[go: up one dir, main page]

JP3475534B2 - As-containing water treatment equipment - Google Patents

As-containing water treatment equipment

Info

Publication number
JP3475534B2
JP3475534B2 JP32737094A JP32737094A JP3475534B2 JP 3475534 B2 JP3475534 B2 JP 3475534B2 JP 32737094 A JP32737094 A JP 32737094A JP 32737094 A JP32737094 A JP 32737094A JP 3475534 B2 JP3475534 B2 JP 3475534B2
Authority
JP
Japan
Prior art keywords
tank
containing water
electrolytic cell
anode
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32737094A
Other languages
Japanese (ja)
Other versions
JPH08173976A (en
Inventor
勇 加藤
武 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP32737094A priority Critical patent/JP3475534B2/en
Publication of JPH08173976A publication Critical patent/JPH08173976A/en
Application granted granted Critical
Publication of JP3475534B2 publication Critical patent/JP3475534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はAs含有水の処理装置に
係り、特に、As含有廃水にFe3+とCl2とを添加し
て共沈処理するための装置に関する。 【0002】 【従来の技術】従来、As含有廃水の処理方法として
は、鉄塩を添加して共沈させる方法が一般的である。 【0003】この共沈法において、As(V)とAs(I
II) とでは、As(V)の方がAs(III) よりも共沈し
易く、また、Fe3+とFe2+とではFe3+の方がFe2+
よりも共沈効果が高いことが確認されている(日本鉱業
会誌192 1066(’76−12)809)。 【0004】従って、実際のAs含有廃水処理において
は、As含有廃水にFe3+を添加すると共に、酸化剤を
添加して、As(III) をAs(V)に酸化した後、pH
5〜8で共沈処理を行うのが一般的である。 【0005】 【発明が解決しようとする課題】上記従来の方法におい
ては、Fe3+及び酸化剤、例えば次亜塩素酸ソーダの注
入設備として、これらの薬剤の貯留タンクや注入ポンプ
等が必要となり、注入設備の装置コスト、設置面積、保
守管理等の面で問題があった。また、Fe3+と酸化剤の
添加量調整も容易ではないという問題もあった。 【0006】本発明は上記従来の問題点を解決し、装置
コストの低減、装置設置面積の縮少及び保守管理の軽減
が図れ、しかも、薬注量の制御も容易なAs含有水の処
理装置を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明のAs含有水の処
理装置は、NaCl溶液を電解液とし、かつ、少なくと
も陽極が鉄電極である第1の回路と、少なくとも陽極が
不溶性電極である第2の回路とを備える隔膜式電解槽
と、As含有水が導入されると共に、該電極槽で発生し
たCl2 とFe3+とが添加される反応槽と、該反応槽の
流出液が導入されると共に、前記電解槽で発生したNa
OHが添加される中和槽と、該中和槽の流出液を固液分
離する沈殿槽と、を備えてなることを特徴とする。 【0008】 【作用】本発明のAs含有水の処理装置において、電解
槽の陽極側では、次のような反応が生起する。即ち、鉄
陽極では下記の反応によりFe2+の溶出が起こる。ま
た、不溶性陽極では、電解液中のCl- から下記の反
応によりCl2 が発生し、発生したCl2 の一部により
下記の反応でFe2+がFe3+に酸化される。 【0009】 Fe→Fe2++2e- … 2Cl- →Cl2 +2e- … 2Fe2++Cl2 →2Fe3++2Cl- … 一方、電解槽の陰極側では、電解液中のNa+ から下記
,の反応により、NaやNaOHが生成する。 【0010】 Na+ +e- →Na … Na+ +H2 O→1/2 H2 +NaOH … 本発明に係る電解槽は密栓構造の隔膜式であるため、陽
極側は酸性となり、上記で生成するCl2 はCl2
スとなっており、このCl2 ガスが反応槽に吹き込まれ
ると共に、上記で生成したFe3+が反応槽に添加され
る。 【0011】反応槽では、下記の反応でAs(III) か
らAs(V)への酸化が行われる。このAs(V)と、
Fe3+とを含有する反応槽の流出液は、中和槽でpH調
整されることにより、下記の反応でAs(V)とFe
3+が共沈する。 【0012】 AsO3 3- +Cl2 +H2 O→AsO4 3- +2HCl… Fe3++AsO4 3- →FeAsO4 (沈殿) … この中和槽におけるpH調整に当っては、電解槽の陰極
で前記の反応により生成したNaOHを有効利用す
る。 【0013】中和槽の流出液は沈殿槽で固液分離するこ
とにより、上澄水として、AsがFeとの共沈で除去さ
れた処理水を得ることができる。 【0014】このような処理において、本発明のAs含
有水の処理装置では、反応槽へのCl2 ガス及びFe3+
の添加量、即ち、Cl2 濃度、Fe3+濃度及びCl2
Fe3+濃度比は、電解槽の電解液のNaCl濃度、電解
電圧、電流密度、電極面積等を調整することにより容易
に調節することができる。 【0015】 【実施例】以下に図面を参照して本発明のAs含有水の
処理装置の実施例を詳細に説明する。 【0016】図1は本発明のAs含有水の処理装置の一
実施例を示す系統図である。 【0017】図中、1は電解槽、2は反応槽、3は中和
槽、4は沈殿槽である。 【0018】電解槽1は、隔膜1A,1Bで陽極室1a
及び陰極室1bが仕切られた隔膜式電解槽であり、電解
液としてNaCl水溶液が貯留されている。この電解槽
1には、第1の回路5と第2の回路6との2つの回路が
設けられており、第1の回路は鉄陽極5Aと鉄陰極5B
とが設けられている。また、第2の回路6には、不溶性
電極として白金陽極6Aと白金陰極6Bとが設けられて
いる。なお、5C,6Cは電源である。 【0019】この電解槽1の第1の回路は陽極5Aが鉄
よりなるものであれば良く、陰極5Bについては鉄に限
定されるものではないが、一般的には鉄陰極を用いるの
が好ましい。また、第2の回路6は陽極6Aが不溶性電
