[go: up one dir, main page]

JP3473295B2 - Catalyst carrier and catalyst for exhaust gas purification - Google Patents

Catalyst carrier and catalyst for exhaust gas purification

Info

Publication number
JP3473295B2
JP3473295B2 JP29657896A JP29657896A JP3473295B2 JP 3473295 B2 JP3473295 B2 JP 3473295B2 JP 29657896 A JP29657896 A JP 29657896A JP 29657896 A JP29657896 A JP 29657896A JP 3473295 B2 JP3473295 B2 JP 3473295B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
supporting
carrier
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29657896A
Other languages
Japanese (ja)
Other versions
JPH09192487A (en
Inventor
寿幸 田中
直樹 ▲高▼橋
世里子 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP29657896A priority Critical patent/JP3473295B2/en
Publication of JPH09192487A publication Critical patent/JPH09192487A/en
Application granted granted Critical
Publication of JP3473295B2 publication Critical patent/JP3473295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動車エンジンなど
から排出される排ガスを浄化する排ガス浄化用触媒と、
その触媒に用いられる担体に関し、詳しくは、排ガス中
に含まれる一酸化炭素(CO)や炭化水素(HC)を酸
化するのに必要な量より過剰な酸素が含まれている排ガ
ス中の、窒素酸化物(NOx )を効率よく浄化できる排
ガス浄化用触媒及びそれに用いられる触媒担体に関す
る。
TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas emitted from an automobile engine or the like,
Regarding the carrier used for the catalyst, more specifically, nitrogen in exhaust gas containing oxygen in excess of the amount necessary to oxidize carbon monoxide (CO) and hydrocarbons (HC) contained in exhaust gas. The present invention relates to an exhaust gas purifying catalyst capable of efficiently purifying oxides (NO x ) and a catalyst carrier used therefor.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを同時に行
って排ガスを浄化する三元触媒が用いられている。この
ような触媒としては、例えばコージェライトなどの耐熱
性担体にγ−アルミナからなる担持層を形成し、その担
持層にPt,Pd,Rhなどの貴金属触媒を担持させた
ものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas of automobiles. As such a catalyst, for example, a catalyst in which a supporting layer made of γ-alumina is formed on a heat-resistant carrier such as cordierite and a noble metal catalyst such as Pt, Pd, Rh is supported on the supporting layer is widely known. There is.

【0003】ところで、このような排ガス浄化用触媒の
浄化性能は、エンジンの空燃比(A/F)によって大き
く異なる。すなわち、空燃比の大きい、つまり燃料濃度
が希薄なリーン側では排ガス中の酸素量が多くなり、C
OやHCを浄化する酸化反応が活発である反面NOx
浄化する還元反応が不活発になる。逆に空燃比の小さ
い、つまり燃料濃度が濃いリッチ側では排ガス中の酸素
量が少なくなり、酸化反応は不活発となるが還元反応は
活発になる。
By the way, the purification performance of such an exhaust gas purifying catalyst greatly differs depending on the air-fuel ratio (A / F) of the engine. That is, on the lean side where the air-fuel ratio is large, that is, where the fuel concentration is lean, the amount of oxygen in the exhaust gas increases, and C
While the oxidation reaction for purifying O and HC is active, the reduction reaction for purifying NO x is inactive. On the contrary, on the rich side where the air-fuel ratio is small, that is, the rich side where the fuel concentration is high, the amount of oxygen in the exhaust gas is small, and the oxidation reaction becomes inactive but the reduction reaction becomes active.

【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーンバーン制御が必要となる。リーンバーン制御によれ
ば、燃料の使用量が低減され二酸化炭素の発生が抑制さ
れるので、地球環境保護の観点から好ましい。
On the other hand, when driving an automobile, acceleration and deceleration are frequently performed in urban areas, and the air-fuel ratio frequently changes within the range from near stoichiometric (theoretical air-fuel ratio) to the rich state. In order to meet the demand for low fuel consumption in such traveling, lean burn control for supplying an oxygen-rich mixture as much as possible is necessary. The lean burn control reduces the amount of fuel used and suppresses the generation of carbon dioxide, and is therefore preferable from the viewpoint of global environment protection.

【0005】しかしリーンバーンエンジンからの排ガス
中には酸素量が多く、このような条件で通常の三元触媒
を用いるとNOx を浄化する還元反応が不活発である。
したがってリーンバーンエンジンからの酸素量の多い排
ガス中のNOx を十分に浄化できる触媒の開発が望まれ
ている。そこでリーンバーンにおいて、常時は酸素過剰
のリーン条件で燃焼させ、一時的にストイキ〜リッチ条
件とすることにより排ガスを還元雰囲気として、NOx
を還元浄化するシステムが開発された。そしてこのシス
テムに最適な、リーン雰囲気でNOx を吸蔵し、ストイ
キ〜リッチ雰囲気で吸蔵されたNOx を放出するNOx
吸蔵材を用いた吸蔵還元型の排ガス浄化用触媒が開発さ
れている。
However, the exhaust gas from the lean burn engine has a large amount of oxygen, and if a normal three-way catalyst is used under such conditions, the reduction reaction for purifying NO x is inactive.
Therefore, there is a demand for the development of a catalyst capable of sufficiently purifying NO x in exhaust gas from a lean burn engine, which contains a large amount of oxygen. Therefore, in lean burn, combustion is normally performed under lean conditions with excess oxygen, and a stoichiometric-rich condition is temporarily set to reduce exhaust gas into a reducing atmosphere to generate NO x.
A system for reducing and purifying was developed. The ideal for this system, occludes NO x in lean atmosphere, NO x to release the NO x occluded in the stoichiometric-rich atmosphere
A storage-reduction type exhaust gas purifying catalyst using a storage material has been developed.

【0006】例えば特開平5−317652号公報に
は、アルカリ土類金属とPtをアルミナなどの多孔質担
体に担持した触媒が提案されている。この触媒によれ
ば、リーン時にNOx がアルカリ土類金属に吸着され、
それがストイキ〜リッチ時にHCやCOの還元性ガスと
反応して浄化されるため、リーン側においてもNOx
浄化性能に優れている。このようなNOx 吸蔵材として
は、他にアルカリ金属、希土類元素などが知られてい
る。
For example, JP-A-5-317652 proposes a catalyst in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina. According to this catalyst, when lean, NO x is adsorbed on the alkaline earth metal,
Since it reacts with the reducing gas of HC or CO to be purified during stoichiometric-rich conditions, it has excellent NO x purification performance even on the lean side. Other known NO x storage materials include alkali metals and rare earth elements.

【0007】ところが排ガス中には、燃料中に含まれる
硫黄(S)が燃焼して生成したSO 2 が含まれ、それが
酸素過剰雰囲気中で触媒金属によりさらに酸化されてS
3となる。そしてそれがやはり排ガス中に含まれる水
蒸気により容易に硫酸となり、これらがNOx 吸蔵材と
反応して亜硫酸塩や硫酸塩が生成し、NOx 吸蔵材が被
毒劣化することが明らかとなった。つまり、このように
NOx 吸蔵材が亜硫酸塩や硫酸塩となると、もはやNO
x を吸着することができなくなり、その結果耐久試験後
のNOx の浄化性能が低下するという不具合があった。
この現象は「硫黄被毒」と称されている。
However, the exhaust gas is contained in the fuel.
SO produced by burning sulfur (S) 2Is included
S is further oxidized by the catalytic metal in an oxygen excess atmosphere.
O3Becomes And that is also the water contained in the exhaust gas
The steam easily turns into sulfuric acid, which is NOxWith occlusion material
Sulfite and sulfate are generated by reaction, NOxOcclusion material
It became clear that poisonous deterioration would occur. That is, like this
NOxIf the storage material becomes sulfite or sulfate, NO
xCan no longer be adsorbed, resulting in a durability test
NOxHowever, there was a problem that the purification performance of was reduced.
This phenomenon is called "sulfur poisoning".

【0008】そして従来の排ガス浄化用触媒では、吸着
作用に優れた活性アルミナを担体として使用している
が、活性アルミナ担体はSOx をも吸着し易いという性
質があることから、上記硫黄被毒が促進されるという現
象もあった。つまりSOx がアルミナに吸着されると、
アルミナは酸性側となってNOx と反発し合い、NOx
吸蔵材へのNOx の吸蔵が阻害される。さらにSOx
NO x 吸蔵材とから生成した硫酸塩あるいは亜硫酸塩は
分解し難いので、NOx 吸蔵材のNOx 吸蔵作用が回復
できず耐久性が損なわれるという不具合もあった。
In the conventional exhaust gas purifying catalyst, the adsorption
Uses activated alumina, which has excellent action, as a carrier
However, the activated alumina carrier is SOxEasy to adsorb
Due to its quality, the fact that sulfur poisoning is promoted
There were also elephants. That is SOxIs adsorbed on alumina,
Alumina becomes acidic and NOxRepel each other, NOx
NO to occlusion materialxStorage is inhibited. Further SOxWhen
NO xSulfate or sulfite produced from the occlusion material
NO because it is difficult to disassemblexStorage material NOxStorage effect restored
There was also a problem that it could not be done and the durability was impaired.

【0009】そこで本願出願人は、TiとZrの複合酸
化物よりなる担体にNOx 吸蔵材と触媒貴金属とを担持
した排ガス浄化用触媒を提案している(特願平7−43
96号、本願出願時未公開)。この排ガス浄化用触媒に
よれば、TiとZrの複合酸化物はアルミナに比べて硫
酸イオンや亜硫酸イオンが吸着しにくく、かつ吸着して
硫酸塩となったとしてもその硫酸塩が分解しやすい性質
をもつことや、TiとZrの複合安定化によりそれぞれ
を単独で用いた場合と比較して耐熱性や酸性度が向上す
るという効果をもち、触媒性能の向上と硫黄被毒の防止
の両立に効果的である。
Therefore, the applicant of the present application has proposed an exhaust gas purifying catalyst in which a NO x storage material and a catalytic noble metal are supported on a carrier composed of a composite oxide of Ti and Zr (Japanese Patent Application No. 7-43).
No. 96, not yet published at the time of filing this application). According to this exhaust gas-purifying catalyst, the composite oxide of Ti and Zr is less likely to adsorb sulfate ions and sulfite ions than alumina, and even if adsorbed to form sulfate, the sulfate is easily decomposed. It has the effect of improving heat resistance and acidity compared with the case where each of them is used alone due to the combined stabilization of Ti and Zr, and achieves both improvement of catalyst performance and prevention of sulfur poisoning. It is effective.

【0010】ところがさらなる研究の結果、TiとZr
の複合酸化物よりなる担体を用いた排ガス浄化用触媒で
は、高温下で用いられた場合に熱劣化が大きく、高温耐
久後のNOx 浄化率が十分でないことが明らかとなっ
た。そこで本願出願人は、Ti−Zr−Al複合酸化物
からなる触媒担体にNOx吸蔵材と触媒貴金属とを担持
させた排ガス浄化用触媒を提案している(特願平7−1
79055号、本願出願時未公開)。この排ガス浄化用
触媒によれば、アルミナの存在により耐熱性が向上す
る。また、チタニア(TiO2 )やジルコニア(ZrO
2 )は、アルミナに比べて硫酸イオンや亜硫酸イオンが
吸着しにくい。したがって、担持されているNOx 吸蔵
材と硫酸イオンや亜硫酸イオンが接触する確率が低下
し、SOx とNOx 吸蔵材とが反応して硫酸塩あるいは
亜硫酸塩を生成するのが防止されるので、その硫酸塩あ
るいは亜硫酸塩によりNOx 吸蔵材のNOx 吸蔵作用が
損なわれるのが防止され、耐久性が向上する。
However, as a result of further research, Ti and Zr
It has been clarified that the exhaust gas-purifying catalyst using the carrier made of the composite oxide of No. 2 undergoes large thermal deterioration when used at high temperatures, and the NO x purification rate after high-temperature durability is not sufficient. Therefore the present applicant has proposed a Ti-Zr-Al catalyst support in the NO x storage material and the catalyst noble metal and a catalyst for purification of exhaust gas obtained by supporting a made of a composite oxide (Japanese Patent Application No. 7-1
No. 79055, unpublished at the time of filing this application). According to this exhaust gas-purifying catalyst, the heat resistance is improved due to the presence of alumina. In addition, titania (TiO 2 ) and zirconia (ZrO
In 2 ), sulfate ions and sulfite ions are less likely to be adsorbed than alumina. Therefore, the probability that the carried NO x storage material comes into contact with the sulfate ion or the sulfite ion is reduced, and it is possible to prevent the SO x and the NO x storage material from reacting with each other to generate a sulfate or a sulfite. The sulfate or sulfite prevents the NO x storage function of the NO x storage material from being impaired and improves the durability.

【0011】また複合酸化物担体とすることにより、複
合安定化の効果が得られTi−Zrの2成分系と比較し
て耐熱性が格段に向上するとともに、吸着した硫酸イオ
ンや亜硫酸イオンにより生成した硫酸塩は低温で容易に
分解する。したがってNOx吸蔵材とNOx とが接触す
る確率が増大する。これによりNOx 浄化能が向上す
る。
Further, the use of the composite oxide carrier has the effect of stabilizing the composite, and the heat resistance is remarkably improved as compared with the two-component system of Ti-Zr, and it is produced by the adsorbed sulfate ion or sulfite ion. The sulfates decompose easily at low temperatures. Therefore, the probability of contact between the NO x storage material and NO x increases. This improves the NO x purification capacity.

【0012】[0012]

【発明が解決しようとする課題】ところで近年のエンジ
ンの高性能化及び高速道路網の普及などにより、自動車
の排ガス温度の上昇が大きい。ところがアルミナとZr
2 を含む複合酸化物からなる触媒担体を用いた上記排
ガス浄化用触媒であっても、高温下例えば900℃以上
で使用するとZrO2 部分の表面積が著しく低下し、そ
れに伴って担持されている触媒貴金属やNOx 吸蔵材に
シンタリングが生じたり、あるいは固相反応が生じるた
め、触媒性能が低下するという不具合があることが明ら
かとなった。
By the way, due to the high performance of engines and the widespread use of highway networks in recent years, the exhaust gas temperature of automobiles has risen significantly. However, alumina and Zr
Even with the above exhaust gas-purifying catalyst that uses a catalyst support made of a composite oxide containing O 2 , when it is used at a high temperature, for example, 900 ° C. or higher, the surface area of the ZrO 2 portion is significantly reduced, and the catalyst is supported accordingly. It has been revealed that there is a problem that catalytic performance is deteriorated because sintering or solid-phase reaction occurs in the catalytic noble metal or NOx storage material.

【0013】本発明はこのような事情に鑑みてなされた
ものであり、NOx の浄化性能を高く維持しつつ硫黄被
毒を防止するとともに、高温下における触媒貴金属及び
NO x 吸蔵材のシンタリング及び固相反応を防止するこ
とを目的とする。
The present invention has been made in view of such circumstances.
No,xWhile maintaining high purification performance of sulfur
In addition to preventing poison, catalyst precious metal and
NO xPrevent sintering and solid-state reaction of the occlusion material.
aimed to.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する請求
項1に記載の触媒担体の特徴は、排ガス浄化用触媒に用
いられる触媒担体であって、(1)沈殿担持法、含浸担
持法及び噴霧担持法の少なくとも一方法にてアルミナ粒
子上にジルコニウムを担持後700℃以上で酸化性雰囲
気中にて焼成する方法、(2)噴霧担持法にてアルミナ
粒子上にジルコニウムを担持する際の燃焼温度を700
℃以上とする方法、から選ばれる方法により調製されて
なり、モル比でZr/Alが1/9〜9/1の範囲にあ
ことにある。
The catalyst carrier according to claim 1 for solving the above problems is a catalyst carrier used for an exhaust gas purifying catalyst, comprising: (1) a precipitation supporting method and an impregnation supporting method.
Alumina particles by at least one of the holding method and the spray supporting method.
After supporting zirconium on the child, 700 ° C or higher in an oxidizing atmosphere
A method of firing in air, (2) Alumina by the spray loading method
The combustion temperature for loading zirconium on the particles is 700
Prepared by a method selected from
Therefore, the molar ratio of Zr / Al is within the range of 1/9 to 9/1.
Lies in the fact that.

【0015】請求項1に記載の触媒担体を用いた請求項
に記載の排ガス浄化用触媒の特徴は、酸素過剰の雰囲
気下で排ガス中の窒素酸化物(NOx )、一酸化炭素
(CO)及び炭化水素(HC)を浄化する排ガス浄化用
触媒であって、(1)沈殿担持法、含浸担持法及び噴霧
担持法の少なくとも一方法にてアルミナ粒子上にジルコ
ニウムを担持後700℃以上で酸化性雰囲気中にて焼成
する方法、(2)噴霧担持法にてアルミナ粒子上にジル
コニウムを担持する際の燃焼温度を700℃以上とする
方法、から選ばれる方法により調製されてなり、モル比
でZr/Alが1/9〜9/1の範囲にある触媒担体
に、アルカリ金属、アルカリ土類金属及び希土類元素か
ら選ばれるNOx 吸蔵材と触媒貴金属とを担持してなる
ことにある。
A method using the catalyst carrier according to claim 1.
The feature of the exhaust gas purifying catalyst described in 2 is that the exhaust gas purifying catalyst purifies nitrogen oxides (NO x ), carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas under an atmosphere of excess oxygen. (1) Precipitation supporting method, impregnation supporting method and spraying
Zirco on alumina particles by at least one of the supporting methods.
After supporting nickel, calcination at 700 ℃ or higher in oxidizing atmosphere
Method, (2) Zirconium is deposited on the alumina particles by the spray loading method.
Combustion temperature when supporting konium shall be 700 ℃ or higher
Prepared by a method selected from the
With Zr / Al in the range of 1/9 to 9/1
To, the alkali metal is to become carries the the NO x storage material and the catalyst noble metal selected from alkaline earth metals and rare earth elements.

【0016】[0016]

【0017】[0017]

【発明の実施の形態】本発明の触媒担体では、ジルコニ
ア層がアルミナ粒子の表面を被覆した構造となってい
る。そしてジルコニアは、アルカリ金属及びアルカリ土
類金属との反応性がアルミナに比較して低いことがわか
っている。そのため、高温熱劣化の要因であるNOx
蔵材とアルミナとの間の固相反応がジルコニア層の存在
により抑制され、NOx 吸蔵材の失活を防止することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst carrier of the present invention has a structure in which a zirconia layer covers the surface of alumina particles. It is known that zirconia has lower reactivity with alkali metals and alkaline earth metals than alumina. Therefore, the solid-state reaction between the NO x storage material and alumina, which is a factor of high temperature thermal deterioration, is suppressed by the presence of the zirconia layer, and the deactivation of the NO x storage material can be prevented.

【0018】またジルコニアはアルミナ粒子の表面を被
覆したジルコニア層として存在しているため、ジルコニ
ア粒子あるいはアルミナとの複合酸化物として存在して
いる場合に比べてジルコニア部分の比表面積が元々低く
なっている。したがって高温におけるジルコニア部分の
比表面積の低下度合いが僅かとなるため、触媒全体の比
表面積の低下が抑制されることにより、触媒貴金属やN
x 吸蔵材のシンタリングが抑制され耐久性に優れてい
る。
Since zirconia exists as a zirconia layer covering the surface of alumina particles, the specific surface area of the zirconia portion is originally lower than that in the case of existing as a complex oxide with zirconia particles or alumina. There is. Therefore, the degree of decrease in the specific surface area of the zirconia portion at a high temperature is small, so that the decrease in the specific surface area of the entire catalyst is suppressed, and the catalyst precious metal and N
Sintering of the O x storage material is suppressed and the durability is excellent.

【0019】さらに本発明の排ガス浄化用触媒では、ジ
ルコニアはアルミナに比べて硫酸イオンや亜硫酸イオン
が吸着しにくい。したがって、担持されているNOx
蔵材と硫酸イオンや亜硫酸イオンが接触する確率が低下
し、SOx とNOx 吸蔵材とが反応して硫酸塩あるいは
亜硫酸塩を生成するのが防止されるので、その硫酸塩あ
るいは亜硫酸塩によりNOx 吸蔵材のNOx 吸蔵作用が
損なわれるのが防止され、耐久性が向上する。
Further, in the exhaust gas purifying catalyst of the present invention, zirconia is less likely to adsorb sulfate ions and sulfite ions than alumina. Therefore, the probability that the carried NO x storage material comes into contact with the sulfate ion or the sulfite ion is reduced, and it is possible to prevent the SO x and the NO x storage material from reacting with each other to generate a sulfate or a sulfite. The sulfate or sulfite prevents the NO x storage function of the NO x storage material from being impaired and improves the durability.

【0020】触媒担体を構成するZrとAlの比率は、
ZrのAlに対するモル比を1/9〜9/1の範囲とす
る。Zrがこの範囲より多いと高温時の比表面積の低下
が大きく、Alがこの範囲より多いとNOx 吸蔵材とア
ルミナとの固相反応が進行しやすくなる。なお、アルミ
ナ上にジルコニア層を形成する方法としては、(1)沈
殿担持法、含浸担持法及び噴霧担持法の少なくとも一方
法にてアルミナ上にジルコニウムを担持後700℃以上
で酸化性雰囲気中にて焼成する方法、(2)噴霧担持法
にてアルミナ上にジルコニウムを担持する際の燃焼温度
を700℃以上とする方法がある。
The ratio of Zr and Al constituting the catalyst carrier is
The molar ratio of Zr to Al is set in the range of 1/9 to 9/1.
It If Zr is more than this range, the specific surface area at a high temperature is largely reduced, and if Al is more than this range, the solid-phase reaction between the NO x storage material and alumina is likely to proceed. As a method of forming a zirconia layer on alumina, (1) at least one of a precipitation supporting method, an impregnation supporting method, and a spray supporting method is used, and after supporting zirconium on alumina, the temperature is set to 700 ° C. or higher in an oxidizing atmosphere. And (2) a method of setting the combustion temperature at the time of supporting zirconium on alumina by the spray supporting method to 700 ° C. or higher .

【0021】上記(1)及び(2)の方法においては、
γ−アルミナのα化を防止するために、焼成温度又は燃
焼温度を1000℃以下とするのが好ましい。この焼成
は一般に大気中で行うが、他の酸化性雰囲気中で行うこ
ともできる。焼成時間は一般に3〜5時間で充分であ
る。なお、この焼成温度又は燃焼温度は、700℃以上
とする必要がある。この温度が700℃未満では、ジル
コニア層の形成が不十分となり所期の性能が得られな
い。
In the above methods (1) and (2),
In order to prevent γ-alumina from being converted into α, it is preferable that the firing temperature or the combustion temperature be 1000 ° C or lower. This firing is generally performed in the air, but it can be performed in another oxidizing atmosphere. A firing time of 3 to 5 hours is generally sufficient. The firing temperature or combustion temperature needs to be 700 ° C. or higher. If this temperature is lower than 700 ° C., the formation of the zirconia layer is insufficient and the desired performance cannot be obtained.

【0022】触媒担体は、コージェライトやメタル担体
を用いたモノリス担体基材あるいはペレット基材表面に
担持層として被覆形成することができる。また他の材料
を用いることなく、触媒担体のみからモノリス構造ある
いはペレット構造を形成してもよい。触媒担体に担持さ
れるNOx 吸蔵材としては、アルカリ金属、アルカリ土
類金属及び希土類元素から選ばれる少なくとも一種が用
いられる。アルカリ金属としてはリチウム、ナトリウ
ム、カリウム、セシウムが挙げられる。また、アルカリ
土類金属とは周期表2A族元素をいい、マグネシウム、
カルシウム、ストロンチウム、バリウムが挙げられる。
また希土類元素としては、スカンジウム、イットリウ
ム、ランタン、セリウム、プラセオジム、ネオジムなど
が例示される。
The catalyst carrier can be formed by coating as a carrier layer on the surface of a monolith carrier substrate or a pellet substrate using cordierite or a metal carrier. Further, the monolith structure or the pellet structure may be formed only from the catalyst carrier without using other materials. As the NO x storage material supported on the catalyst carrier, at least one selected from alkali metals, alkaline earth metals and rare earth elements is used. Examples of the alkali metal include lithium, sodium, potassium and cesium. Further, the alkaline earth metal means an element of Group 2A of the periodic table, magnesium,
Examples include calcium, strontium, and barium.
Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium.

【0023】NOx 吸蔵材の含有量は、触媒担体100
gに対して0.05〜1.0モルの範囲が望ましい。含
有量が0.05モルより少ないとNOx 吸蔵能力が小さ
くNOx 浄化性能が低下し、1.0モルを超えて含有し
ても、NOx 吸蔵能力が飽和すると同時にHCのエミッ
ションが増加するなどの不具合が生じる。触媒貴金属と
しては、Pt,Rh及びPdの1種又は複数種を用いる
ことができ、Ptが特に望ましい。その担持量は、いず
れの貴金属でも、担体100gに対して0.1〜20g
が好ましく、0.5〜10gが特に好ましい。触媒貴金
属の担持量をこれ以上増加させても活性は向上せず、そ
の有効利用が図れない。また触媒貴金属の担持量がこれ
より少ないと、実用上十分な活性が得られない。
The content of the NO x storage material is 100
The range of 0.05 to 1.0 mol is desirable with respect to g. If the content is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced, and if the content exceeds 1.0 mol, the NO x storage capacity is saturated and at the same time HC emission increases. Such problems occur. As the catalytic noble metal, one or more of Pt, Rh and Pd can be used, and Pt is particularly desirable. The supported amount is 0.1 to 20 g with respect to 100 g of carrier for any precious metal.
Is preferred, and 0.5 to 10 g is particularly preferred. Even if the supported amount of the catalytic noble metal is further increased, the activity is not improved, and the effective utilization cannot be achieved. Further, if the amount of the catalytic noble metal supported is less than this, sufficient activity for practical use cannot be obtained.

【0024】なお、NOx 吸蔵材及び触媒貴金属を触媒
担体に担持させるには、その塩化物や硝酸塩等を用い
て、含浸法、噴霧法、スラリー混合法などを利用して従
来と同様に担持させることができる。
In order to support the NO x storage material and the catalytic noble metal on the catalyst carrier, the chloride, nitrate or the like is used in the same manner as in the conventional method by using an impregnation method, a spray method, a slurry mixing method or the like. Can be made.

【0025】[0025]

【実施例】以下、実施例により具体的に説明する。 (実施例1) (1)担体前駆体の調製工程 硝酸ジルコニル及びアルミナ粉末を、モル比でZr:A
l=1:4となるように水中で攪拌混合して混合懸濁液
とし、中和剤として必要量のアンモニア水を用いて、沈
澱物を得た。この沈澱物を洗浄し、80℃で乾燥し大気
中において500℃で5時間焼成して、担体前駆体粉末
を調製した。 (2)触媒担体の調製工程 上記で得られた担体前駆体粉末を、大気中において90
0℃で3時間焼成することにより、触媒担体粉末を調製
した。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 (1) Preparation Step of Carrier Precursor Zirconyl nitrate and alumina powder were used in a molar ratio of Zr: A.
The mixture was stirred and mixed in water so that l = 1: 4 to obtain a mixed suspension, and a necessary amount of aqueous ammonia was used as a neutralizing agent to obtain a precipitate. This precipitate was washed, dried at 80 ° C., and calcined in air at 500 ° C. for 5 hours to prepare a carrier precursor powder. (2) Step of Preparing Catalyst Carrier The carrier precursor powder obtained above was heated in the air at 90 ° C.
A catalyst carrier powder was prepared by calcining at 0 ° C. for 3 hours.

【0026】この焼成前の担体前駆体粉末と、焼成後の
触媒担体粉末の走査型電子顕微鏡写真図を、図1及び図
2にそれぞれ示す。なお、図1及び図2において、黒い
部分はアルミナ粒子を、白い部分はジルコニア粒子をそ
れぞれ示している。図1及び図2より、焼成前にはアル
ミナ粒子とジルコニア粒子がそれぞれ散在しているが、
焼成後にはアルミナ粒子の表面をジルコニアが被覆した
状態となって、アルミナ粒子の表面にジルコニア層が形
成されていることが観察される。 (3)各成分の担持工程 この触媒担体粉末の所定量を、所定濃度のジニトロジア
ンミン白金水溶液中に浸漬し、5時間攪拌した後に蒸発
乾固させ、大気中にて300℃で3時間焼成して白金
(Pt)を担持させた。Ptの担持量は、触媒担体10
0gに対してPtが2gである。
Scanning electron micrographs of the carrier precursor powder before calcination and the catalyst carrier powder after calcination are shown in FIGS. 1 and 2, respectively. In FIGS. 1 and 2, the black portion shows alumina particles and the white portion shows zirconia particles. 1 and 2, alumina particles and zirconia particles are scattered before firing,
It is observed that after firing, the surface of the alumina particles is covered with zirconia, and a zirconia layer is formed on the surfaces of the alumina particles. (3) Step of supporting each component A predetermined amount of this catalyst carrier powder is immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and calcined in air at 300 ° C. for 3 hours. To support platinum (Pt). The amount of Pt loaded is the amount of the catalyst carrier 10
Pt is 2 g with respect to 0 g.

【0027】次に、Ptが担持された触媒担体粉末を、
所定濃度の酢酸バリウム水溶液中に浸漬し、5時間攪拌
した後に蒸発乾固させ、大気中にて300℃で3時間焼
成してNOx 吸蔵材としてのバリウム(Ba)を担持さ
せた。Baの担持量は、触媒担体100gに対してBa
が0.3molである。最後に、PtとBaが担持され
た触媒粉末を水素気流中にて500℃で3時間処理し、
実施例1の排ガス浄化用触媒粉末を調製した。
Next, the catalyst carrier powder carrying Pt is
It was immersed in a barium acetate aqueous solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and baked in the atmosphere at 300 ° C. for 3 hours to carry barium (Ba) as a NO x storage material. The supported amount of Ba is Ba based on 100 g of the catalyst carrier.
Is 0.3 mol. Finally, the catalyst powder supporting Pt and Ba was treated in a hydrogen stream at 500 ° C. for 3 hours,
Exhaust gas purifying catalyst powder of Example 1 was prepared.

【0028】(実施例2)所定量の硝酸ジルコニルとア
ルミナ粉末を、モル比でZr:Al=1:4となるよう
に水中で攪拌混合して混合懸濁液とした。この混合懸濁
液を火炎中に噴霧して600℃で燃焼させ、噴霧法によ
り担体前駆体粉末を調製した。この担体前駆体粉末を実
施例1と同様に焼成して触媒担体粉末とし、同様にPt
とBaを担持して実施例2の排ガス浄化用触媒粉末を調
製した。
Example 2 A predetermined amount of zirconyl nitrate and alumina powder were mixed by stirring in water so that the molar ratio was Zr: Al = 1: 4 to prepare a mixed suspension. This mixed suspension was sprayed into a flame and burned at 600 ° C. to prepare a carrier precursor powder by a spraying method. This carrier precursor powder was fired in the same manner as in Example 1 to obtain a catalyst carrier powder, and Pt was similarly used.
And Ba were carried to prepare an exhaust gas purifying catalyst powder of Example 2.

【0029】(実施例3)所定量のアルミナ粉末を所定
濃度の硝酸ジルコニル水溶液の所定量に浸漬し、5時間
攪拌後蒸発乾固してZrを含浸担持した。ZrとAlの
モル比はZr:Al=1:4である。その後大気中にて
500℃で5時間焼成し、担体前駆体粉末を調製した。
(Example 3) A predetermined amount of alumina powder was immersed in a predetermined amount of a zirconyl nitrate aqueous solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and impregnated with Zr. The molar ratio of Zr and Al is Zr: Al = 1: 4. Then, it was baked in the air at 500 ° C. for 5 hours to prepare a carrier precursor powder.

【0030】この担体前駆体粉末を実施例1と同様に焼
成して触媒担体粉末とし、同様にPtとBaを担持して
実施例3の排ガス浄化用触媒粉末を調製した。 (実施例4)所定量の硝酸ジルコニルとアルミナ粉末
を、モル比でZr:Al=1:4となるように水中で攪
拌混合して混合懸濁液とした。この混合懸濁液を火炎中
に噴霧して900℃にて燃焼させ、噴霧法により触媒担
体粉末を調製した。
This carrier precursor powder was calcined in the same manner as in Example 1 to prepare a catalyst carrier powder, and Pt and Ba were similarly loaded to prepare an exhaust gas purifying catalyst powder of Example 3. (Example 4) A predetermined amount of zirconyl nitrate and alumina powder were mixed by stirring in water so that the molar ratio was Zr: Al = 1: 4 to prepare a mixed suspension. This mixed suspension was sprayed into a flame and burned at 900 ° C. to prepare a catalyst carrier powder by a spraying method.

【0031】この触媒担体粉末を用い、実施例1と同様
にPtとBaを担持して実施例4の排ガス浄化用触媒粉
末を調製した。 (参考例1) 所定量のアルミナ粉末を2−プロパノール中に混合し、
80℃で1時間撹拌した。これを80℃に維持して撹拌
しながら、ジルコニウムn−ブトキシドを加え、80℃
で2時間撹拌を続けた。そして室温まで冷却後、濾過・
洗浄し、得られた粉末を乾燥後500℃で1時間焼成し
て触媒担体粉末を得た。
Using this catalyst carrier powder, Pt and Ba were loaded in the same manner as in Example 1 to prepare an exhaust gas purifying catalyst powder of Example 4. ( Reference Example 1 ) A predetermined amount of alumina powder was mixed in 2-propanol,
The mixture was stirred at 80 ° C for 1 hour. While maintaining this at 80 ° C. and stirring, zirconium n-butoxide was added, and the mixture was heated to 80 ° C.
The stirring was continued for 2 hours. After cooling to room temperature, filtration /
The powder obtained by washing was dried and then calcined at 500 ° C. for 1 hour to obtain a catalyst carrier powder.

【0032】この触媒担体粉末を用い、実施例1と同様
にPtとBaを担持して参考例1の排ガス浄化用触媒粉
末を調製した。 (比較例1) 担体前駆体を大気中において900℃で3時間焼成する
(2)触媒担体の調製工程を行わなかったこと以外は実
施例1と同様にして、比較例1の排ガス浄化用触媒粉末
を調製した。
Using this catalyst carrier powder, Pt and Ba were loaded in the same manner as in Example 1 to prepare an exhaust gas purifying catalyst powder of Reference Example 1 . (Comparative Example 1) Exhaust gas purifying catalyst of Comparative Example 1 was carried out in the same manner as in Example 1 except that (2) the step of preparing the catalyst carrier was performed by calcining the carrier precursor in the air at 900 ° C for 3 hours. A powder was prepared.

【0033】(比較例2)担体前駆体を大気中において
900℃で3時間焼成する(2)触媒担体の調製工程を
行わなかったこと以外は実施例2と同様にして、比較例
2の排ガス浄化用触媒粉末を調製した。 (比較例3)担体前駆体を大気中において900℃で3
時間焼成する(2)触媒担体の調製工程を行わなかった
こと以外は実施例3と同様にして、比較例3の排ガス浄
化用触媒粉末を調製した。
(Comparative Example 2) Exhaust gas of Comparative Example 2 was carried out in the same manner as in Example 2 except that (2) the step of preparing the catalyst carrier was carried out by calcining the carrier precursor in the air at 900 ° C for 3 hours. A purification catalyst powder was prepared. (Comparative Example 3) A carrier precursor was heated at 900 ° C. in air for 3 hours.
Exhaust gas purification catalyst powder of Comparative Example 3 was prepared in the same manner as in Example 3 except that the step (2) of preparing the catalyst carrier, which was calcined for a time, was not performed.

【0034】(比較例4)実施例1における(1)担体
前駆体の調製工程を行わず、アルミナ粉末のみを担体に
用いたこと以外は実施例1と同様にして、比較例4の排
ガス浄化用触媒粉末を調製した。 (比較例5)実施例1における(1)担体前駆体の調製
工程を行わずアルミナ粉末のみを担体に用いたこと、及
び(2)触媒担体の調製工程を行わなかったこと以外は
実施例1と同様にして、比較例5の排ガス浄化用触媒粉
末を調製した。
(Comparative Example 4) Exhaust gas purification of Comparative Example 4 was carried out in the same manner as in Example 1 except that (1) the step of preparing the carrier precursor in Example 1 was not carried out and only alumina powder was used as the carrier. A catalyst powder for use was prepared. (Comparative Example 5) Example 1 except that (1) the carrier precursor preparation step in Example 1 was not performed and only alumina powder was used as the carrier, and (2) the catalyst carrier preparation step was not performed. Exhaust gas purifying catalyst powder of Comparative Example 5 was prepared in the same manner as in.

【0035】(比較例6)実施例1における(1)担体
前駆体の調製工程を行わずジルコニア(ZrO2)粉末
のみを担体に用いたこと以外は実施例1と同様にして、
比較例6の排ガス浄化用触媒粉末を調製した。 (比較例7)実施例1における(1)担体前駆体の調製
工程を行わずジルコニア(ZrO2)粉末のみを担体に
用いたこと、及び(2)触媒担体の調製工程を行わなか
ったこと以外は実施例1と同様にして、比較例7の排ガ
ス浄化用触媒粉末を調製した。
Comparative Example 6 The procedure of Example 1 was repeated, except that the step (1) of preparing the carrier precursor in Example 1 was not performed and only the zirconia (ZrO 2 ) powder was used as the carrier.
An exhaust gas-purifying catalyst powder of Comparative Example 6 was prepared. (Comparative Example 7) Other than using (1) the zirconia (ZrO 2 ) powder alone as a carrier without carrying out the step of preparing the carrier precursor in Example 1 and (2) not carrying out the step of preparing the catalyst carrier. In the same manner as in Example 1, an exhaust gas-purifying catalyst powder of Comparative Example 7 was prepared.

【0036】(比較例8)実施例1における(1)担体
前駆体の調製工程において、アルミナ粉末とジルコニア
粉末を混合して、単独酸化物の混合物からなる担体前駆
体粉末を調製したこと以外は実施例1と同様にして、比
較例8の排ガス浄化用触媒粉末を調製した。AlとZr
のモル比は、Zr:Al=1:4である。
COMPARATIVE EXAMPLE 8 Except that in the step (1) of preparing a carrier precursor in Example 1, alumina powder and zirconia powder were mixed to prepare a carrier precursor powder composed of a mixture of individual oxides. Exhaust gas purifying catalyst powder of Comparative Example 8 was prepared in the same manner as in Example 1. Al and Zr
The molar ratio of Zr: Al = 1: 4.

【0037】(試験・評価)上記のそれぞれの排ガス浄
化用触媒粉末について、初期と硫黄被毒耐久試験後及び
高温耐久試験後のNOx 浄化率をそれぞれ測定した。 (1)初期NOx 浄化率 常法によりそれぞれの排ガス浄化用触媒粉末からペレッ
ト化されたそれぞれの排ガス浄化用触媒0.5gを評価
装置に配置し、表1に示すリーン側のモデル排ガスとリ
ッチ側のモデル排ガスを2分毎に交互に繰り返して流速
2L/minで流し、過渡域におけるNOx の初期浄化
率を測定した。入りガス温度は400℃である。結果を
表4に示す。なお、NOx 浄化率は、次式で定義され
る。
(Test / Evaluation) For each of the above exhaust gas purifying catalyst powders, the NO x purification rate was measured at the initial stage, after the sulfur poisoning durability test, and after the high temperature durability test. (1) Initial NO x purification rate 0.5 g of each exhaust gas purifying catalyst pelletized from each exhaust gas purifying catalyst powder by a conventional method was placed in an evaluation device, and lean model exhaust gas and rich shown in Table 1 were used. The model exhaust gas on the side was alternately repeated every 2 minutes to flow at a flow rate of 2 L / min, and the initial purification rate of NO x in the transient region was measured. The incoming gas temperature is 400 ° C. The results are shown in Table 4. The NO x purification rate is defined by the following equation.

【0038】NOx 浄化率(%)=100×(1−4分
間の出口ガス中のNOx 量/4分間の入りガス中のNO
x 量)
NO x purification rate (%) = 100 × (NO x amount in outlet gas for 1-4 minutes / NO in incoming gas for 4 minutes)
x amount)

【0039】[0039]

【表1】 (2)硫黄被毒耐久試験後のNOx 浄化率 常法によりそれぞれの排ガス浄化用触媒粉末からペレッ
ト化されたそれぞれの排ガス浄化用触媒を耐久試験装置
に配置し、表2に示すリーン側のモデル排ガスとリッチ
側のモデル排ガスを、入りガス温度600℃でリーン…
リッチを4分…1分で切り替えながら流し、触媒1g当
たり1時間15分行った。
[Table 1] (2) NO x purification rate after sulfur poisoning durability test Each exhaust gas purifying catalyst pelletized from each exhaust gas purifying catalyst powder by a conventional method is placed in a durability test device, and the lean side shown in Table 2 The model exhaust gas and the model exhaust gas on the rich side are lean at an incoming gas temperature of 600 ° C.
Flowing was performed while switching rich for 4 minutes ... 1 minute, and 1 hour 15 minutes per 1 g of catalyst.

【0040】その後、初期NOx 浄化率の測定と同様に
して過渡域におけるNOx 浄化率を測定した。結果を表
4に示す。
[0040] Thereafter, was measured the NO x purification rate in the transient region in the same manner as in the measurement of initial the NO x purification rate. The results are shown in Table 4.

【0041】[0041]

【表2】 (3)高温耐久試験後のNOx 浄化率 常法によりそれぞれの排ガス浄化用触媒粉末からペレッ
ト化されたそれぞれの排ガス浄化用触媒を耐久試験装置
に配置し、表3に示すリーン側のモデル排ガスとリッチ
側のモデル排ガスを、入りガス温度900℃でリーン…
リッチを1分…4分で切り替えながら5時間流した。
[Table 2] (3) NO x purification rate after high temperature endurance test Each exhaust gas purification catalyst pelletized from each exhaust gas purification catalyst powder by a conventional method is placed in an endurance test device, and lean side model exhaust gas shown in Table 3 is obtained. And the model exhaust gas on the rich side is lean at an incoming gas temperature of 900 ° C
Rich was switched from 1 minute to 4 minutes and was run for 5 hours.

【0042】その後、初期NOx 浄化率の測定と同様に
して過渡域におけるNOx 浄化率を測定した。結果を表
4に示す。
[0042] Thereafter, was measured the NO x purification rate in the transient region in the same manner as in the measurement of initial the NO x purification rate. The results are shown in Table 4.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 表4より、比較例1〜3の排ガス浄化用触媒は実施例
〜4に比べて高温耐久後のNOx 浄化率が低く、高温耐
久性において実施例1〜4より劣っていることがわか
る。すなわち実施例1〜4のように大気中900℃で焼
成した触媒担体を用いることにより、高温耐久性が向上
していることが明らかである。
[Table 4] From Table 4, the exhaust gas purifying catalysts of Comparative Examples 1 to 3 are the catalysts of Example 1
It can be seen that the NO x purification rate after high temperature endurance is lower than those of Examples 1 to 4 and the high temperature durability is inferior to Examples 1 to 4 . That is, it is apparent that the high temperature durability is improved by using the catalyst carrier which is calcined at 900 ° C. in the air as in Examples 1 to 4 .

【0045】また比較例4と比較例5とを比較すると、
大気中900℃の焼成の有無による差が小さく、実施例
1と比較例1との比較、及び比較例4と比較例5との比
較より、ジルコニアを含まない場合には、担体の900
℃焼成の効果が小さいことがわかる。つまり、このよう
な焼成処理の効果は担体がジルコニアを含む場合に有効
であり、ジルコニア層の形成によりジルコニア部分の比
表面積が小さく触媒表面積の低下が抑制されるのと同時
に、高温での固相反応が抑制されていると推定される。
Further, comparing Comparative Example 4 and Comparative Example 5,
The difference between the presence and absence of calcination at 900 ° C. in the air is small, and comparison between Example 1 and Comparative Example 1 and Comparison between Comparative Example 4 and Comparative Example 5 shows that when the carrier does not contain zirconia, 900
It can be seen that the effect of firing at ℃ is small. That is, the effect of such a calcination treatment is effective when the carrier contains zirconia, and the formation of the zirconia layer reduces the specific surface area of the zirconia portion and suppresses the reduction of the catalyst surface area, and at the same time, the solid phase at a high temperature. It is presumed that the reaction is suppressed.

【0046】さらに比較例6と比較例7とを比較する
と、同様に大気中900℃の焼成により初期活性及び耐
久後の活性が低下している。そして実施例1と比較例1
との比較、及び比較例6と比較例7との比較より、ジル
コニアとアルミナが共存する場合に焼成処理の効果が発
現することがわかる。そして実施例1と比較例8との比
較により、アルミナ粒子表面にジルコニア層を形成した
触媒担体を用いることで耐硫黄被毒性を含めた浄化性能
が格段に向上し、単独酸化物どうしを混合した触媒担体
では900℃で焼成しても高温耐久性及び硫黄被毒耐久
性が向上しないことがわかる。
Further, comparing Comparative Example 6 and Comparative Example 7, similarly, the initial activity and the activity after endurance are decreased by baking at 900 ° C. in the air. And Example 1 and Comparative Example 1
From the comparison with Comparative Example 6 and the comparison between Comparative Example 6 and Comparative Example 7, it can be seen that the effect of the firing treatment is exhibited when zirconia and alumina coexist. A comparison between Example 1 and Comparative Example 8 revealed that the use of a catalyst carrier having a zirconia layer formed on the surface of alumina particles significantly improved the purification performance including sulfur poisoning resistance, and the single oxides were mixed together. It can be seen that the catalyst carrier does not improve the high temperature durability and the sulfur poisoning durability even if calcined at 900 ° C.

【0047】[0047]

【発明の効果】すなわち本発明の触媒担体によれば、ジ
ルコニアがアルミナ粒子の表面を被覆しているため、表
出するアルミナの表面割合が低い。また触媒として使用
時において、ジルコニア部分の比表面積低下によっても
たらされる触媒全体の比表面積低下度合いが小さい。
That is, according to the catalyst carrier of the present invention, since the surface of the alumina particles is coated with zirconia, the surface ratio of the exposed alumina is low. Further, when used as a catalyst, the degree of decrease in the specific surface area of the entire catalyst caused by the decrease in the specific surface area of the zirconia portion is small.

【0048】したがってこの触媒担体を用いた本発明の
排ガス浄化用触媒によれば、高温時におけるNOx 吸蔵
材とアルミナとの固相反応及び触媒貴金属とNOx 吸蔵
材のシンタリングが防止される。そしてジルコニアによ
り硫黄被毒が防止されるとともにアルミナの高い耐熱性
が確保されるので、高いNOx 浄化性能を維持しつつ、
硫黄被毒と高温熱劣化の二つの障害を克服することがで
き、耐久性にきわめて優れている。
Therefore, according to the exhaust gas purifying catalyst of the present invention using this catalyst carrier, the solid phase reaction between the NO x storage material and alumina and the sintering of the catalytic noble metal and the NO x storage material at high temperature are prevented. . And since zirconia prevents sulfur poisoning and ensures high heat resistance of alumina, while maintaining high NO x purification performance,
It has excellent durability because it can overcome the two obstacles of sulfur poisoning and high temperature heat deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において、900℃の焼成前
の担体前駆体の断面の粒子構造を示す走査型顕微鏡写真
図である。
FIG. 1 is a scanning micrograph showing a particle structure of a cross section of a carrier precursor before firing at 900 ° C. in one example of the present invention.

【図2】本発明の一実施例において、900℃の焼成後
の触媒担体の断面の粒子構造を示す走査型顕微鏡写真図
である。
FIG. 2 is a scanning micrograph showing a particle structure of a cross section of a catalyst carrier after firing at 900 ° C. in one example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/36 104A (56)参考文献 特開 昭55−67331(JP,A) 特開 平8−57314(JP,A) 特開 昭50−90590(JP,A) 特開 平7−232064(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B01D 53/36 104A (56) References JP-A-55-67331 (JP, A) JP-A-8-57314 (JP, A) JP-A-50-90590 (JP, A) JP-A-7-232064 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00 -38/74 B01D 53/86 B01D 53/94

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス浄化用触媒に用いられる触媒担体
であって、(1)沈殿担持法、含浸担持法及び噴霧担持
法の少なくとも一方法にてアルミナ粒子上にジルコニウ
ムを担持後700℃以上で酸化性雰囲気中にて焼成する
方法、(2)噴霧担持法にてアルミナ粒子上にジルコニ
ウムを担持する際の燃焼温度を700℃以上とする方
法、から選ばれる方法により調製されてなり、モル比で
Zr/Alが1/9〜9/1の範囲にあることを特徴と
する触媒担体。
1. A catalyst carrier used for an exhaust gas purifying catalyst.
And (1) precipitation support method, impregnation support method and spray support method
Zirconium on alumina particles by at least one method of
After supporting the glass, it is baked at 700 ° C or higher in an oxidizing atmosphere.
Method, (2) Zirconium on alumina particles by the spray loading method
How to set the combustion temperature to 700 ℃ or higher when supporting um
Prepared by a method selected from the
Zr / Al is in the range of 1/9 to 9/1 .
【請求項2】 酸素過剰の雰囲気下で排ガス中の窒素酸
化物(NO x )、一酸化炭素(CO)及び炭化水素(H
C)を浄化する排ガス浄化用触媒であって、(1)沈殿
担持法、含浸担持法及び噴霧担持法の少なくとも一方法
にてアルミナ粒子上にジルコニウムを担持後700℃以
上で酸化性雰囲気中にて焼成する方法、(2)噴霧担持
法にてアルミナ粒子上にジルコニウムを担持する際の燃
焼温度を700℃以上とする方法、から選ばれる方法に
より調製されてなり、モル比でZr/Alが1/9〜9
/1の範囲にある触媒担体に、アルカリ金属、アルカリ
土類金属及び希土類元素から選ばれるNO x 吸蔵材と触
媒貴金属とを担持してなることを特徴とする排ガス浄化
用触媒。
2. Nitric acid in exhaust gas under an atmosphere of excess oxygen
Compounds (NO x ), carbon monoxide (CO) and hydrocarbons (H
An exhaust gas-purifying catalyst for purifying C), which comprises (1) precipitation
At least one of a supporting method, an impregnating supporting method, and a spray supporting method.
After supporting zirconium on alumina particles at 700 ° C or higher
Method of firing in an oxidizing atmosphere above, (2) Spray loading
Method for loading zirconium on alumina particles by
For the method selected from the method of setting the baking temperature to 700 ° C or higher
Is prepared, and the molar ratio of Zr / Al is 1/9 to 9
Alkali metal, alkali
Touch and the NO x storage material selected from alkaline earth metals and rare earth elements
Exhaust gas purification characterized by supporting precious metal
Catalyst.
JP29657896A 1995-11-16 1996-11-08 Catalyst carrier and catalyst for exhaust gas purification Expired - Fee Related JP3473295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29657896A JP3473295B2 (en) 1995-11-16 1996-11-08 Catalyst carrier and catalyst for exhaust gas purification

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29848395 1995-11-16
JP7-298483 1995-11-16
JP29657896A JP3473295B2 (en) 1995-11-16 1996-11-08 Catalyst carrier and catalyst for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPH09192487A JPH09192487A (en) 1997-07-29
JP3473295B2 true JP3473295B2 (en) 2003-12-02

Family

ID=26560739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29657896A Expired - Fee Related JP3473295B2 (en) 1995-11-16 1996-11-08 Catalyst carrier and catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP3473295B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753192A (en) * 1996-11-29 1998-05-19 Ford Global Technologies, Inc. Zirconia and sulfate in NOx traps to improved trapping and sulfur tolerance
JP2001232195A (en) 1999-12-17 2001-08-28 Ngk Insulators Ltd Catalyst body
WO2002020154A1 (en) * 2000-09-08 2002-03-14 Ngk Insulators,Ltd. Method for producing catalyst body and carrier having alumina carried thereon
JP4144174B2 (en) * 2000-10-25 2008-09-03 トヨタ自動車株式会社 Exhaust gas purification device
MXPA03007404A (en) 2001-02-19 2004-08-12 Toyota Motor Co Ltd Catalyst for hydrogen generation and catalyst for purification of exhaust gas.
EP2527033A1 (en) 2006-03-28 2012-11-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, regeneration method for the catalyst, and apparatus and method for purification of exhaust gas using the catalyst
JP2010075788A (en) * 2008-09-24 2010-04-08 Mitsubishi Motors Corp Exhaust cleaning catalyst for use in internal combustion engine
WO2012047864A1 (en) * 2010-10-05 2012-04-12 Pacific Industrial Development Corporation Sulfur-resistant catalyst support material
KR102310673B1 (en) * 2018-09-06 2021-10-12 (주)엘엑스하우시스 Exhaust gas purifying catalyst
CN114768886B (en) * 2022-03-17 2023-09-29 西安热工研究院有限公司 A kind of coating method of composite metal oxide catalyst
CN119186541A (en) * 2024-09-18 2024-12-27 北京清新环境大气技术有限公司 Synthesis method and application of carbonyl sulfide low-temperature hydrolysis catalyst

Also Published As

Publication number Publication date
JPH09192487A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3741303B2 (en) Exhaust gas purification catalyst
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP3473295B2 (en) Catalyst carrier and catalyst for exhaust gas purification
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH08192051A (en) Exhaust gas purification catalyst
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3430823B2 (en) Exhaust gas purification catalyst
JP3567708B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3496348B2 (en) Exhaust gas purification catalyst
JPH08117602A (en) Catalyst for purifying exhaust gas
JPH08141394A (en) Exhaust gas purification catalyst
JPH10249199A (en) Exhaust gas purification catalyst
JP2001079405A (en) Exhaust gas purifying catalyst, honeycomb structure carrying exhaust gas purifying catalyst, and method of purifying the same
JP3673816B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000157867A (en) Exhaust gas purification catalyst
JP2000070717A (en) Exhaust gas purification catalyst and catalyst carrier
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4103407B2 (en) NOx storage reduction catalyst
JP4079622B2 (en) Exhaust gas purification catalyst
JP2006043637A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees