[go: up one dir, main page]

JP3482671B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3482671B2
JP3482671B2 JP35442493A JP35442493A JP3482671B2 JP 3482671 B2 JP3482671 B2 JP 3482671B2 JP 35442493 A JP35442493 A JP 35442493A JP 35442493 A JP35442493 A JP 35442493A JP 3482671 B2 JP3482671 B2 JP 3482671B2
Authority
JP
Japan
Prior art keywords
battery
separator
average pore
pore size
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35442493A
Other languages
Japanese (ja)
Other versions
JPH07201355A (en
Inventor
彰良 木村
塩見  正昭
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP35442493A priority Critical patent/JP3482671B2/en
Publication of JPH07201355A publication Critical patent/JPH07201355A/en
Application granted granted Critical
Publication of JP3482671B2 publication Critical patent/JP3482671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。 【0002】 【従来の技術とその課題】電池の充電中に、正極から発
生する酸素ガスを負極板で再結合させる密閉式鉛蓄電池
にはこれまで、極板と極板の間に電解液保持材である微
細ガラス繊維からなるセパレータ(以後、ガラスセパレ
ータと呼ぶ)を挿入し、極板およびガラスセパレータに
電解液を保持した、いわゆるリテーナ式電池と電解液を
シリカ微粒子によってコロイド状にして非流動化するゲ
ル式電池の二種類があった。 【0003】近年、顆粒状の無機粉体(以後、無機粉体
と呼ぶ)を電池内に充填し、極板、セパレータおよび無
機粉体に電解液を含浸保持させた顆粒式密閉電池が提案
されている。この電池は、極板群の周囲に充填された無
機粉体にも電解液を保持できるので、リテーナ式電池よ
りも液量を多く保持でき、その結果、低率放電容量が多
いという長所を持っている。さらに極板を周囲から均一
に強く圧迫しているので、格子の伸びを抑え、寿命性能
が向上するという長所も持っている。また、電解液保持
体である無機粉体は、ガラスセパレータに比べて、非常
に安価であるという長所もある。さらに、ゲル式電池に
比べると、無機粉体中の硫酸の移動が、ゲル中よりも著
しく速いため、高率放電容量は、ゲル式電池よりも多い
という長所を持っている。しかし、各種試験を行った結
果、この顆粒式電池は、使用するセパレータが寿命性能
に大きく影響を及ぼすことが分かった。すなわち、顆粒
式電池では電解液が制限されるため、極板およびセパレ
ータ内に含浸される電解液が選択的に減少するようなこ
とがあれば放電容量に影響を及ぼすものと考えられる。 【0004】 【課題を解決するための手段】本発明は、上述した問題
を解決し、安価で、かつ放電性能や寿命性能の優れた密
閉式鉛蓄電池を提供するもので、顆粒状の無機粉体を使
用するいわゆる顆粒式密閉電池において、平均孔径が、
1μm以上でかつ該無機粉体の平均孔径以下のセパレー
タを使用するというものである。 【0005】 【実施例】以下、本発明を実施例に基づいて説明する。 【0006】Pb−Ca−Sn−Al系合金よりなる正
極および負極格子体に、通常の正極および負極ペースト
をそれぞれ充填した後、熟成をして未化成極板を作製し
た。極板群は、正極板3枚と負極板4枚そして各極板の
間に平均孔径が0.5,1,10,20,40,50μ
mになるように調整したセパレータを挿入した。セパレ
ータの材質としては、ガラス繊維を湿式抄造して製造し
たもので繊維径を変えることにより平均孔径を変えてい
る。セパレータの厚さは、20kg/dm2 の圧迫力
で、電槽に極板群を挿入した状態で、正極板と負極板と
の隙間と同じ1mmとなるようなものを使用した。 【0007】極板群を組み立て、電槽に挿入したあと、
電池内の極板群の周囲に10,20,40μmの平均孔
径を有する顆粒シリカを振動により密に充填した。その
後、電解液を注液し、公知の手順を経て、電解液比重
1.30(20℃)で、定格容量が25Ah(5hR)
の密閉電池(A、B,C)を製作した。 【0008】図1および図2に本発明による電池の概略
図および縦断面図をそれぞれ示す。図において1は正極
板、2は負極板、3はセパレータ、4は電槽、5は電槽
ふた、6は顆粒シリカ粉体、7は極板群周囲に充填され
たシリカ粉体6を固定するための連続気泡のフェノール
樹脂発泡体、8は排気弁である。なお上記の平均孔径と
は、水銀圧入法で求めた孔径分布において、全孔量の 1
/2 の孔量にあたる孔径を指すものとする。たとえば、
全孔量が80%であれば、最も大きな孔径から積算し
て、孔量が40%にあたる孔径を平均孔径としている。 【0009】このようにして、平均孔径の異なるセパレ
ータを用いた顆粒式電池を製作した。また、比較のため
に顆粒シリカを充填せず、平均孔径19μmのガラスセ
パレータを用いた従来のリテーナ式電池(電池No.
D)も併せて製作した。まず、これらの電池を5Aで放
電して容量を調べた後、これらの電池を50℃の試験温
度で、3hR電流で定格容量の80%放電し、放電量の
120%充電するパターンの充放電サイクル寿命試験に
供した。第1表に試験結果を示す。 【0010】 【表1】【0011】表から明らかなように、放電容量は、使用
したシリカやセパレータの種類によらず、どの電池もほ
ぼ同等の値を示した。しかし、寿命性能を比較すると、
平均孔径が最も小さい0.5μmのセパレータを用いた
電池(電池No.A−1,B−1,C−1)は、顆粒シ
リカの平均孔径によらず、従来のリテーナ式電池に比べ
て、寿命性能が著しく劣っている。 【0012】また、セパレータの平均孔径が顆粒シリカ
の平均孔径よりも大きい顆粒式電池(電池No.A−
5、No.B−5、No.C−5)の場合もリテーナ式
電池よりも寿命性能が劣っていた。しかし、本発明品で
あるセパレータの平均孔径が1μm以上、顆粒シリカの
平均孔径以下のセパレータを用いた電池(電池No.A
−2、No.A−3、No.A−4、No.B−2、N
o.B−3、No.B−4、No.C−2、No.C−
3、No.C−4)は、従来のリテーナ式電池に比べ
て、寿命性能が優れている。この原因を明らかにするた
めに、同一構成の電池を200サイクル終了後に解体
し、電池内における極板、セパレータおよび顆粒シリカ
に保持されている電解液量の分布を調査した。 【0013】平均孔径が0.5μmのセパレータを用い
た電池(電池No.A−1,B−1,C−1)では、負
極板中の電解液量が、リテーナ式のそれよりもかなり少
なくなっていた。これは、負極板の平均孔径は一般に1
〜10μmの範囲にあり、寿命性能が低下したのは、負
極板の平均孔径がセパレータの平均孔径よりも大きいた
めに、負極板に保持されていた電解液がセパレータに吸
われたためと考えられる。 【0014】また、無機粉体の平均孔径よりも大きな平
均孔径を有するセパレータを用いた電池(電池No.A
−5、No.B−5、C−5)では、セパレータの保持
液量が著しく少なくなっていた。これは、セパレータに
保持されていた電解液が周囲の無機粉体や極板に吸収さ
れたためと考えられる。 【0015】本発明品によるセパレータを用いた電池で
は、負極板、セパレータともに、液がれをおこしておら
ず、周囲の顆粒シリカの保持液量だけが著しく減少して
いた。寿命性能が良かったのはこのためと思われる。な
お、リテーナ式電池が比較的早期に容量が低下した原因
は、格子の伸び、腐食にともなう正極板の性能低下のた
めであった。 【0016】本試験ではセパレータの材質としてガラス
繊維を用いたが、材質に限らず上記孔径を有する耐酸性
のセパレータを使用してもその効果は変わらない。 【0017】 【発明の効果】上述の例から明らかなように、本発明に
よる密閉式鉛蓄電池は、セパレータの平均孔径が1μm
以上無機粉体の平均孔径以下の範囲内に有するセパレー
タを使用したことで、従来のリテーナ式電池に比べ、大
幅に寿命性能を改善することができ、その工業的価値は
非常に大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery. 2. Description of the Related Art A sealed lead-acid battery, in which oxygen gas generated from a positive electrode is recombined with a negative electrode plate during charging of the battery, has heretofore been provided with an electrolyte retaining material between the electrode plates. A separator made of a certain fine glass fiber (hereinafter, referred to as a glass separator) is inserted, and a so-called retainer battery in which an electrode plate and a glass separator hold an electrolytic solution, and the electrolytic solution are colloidal with fine silica particles to be non-fluidized. There were two types of gel batteries. In recent years, a granular sealed battery has been proposed in which a granular inorganic powder (hereinafter referred to as inorganic powder) is filled in a battery, and an electrode plate, a separator, and an inorganic powder are impregnated and held in an electrolyte. ing. This battery can hold the electrolyte even in the inorganic powder filled around the electrode group, so it can hold a larger amount of liquid than the retainer type battery, and as a result, has the advantage of having a large low rate discharge capacity. ing. In addition, since the electrode plate is pressed uniformly and strongly from the surroundings, it has the advantage of suppressing the elongation of the lattice and improving the life performance. Further, the inorganic powder, which is an electrolyte holder, has an advantage that it is very inexpensive as compared with a glass separator. Furthermore, since the transfer of sulfuric acid in the inorganic powder is remarkably faster than in the gel type battery, the high rate discharge capacity has an advantage that it is larger than that of the gel type battery. However, as a result of conducting various tests, it was found that the separator used in this granular battery greatly affects the life performance. That is, since the electrolytic solution is limited in the granular battery, it is considered that if the electrolytic solution impregnated in the electrode plate and the separator is selectively reduced, the discharge capacity is affected. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a sealed lead-acid battery which is inexpensive and has excellent discharge performance and life performance. In the so-called granular sealed battery using the body, the average pore size is
In other words, a separator having a size of 1 μm or more and an average pore size of the inorganic powder or less is used. Hereinafter, the present invention will be described with reference to examples. A positive electrode and a negative electrode grid made of a Pb-Ca-Sn-Al-based alloy were filled with ordinary positive and negative electrode pastes, respectively, and then aged to produce an unformed electrode plate. The electrode group has three positive electrode plates, four negative electrode plates, and an average hole diameter of 0.5, 1, 10, 20, 40, 50 μm between each electrode plate.
The separator adjusted to be m was inserted. As the material of the separator, a glass fiber is manufactured by wet papermaking, and the average pore diameter is changed by changing the fiber diameter. The thickness of the separator used was 1 mm, which was the same as the gap between the positive electrode plate and the negative electrode plate, with the electrode plate group inserted into the battery case with a pressing force of 20 kg / dm 2 . After assembling the electrode group and inserting it into the battery case,
Granular silica having an average pore diameter of 10, 20, and 40 μm was densely filled by vibration around the electrode group in the battery. Thereafter, the electrolyte was injected, and through a known procedure, the electrolyte had a specific gravity of 1.30 (20 ° C.) and a rated capacity of 25 Ah (5 hR).
(A, B, C) were manufactured. FIGS. 1 and 2 show a schematic view and a longitudinal sectional view, respectively, of a battery according to the present invention. In the figure, 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is a separator, 4 is a battery case, 5 is a battery case lid, 6 is a granular silica powder, 7 is a silica powder 6 fixed around the electrode plate group. The open-cell phenolic resin foam 8 is an exhaust valve. Note that the average pore size is 1% of the total pore size in the pore size distribution determined by the mercury intrusion method.
It means the hole diameter corresponding to the hole amount of / 2. For example,
If the total pore size is 80%, the pore size corresponding to 40% of the pore size is determined as the average pore size by integrating from the largest pore size. Thus, a granular battery using separators having different average pore sizes was manufactured. For comparison, a conventional retainer-type battery (battery No. 1) using a glass separator having an average pore diameter of 19 μm without being filled with granular silica.
D) was also produced. First, after discharging these batteries at 5 A to check their capacities, these batteries were discharged at a test temperature of 50 ° C. at a test current of 3 hR at 80% of the rated capacity, and charged and discharged in a pattern of charging 120% of the discharge amount. It was subjected to a cycle life test. Table 1 shows the test results. [Table 1] As is clear from the table, the discharge capacity of each battery was almost the same regardless of the type of silica or separator used. However, comparing the life performance,
Batteries using the 0.5 μm separator having the smallest average pore size (Batteries No. A-1, B-1, and C-1) are different from the conventional retainer battery regardless of the average pore size of the granular silica. The life performance is remarkably inferior. In addition, a granular battery (battery No. A-) in which the average pore size of the separator is larger than the average pore size of the granular silica.
5, no. B-5, no. Also in the case of C-5), the life performance was inferior to that of the retainer type battery. However, a battery (battery No. A) using a separator having an average pore size of 1 μm or more and a granule silica having an average pore size of not more than 1 μm according to the present invention.
-2, No. 2; A-3, no. A-4, no. B-2, N
o. B-3, no. B-4, no. C-2, no. C-
3, No. C-4) has a better life performance than the conventional retainer type battery. In order to clarify the cause, a battery having the same configuration was disassembled after 200 cycles, and the distribution of the amount of electrolyte held in the electrode plate, the separator, and the granular silica in the battery was examined. In a battery using a separator having an average pore diameter of 0.5 μm (Battery Nos. A-1, B-1, and C-1), the amount of electrolyte in the negative electrode plate is considerably smaller than that of the retainer type. Had become. This means that the average pore size of the negative electrode plate is generally 1
It is considered that the reason why the life performance was reduced was that the electrolyte held on the negative electrode plate was absorbed by the separator because the average pore size of the negative electrode plate was larger than the average pore size of the separator. A battery using a separator having an average pore size larger than the average pore size of the inorganic powder (battery No. A)
-5, no. In B-5 and C-5), the amount of liquid retained in the separator was significantly reduced. This is probably because the electrolyte held by the separator was absorbed by the surrounding inorganic powder and the electrode plate. In the battery using the separator according to the present invention, neither the negative electrode plate nor the separator leaked, and only the amount of the retained liquid of the surrounding granular silica was significantly reduced. It is considered that the life performance was good. The reason why the capacity of the retainer type battery decreased relatively early was due to the elongation of the lattice and the deterioration of the performance of the positive electrode plate due to corrosion. In this test, glass fiber was used as the material of the separator. However, the effect is not changed even if an acid-resistant separator having the above-mentioned pore diameter is used regardless of the material. As is apparent from the above example, the sealed lead-acid battery according to the present invention has an average pore diameter of the separator of 1 μm.
The use of the separator having the average pore diameter of the inorganic powder within the range described above can greatly improve the life performance as compared with the conventional retainer type battery, and its industrial value is very large.

【図面の簡単な説明】 【図1】本発明密閉式鉛蓄電池の概略図 【図2】本発明密閉式鉛蓄電池の縦断面図 【符号の説明】 1 正極板 2 負極板 3 セパレータ 4 電槽 5 電槽ふた 6 シリカ粉体 7 発泡体 8 排気弁[Brief description of the drawings] FIG. 1 is a schematic view of a sealed lead-acid battery of the present invention. FIG. 2 is a longitudinal sectional view of the sealed lead-acid battery of the present invention. [Explanation of symbols] 1 Positive electrode plate 2 Negative electrode plate 3 separator 4 Battery case 5 Battery case lid 6 silica powder 7 Foam 8 Exhaust valve

Claims (1)

(57)【特許請求の範囲】 【請求項1】 極板群の周囲に、シリカあるいはアルミ
ナ系の顆粒状の無機粉体を充填し、それらに電解液を含
浸・保持させた密閉式鉛蓄電池において、セパレータの
平均孔径が、1μm以上かつ上記無機粉体の平均孔径以
下であることを特徴とする密閉式鉛蓄電池。
(57) [Claim 1] A sealed lead-acid battery in which silica or alumina-based granular inorganic powder is filled around an electrode plate group and impregnated with and held by an electrolytic solution. , Wherein the average pore size of the separator is 1 μm or more and the average pore size of the inorganic powder or less.
JP35442493A 1993-12-28 1993-12-28 Sealed lead-acid battery Expired - Fee Related JP3482671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35442493A JP3482671B2 (en) 1993-12-28 1993-12-28 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35442493A JP3482671B2 (en) 1993-12-28 1993-12-28 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH07201355A JPH07201355A (en) 1995-08-04
JP3482671B2 true JP3482671B2 (en) 2003-12-22

Family

ID=18437471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35442493A Expired - Fee Related JP3482671B2 (en) 1993-12-28 1993-12-28 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3482671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079481A1 (en) * 2002-03-05 2003-09-25 Knauer Davis J Battery with gel blanket

Also Published As

Publication number Publication date
JPH07201355A (en) 1995-08-04

Similar Documents

Publication Publication Date Title
JP3482671B2 (en) Sealed lead-acid battery
JP3388265B2 (en) Lead-acid battery separator
JP3555177B2 (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPH06251759A (en) Separator for lead-acid battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP2001210354A (en) Lead storage battery
JPH0676854A (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPS6211466B2 (en)
JPH06295739A (en) Sealed lead-acid battery
JPH11354128A (en) Sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPH06243850A (en) Retainer type sealed lead-acid battery
JP2022138753A (en) lead acid battery
JPH1173985A (en) Lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPH06187966A (en) Sealed lead-acid battery
JPH06119936A (en) Sealed type lead-acid battery
JPH10270030A (en) Sealed lead-acid battery
JPH06140016A (en) Separator for lead-acid battery
JPH06295738A (en) Sealed lead-acid battery
JPH02158063A (en) Sealed lead-storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371