極であればよく、白金−白金電極の他、酸化鉛−酸化鉛
電極、チタン−チタン電極等を用いることができる。 【0020】この電解槽1の陽極室1aにおいては、前
記〜の反応によりFe3+とCl2 ガスが生成する。
生成したCl2 ガス及びFe3+は配管13,14より反
応槽2に添加される。 【0021】反応槽2には、配管11より原水(As含
有水)が導入され、配管12より必要に応じて添加され
るpH調整剤によりpHが2〜3に調整されると共に、
電解槽1から配管13,14を経てCl2 ガス,Fe3+
が添加される。この反応槽2において、原水中のAs(I
II) は前記の反応でAs(V)に酸化される。 【0022】反応槽2の流出水は次いで配管15より中
和槽3に導入される。この中和槽3には、電解槽1の陰
極室1bにおいて前記の反応で生成するNaOHが配
管16より添加されると共に、配管17よりアルカリ及
びポリアクリルアミド系ポリマー等の凝集剤が添加さ
れ、pH5〜8に調整されることにより、前記の反応
に従って、As(V)とFe3+とが共沈すると共に凝集
処理される。 【0023】この中和槽3の流出水は次いで配管18よ
り沈殿槽4に導入されて固液分離され、上澄水は処理水
として配管19より系外へ排出される。 【0024】なお、配管20はNaCl水溶液の供給配
管であり、電解により電解槽1の電解液面が低下した場
合には、図示しない液面計と連動する補給ポンプの稼働
によりNaCl水溶液が貯留槽(図示せず)から補給さ
れるように構成されている。 【0025】本実施例のAs含有水の処理装置によれ
ば、電解槽1におけるFe3+,Cl2発生量を、電解液
のNaCl濃度、電解電圧、電流密度、電極面積等の調
整により任意の濃度に容易に調整することができ、従来
のような薬注ポンプ等の薬注設備が不要となる。 【0026】また、中和のためのアルカリとして、電解
槽1で生成するNaOHを有効利用して、薬剤コストの
低減を図ることもできる。 【0027】このようなAs含有水の処理装置におい
て、電解槽の電極の寿命や隔膜の汚れは、電極の極性を
反転させて、陽極を陰極に、また、陰極を陽極として電
解を行うことによりある程度補うことができ、実用性が
高められる。 【0028】以下に具体的な実施例を挙げて本発明をよ
り詳細に説明する。 【0029】実施例1 図1に示すAs含有水の処理装置により、pH2.7,
As1.5mg/lの温泉源泉の処理を行った。 【0030】原水の流量は100リットル/分とし、各
槽の仕様及び条件は下記の通りとした。 【0031】電解槽 電解液:3.0重量%NaCl水溶液 第1の回路:鉄−鉄電極 電圧 5.0V 第2の回路:白金−白金電極 電圧 3.5V反応槽 pH:2.5 反応時間:10分中和槽 pH:6.0 反応時間:15分(ポリマーとしてポリアクリルアミド
の部分加水分解物を1mg/l添加) その結果、電解槽からは、1.0g/分の割合でCl2
ガスを得ると共に、0.4g/分の割合でFe3+を得る
ことができ、これを反応槽に添加することにより、As
を効率的に共沈させることができた。また、電解槽から
はNaOHを1.2g/分の割合で得ることができ、こ
れを中和槽に添加することにより、中和に必要なアルカ
リ量の低減を図ることができた。 【0032】このときのFe3+添加量は原水中のAsに
対して2.5重量倍であり、Cl2注入量は10ppm
であった。得られた処理水のAs濃度は表1No.1に
示す通りであった。 【0033】また、上記方法において、第1の回路電圧
及び第2の回路の電圧を表1に示す値とし、Cl2 注入
量は10ppmのまま、Fe3+添加量を表1に示すFe
3+/As比となるようにしたこと以外は同様に行ったと
ころ、表1に示すAs濃度の処理水を得ることができ
た。 【0034】表1より、本発明によれば、電解槽で発生
したFe3+,Cl2 ,NaOHを用いて、効率的にAs
の共沈処理を行えることができ、その際のFe3+,Cl
2 添加量を電圧制御等により容易に調節できることが明
らかである。 【0035】 【表1】 【0036】 【発明の効果】以上詳述した通り、本発明のAs含有水
の処理装置によれば、比較的安価で装置設置面積が小さ
くて足り、しかも保守管理及び処理操作が容易なAs含
有水の共沈処理装置が提供される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating As-containing water and, more particularly, to co-precipitation treatment by adding Fe 3+ and Cl 2 to As-containing wastewater. Device for [0002] Conventionally, as a method for treating As-containing wastewater, a method of coprecipitating by adding an iron salt is generally used. In this coprecipitation method, As (V) and As (I)
II) and in, it easily co-precipitation than As (III) towards the As (V), also, Fe 3+ and Fe 2+ and towards the Fe 3+ in the Fe 2+
It is confirmed that the coprecipitation effect is higher than that of the Japanese Society of Mining Industry (192 1066 ('76 -12) 809). Therefore, in the actual treatment of wastewater containing As, Fe 3+ is added to the wastewater containing As and an oxidizing agent is added to oxidize As (III) to As (V).
Generally, coprecipitation is performed at 5 to 8. [0005] In the above-mentioned conventional method, as a facility for injecting Fe 3+ and an oxidizing agent, for example, sodium hypochlorite, a storage tank and an injecting pump for these agents are required. However, there are problems in terms of equipment cost, installation area, maintenance management, and the like of the injection equipment. There is also a problem that it is not easy to adjust the addition amounts of Fe 3+ and the oxidizing agent. The present invention solves the above-mentioned conventional problems, reduces the cost of the apparatus, reduces the installation area of the apparatus, and reduces the maintenance management, and furthermore, the apparatus for treating As-containing water that can easily control the amount of chemical injection. The purpose is to provide. [0007] The apparatus for treating As-containing water according to the present invention comprises a first circuit in which a NaCl solution is used as an electrolyte and at least the anode is an iron electrode, and at least the anode is an insoluble electrode. A electrolytic cell provided with a second circuit, a reaction tank into which As-containing water is introduced and Cl 2 and Fe 3+ generated in the electrode tank are added, and an outflow from the reaction tank. The liquid is introduced and the Na generated in the electrolytic cell is
It is characterized by comprising a neutralization tank to which OH is added, and a precipitation tank for solid-liquid separation of the effluent of the neutralization tank. In the apparatus for treating As-containing water of the present invention, the following reaction occurs on the anode side of the electrolytic cell. That is, Fe 2+ is eluted at the iron anode by the following reaction. In the insoluble anode, Cl 2 is generated from Cl in the electrolytic solution by the following reaction, and Fe 2+ is oxidized to Fe 3+ by the following reaction by a part of the generated Cl 2 . Fe → Fe 2+ + 2e 2Cl → Cl 2 + 2e 2Fe 2+ + Cl 2 → 2Fe 3+ + 2Cl On the other hand, on the cathode side of the electrolytic cell, Na + in the electrolytic solution is The reaction produces Na and NaOH. Na + + e → Na... Na + + H 2 O → 1/2 H 2 + NaOH Since the electrolytic cell according to the present invention is a diaphragm type having a sealed plug structure, the anode side becomes acidic, and the Cl formed above is formed. 2 is Cl 2 gas, and this Cl 2 gas is blown into the reaction tank, and the Fe 3+ generated above is added to the reaction tank. In the reaction tank, As (III) is oxidized to As (V) by the following reaction. This As (V),
The effluent of the reaction tank containing Fe 3+ is subjected to pH adjustment in a neutralization tank so that As (V) and Fe
3+ co-precipitates. AsO 3 3- + Cl 2 + H 2 O → AsO 4 3- + 2HCl ... Fe 3+ + AsO 4 3- → FeAsO 4 (precipitation) ... In the pH adjustment in the neutralization tank, the cathode of the electrolytic cell is used. The NaOH generated by the above reaction is effectively used. The effluent of the neutralization tank is subjected to solid-liquid separation in a precipitation tank, whereby treated water from which As has been removed by coprecipitation with Fe can be obtained as supernatant water. In such a treatment, in the apparatus for treating As-containing water of the present invention, Cl 2 gas and Fe 3+
, Ie, Cl 2 concentration, Fe 3+ concentration and Cl 2 /
The Fe 3+ concentration ratio can be easily adjusted by adjusting the NaCl concentration of the electrolytic solution in the electrolytic cell, the electrolytic voltage, the current density, the electrode area, and the like. Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 is a system diagram showing one embodiment of the apparatus for treating As-containing water of the present invention. In the figure, 1 is an electrolytic tank, 2 is a reaction tank, 3 is a neutralization tank, and 4 is a sedimentation tank. The electrolytic cell 1 is made up of an anode chamber 1a by diaphragms 1A and 1B.
The cathode chamber 1b is a diaphragm type electrolytic cell in which a NaCl aqueous solution is stored as an electrolytic solution. The electrolytic cell 1 is provided with two circuits, a first circuit 5 and a second circuit 6, and the first circuit includes an iron anode 5A and an iron cathode 5B.
Are provided. Further, the second circuit 6 is provided with a platinum anode 6A and a platinum cathode 6B as insoluble electrodes. 5C and 6C are power supplies. In the first circuit of the electrolytic cell 1, the anode 5A only needs to be made of iron, and the cathode 5B is not limited to iron, but it is generally preferable to use an iron cathode. . Further, the second circuit 6 only needs to have an insoluble electrode for the anode 6A. In addition to the platinum-platinum electrode, a lead oxide-lead oxide electrode, a titanium-titanium electrode or the like can be used. In the anode chamber 1a of the electrolytic cell 1, Fe 3+ and Cl 2 gas are generated by the above-mentioned reactions.
The generated Cl 2 gas and Fe 3+ are added to the reaction tank 2 from the pipes 13 and 14. Raw water (As-containing water) is introduced into the reaction tank 2 from a pipe 11, and the pH is adjusted to 2 to 3 by a pH adjuster added as needed from a pipe 12.
Cl 2 gas, Fe 3+ from the electrolytic cell 1 via pipes 13 and 14
Is added. In this reaction tank 2, As (I
II) is oxidized to As (V) by the above reaction. The effluent from the reaction tank 2 is then introduced into the neutralization tank 3 through a pipe 15. NaOH generated by the above-described reaction in the cathode chamber 1b of the electrolytic cell 1 is added to the neutralization tank 3 through a pipe 16, and a coagulant such as an alkali and a polyacrylamide polymer is added through a pipe 17 to the neutralization tank 3. By adjusting to 88, As (V) and Fe 3+ are coprecipitated and coagulated according to the above reaction. The effluent from the neutralization tank 3 is then introduced into the sedimentation tank 4 through a pipe 18 to be separated into solid and liquid, and the supernatant water is discharged out of the system from a pipe 19 as treated water. The pipe 20 is a supply pipe for an aqueous solution of NaCl, and when the electrolytic solution level of the electrolytic tank 1 is lowered by electrolysis, the aqueous solution of NaCl is stored in the storage tank by operating a replenishing pump in conjunction with a liquid level gauge (not shown). (Not shown). According to the apparatus for treating As-containing water of the present embodiment, the amount of Fe 3+ and Cl 2 generated in the electrolytic cell 1 can be arbitrarily adjusted by adjusting the NaCl concentration of the electrolytic solution, the electrolytic voltage, the current density, the electrode area, and the like. Can be easily adjusted to the concentration, and the need for conventional chemical injection equipment such as a chemical injection pump is eliminated. Further, as an alkali for neutralization, NaOH generated in the electrolytic cell 1 can be effectively used to reduce the cost of chemicals. In such an apparatus for treating As-containing water, the life of the electrodes in the electrolytic cell and the contamination of the diaphragm can be solved by reversing the polarity of the electrodes and performing electrolysis using the anode as a cathode and the cathode as an anode. It can be supplemented to some extent and the practicality is enhanced. Hereinafter, the present invention will be described in more detail with reference to specific examples. Example 1 The treatment apparatus for treating As-containing water shown in FIG.
The hot spring source of As1.5 mg / l was treated. The flow rate of the raw water was 100 liters / minute, and the specifications and conditions of each tank were as follows. Electrolyte Electrolyte: 3.0 wt% NaCl aqueous solution First circuit: iron-iron electrode voltage 5.0 V Second circuit: platinum-platinum electrode voltage 3.5 V Reaction tank pH: 2.5 reaction time : 10 minutes Neutralization tank pH: 6.0 Reaction time: 15 minutes (addition of 1 mg / l of a partial hydrolyzate of polyacrylamide as a polymer) As a result, Cl 2 was supplied from the electrolytic tank at a rate of 1.0 g / min.
A gas can be obtained, and at the same time, Fe 3+ can be obtained at a rate of 0.4 g / min.
Was efficiently coprecipitated. In addition, NaOH was obtained at a rate of 1.2 g / min from the electrolytic cell, and by adding this to the neutralization tank, the amount of alkali required for neutralization could be reduced. At this time, the added amount of Fe 3+ was 2.5 times by weight of As in the raw water, and the injected amount of Cl 2 was 10 ppm.
Met. The As concentration of the obtained treated water is shown in Table 1 As shown in FIG. In the above method, the first circuit voltage and the second circuit voltage are set to the values shown in Table 1, and the amount of Fe 3+ added is shown in Table 1 while the Cl 2 injection amount is kept at 10 ppm.
The same operation was carried out except that the 3 + / As ratio was obtained. As a result, treated water having the As concentration shown in Table 1 could be obtained. According to Table 1, according to the present invention, As 3 can be efficiently used by using Fe 3+ , Cl 2 , and NaOH generated in the electrolytic cell.
Coprecipitation treatment, and in that case, Fe 3+ , Cl
2 It is clear that the amount of addition can be easily adjusted by voltage control or the like. [Table 1] As described in detail above, according to the apparatus for treating As-containing water of the present invention, the As-containing water that is relatively inexpensive, requires a small installation area, and is easy to maintain and manage. An apparatus for coprecipitation of water is provided.

【図面の簡単な説明】 【図1】本発明のAs含有水の処理装置の一実施例を示
す系統図である。 【符号の説明】 1 電解槽 1A,1B 隔膜 2 反応槽 3 中和槽 4 沈殿槽 5 第1の回路 5A 鉄陽極 5B 陰極 6 第2の回路 6A 不溶性陽極 6B 陰極 7 電解液
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing one embodiment of an apparatus for treating As-containing water of the present invention. [Description of Signs] 1 Electrolyzer 1A, 1B Diaphragm 2 Reaction tank 3 Neutralization tank 4 Precipitation tank 5 First circuit 5A Iron anode 5B Cathode 6 Second circuit 6A Insoluble anode 6B Cathode 7 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/00 - 1/78 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C02F 1/00-1/78

Claims (1)

(57)【特許請求の範囲】 【請求項1】 NaCl溶液を電解液とし、かつ、少な
くとも陽極が鉄電極である第1の回路と、少なくとも陽
極が不溶性電極である第2の回路とを備える隔膜式電解
槽と、 As含有水が導入されると共に、該電極槽で発生したC
2 とFe3+とが添加される反応槽と、 該反応槽の流出液が導入されると共に、前記電解槽で発
生したNaOHが添加される中和槽と、 該中和槽の流出液を固液分離する沈殿槽と、を備えてな
るAs含有水の処理装置。
(57) [Claim 1] A first circuit in which a NaCl solution is used as an electrolyte and at least the anode is an iron electrode, and a second circuit in which at least the anode is an insoluble electrode is provided. A diaphragm type electrolytic cell, As-containing water is introduced, and C generated in the electrode cell
a reaction tank to which l 2 and Fe 3+ are added; a neutralization tank to which an effluent of the reaction tank is introduced and to which NaOH generated in the electrolytic cell is added; an effluent of the neutralization tank A precipitation tank for solid-liquid separation of As.
JP32737094A 1994-12-28 1994-12-28 As-containing water treatment equipment Expired - Lifetime JP3475534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32737094A JP3475534B2 (en) 1994-12-28 1994-12-28 As-containing water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32737094A JP3475534B2 (en) 1994-12-28 1994-12-28 As-containing water treatment equipment

Publications (2)

Publication Number Publication Date
JPH08173976A JPH08173976A (en) 1996-07-09
JP3475534B2 true JP3475534B2 (en) 2003-12-08

Family

ID=18198389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32737094A Expired - Lifetime JP3475534B2 (en) 1994-12-28 1994-12-28 As-containing water treatment equipment

Country Status (1)

Country Link
JP (1) JP3475534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070718A (en) * 1998-02-24 1999-09-15 이상율 Electrolytic Treatment System of Liquid and Method
CN110078176A (en) * 2013-05-13 2019-08-02 霍加纳斯股份有限公司 Cathode, electrochemical cell and application thereof
JP6495786B2 (en) * 2015-09-07 2019-04-03 Jx金属株式会社 Method for producing crystalline scorodite
JP6495787B2 (en) * 2015-09-07 2019-04-03 Jx金属株式会社 Method for producing crystalline scorodite
CN105540750A (en) * 2015-12-11 2016-05-04 江苏科技大学 Method for microelectrolysis-pulse electrocoagulation coupled treatment of dye wastewater

Also Published As

Publication number Publication date
JPH08173976A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP2627100B2 (en) Method and apparatus for producing sterilized water
JP2619756B2 (en) Sterilized water production method
US20090008267A1 (en) Process and method for the removal of arsenic from water
CN103233244B (en) A kind of method utilizing useless brown liquid to extract copper
CN106587456B (en) A kind of advanced oxidation-flocculation water treatment method based on oxygen molecule activation
JP3475534B2 (en) As-containing water treatment equipment
JP3884329B2 (en) Decomposition method of organic substances in liquid to be treated
JP3453414B2 (en) Electrolyzed water generator
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP3400627B2 (en) Method for removing COD from water containing COD
JP2732818B2 (en) Method for producing electrolytic ionic water
JPH11128938A (en) Formation of electrolyzed water
JP5057424B2 (en) Hypohalous acid reduction mechanism and reduction method
KR20020060792A (en) Method for treating waste water using electrolysis
JPH06206074A (en) Method and apparatus for producing sterilizing water
TW401379B (en) The treatment for the phosphoric ion acid-containing waste water
US20060163173A1 (en) Method for treating sewage and sewage treatment system in combined sewer systems
JP4130763B2 (en) Generation method of non-oxidizing strong acid water
JP2005118695A (en) Method and apparatus for reducing biosludge
JPH11207353A (en) Purifying treatment of utility water or waste water and device therefor
EP4265571A1 (en) Electrochemical device and method for wastewater treatment
JP3401294B2 (en) Electrolytic water treatment method
EP1226094A1 (en) Device for electrolysis
JPH078961A (en) Production of acidic water
CN110697949B (en) Method for reducing residual quantity of chloride ions in diaphragm-free electrolyzed water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9