness of 12.0 mm thick material is not reduced.
The thickness of the test piece was 12.0 mm. In the bending test, the bending radius R
Is a condition that is stricter than JIS, R = 1.0 t (t: steel plate thickness), and after performing a 180 ° bending test, the surface is observed with a magnifying glass and there is crack (x) or no crack (○ )
The bending workability of the welded portion was evaluated by.
【0054】さらに、初期発錆性試験として、4.0 mm厚
の鋼板(焼鈍酸洗材、スケール付着材および溶接継ぎ
手)に対し、3.5mass%NaCl(30℃)の6h噴霧試験を行
った。試験後の試料について、クエン酸2アンモニウム
溶液(60℃)中への浸漬およびブラシ洗浄により錆を除
去した後の、錆の起点数と穴の深さを測定し評価した。
なお、溶接部については、溶接熱影響部に発生した錆の
起点について、ビード単位長さ当たりの起点数(個/ビ
ード10cm)とその深さ(最大10点平均)により評価し
た。得られた結果を表5,6,7,8に整理して示す。Further, as an initial rusting test, a 4.0 mass-thick steel sheet (anneal pickling material, scale adhering material and weld joint) was subjected to a spray test of 3.5 mass% NaCl (30 ° C.) for 6 hours. The sample after the test was evaluated by immersing it in a diammonium citrate solution (60 ° C.) and removing the rust by brush cleaning, and then measuring the number of rust starting points and the depth of the holes.
Regarding the welded portion, the starting point of rust generated in the weld heat affected zone was evaluated by the number of starting points per bead unit length (pieces / bead 10 cm) and its depth (maximum 10 points average). The obtained results are summarized in Tables 5, 6, 7, and 8.
【0055】[0055]
【表1】 [Table 1]
【0056】[0056]
【表2】 [Table 2]
【0057】[0057]
【表3】 [Table 3]
【0058】[0058]
【表4】 [Table 4]
【0059】[0059]
【表5】 [Table 5]
【0060】[0060]
【表6】 [Table 6]
【0061】[0061]
【表7】 [Table 7]
【0062】[0062]
【表8】 [Table 8]
【0063】表5,6および7に示したとおり、本発明
の成分組成範囲を満足する発明例はいずれも、熱延焼鈍
板の状態で優れた引張特性および衝撃靱性を有するだけ
でなく、溶接部についても優れた溶接部靱性、加工性お
よび耐食性を有している。特に、(C/N)比を 0.6以
下に調整した鋼では、母材の伸びや靱性に加え、溶接部
の靱性や曲げ加工性が、(C/N)を 0.6超とした場合
に比べて、さらに改善されている。また、表8に示した
とおり、発明例では、溶接部は勿論のこと、スケールの
付着した母材表面においても、錆の起点数は少なくかつ
食孔深さは小さいことから、優れた耐初期発錆性を有し
ていることが判る。As shown in Tables 5, 6 and 7, each of the invention examples satisfying the component composition range of the present invention not only has excellent tensile properties and impact toughness in the state of a hot rolled annealed sheet, but also welds. The parts also have excellent weld toughness, workability, and corrosion resistance. In particular, in the steel with the (C / N) ratio adjusted to 0.6 or less, in addition to the elongation and toughness of the base metal, the toughness and bending workability of the welded portion are higher than those when the (C / N) exceeds 0.6. , Has been improved further. Further, as shown in Table 8, in the invention examples, the number of rust starting points is small and the pit depth is small not only on the welded portion but also on the surface of the base material to which the scale is attached. It can be seen that it has rusting properties.
【0064】[0064]
【発明の効果】かくして、本発明に従い、合金成分の適
正化を図ることによって、溶接性や溶接部靱性、加工性
に優れるのはいうまでもなく、耐初期発錆性に優れたFe
−Cr合金を得ることができる。また、この発明により、
土木・建築構造用材料としての用途をはじめとして、安
価なFe−Cr合金の使用範囲が大幅に広がり、ライフサイ
クルコストを考慮した場合に、その工業的利用価値は極
めて大きいといえる。As described above, according to the present invention, by optimizing the alloy components, it goes without saying that the weldability, weld zone toughness, and workability are excellent, and Fe having excellent initial rust resistance is also obtained.
-Cr alloy can be obtained. Further, according to the present invention,
The range of use of inexpensive Fe-Cr alloys, including its use as a material for civil engineering and building structures, has expanded greatly, and it can be said that its industrial utility value is extremely large when considering life cycle costs.
【図1】 X値と溶接部靱性(シャルピー衝撃値試験に
おける吸収エネルギー)との関係を、(C/N)比をパ
ラメータとして示したグラフである。FIG. 1 is a graph showing a relationship between an X value and a weld zone toughness (absorbed energy in a Charpy impact value test) using a (C / N) ratio as a parameter.
【図2】 Z値と溶接部の発錆起点数との関係を示した
グラフである。FIG. 2 is a graph showing the relationship between the Z value and the number of rust starting points of the welded portion.
【図3】 Z値と母材鋼板の発錆起点数との関係を示し
たグラフである。FIG. 3 is a graph showing the relationship between the Z value and the number of rust initiation points of the base steel sheet.
【図4】 (C/N)比と母材鋼板の伸びおよび溶接部
のシャルピー衝撃値試験における遷移温度との関係を示
したグラフである。FIG. 4 is a graph showing the relationship between the (C / N) ratio, the elongation of the base steel sheet, and the transition temperature in the Charpy impact value test of the welded portion.
【図5】 衝撃値試験片の採取要領を示した図である。FIG. 5 is a diagram showing a procedure for collecting impact value test pieces.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 裕樹 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開2001−107141(JP,A) 特開 平11−80881(JP,A) 特開 平8−3642(JP,A) 特開 平6−41696(JP,A) 特開2001−152295(JP,A) 特開2001−152296(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroki Ota 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Inside Kawasaki Steel Corporation Technical Research Institute (56) Reference JP 2001-107141 (JP, A) JP H11 -80881 (JP, A) JP-A-8-3642 (JP, A) JP-A-6-41696 (JP, A) JP-A-2001-152295 (JP, A) JP-A-2001-152296 (JP, A) (JP-A) 58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00
Claims (6)
記式 (1) で示されるX値が 11.0 以下であることを特徴と
する耐初期発錆性、加工性および溶接性に優れたFe−Cr
合金。 記 1. C: more than 0.0025 mass%, less than 0.03 mass%, N: more than 0.0025 mass%, less than 0.03 mass%, Si: more than 0.1 mass%, less than 2.0 mass%, Mn: more than 0.1 mass%, 3.0 mass %, Cr: more than 8.0 mass%, less than 15 mass%, Al: less than 0.5 mass%, P: less than 0.04 mass%, S: less than 0.03 mass%, Ni: 0.01 mass% or more, less than 3.0 mass%, Co: 0.01 mass% or more to less than 0.5 mass%, V: 0.01 mass% or more, 0.5 mass% and less than W: 0.001 mass% or more, and contains less than 0.05 mass%, balance being Fe and unavoidable impurities, below
Fe-Cr excellent in initial rust resistance, workability and weldability, characterized in that the X value represented by the formula (1) is 11.0 or less.
alloy. Record
で示されるZ値が、0.03≦Z値≦1.5 の範囲を満足する
ことを特徴とする耐初期発錆性、加工性および溶接性に
優れたFe−Cr合金。 記 Z値=(Co+1.5 V+4.8 W) --- (2)2. The method according to claim 1, further comprising the following formula (2):
An Fe-Cr alloy excellent in initial rust resistance, workability and weldability, characterized by satisfying a Z value of 0.03≤Z value≤1.5. Note Z value = (Co + 1.5 V + 4.8 W) --- (2)
とNの比(C/N)が、(C/N)≦0.60の範囲を満足
することを特徴とする耐初期発錆性、加工性および溶接
性に優れたFe−Cr合金。3. The method according to claim 1 or 2, further comprising C
Fe-Cr alloy excellent in initial rust resistance, workability and weldability, characterized in that the ratio (C / N) of C and N satisfies the range of (C / N) ≦ 0.60.
Cu:3.0 mass%未満およびMo:3.0 mass%未満のうちか
ら選んだ1種または2種を含有する組成になることを特
徴とする耐初期発錆性、加工性および溶接性に優れたFe
−Cr合金。4. The method according to claim 1, 2, or 3,
Fe excellent in initial rust resistance, workability and weldability, characterized by having a composition containing one or two selected from Cu: less than 3.0 mass% and Mo: less than 3.0 mass%
-Cr alloy.
に Ti:0.7 mass%未満、 Nb:0.7 mass%未満、 Ta:0.7 mass%未満および Zr:0.5 mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする耐初期発錆性、加工性および溶接
性に優れたFe−Cr合金。5. The method according to claim 1, further comprising one of Ti: less than 0.7 mass%, Nb: less than 0.7 mass%, Ta: less than 0.7 mass% and Zr: less than 0.5 mass%. Alternatively, a Fe-Cr alloy excellent in initial rust resistance, workability and weldability, characterized by having a composition containing two or more kinds.
に B:0.0002mass%以上、0.002 mass%以下 を含有する組成になることを特徴とする耐初期発錆性、
加工性および溶接性に優れたFe−Cr合金。6. The initial rust resistance as set forth in any one of claims 1 to 5, which further comprises B: 0.0002 mass% or more and 0.002 mass% or less.
Fe-Cr alloy with excellent workability and weldability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001148701A JP3491625B2 (en) | 2000-05-31 | 2001-05-18 | Fe-Cr alloy with excellent initial rust resistance, workability and weldability |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000161626 | 2000-05-31 | ||
JP2000161627 | 2000-05-31 | ||
JP2000-161627 | 2000-05-31 | ||
JP2000-161626 | 2000-05-31 | ||
JP2001148701A JP3491625B2 (en) | 2000-05-31 | 2001-05-18 | Fe-Cr alloy with excellent initial rust resistance, workability and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002053938A JP2002053938A (en) | 2002-02-19 |
JP3491625B2 true JP3491625B2 (en) | 2004-01-26 |
Family
ID=27343568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001148701A Expired - Fee Related JP3491625B2 (en) | 2000-05-31 | 2001-05-18 | Fe-Cr alloy with excellent initial rust resistance, workability and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3491625B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883663B2 (en) | 2006-07-04 | 2011-02-08 | Nippon Steel & Sumikin Stainless Steel Corporation | Low chromium stainless steel superior in corrosion resistance of multipass welded heat affected zones and its method of production |
US8900380B2 (en) | 2010-02-24 | 2014-12-02 | Nippon Steel & Sumikin Stainless Steel Corporation | Low-chromium stainless steel excellent in corrosion resistance of weld |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5884183B2 (en) * | 2013-03-28 | 2016-03-15 | Jfeスチール株式会社 | Structural stainless steel sheet |
-
2001
- 2001-05-18 JP JP2001148701A patent/JP3491625B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883663B2 (en) | 2006-07-04 | 2011-02-08 | Nippon Steel & Sumikin Stainless Steel Corporation | Low chromium stainless steel superior in corrosion resistance of multipass welded heat affected zones and its method of production |
US8900380B2 (en) | 2010-02-24 | 2014-12-02 | Nippon Steel & Sumikin Stainless Steel Corporation | Low-chromium stainless steel excellent in corrosion resistance of weld |
Also Published As
Publication number | Publication date |
---|---|
JP2002053938A (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3704306B2 (en) | Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP5225620B2 (en) | Low chromium-containing stainless steel excellent in corrosion resistance of heat-affected zone multiple times and its manufacturing method | |
JP2011174122A (en) | Low-chromium-containing stainless steel superior in corrosion resistance at welded part | |
JP3491625B2 (en) | Fe-Cr alloy with excellent initial rust resistance, workability and weldability | |
JP4457492B2 (en) | Stainless steel with excellent workability and weldability | |
US7429302B2 (en) | Stainless steel sheet for welded structural components and method for making the same | |
JP7410438B2 (en) | steel plate | |
JP3508698B2 (en) | Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance | |
KR100503548B1 (en) | Iron-chrome alloy having excellent initial rust resistance, workability and weldability | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
JPH05245657A (en) | Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal | |
US6737018B2 (en) | Corrosion-resistant chromium steel for architectural and civil engineering structural elements | |
JP4560994B2 (en) | Cr-containing steel sheet for building / civil engineering structure and its manufacturing method | |
JP3680796B2 (en) | Cr-containing corrosion resistant steel for construction and civil engineering structures | |
JP4192576B2 (en) | Martensitic stainless steel sheet | |
WO2021054335A1 (en) | Clad steel and method for manufacturing same | |
JP2002309339A (en) | Welded joint with excellent heat affected zone toughness and fatigue properties | |
JP2020204091A (en) | High strength steel sheet for high heat input welding | |
JP2021143387A (en) | Clad steel plate and manufacturing method thereof | |
JP3975882B2 (en) | High corrosion resistance low strength stainless steel with excellent workability and toughness of welds and its welded joints | |
JPH11302795A (en) | Stainless steel for building structures | |
JP2005029882A (en) | Method for manufacturing structural high-strength electric welded steel tube of excellent welding softening resistance | |
JP2001152295A (en) | Hot rolled stainless steel plate for civil engineering and building construction use, excellent in workability and weldability | |
JPH0751737B2 (en) | Cr-based stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3491625 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091114 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |