[go: up one dir, main page]

JP3478381B2 - Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression - Google Patents

Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression

Info

Publication number
JP3478381B2
JP3478381B2 JP03721999A JP3721999A JP3478381B2 JP 3478381 B2 JP3478381 B2 JP 3478381B2 JP 03721999 A JP03721999 A JP 03721999A JP 3721999 A JP3721999 A JP 3721999A JP 3478381 B2 JP3478381 B2 JP 3478381B2
Authority
JP
Japan
Prior art keywords
steel
ferrite
fatigue strength
cold
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03721999A
Other languages
Japanese (ja)
Other versions
JP2000239782A (en
Inventor
直樹 岩間
智也 加藤
進 大脇
剛 河本
元秀 森
隆行 張籠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP03721999A priority Critical patent/JP3478381B2/en
Publication of JP2000239782A publication Critical patent/JP2000239782A/en
Application granted granted Critical
Publication of JP3478381B2 publication Critical patent/JP3478381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本技術は非調質鍛造品に関し,詳しくは自
動車エンジンのクランクシャフトのように,高い疲労強
度と優れた被削性を必要とする部品に最適な,被削性と
圧縮加工後の疲労強度に優れた非調質鍛造品の製造方法
に関する。
TECHNICAL FIELD The present technology relates to a non-heat treated forged product, and more specifically, it is suitable for a part requiring high fatigue strength and excellent machinability such as a crankshaft of an automobile engine. The present invention relates to a method for manufacturing a non-heat treated forged product having excellent fatigue strength.

【0002】[0002]

【従来技術】例えば,自動車エンジン用のクランクシャ
フト,コンロッド等の機械構造部品には,一般にS50
C等の機械構造用炭素鋼,或いはこれらにS,Pb等の
快削元素を添加した鋼を熱間鍛造後に焼入れ,焼もどし
処理を行ったものがかつては使用されていた。近年で
は,Vの微量添加により,焼入れ,焼もどし処理を省略
する非調質鋼,或いはこれらにS,Pb更にCa等の快
削元素を添加した鋼が主体である。
2. Description of the Related Art For example, mechanical structural parts such as crankshafts and connecting rods for automobile engines are generally S50.
Carbon steels for mechanical structures such as C, or steels obtained by adding free-cutting elements such as S and Pb to these, which have been subjected to quenching and tempering treatment after hot forging, have been used in the past. In recent years, mainly non-heat treated steels in which quenching and tempering treatments are omitted by adding a trace amount of V, or steels in which free-cutting elements such as S, Pb and Ca are added are mainly used.

【0003】上記部品の疲労強度を高めるためには,所
定の形状に機械加工した後,ロール加工,高周波焼入れ
処理,軟窒化処理等が行われる。この中でロール加工等
の圧縮加工は,強度が必要な部分だけに施すことが可能
であり,また切削加工ラインへのインライン化が可能で
あるとともに,高周波焼入や軟窒化に比べて作業環境が
良好である点など,総合的に優れた強化方法のひとつで
ある。
In order to increase the fatigue strength of the above parts, after being machined into a predetermined shape, roll processing, induction hardening treatment, soft nitriding treatment and the like are performed. Among them, compression processing such as roll processing can be applied only to the part where strength is required, and it can be inlined into the cutting processing line. It is one of the comprehensively excellent strengthening methods, such as the good point.

【0004】[0004]

【解決しようとする課題】近年の環境問題への関心の高
まりから,自動車の燃費向上と低エミッション化が強く
叫ばれる中,自動車エンジン部品の軽量小型化の要求が
ますます強くなっている。自動車エンジン部品は一般に
疲労強度設計されており,軽量小型化のためには疲労強
度の向上が必要不可欠である。疲労強度の向上に対し
て,硬さを向上させることが考えられるが,この場合に
は切削性が低下してしまう。
[Problems to be Solved] With increasing concern over environmental issues in recent years, there has been a strong demand for improved fuel efficiency and lower emissions in automobiles, and the demand for smaller and lighter automobile engine parts has become stronger. Automotive engine parts are generally designed for fatigue strength, and it is essential to improve fatigue strength in order to reduce weight and size. It is considered that hardness is improved with respect to improvement of fatigue strength, but in this case, machinability is deteriorated.

【0005】そこで前記の機械加工後のロール加工が疲
労強度向上方策として着目されるが,ロール加工した部
品の疲労強度は,ロール加工時の負荷荷重によってほぼ
決定される。ロール加工の負荷荷重を高めるほど,疲労
強度は向上するが,極端な荷重の増加はかえって表面性
状を悪化させてしまうため,疲労強度の低下を招いた
り,あるいはロール加工設備のコスト増加を招くため問
題となる。そこで同じ負荷荷重のロール加工その他の圧
縮加工を行った場合の疲労強度向上率が高く,かつ被削
性に優れた鋼材ならびに鍛造品の開発が望まれていた。
Therefore, the above-mentioned roll working after machining has been noted as a measure for improving the fatigue strength, but the fatigue strength of the rolled parts is almost determined by the load applied during the roll working. Fatigue strength increases as the load applied to roll processing increases, but an extreme increase in load rather deteriorates the surface quality, leading to a decrease in fatigue strength or an increase in the cost of roll processing equipment. It becomes a problem. Therefore, it has been desired to develop a steel material and a forged product which have a high improvement rate in fatigue strength when subjected to roll processing or other compression processing under the same applied load and have excellent machinability.

【0006】[0006]

【課題の解決手段】ロール加工等の圧縮加工を行った場
合の強度向上率が高く,かつ被削性に優れた鋼材および
鍛造品に関して,本発明者等は鋭意研究を重ねた結果,
以下のようにすることで目的を達成できることを知見し
た。すなわち,重量比にしてC:0.15〜0.45
%,Si:0.10〜0.80%,Mn:0.50〜
1.50%,S:0.040〜0.120%,Cr:
0.10〜0.50%,Al:0.005〜0.030
%,V:0.15〜0.50%,N:0.0060%以
上を含有し,残部はFeと不可避的不純物から成る鋼を
用い,1000〜1300℃で加熱し,熱間鍛造後空冷
もしくはファン冷却することにより,ミクロ組織がフェ
ライトとパーライトから成り,V量:V(%),フェラ
イト分率:Vf(%),フェライト硬さ:Hα(Hv)
の間に, V×Vf×Hα≧700, Vf≧15(%) なる関係を満足させ,さらに,高強度が必要な部分に,
ロール加工,冷間鍛造加工,冷間コイニング加工,又
冷間押出加工のうちいずれかの圧縮加工を施すことを特
徴とする被削性と圧縮加工後の疲労強度に優れた非調質
鍛造品の製造方法にある。
[Means for Solving the Problems] As a result of earnest studies by the present inventors, a steel material and a forged product having a high strength improvement rate when compression processing such as roll processing and the like and excellent machinability are obtained.
We have found that the objectives can be achieved by doing the following. That is, in terms of weight ratio, C: 0.15 to 0.45
%, Si: 0.10 to 0.80%, Mn: 0.50
1.50%, S: 0.040 to 0.120%, Cr:
0.10 to 0.50%, Al: 0.005 to 0.030
%, V: 0.15 to 0.50%, N: 0.0060% or more, with the balance being steel composed of Fe and unavoidable impurities, heated at 1000 to 1300 ° C, and air-cooled after hot forging Alternatively, by cooling with a fan, the microstructure consists of ferrite and pearlite, V amount: V (%), ferrite fraction: Vf (%), ferrite hardness: Hα (Hv)
Satisfying the relations of V × Vf × Hα ≧ 700, Vf ≧ 15 (%) , and further, in the part where high strength is required,
Rolling, cold forging, cold coining, or non-heat treated forging excellent in fatigue strength after compression processing and machinability, characterized in that performing the compression process of any one of cold extrusion It is in the method of manufacturing products.

【0007】なお,上記圧縮加工としては,ロール加工
の他に,冷間鍛造加工,冷間コイニング加工,冷間押出
加工等種々の加工方法がある。
As the compression processing, there are various processing methods such as cold forging processing, cold coining processing and cold extrusion processing in addition to roll processing.

【0008】次に,本発明の限定理由につき説明する。
なお合金元素の%表示は,いずれも重量%を示す。
Next, the reasons for limitation of the present invention will be described.
All percentages of alloying elements are% by weight.

【0009】(1)C Cは構造用鋼として必要な強度を確保するために0.1
5%以上,望ましくは0.25%以上の含有が必要であ
る。しかし,Cを多量に含有させるとフェライト量が減
少し,Vf<15となって充分な被削性および圧縮加工
後の疲労強度が得られないため,上限は0.45%,望
ましくは0.43%以下とする。
(1) C C is 0.1 in order to secure the strength required as structural steel.
The content must be 5% or more, preferably 0.25% or more. However, when a large amount of C is contained, the amount of ferrite decreases, Vf <15, and sufficient machinability and fatigue strength after compression processing cannot be obtained. Therefore, the upper limit is 0.45%, preferably 0. 43% or less.

【0010】(2)Si Siは,素地の固溶硬化により,疲労強度を向上させ,
かつ,脱酸補助剤として少なくとも0.10%,望まし
くは0.15%以上の含有が必要である。一方,Siを
多量に含有させると被削性が低下するので,上限を0.
80%,望ましくは0.60%,更に望ましくは0.3
5%以下とする。
(2) Si Si improves fatigue strength by solid solution hardening of the base material,
In addition, it is necessary to contain at least 0.10%, preferably 0.15% or more as a deoxidizing auxiliary agent. On the other hand, if a large amount of Si is contained, the machinability decreases, so the upper limit is set to 0.
80%, preferably 0.60%, more preferably 0.3
5% or less.

【0011】(3)Mn Mnは必要な強度と焼入性の確保,ならびに被削性向上
に効果のあるMnSの形成のために少なくとも0.50
%,望ましくは0.80%以上の含有が必要である。一
方,多量に含有させると熱間鍛造のままでベイナイト,
マルテンサイト等を発生させ,硬さが高くなり過ぎて逆
に切削性を低下させるためその上限を1.50%,望ま
しくは1.30%以下とする。
(3) Mn Mn is at least 0.50 in order to secure necessary strength and hardenability and to form MnS which is effective in improving machinability.
%, Preferably 0.80% or more is necessary. On the other hand, if it is contained in a large amount, bainite remains hot forged,
Martensite and the like are generated, and the hardness becomes too high, and conversely the machinability is deteriorated. Therefore, the upper limit is set to 1.50%, preferably 1.30% or less.

【0012】(4)S Sは前記のごとくMnSとして被削性向上に効果がある
ため,少なくとも0.040%以上の含有が必要であ
る。しかし,多量に含有させると熱間加工性を劣化させ
るので,その上限を0.120%,望ましくは0.07
0%とする。
(4) Since S S has the effect of improving machinability as MnS as described above, it is necessary to contain at least 0.040% or more. However, if contained in a large amount, the hot workability deteriorates, so the upper limit is 0.120%, preferably 0.07%.
0%

【0013】(5)Cr CrはMnと同様に,必要な強度と焼入性を確保させる
目的で,最低でも0.10%の添加が必要である。ただ
し必要以上多量に含有させると熱間鍛造のままでベイナ
イト,マルテンサイト等を発生させ,硬さ増加により被
削性を低下させるため,その上限を0.50%,望まし
くは0.30%以下とする。
(5) Cr As with Mn, Cr must be added at least 0.10% for the purpose of ensuring the required strength and hardenability. However, if contained in a larger amount than necessary, bainite, martensite, etc. will be generated in the as-hot-forged state and machinability will be reduced due to increased hardness, so the upper limit is 0.50%, desirably 0.30% or less. And

【0014】(6)Al Alは脱酸のために添加されるが,0.005%未満で
はその効果は不足するため,下限を0.005%とす
る。一方,多量に含有させると被削性を阻害するAl2
3量が多くなるとともに,Nとも結びついてAlNを
形成し,圧縮加工時に時効元素として働くNをトラップ
してしまうため,その上限を0.030%,望ましくは
0.020%以下とする。
(6) Al Al is added for deoxidation, but if it is less than 0.005%, its effect is insufficient, so the lower limit is made 0.005%. On the other hand, if a large amount of Al 2 is contained, Al 2
As the amount of O 3 increases, AlN is also formed in association with N and traps N acting as an aging element during compression processing, so the upper limit is made 0.030%, preferably 0.020% or less.

【0015】(7)V Vは過去に知見されているように,鍛造後の冷却過程に
てフェライト組織中に炭窒化物を形成し,疲労強度を向
上させる効果がある。特にロール加工等の圧縮加工を施
した場合には,素地の中の転移及び残留応力との相互作
用により,より一層の疲労特性の向上効果が得られる。
またV炭窒化物が工具面保護潤滑の働きをするため,被
削性に対しても効果がある。前記効果を得るためには,
少なくとも0.15%,望ましくは0.20%以上の含
有が必要である。なお,含有量の下限を0.25%を超
えるように限定してもよい。しかし,多量に添加しても
その効果は飽和するとともに,コスト高となるため,上
限を0.50%,望ましくは0.35%,さらに望まし
くは0.30%以下とする。
(7) V V has an effect of improving the fatigue strength by forming carbonitrides in the ferrite structure during the cooling process after forging, as has been found in the past. In particular, when compression processing such as roll processing is performed, the effect of further improving fatigue characteristics can be obtained due to the interaction with the transition and residual stress in the base material.
In addition, since V carbonitride acts as tool surface protective lubrication, it is also effective for machinability. To obtain the above effect,
It is necessary to contain at least 0.15%, preferably 0.20% or more. The lower limit of the content may be limited to exceed 0.25%. However, even if added in a large amount, the effect is saturated and the cost becomes high, so the upper limit is made 0.50%, preferably 0.35%, and more preferably 0.30% or less.

【0016】(8)N Nはロール加工等の圧縮加工によって導入される転位を
固着する,いわゆるひずみ時効によって,疲労強度の改
善に効果のある元素であるため,少なくとも0.060
%以上,望ましくは0.080%以上含有する必要があ
る。
(8) N N is an element effective in improving fatigue strength by so-called strain aging, which fixes dislocations introduced by compression working such as roll working, and therefore is at least 0.060.
%, Preferably 0.080% or more.

【0017】(9)Ca,Pb,Bi Ca,Pb,Biは被削性を更に向上させるのに有効な
元素であり,必要に応じて1種または2種以上添加する
ことが好ましい(請求項2)。その効果を得るために
は,Ca,Pb,Biについてそれぞれ少なくとも0.
0005%,0.05%,0.01%の含有が必要であ
る。しかし過剰に添加しても,その効果は飽和するとと
もに,熱間加工性の低下およびコスト高を招くため,上
限をCa,Pb,Biについてそれぞれ0.0060
%,0.30%,0.30%とした。
(9) Ca, Pb, Bi Ca, Pb, Bi are elements effective for further improving the machinability, and it is preferable to add one or two or more thereof according to need (claims). 2). In order to obtain the effect, each of Ca, Pb, and Bi is at least 0.
It is necessary to contain 0005%, 0.05% and 0.01%. However, even if added excessively, the effect is saturated, and the hot workability is deteriorated and the cost is increased. Therefore, the upper limits of Ca, Pb, and Bi are 0.0060 each.
%, 0.30% and 0.30%.

【0018】次に本発明における鍛造条件ならびに鍛造
品の組織,硬さ等の限定理由について説明する。
Next, the forging conditions and the reasons for limiting the structure, hardness, etc. of the forged product in the present invention will be explained.

【0019】(a)加熱温度 熱間鍛造時の加熱温度によって鍛造品の特性が変化する
ため,範囲を限定する必要がある。加熱温度が低いと鋼
中に含有したVが十分に固溶せず,疲労強度ならびに被
削性向上に対する効果が発揮されないため,その下限を
1000℃とした。ただし加熱温度が高すぎると結晶粒
度の粗大化,およびフェライト分率の低下を招き,疲労
強度および被削性はかえって低下してしまうので,その
上限を1300℃とした。
(A) Heating temperature Since the characteristics of the forged product change depending on the heating temperature during hot forging, it is necessary to limit the range. When the heating temperature is low, V contained in steel does not sufficiently form a solid solution, and the effect on improving fatigue strength and machinability is not exhibited, so the lower limit was made 1000 ° C. However, if the heating temperature is too high, the grain size becomes coarse and the ferrite fraction is lowered, and the fatigue strength and machinability are rather lowered, so the upper limit was made 1300 ° C.

【0020】(b)熱間鍛造後の冷却 熱間鍛造後の冷却によっても鍛造品の特性が変化するた
め,限定する必要がある。本発明において良好な被削性
と圧縮加工後の疲労強度を得るためには,フェライトと
パーライトからなる組織にしてV炭窒化物を微細に析出
させる必要があるので,これらを満足するよう,鍛造後
の冷却を空冷もしくはファン冷却とした。
(B) Cooling after hot forging Since the characteristics of the forged product also change due to cooling after hot forging, it is necessary to limit it. In the present invention, in order to obtain good machinability and fatigue strength after compression working, it is necessary to form V carbonitride finely in a structure consisting of ferrite and pearlite. The subsequent cooling was air cooling or fan cooling.

【0021】(c)ミクロ組織 前記のとおり,本発明では良好な被削性とロール加工等
の圧縮加工後の疲労強度を得るために,フェライトとパ
ーライトからなる組織にする必要がある。
(C) Microstructure As described above, in the present invention, in order to obtain good machinability and fatigue strength after compression processing such as roll processing, it is necessary to have a structure composed of ferrite and pearlite.

【0022】(d)V×Vf×Hα≧700 本発明に到るまでの鋭意研究において,ロール加工等の
圧縮加工後の疲労強度に最も影響を及ぼすパラメータと
して,V×Vf×Hαなる関係式を導いた。ここで,各
変数はそれぞれ,V量:V(%),フェライト分率:V
f(%),フェライト硬さ:Hα(Hv)を意味する。
そして図4に示されるように,V×Vf×Hαが700
以上あればロール加工等の圧縮加工後の疲労強度は安定
して高い値を示すが,700を下回ると急激に圧縮加工
後の疲労強度が低下することを知見した。よって,良好
な圧縮加工後の疲労強度を得る目的で,V×Vf×Hα
≧700とする必要がある。
(D) V × Vf × Hα ≧ 700 In the earnest research until reaching the present invention, the relational expression V × Vf × Hα is the parameter that most affects the fatigue strength after compression processing such as roll processing. Led. Here, each variable is V amount: V (%), ferrite fraction: V
f (%), ferrite hardness: means Hα (Hv).
Then, as shown in FIG. 4, V × Vf × Hα is 700
It was found that the fatigue strength after compression processing such as roll processing shows a stable and high value if it is above, but the fatigue strength after compression processing sharply decreases below 700. Therefore, for the purpose of obtaining good fatigue strength after compression processing, V × Vf × Hα
It is necessary to be ≧ 700.

【0023】(e)Vf≧15(%) 本発明に到るまでの鋭意研究において,図3に示される
ように,被削性(超硬旋削寿命)に対してフェライト分
率が大きく影響を及ぼし,フェライト分率が高いほど被
削性が向上することが知見された。本発明においては,
目標とする被削性確保の点から,Vf≧15(%)とす
る必要がある。
(E) Vf ≧ 15 (%) In the earnest research until reaching the present invention, as shown in FIG. 3, the ferrite fraction greatly affects the machinability (carbide turning life). It was found that the machinability improves as the ferrite fraction increases. In the present invention,
In order to secure the target machinability, it is necessary to satisfy Vf ≧ 15 (%).

【0024】[0024]

【発明の実施の形態】実施例 次に,本願にかかる発明の特徴を比較鋼及び従来鋼と比
較して,実施例により説明する。
Embodiments Next, the features of the invention according to the present application will be described with reference to embodiments by comparison with comparative steels and conventional steels.

【0025】表1は,これらの供試材の化学成分を示す
ものである。表1にてA〜G鋼は本発明であり,A〜C
鋼は第1発明,D〜G鋼は第2発明である。またH〜N
鋼は一部の元素が本発明の条件を満足しない比較鋼であ
り,O鋼は従来から使用されているフェライト・パーラ
イト型の非調質鋼,P鋼はJIS鋼のS55Cである。
Table 1 shows the chemical composition of these test materials. In Table 1, A to G steels are the present invention, and A to C steels.
Steel is the first invention and steels D to G are the second invention. Also H ~ N
Steel is a comparative steel in which some elements do not satisfy the conditions of the present invention, O steel is a conventionally used ferrite / pearlite type non-heat treated steel, and P steel is JIS steel S55C.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例として使用した供試材は,熱間圧延
にて製造した直径90mmの丸棒を1200℃に加熱
後,1150〜1100℃にて直径60mmの丸棒に鍛
造し,室温まで自然空冷したものであり,従来鋼である
P鋼のみ空冷後に880℃再加熱後油焼入,580℃に
て焼もどしの調質処理を施した。
The test material used as an example is a 90 mm diameter round bar manufactured by hot rolling, heated to 1200 ° C., then forged into a 60 mm diameter round bar at 1150 to 1100 ° C., and naturally cooled to room temperature. It was air-cooled, and only P steel, which is a conventional steel, was air-cooled, reheated at 880 ° C., oil-quenched, and tempered at 580 ° C.

【0028】これら各供試材より試験片を削り出し,ミ
クロ組織観察およびフェライト分率の測定,フェライト
硬さ測定,引張試験,小野式回転曲げ疲労試験,超硬工
具による旋削工具寿命試験を行った。
A test piece was cut out from each of these test materials, and microstructure observation, ferrite fraction measurement, ferrite hardness measurement, tensile test, Ono-type rotary bending fatigue test, and turning tool life test with a cemented carbide tool were performed. It was

【0029】ミクロ組織観察は,ナイタール腐食した試
料を光学顕微鏡にて倍率100倍にて観察し,フェライ
ト分率の測定は,前記同様の観察50視野について,ポ
イント・カウンティング法にて行い,その平均値を測定
値とした。フェライト硬さの測定は,測定荷重10gf
のマイクロビッカース硬度計にて,各試料につき50個
のフェライト部の硬さを測定し,その平均値を測定値と
した。
For microstructure observation, a sample corroded by Nital was observed with an optical microscope at a magnification of 100 times, and the ferrite fraction was measured by the point counting method for 50 fields of view similar to the above, and the average thereof was used. The value was used as the measured value. For the measurement of ferrite hardness, the measuring load is 10 gf
The hardness of 50 ferrite parts for each sample was measured with the Micro Vickers hardness meter of No. 2 and the average value thereof was used as the measured value.

【0030】小野式回転曲げ疲労試験は,図1に示すご
とく,両端部11の直径d1がφ12mm,中央部12の
直径dがφ10mmの丸棒において,同図中の拡大図
Aに示すごとく,その中央に曲率半径R1が1.8mm
の環状切欠付き部13を有する試験片1用いた。
As shown in FIG. 1, the Ono-type rotary bending fatigue test is shown in an enlarged view A in FIG. 1 in a round bar in which the diameter d 1 of both ends 11 is φ12 mm and the diameter d 2 of the central part 12 is φ10 mm. As shown, the radius of curvature R 1 is 1.8 mm at the center.
The test piece 1 having the annular notched portion 13 was used.

【0031】そして,図2に示す試験装置2において,
上記環状切欠付き部13にR1.6のローラ21を用い
て受けローラ22上において荷重400kgfの条件に
て,上記試験片1にロール加工した後,該試験片1を疲
労試験に供して疲労限を求めた。そして,各供試材から
別途切り出したJIS4号試験片による引張試験により
求めた引張強さで疲労限を除した値,即ち耐久比を求め
た。
Then, in the test apparatus 2 shown in FIG.
After rolling the test piece 1 on the receiving roller 22 under the condition of a load of 400 kgf using the roller 21 of R1.6 in the annular cutout portion 13, the test piece 1 is subjected to a fatigue test to determine the fatigue limit. I asked. Then, a value obtained by dividing the fatigue limit by the tensile strength obtained by the tensile test using the JIS No. 4 test piece separately cut from each test material, that is, the durability ratio was obtained.

【0032】旋削工具寿命試験は,60mm丸棒の各供
試材を直径55mmにピーリングして試験片とし,旋盤
にてP10の超硬チップを用い,切削速度:250m/
min,送り:0.2mm/rev,切込み:1.5m
m,乾式にて旋削を行い,横逃げ面摩耗幅が0.2mm
になるまでの切削時間を測定して寿命とした。なお,結
果は従来鋼であるP鋼の寿命を100とした指数で示し
た。以上の試験を行なって得られた結果を表2に示す。
For the turning tool life test, 60 mm round bars of each test material were peeled to a diameter of 55 mm to make test pieces, and a P10 cemented carbide tip was used on a lathe, cutting speed: 250 m /
min, feed: 0.2 mm / rev, depth of cut: 1.5 m
m, dry turning, lateral flank wear width 0.2 mm
The cutting time until it became to be measured as the life. The results are shown as an index with the life of conventional P steel being 100. Table 2 shows the results obtained by performing the above tests.

【0033】[0033]

【表2】 [Table 2]

【0034】表2から明らかなように比較鋼,従来鋼を
使用して製造した鍛造品(直径60mmの丸棒)を本発
明鋼によるものと比較すると,H鋼はC含有率が高いた
め,フェライト分率が9%と低く,かつV×Vf×Hα
が700未満であるため,旋削工具寿命および耐久比と
もに劣るものである。I鋼はSi含有率が高くかつS含
有率が低いため,特に旋削工具寿命に劣るものである。
J鋼,K鋼はそれぞれMn含有率,Cr含有率が高いた
めにベイナイト組織が混在し,旋削工具寿命および耐久
比ともに劣るものである。L鋼はV含有率が低く,V×
Vf×Hαが700未満であるために旋削工具寿命およ
び耐久比ともに劣るものである。M鋼,N鋼はそれぞれ
Al含有率が高いこと,N含有率が低いことにより,ロ
ール加工後のひずみ時効効果が得られず,耐久比に劣る
ものである。
As is clear from Table 2, when comparing the forged product (round bar having a diameter of 60 mm) produced using the comparative steel and the conventional steel with the steel according to the present invention, the H steel has a high C content. Ferrite fraction as low as 9% and V × Vf × Hα
Is less than 700, the turning tool life and durability ratio are inferior. Since the I steel has a high Si content and a low S content, it has a particularly short tool life.
Since the J steel and the K steel have a high Mn content and a high Cr content, respectively, they have a mixed bainite structure and are inferior in both the turning tool life and the durability ratio. L steel has a low V content, and V ×
Since Vf × Hα is less than 700, both the turning tool life and the durability ratio are inferior. Since M steel and N steel each have a high Al content and a low N content, the strain aging effect after roll processing cannot be obtained and the durability ratio is poor.

【0035】また従来鋼であるO鋼はフェライト・パー
ラト型の非調質鋼であるが,V含有率が低く,V×Vf
×Hαが700未満であるために旋削工具寿命および耐
久比ともに劣るものである。P鋼は調質炭素鋼である
が,やはり旋削工具寿命および耐久比ともに劣る。
Further, the conventional steel, O steel, is a non-heat treated steel of the ferrite / parrat type, but its V content is low and V × Vf
Since xHα is less than 700, both the life of the turning tool and the durability ratio are inferior. Although P steel is a tempered carbon steel, it still has poor turning tool life and durability ratio.

【0036】これに対して,本発明鋼A〜C鋼により製
造した鍛造品(直径60mmの丸棒)は,主として,
V,Al,Nを適量含有し,他の化学成分のコントロー
ルし,熱処理温度,冷却速度を制御することによりV×
Vf×Hαを700以上,かつ,フェライト分率:Vf
を15%以上の範囲に限定することにより,旋削工具寿
命,耐久比ともに優れた特性が得られることが確認でき
た。また快削元素を添加したD〜G鋼による鍛造品つい
ては,特に旋削工具寿命において更に著しく改善してい
ることが確認できた。
On the other hand, the forged products (round bars having a diameter of 60 mm) produced from the steels A to C of the present invention are mainly
V x Al by containing appropriate amounts of V, Al and N, controlling other chemical components, and controlling the heat treatment temperature and cooling rate.
Vf × Hα is 700 or more, and ferrite fraction: Vf
It was confirmed that by limiting the ratio to 15% or more, excellent characteristics can be obtained in both the turning tool life and the durability ratio. Further, it was confirmed that the forged products of the D to G steels to which the free-cutting element was added had a significantly improved life especially in the turning tool life.

【0037】次に鍛造時の加熱温度および鍛造後の冷却
速度の変化による影響を調査した実施例について以下に
示す。表1に示す鋼のうち,本発明鋼であるC鋼につい
て,熱間圧延にて製造した直径90mmの丸棒を95
0,1200,1350℃の3条件の温度に加熱後,
(加熱温度)−(50〜100)℃にて直径60mmの
丸棒に鍛造し,室温までパレット内積み重ねによる徐
冷,自然空冷,ファン冷却,油焼入の4条件の冷却にて
鍛造品を製造し,前記実施例と同様の試験を行った。表
3に評価結果を示す。
Next, examples for investigating the effects of changes in the heating temperature during forging and the cooling rate after forging are shown below. Among the steels shown in Table 1, for the C steel which is the steel of the present invention, a round bar with a diameter of 90 mm manufactured by hot rolling is used.
After heating to the temperature of 3 conditions of 0, 1200, 1350 ℃,
(Heating temperature)-(50 to 100) ° C, forged into a round bar with a diameter of 60 mm, and then forged by four conditions of slow cooling by stacking in a pallet to room temperature, natural air cooling, fan cooling, oil quenching. It was manufactured and the same test as in the above-mentioned example was conducted. Table 3 shows the evaluation results.

【0038】[0038]

【表3】 [Table 3]

【0039】表3から明らかなように,化学成分が本発
明の請求範囲内にあっても,鍛造時の加熱温度および鍛
造後の冷却が本発明の請求範囲から外れると,フェライ
ト分率もしくはV×Vf×Hαが本発明の請求範囲から
外れてしまうため,旋削工具寿命もしくは耐久比が低下
してしまうことがわかる。
As is clear from Table 3, even if the chemical composition is within the scope of the claims of the present invention, if the heating temperature during forging and the cooling after forging fall outside the scope of the claims of the present invention, the ferrite fraction or V Since xVfxHα is out of the scope of the claims of the present invention, it is understood that the turning tool life or the durability ratio is reduced.

【0040】[0040]

【発明の効果】本発明は,鋼の化学成分を最適化すると
ともに,熱間鍛造時の加熱温度および鍛造後の冷却条件
をコントロールして,フェライト・パーライト組織を得
るとともに,V量:V(%),フェライト分率:Vf
(%),フェライト硬さ:Hα(Hv)の間に,V×V
f×Hα≧700,Vf≧15(%)なる関係を満たす
ことによって,被削性と圧縮加工後の疲労強度に優れた
非調質鍛造品を得ることができる。具体的には,耐久比
で0.60以上,被削工具寿命でJIS鋼S55Cの焼
入れ焼きもどし材の寿命を100とした指数値で,12
0以上という優れた性能を得る事ができる。より好まし
くは,耐久比で0.65以上,被削工具寿命でJIS鋼
S55Cの焼入れ焼きもどし材の寿命を150とした指
数値で,120以上という優れた性能を得る事ができ
る。
INDUSTRIAL APPLICABILITY The present invention optimizes the chemical composition of steel, controls the heating temperature during hot forging and the cooling conditions after forging to obtain a ferrite-pearlite structure, and the V content: V ( %), Ferrite fraction: Vf
(%), Ferrite hardness: V × V between Hα (Hv)
By satisfying the relationship of f × Hα ≧ 700 and Vf ≧ 15 (%), it is possible to obtain a non-heat treated forged product excellent in machinability and fatigue strength after compression processing. Specifically, the durability ratio was 0.60 or more, and the life of the tool to be machined was an index value with the life of the quenched and tempered material of JIS steel S55C being 100.
Excellent performance of 0 or more can be obtained. More preferably, the durability ratio is 0.65 or more, and the excellent tool life is 120 or more in an index value with the life of the quenching and tempering material of JIS steel S55C being 150 in the tool life of the work.

【0041】従って,この技術は特に自動車エンジンの
クランクシャフトのように,高い疲労強度と優れた被削
性を必要とする部品に対して,軽量化と低コスト化を両
立させ得る点において,産業上寄与するところは極めて
大である。
Therefore, this technology is particularly advantageous in that it can achieve both weight reduction and cost reduction for parts that require high fatigue strength and excellent machinability, such as crankshafts of automobile engines. The contribution to the above is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】小野式回転曲げ疲労試験片の説明図。FIG. 1 is an explanatory view of an Ono-type rotary bending fatigue test piece.

【図2】小野式回転曲げ疲労試験片へのロール加工の方
法を示す説明図。
FIG. 2 is an explanatory view showing a method of rolling on an Ono-type rotary bending fatigue test piece.

【図3】フェライト分率と旋削寿命の関係を示した図。FIG. 3 is a diagram showing a relationship between a ferrite fraction and a turning life.

【図4】V×Vf×Hαとロール加工した小野式回転曲
げ疲労試験の耐久比の関係を示した図。
FIG. 4 is a view showing a relationship between V × Vf × Hα and a durability ratio of a rolled Ono-type rotary bending fatigue test.

【符号の説明】[Explanation of symbols]

1...試験片, 13...環状切欠付き部, 2...試験装置, 1. . . Test pieces, 13. . . Annular notch, 2. . . Test equipment,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/60 C22C 38/60 (72)発明者 大脇 進 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 河本 剛 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 張籠 隆行 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平9−143610(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 B21J 5/00 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C22C 38/60 C22C 38/60 (72) Inventor Susumu Owaki Wano Wari No. 1 Arao-cho, Tokai City, Aichi Prefecture Aichi Steel Co., Ltd. (72 ) Inventor Go Kawamoto 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor Motohide Mori 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation, (72) Inventor Takayuki Hariko Aichi 1 Toyota-cho, Toyota-shi, Japan (56) References JP-A-9-143610 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/00 B21J 5/00 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比にしてC:0.15〜0.45
%,Si:0.10〜0.80%,Mn:0.50〜
1.50%,S:0.040〜0.120%,Cr:
0.10〜0.50%,Al:0.005〜0.030
%,V:0.15〜0.50%,N:0.0060%以
上を含有し,残部はFeと不可避的不純物から成る鋼を
用い, 1000〜1300℃で加熱し,熱間鍛造後空冷もしく
はファン冷却することにより,ミクロ組織がフェライト
とパーライトから成り,V量:V(%),フェライト分
率:Vf(%),フェライト硬さ:Hα(Hv)の間
に, V×Vf×Hα≧700, Vf≧15(%) なる関係を満足させ, さらに,高強度が必要な部分に,ロール加工,冷間鍛造
加工,冷間コイニング加工,又 は冷間押出加工のうちい
ずれかの圧縮加工を施すことを特徴とする被削性と圧縮
加工後の疲労強度に優れた非調質鍛造品の製造方法。
1. A weight ratio of C: 0.15 to 0.45.
%, Si: 0.10 to 0.80%, Mn: 0.50
1.50%, S: 0.040 to 0.120%, Cr:
0.10 to 0.50%, Al: 0.005 to 0.030
%, V: 0.15 to 0.50%, N: 0.0060% or more, with the balance being steel consisting of Fe and inevitable impurities, heated at 1000 to 1300 ° C., air-cooled after hot forging Alternatively, by cooling with a fan, the microstructure consists of ferrite and pearlite, and V amount: V (%), ferrite fraction: Vf (%), ferrite hardness: Hα (Hv), V × Vf × Hα ≧ 700, Vf ≧ 15 (%), satisfying the relations , and roll processing and cold forging to the parts that require high strength.
A manufacturing method of a non-heat treated forged product excellent in machinability and fatigue strength after compression processing, which is characterized by performing compression processing of cold working, cold coining, or cold extrusion.
【請求項2】 重量比にしてC:0.15〜0.45
%,Si:0.10〜0.80%,Mn:0.50〜
1.50%,S:0.040〜0.120%,Cr:
0.10〜0.50%,Al:0.005〜0.030
%,V:0.15〜0.50%,N:0.0060%以
上を含有するとともに,さらにCa:0.0005〜
0.0060%,Pb:0.05〜0.30%,Bi:
0.01〜0.20%のうち1種または2種以上を含有
し,残部はFeと不可避的不純物から成る鋼を用い, 1000〜1300℃で加熱し,熱間鍛造後空冷もしく
はファン冷却することにより,ミクロ組織がフェライト
とパーライトから成り,V量:V(%),フェライト分
率:Vf(%),フェライト硬さ:Hα(Hv)の間
に, V×Vf×Hα≧700, Vf≧15(%) なる関係を満足させ, さらに,高強度が必要な部分に,ロール加工,冷間鍛造
加工,冷間コイニング加工,又 は冷間押出加工のうちい
ずれかの圧縮加工を施すことを特徴とする被削性と圧縮
加工後の疲労強度に優れた非調質鍛造品の製造方法。
2. A weight ratio of C: 0.15 to 0.45.
%, Si: 0.10 to 0.80%, Mn: 0.50
1.50%, S: 0.040 to 0.120%, Cr:
0.10 to 0.50%, Al: 0.005 to 0.030
%, V: 0.15-0.50%, N: 0.0060% or more, and further Ca: 0.0005-
0.0060%, Pb: 0.05-0.30%, Bi:
Steel containing 1 or 2 or more of 0.01 to 0.20% and the balance of Fe and unavoidable impurities is used. The steel is heated at 1000 to 1300 ° C., hot-forged and then air-cooled or fan-cooled. As a result, the microstructure is composed of ferrite and pearlite, and V amount: V (%), ferrite fraction: Vf (%), ferrite hardness: Hα (Hv), V × Vf × Hα ≧ 700, Vf Satisfies the relation of ≧ 15 (%) , and further roll processing and cold forging to the parts where high strength is required.
A manufacturing method of a non-heat treated forged product excellent in machinability and fatigue strength after compression processing, which is characterized by performing compression processing of cold working, cold coining, or cold extrusion.
JP03721999A 1999-02-16 1999-02-16 Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression Expired - Fee Related JP3478381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03721999A JP3478381B2 (en) 1999-02-16 1999-02-16 Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03721999A JP3478381B2 (en) 1999-02-16 1999-02-16 Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression

Publications (2)

Publication Number Publication Date
JP2000239782A JP2000239782A (en) 2000-09-05
JP3478381B2 true JP3478381B2 (en) 2003-12-15

Family

ID=12491491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03721999A Expired - Fee Related JP3478381B2 (en) 1999-02-16 1999-02-16 Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression

Country Status (1)

Country Link
JP (1) JP3478381B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923927B2 (en) * 2006-09-29 2012-04-25 大同特殊鋼株式会社 Crankshaft manufacturing method
JP4752800B2 (en) * 2007-03-29 2011-08-17 住友金属工業株式会社 Non-tempered steel
JP5556191B2 (en) * 2009-01-30 2014-07-23 愛知製鋼株式会社 Hot forged non-heat treated steel parts and non-heat treated steel for hot forging used therefor
JP5521931B2 (en) * 2010-09-14 2014-06-18 新日鐵住金株式会社 Soft medium carbon steel plate with excellent induction hardenability
JP5716640B2 (en) * 2011-11-21 2015-05-13 新日鐵住金株式会社 Rolled steel bar for hot forging
JP5681333B1 (en) 2013-03-20 2015-03-04 愛知製鋼株式会社 Forged parts, manufacturing method thereof, and connecting rod
JP7163731B2 (en) * 2018-11-12 2022-11-01 住友ゴム工業株式会社 Cutting equipment for rubber materials for tires
CN115747634A (en) * 2022-10-10 2023-03-07 南京钢铁股份有限公司 A kind of high-quality non-quenched and tempered steel, crankshaft and preparation method

Also Published As

Publication number Publication date
JP2000239782A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US10202677B2 (en) Production method of carburized steel component and carburized steel component
RU2201468C2 (en) Steel for manufacture of part by cold plastic deformation and method of manufacture of such part
KR101745224B1 (en) Steel for carburizing
US20130186522A1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
JP6610808B2 (en) Soft nitriding steel and parts
US7815750B2 (en) Method of production of steel soft nitrided machine part
KR20140064929A (en) Steel wire for bolt, bolt, and manufacturing processes therefor
US9200354B2 (en) Rolled steel bar or wire for hot forging
KR101552449B1 (en) Rolled steel bar or wire for hot forging
JP3478381B2 (en) Manufacturing method of non-heat treated forging with excellent machinability and fatigue strength after compression
JPS5853709B2 (en) As-forged high-strength forging steel
JP4581966B2 (en) Induction hardening steel
JPH09324241A (en) Steel material for nitrocarburizing, nitrocarburizing component and method of manufacturing the same
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JP2888135B2 (en) High durability high strength non-heat treated steel and its manufacturing method
JP2894184B2 (en) Steel for soft nitriding
CN116323992B (en) Crankshaft
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP3903966B2 (en) Case-hardened steel with excellent chip control
JP4488228B2 (en) Induction hardening steel
JP7031428B2 (en) Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods
JP7597271B2 (en) Hot forged non-tempered steel and its manufacturing method
JP7552959B1 (en) Non-tempered steel for hot forging, hot forging material and manufacturing method thereof
JP2000017377A (en) Air cooled martensitic steel and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees