[go: up one dir, main page]

JP3461800B2 - Lithium manganese nickel composite oxide and method for producing the same - Google Patents

Lithium manganese nickel composite oxide and method for producing the same

Info

Publication number
JP3461800B2
JP3461800B2 JP2000349629A JP2000349629A JP3461800B2 JP 3461800 B2 JP3461800 B2 JP 3461800B2 JP 2000349629 A JP2000349629 A JP 2000349629A JP 2000349629 A JP2000349629 A JP 2000349629A JP 3461800 B2 JP3461800 B2 JP 3461800B2
Authority
JP
Japan
Prior art keywords
manganese
composite oxide
nickel composite
lithium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000349629A
Other languages
Japanese (ja)
Other versions
JP2002158007A (en
Inventor
博之 伊藤
臼井  猛
嶋川  守
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2000349629A priority Critical patent/JP3461800B2/en
Publication of JP2002158007A publication Critical patent/JP2002158007A/en
Application granted granted Critical
Publication of JP3461800B2 publication Critical patent/JP3461800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Complex oxides containing manganese and at least one other metal element
    • C01G45/1221Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
    • C01G45/1242Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (Mn2O4)-, e.g. LiMn2O4 or Li(MxMn2-x)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (Mn2O4)-, e.g. Li(NixMn2-x)O4 or Li(MyNixMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、優れた特性を有す
る、リチウムイオン二次電池用正極活物質として有用な
リチウムマンガンニッケル複合酸化物およびその製造方
法、さらにはそれを用いたリチウムイオン二次電池に関
する。 【0002】 【従来の技術】スピネル構造を有するLiMn24は、
安価かつ毒性も低いためリチウムイオン二次電池用の正
極活物質として注目されてきている。さらに、Mnの一
部をNiなどの他の3d遷移金属に置換したものもサイ
クル特性等の性能を向上させる目的で活発に研究されて
いる。特に最近マンガンと他金属の原子比が実質的に
3:1である、Li[Mn3/21/2]O4(ここでM
は、Cr、Fe、Co、Ni、Cu等)で表される複合
物のレドックス電位が4V付近の電位とともに5V付近
の電位を有することが知られておりそれらの構造上の特
徴の解析とともに5V級正極活物質としての応用も期待
されている(例えば、マテリアルインテグレーション,
Vol.12,No.3(1999)参照)。かかる複合酸化物の特性
である5V級正極活物質をリチウムイオン二次電池に応
用するため、さらに充放電特性等の種々の望ましい特性
を有するものが強く要望されている。 【0003】 【課題を解決するための手段】本発明者はかかる要望を
解決するため鋭意研究し、以下に説明する製造方法を用
いることにより、5V級正極活物質としてマンガンとニ
ッケルの原子比が実質的に3:1であるLi[Mn3/2
Ni1/2]O4なる組成を有するものが、リチウムイオン
二次電池に応用するに望まれる種々の特性を有すること
を見出した。さらにはこの本発明にかかるリチウムマン
ガンニッケル複合酸化物を用いた優れた特性を有するリ
チウムイオン二次電池を得られることを見出し本発明を
完成するに至った。 【0004】すなわち、本発明にかかるリチウムマンガ
ンニッケル複合酸化物は、マンガンとニッケルの原子比
が実質的に3:1である、Li[Mn3/2Ni1/2]O4
なる組成式で表されるものであり、結晶構造的には高い
結晶性のスピネル構造(空間群、Fd3m)でありその
格子定数が8.18Å以上であること、さらには赤外吸
収スペクトルにおいて400〜800cm-1に特徴的な微
細構造を有することを特徴とする。また、本発明にかか
るリチウムマンガンニッケル複合酸化物の粒子はその比
表面積が1.0m2/g以下であることを特徴とするもの
である。 【0005】さらに、本発明にかかるリチウムマンガン
ニッケル複合酸化物は、極めて平坦でかつ低い分極を特
徴とする充放電曲線を示す。また並存する4V級の電位
と5V級の電位での放電容量比についても以下説明する
本発明にかかる製造方法により広い範囲にわたって制御
することが可能であることを特徴とする。 【0006】また、本発明は、前記説明した特性を示す
リチウムマンガンニッケル複合酸化物の製造方法を提供
するものである。すなわち、原料であるマンガンとニッ
ケルの原子比が実質的に3:1であるマンガンニッケル
複合水酸化物および/またはマンガンニッケル複合酸化
物を得るための工程1として、pH9〜13の水溶液中
で錯化剤の存在下、マンガンとニッケルの原子比が実質
的に3:1であるマンガン塩とニッケル塩の混合水溶液
をアルカリ溶液と反応、共沈殿させること、さらに工程
2としてマンガンとニッケルの合計の原子比とリチウム
の原子比が実質的に2:1となるように、前記工程1で
得られた水酸化物および/または酸化物とリチウム化合
物との混合物を850℃以上で焼成し、さらに工程2で
得られた焼成後の混合物を650〜800℃で焼成(ア
ニーリング、再酸化)する工程3とからなることを特徴
とする製造方法である。 【0007】さらに本発明は、前記説明した本発明にか
かるリチウムマンガンニッケル複合酸化物を正極活性物
質成分として含有することを特徴とするリチウムイオン
二次電池を提供するものである。かかる電池は、極めて
平坦でかつ低い分極を特徴とする充放電特性を有する。
また5V級の放電電位のほかに所定の放電容量を有する
4V級電位を示すものが含まれる。以下、本発明を、発
明の実施の形態に即して詳細に説明する。 【0008】 【発明の実施の形態】製造方法 本発明に係るリチウムマンガンニッケル複合酸化物の製
造方法は、次の3つの工程からなることを特徴とする。 (工程1)原料の製造 マンガンとニッケルの原子比が実質的に3:1であるマ
ンガンニッケル複合水酸化物および/またはマンガンニ
ッケル複合酸化物である原料を得るため、pH9〜13
の水溶液中で錯化剤の存在下、マンガンとニッケルの原
子比が実質的に3:1であるマンガン塩とニッケル塩の
混合水溶液をアルカリ溶液と反応、共沈殿させることを
特徴とする。かかる共沈殿法によりマンガンとニッケル
の原子比が実質的に3:1で均一に混合された粒子を得
ることができる。 【0009】ここで、使用可能なマンガン塩は特に制限
はなく水溶液中で生成するマンガンイオンが錯化剤と錯
体を形成可能なものであればよい。具体的には硫酸マン
ガン、硝酸マンガン、塩化マンガンが挙げられる。同様
に使用可能なニッケル塩は、水溶液中で生成するニッケ
ルイオンが錯化剤と錯体を形成可能なものであればよく
特に制限はない。具体的には硫酸ニッケル、硝酸ニッケ
ル、塩化ニッケルが挙げられる。本発明においてマンガ
ンとニッケルの原子比が実質的に3:1とは、それぞれ
プラスマイナス10%程度の範囲であれば含まれる。ま
たこの値は種々の金属分析方法(例えば原子吸光法)に
より正確に測定することができる。 【0010】水溶液のpH値は、pH9〜13の範囲が
好ましく、反応中必要ならばアルカリ金属水酸化物(例
えば水酸化ナトリウム、水酸化カリウム)を添加するこ
とによりこの範囲に維持することができる。また、錯化
剤は、水溶液中でマンガンイオンおよびニッケルイオン
と錯体を形成可能なものであり、例えばアンモニウムイ
オン供給体(塩化アンモニウム、炭酸アンモニウム、弗
化アンモニウム等)、ヒドラジン、エチレンジアミン四
酢酸、ニトリト三酢酸、ウラシル二酢酸、グリシンが挙
げられる。 【0011】(工程2)焼成 工程2での焼成は、工程1で得られた原料と、前記原料
のマンガンとニッケルの合計の原子比とリチウムの原子
比が実質的に2:1となるように、リチウム化合物と混
合し、得られる混合物を少なくとも850℃以上で、空
気気流中焼成加熱するものである。 【0012】使用可能なリチウム化合物としては特に制
限はないが、例えば水酸化リチウム、炭酸リチウム、硝
酸リチウム、酸化リチウムが挙げられる。マンガンニッ
ケル複合酸化物とリチウム化合物とのモル比は、実質的
に2:1である。ここでマンガンニッケル複合酸化物と
リチウム化合物とのモル比が実質的に2:1とは、それ
ぞれプラスマイナス10%程度の範囲であれば含まれ
る。またこれらの値は種々の金属分析方法(例えば原子
吸光法)により正確に測定することができる。焼成する
前にこれらを十分混合しておくことが好ましい。 【0013】焼成には、通常のLiMn24やLiNi
2の合成に用いられる焼成装置が好ましく使用でき
る。焼成の際の雰囲気は通常の大気雰囲気が好ましい。
特に本発明の製造方法において焼成を好ましい温度で行
うことが重要である。種々の焼成温度で焼成して得られ
たリチウムマンガンニッケル複合酸化物の結晶性の違い
をX線回折法により測定することができる。図1(a)、
(b)、(c)、(d)および(e)に、焼成時間を15時間と
一定とした場合の種々の焼成温度(550、650、7
50、850および1000℃)で得られたリチウムマ
ンガンニッケル複合酸化物の結晶性の違いをX線回折に
より示した。 【0014】図1から、まずこの焼成温度の範囲で得ら
れるリチウムマンガンニッケル複合酸化物はスピネル構
造をもっていることがわかる。さらに特徴として、より
高温で焼成した場合、X線回折のピークがよりシャープ
になることから、より高い結晶性を有することがわか
る。また明らかに1000℃という高温の焼成条件でも
材料の熱分解などが見られないことがわかる。図2に
は、焼成温度と空間群Fd3mとした場合に得られる格
子定数との関係を示す。図から明らかに、焼成温度が約
800℃以上では高い温度であるほど格子定数が増加す
ることがわかる。これらの高い結晶性、および以下説明
するその他も望ましい特性を示すリチウムマンガンニッ
ケル複合酸化物の製造には、焼成温度は850℃以上で
あり、好ましくは950℃以上である。 【0015】(工程3)焼成(再酸化、アニーリング) 工程3は、本発明の製造方法の特徴であり、前記工程2
で焼成されたリチウムマンガンニッケル複合酸化物をさ
らに特定の温度で焼成(再酸化またはアニーリング)す
るものである。かかる焼成により、5V級正極活物質と
してリチウムイオン二次電池に応用する場合に望まれる
優れた充放電特性を有するものが得られる。かかる工程
3が必要となる理由は、工程2において高い温度(85
0〜1000℃程度)での焼成に伴いある程度の量の酸
素が可逆的に欠損することが考えられる。図3に、65
0℃で焼成したリチウムマンガンニッケル複合酸化物を
1分間に5℃の昇温速度で1000℃まで加熱し、その
後100℃まで降温したときの熱重量分析(TG)の結
果を示す。図3から明らかに約750℃から酸素の損失
による重量減少が始まることがわかる。また、降温時に
その重量が回復していることがわかる。 【0016】そこで本発明の製造方法においては、工程
2で高い結晶性を有するリチウムマンガンニッケル複合
酸化物を製造するために高い温度で焼成した後、工程2
で損失した酸素を十分に戻すために、600〜800℃
で再焼成する、すなわち再酸化を行うことが必要であ
る。この再酸化の目的で雰囲気を通常の大気雰囲気で行
うことが好ましい。 【0017】マンガンニッケル複合酸化物 本発明の製造方法工程1により得られる原料であるマン
ガンニッケル複合酸化物の走査式電子顕微鏡(以下SE
Mという。)写真を図4に示す。写真から原料粒子は実
質的に球状であることがわかる。また、粒子表面には均
一にひだのような形状の凹凸があり、さらに粒子が多孔
質であることがわかる。複合酸化物の元素分析値および
その他の物性値を表1に示す。 【0018】 【表1】 表 1 組 成 Ni(%) 18.1 Ni(mol/g) 0.00308 Co(%) 0.060 Fe(%) 0.018 Cu(%) ≦0.001 Mn(%) 50.4 Mn(mol/g) 0.00917 Na(%) 0.11 Cl(%) ≦0.05 SO4(%) 0.51 タップ密度(g/cc) 1.42 バルク密度(g/cc) 1.03 粒径(μm) 12.0 比表面積(m2/g) 24.0 Mn:Ni 2.99:1.01 【0019】再酸化前のリチウムマンガンニッケル複合
酸化物 本発明の製造方法により得られるリチウムマンガンニッ
ケル複合酸化物の形状をSEMで観察した結果を図4〜
6に示す。図5には工程2での焼成温度を550℃とし
た場合に得られるリチウムマンガンニッケル複合酸化物
のSEM(走査式電子顕微鏡)写真を、図6には100
0℃で焼成したときに得られるリチウムマンガンニッケ
ル複合酸化物のSEM写真を示す。これらの写真の倍率
は2000、5000、20000、50000倍であ
る。 【0020】これらの図から明らかに高温で焼成した場
合、結晶成長および再結晶が促進され、その結果粒子表
面が平滑になることがわかる。実際、表2に示すように
550℃および1000℃で焼成した場合に得られるリ
チウムマンガンニッケル複合酸化物の比表面積(BE
T)は大きく異なることがわかる。この特徴のために、
正極活物質として使用した場合インサーション反応が円
滑に進むために分極が抑えられる効果が奏されると考え
られる。 【0021】 【表2】 表 2 550℃焼成 1000℃焼成 比表面積(m2/g) 8.5 0.40 【0022】再酸化後のリチウムマンガンニッケル複合
酸化物 図7に、工程2により1000℃で焼成した後さらに工
程3により700℃で再酸化した後得られる本発明にか
かるリチウムマンガンニッケル複合酸化物のX線回折図
を示す。さらに、図8および図9にそのSEM写真、お
よび赤外線吸収スペクトルを示す。図7から、本発明の
製造方法により得られるリチウムマンガンニッケル複合
酸化物は高い結晶性を有するスピネル構造であることが
わかる。また、図8から明らかに、低温での再酸化によ
り酸素を吸収する過程で再結晶化が進行していることが
わかる。特に得られる結晶表面に明確な微細構造が見ら
れる。 【0023】また、図9から、再酸化により、リチウム
マンガンニッケル複合酸化物の400〜800cm-1の領
域(特にピークである600cm-1および450cm-1
近)に特徴的な微細構造を現れることがわかる。再酸化
によりより高い結晶性となることを示すと考えられる。
さらに、再酸化することで比表面積が変化する(0.5
2m2/g)。 【0024】リチウムイオン二次電池 本発明のリチウムイオン二次電池は、前記リチウムマン
ガンニッケル複合酸化物を正極活性物質成分として含有
することを特徴とするリチウムイオン二次電池である。
また、本発明にかかるリチウムマンガンニッケル複合酸
化物を正極活性物質成分として含有することから、かか
る電池は図14に示すように、5V付近に極めて平坦で
かつ低い分極を特徴とする充放電特性を有する。また5
V級の放電電位のほかに所定の放電容量を有する4V級
電位を示すものが含まれる。従って、放電時において5
V付近の放電電位が4Vに変化することを利用して充電
時期を検出することが可能となる。 【0025】実施例 攪拌機とオーバーフローパイプを備えた15Lの円筒形
反応槽に水を13L入れた後、pHが11.6になるま
で30%水酸化ナトリウム溶液を加え、温度を50℃に
保持し一定速度にて攪拌を行った。次にMn/(Mn+
Ni)の原子比が0.33となるように20wt%硫酸マ
ンガン水溶液と20wt%硫酸ニッケル液の混合液に40
wt%硫酸アンモニウム水溶液を混合水溶液容量に対して
10%(v/v)加え、10cc/分の流量にて反応槽に添
加した。さらに反応槽内の溶液がpH11.2になるよ
うに30%水酸化ナトリウムを断続的に加えマンガンニ
ッケル複合酸化物粒子を形成させた。反応槽内が定常状
態になった120時間後にオーバーフローパイプよりマ
ンガンニッケル複合酸化物粒子を連続的に24時間採取
し水洗後、濾過し100℃にて15時間乾燥後、更に2
50℃で15時間乾燥し乾燥粉末であるマンガンニッケ
ル複合酸化物を得た。 【0026】前記得られたマンガンニッケル複合酸化物
2.6776gと水酸化リチウム一水和物0.7088g
を十分に混合し、ペレット成型器を用いて1t/cm2
圧力でプレスした。これをアルミナボートに乗せて、電
気炉の流通中央部に移した後、550℃で15時間、大
気雰囲気中で焼成後、粉砕しリチウムマンガンニッケル
複合酸化物からなる試料Aを得た。また、焼成温度をそ
れぞれ650℃、750℃、850℃、950℃、10
00℃としたこと以外は、試料Aと同様にして、リチウ
ムマンガンニッケル複合酸化物の試料B、C、D、E、
Fを製造した。 【0027】前記試料Fを再びペレット成型器を用いて
1t/cm2の圧力でプレスし、700℃で15時間、大
気雰囲気中で焼成後、粉砕しリチウムマンガンニッケル
複合酸化物からなる試料Gを得た。前記得られたリチウ
ムマンガンニッケル複合酸化物の電気化学特性を、コイ
ン型電池を作成することにより評価した。 【0028】正極材料には、各焼成条件で得られた試料
A、B、C、D、EおよびGと導電剤であるアセチレン
ブラックと結着剤であるポリフッ化ビニリデン樹脂(P
VDF)を重量比で80:10:10の割合で混合し、
シート状成形物を得た。そしてこの成形物を円盤状に打
ち抜き、真空中で80℃の温度で約15時間乾燥させ、
正極を得た。また、シート状に成形されたリチウム金属
を円盤状に打ち抜いて負極とした。セパレータとしては
ポリエチレンの微多孔膜を用い、電解液は、エチレンカ
ーボネート(EC):ジエチルカーボネート(DEC)
=1:1(体積比)の混合溶媒に1モルのLiPF6
加えた非水電解液を用いた。 【0029】この試験用セルを10時間率相当の定電流
値で3.0〜4.7Vの間で充放電を繰り返した。このと
きの充放電曲線を図10〜14に示した。図10〜14
は、それぞれ試料A、B、C、D、EおよびGのもので
ある。低温(図10及び11、650℃および750
℃)で焼成したものは充放電曲線の形状はなだらかで平
坦であるが、大きな分極を示した。これに対し、高温
(図12〜13、850〜950℃)で焼成したものは
分極は小さいが、充放電曲線の平坦性に乏しいことがわ
かった。 【0030】一方、図14に示すように、1000℃で
焼成した後、700℃で再酸化した試料Fについては、
充放電曲線は十分平坦であり、かつ、極めて小さい分極
を示すことが分かった。この特性は本発明のリチウムマ
ンガンニッケル複合酸化物が、5V級の優れたリチウム
イオン2次電池の正極物質であることを示す。また、図
14から、放電時に5Vから4Vへと急激に変化してい
ることから、かかる放電電位の変化を、該電池の充電時
検出の目的で利用することができる。 【0031】 【発明の効果】本発明にかかる製造方法により、高結晶
性のスピネル構造を有するリチウムマンガンニッケル複
合酸化物であって、マンガンとニッケルの原子比が実質
的に3:1であること、格子定数が8.18Å以上であ
ること、赤外吸収スペクトルにおいて400〜800cm
-1に特徴的な微細構造をもつこと、比表面積が1.0m2
/g以下であること、高い平坦性と低分極性の充放電特
性を示すことを特徴とする非水電解質電池用正極活物質
を得ることができる。さらに、かかるリチウムマンガン
ニッケル複合酸化物を正極活性物質成分として含有する
ことを特徴とする優れたリチウムイオン二次電池を得る
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium manganese nickel composite oxide having excellent characteristics and useful as a positive electrode active material for a lithium ion secondary battery, and a method for producing the same. Further, the present invention relates to a lithium ion secondary battery using the same. [0002] LiMn 2 O 4 having a spinel structure is
Because of its low cost and low toxicity, it has attracted attention as a positive electrode active material for lithium ion secondary batteries. Further, Mn in which a part of Mn is replaced by another 3d transition metal such as Ni has been actively studied for the purpose of improving performance such as cycle characteristics. In particular, Li [Mn 3/2 M 1/2 ] O 4, where the atomic ratio of manganese to other metal is substantially 3: 1 recently (where M
Is known to have a redox potential of about 5 V as well as a potential of about 4 V for the compound represented by Cr, Fe, Co, Ni, Cu, etc. It is also expected to be used as a positive electrode active material (eg, Material Integration,
Vol. 12, No. 3 (1999)). In order to apply the 5V-class positive electrode active material, which is a characteristic of such a composite oxide, to a lithium ion secondary battery, those having various desirable characteristics such as charge / discharge characteristics are strongly demanded. [0003] The present inventor has made intensive studies to solve the above-mentioned demands, and by using the manufacturing method described below, the atomic ratio of manganese to nickel as a 5V-class positive electrode active material is reduced. Li [Mn 3/2 which is substantially 3: 1
It has been found that those having a composition of [Ni 1/2 ] O 4 have various characteristics desired for application to a lithium ion secondary battery. Furthermore, they have found that a lithium ion secondary battery having excellent characteristics using the lithium manganese nickel composite oxide according to the present invention can be obtained, and have completed the present invention. That is, the lithium manganese nickel composite oxide according to the present invention has Li [Mn 3/2 Ni 1/2 ] O 4 in which the atomic ratio of manganese to nickel is substantially 3: 1.
It is represented by the following compositional formula: the crystal structure is a highly crystalline spinel structure (space group, Fd3m), the lattice constant of which is 8.18 ° or more, and the infrared absorption spectrum is 400 It has a characteristic microstructure of about 800 cm -1 . Further, the particles of the lithium manganese nickel composite oxide according to the present invention have a specific surface area of not more than 1.0 m 2 / g. Furthermore, the lithium manganese nickel composite oxide according to the present invention exhibits a charge / discharge curve characterized by extremely flat and low polarization. Further, the present invention is characterized in that the discharge capacity ratio at the coexisting 4V class potential and 5V class potential can be controlled over a wide range by the manufacturing method according to the present invention described below. [0006] The present invention also provides a method for producing a lithium manganese nickel composite oxide having the above-described characteristics. That is, as a first step for obtaining a manganese-nickel composite hydroxide and / or a manganese nickel composite oxide in which the atomic ratio of manganese to nickel as the raw material is substantially 3: 1, the complex is prepared in an aqueous solution of pH 9 to 13. Reacting and co-precipitating a mixed aqueous solution of a manganese salt and a nickel salt having an atomic ratio of manganese and nickel of substantially 3: 1 with an alkaline solution in the presence of an agent; Baking the mixture of the hydroxide and / or oxide and the lithium compound obtained in the above step 1 at 850 ° C. or more so that the atomic ratio of lithium to the atomic ratio of lithium is substantially 2: 1; And b. Annealing (annealing and reoxidizing) the mixture after firing obtained in 2 at 650 to 800 ° C. The present invention further provides a lithium ion secondary battery comprising the above-described lithium manganese nickel composite oxide according to the present invention as a positive electrode active substance component. Such batteries have charge and discharge characteristics characterized by extremely flat and low polarization.
In addition, those which show a 4V-class potential having a predetermined discharge capacity in addition to the 5V-class discharge potential are also included. Hereinafter, the present invention will be described in detail with reference to embodiments of the present invention. DETAILED DESCRIPTION OF THE INVENTION A method for producing a lithium manganese nickel composite oxide according to the present invention is characterized by comprising the following three steps. (Step 1) Production of Raw Material In order to obtain a raw material that is a manganese nickel composite hydroxide and / or a manganese nickel composite oxide having an atomic ratio of manganese to nickel of substantially 3: 1, a pH of 9 to 13 is obtained.
Characterized in that a mixed aqueous solution of a manganese salt and a nickel salt having an atomic ratio of manganese and nickel of substantially 3: 1 is reacted with an alkali solution in the presence of a complexing agent in the presence of a complexing agent to cause coprecipitation. By such a coprecipitation method, uniformly mixed particles having an atomic ratio of manganese to nickel of substantially 3: 1 can be obtained. Here, the usable manganese salt is not particularly limited as long as manganese ions generated in an aqueous solution can form a complex with a complexing agent. Specific examples include manganese sulfate, manganese nitrate, and manganese chloride. Similarly, usable nickel salts are not particularly limited as long as nickel ions generated in an aqueous solution can form a complex with a complexing agent. Specific examples include nickel sulfate, nickel nitrate, and nickel chloride. In the present invention, the fact that the atomic ratio of manganese to nickel is substantially 3: 1 is included as long as the range is approximately ± 10%. This value can be accurately measured by various metal analysis methods (for example, an atomic absorption method). The pH value of the aqueous solution is preferably in the range of 9 to 13, and can be maintained in this range by adding an alkali metal hydroxide (eg, sodium hydroxide or potassium hydroxide) if necessary during the reaction. . The complexing agent is capable of forming a complex with manganese ions and nickel ions in an aqueous solution. Examples thereof include ammonium ion donors (ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, and nitrite. Triacetic acid, uracil diacetate, and glycine. (Step 2) The firing in the firing step 2 is performed so that the total atomic ratio of manganese and nickel and the atomic ratio of lithium to the raw material obtained in step 1 are substantially 2: 1. Then, the mixture is mixed with a lithium compound, and the resulting mixture is calcined and heated at a temperature of at least 850 ° C. in an air stream. The usable lithium compound is not particularly limited, and examples thereof include lithium hydroxide, lithium carbonate, lithium nitrate, and lithium oxide. The molar ratio between the manganese nickel composite oxide and the lithium compound is substantially 2: 1. Here, the fact that the molar ratio of the manganese nickel composite oxide to the lithium compound is substantially 2: 1 is included as long as the range is approximately ± 10%. Further, these values can be accurately measured by various metal analysis methods (for example, atomic absorption method). It is preferable that these are sufficiently mixed before firing. For sintering, ordinary LiMn 2 O 4 or LiNi
A firing apparatus used for the synthesis of O 2 can be preferably used. The atmosphere at the time of firing is preferably an ordinary air atmosphere.
In particular, in the production method of the present invention, it is important that calcination is performed at a preferable temperature. The difference in crystallinity of the lithium manganese nickel composite oxide obtained by firing at various firing temperatures can be measured by an X-ray diffraction method. FIG. 1 (a),
(b), (c), (d) and (e) show various firing temperatures (550, 650, 7) when the firing time is fixed at 15 hours.
The crystallinity of the lithium manganese nickel composite oxide obtained at 50, 850 and 1000 ° C.) was shown by X-ray diffraction. FIG. 1 shows that the lithium manganese nickel composite oxide obtained at this firing temperature range has a spinel structure. As a further characteristic, when firing at a higher temperature, the peak of the X-ray diffraction becomes sharper, indicating that it has higher crystallinity. It is also apparent that no thermal decomposition or the like of the material is observed even under the firing condition at a high temperature of 1000 ° C. FIG. 2 shows the relationship between the firing temperature and the lattice constant obtained when the space group is Fd3m. It is apparent from the figure that when the firing temperature is about 800 ° C. or higher, the lattice constant increases as the temperature increases. For the production of the lithium manganese nickel composite oxide exhibiting these high crystallinity and other desirable characteristics described below, the firing temperature is 850 ° C. or higher, preferably 950 ° C. or higher. (Step 3) Firing (Reoxidation, Annealing) Step 3 is a feature of the production method of the present invention.
The lithium manganese nickel composite oxide fired in the above is further fired (reoxidized or annealed) at a specific temperature. By such calcination, a material having excellent charge / discharge characteristics desired when applied to a lithium ion secondary battery as a 5 V class positive electrode active material is obtained. The reason that Step 3 is required is that high temperature (85
It is conceivable that a certain amount of oxygen is reversibly lost due to firing at about 0 to 1000 ° C.). In FIG.
The results of thermogravimetric analysis (TG) when the lithium manganese nickel composite oxide fired at 0 ° C. is heated to 1000 ° C. at a rate of 5 ° C./minute, and then cooled to 100 ° C. It is apparent from FIG. 3 that the weight loss starts at about 750 ° C. due to the loss of oxygen. Also, it can be seen that the weight has recovered when the temperature is lowered. Therefore, in the production method of the present invention, after firing at a high temperature in order to produce a lithium manganese nickel composite oxide having high crystallinity in step 2,
600-800 ° C in order to sufficiently return the oxygen lost in
, It is necessary to perform re-oxidation. For the purpose of this re-oxidation, it is preferable to carry out the atmosphere in a normal atmosphere. The manganese-nickel composite oxide scanning electron microscope of a method of manufacturing manganese-nickel composite oxide is a raw material obtained by the process 1 of the present invention (hereinafter SE
It is called M. 4) A photograph is shown in FIG. The photograph shows that the raw material particles are substantially spherical. In addition, it can be seen that the surface of the particles has unevenness having a fold-like shape uniformly, and that the particles are porous. Table 1 shows the elemental analysis values and other physical properties of the composite oxide. Table 1 Composition Ni (%) 18.1 Ni (mol / g) 0.0308 Co (%) 0.060 Fe (%) 0.018 Cu (%) ≤ 0.001 Mn (%) 50.4 Mn (mol / g) 0.00917 Na (%) 0.11 Cl (%) ≤ 0.05 SO4 (%) 0.51 Tap density (g / cc) 1.42 Bulk density ( g / cc) 1.03 Particle size (μm) 12.0 Specific surface area (m 2 / g) 24.0 Mn: Ni 2.99: 1.01 Lithium manganese nickel composite before reoxidation
Oxide The results of observing the shape of the lithium manganese nickel composite oxide obtained by the production method of the present invention with SEM are shown in FIGS.
6 is shown. FIG. 5 is an SEM (scanning electron microscope) photograph of the lithium manganese nickel composite oxide obtained when the firing temperature in step 2 is 550 ° C., and FIG.
3 shows an SEM photograph of a lithium manganese nickel composite oxide obtained when calcined at 0 ° C. The magnifications of these photographs are 2000, 5000, 20,000 and 50,000 times. From these figures, it is apparent that firing at a high temperature promotes crystal growth and recrystallization, resulting in a smooth particle surface. Actually, as shown in Table 2, the specific surface area (BE) of the lithium manganese nickel composite oxide obtained when calcined at 550 ° C. and 1000 ° C.
It can be seen that T) is significantly different. Because of this feature,
It is considered that when used as a positive electrode active material, the insertion reaction proceeds smoothly, so that the effect of suppressing polarization is exhibited. [0021] [Table 2] Table 2 550 ° C. calcination 1000 ° C. calcination specific surface area (m 2 / g) 8.5 0.40 [0022] Lithium manganese-nickel composite after reoxidation
Oxide FIG. 7 shows an X-ray diffraction diagram of the lithium manganese nickel composite oxide according to the present invention obtained after calcining at 1000 ° C. in step 2 and re-oxidizing at 700 ° C. in step 3. 8 and 9 show a SEM photograph and an infrared absorption spectrum thereof. FIG. 7 shows that the lithium manganese nickel composite oxide obtained by the production method of the present invention has a spinel structure having high crystallinity. Further, it is apparent from FIG. 8 that the recrystallization proceeds in the process of absorbing oxygen by reoxidation at a low temperature. In particular, a clear microstructure is seen on the crystal surface obtained. Further, from FIG. 9, by reoxidation, to appear a characteristic microstructure in the area of 400~800Cm -1 lithium-manganese-nickel composite oxide (around 600 cm -1 and 450 cm -1 are particularly peak) I understand. It is considered to indicate that re-oxidation results in higher crystallinity.
Further, the specific surface area is changed by re-oxidation (0.5).
2 m 2 / g). Lithium-ion secondary battery The lithium-ion secondary battery of the present invention is a lithium-ion secondary battery comprising the lithium-manganese-nickel composite oxide as a positive electrode active substance component.
Further, since the lithium manganese nickel composite oxide according to the present invention is contained as a positive electrode active material component, such a battery has a charge / discharge characteristic characterized by extremely flat and low polarization around 5 V as shown in FIG. Have. Also 5
In addition to V-class discharge potentials, those exhibiting a 4V-class potential having a predetermined discharge capacity are included. Therefore, at the time of discharge, 5
Using the fact that the discharge potential near V changes to 4 V, the charging timing can be detected. [0025] Water was placed 13L cylindrical reactor 15L with Example stirrer and an overflow pipe, 30% sodium hydroxide solution until the pH was 11.6 was added, keeping the temperature at 50 ° C. Stirring was performed at a constant speed. Next, Mn / (Mn +
Ni) is added to a mixture of a 20 wt% manganese sulfate aqueous solution and a 20 wt% nickel sulfate solution so that the atomic ratio of Ni) becomes 0.33.
A 10% (v / v) aqueous solution of wt% ammonium sulfate was added to the reaction tank at a flow rate of 10 cc / min. Further, 30% sodium hydroxide was intermittently added so that the solution in the reaction tank had a pH of 11.2, to form manganese nickel composite oxide particles. After 120 hours when the inside of the reaction tank was in a steady state, manganese nickel composite oxide particles were continuously collected from the overflow pipe for 24 hours, washed with water, filtered, dried at 100 ° C. for 15 hours, and further dried for 2 hours.
After drying at 50 ° C. for 15 hours, a manganese nickel composite oxide as a dry powder was obtained. 2.6776 g of the obtained manganese nickel composite oxide and 0.7088 g of lithium hydroxide monohydrate
Was sufficiently mixed and pressed at a pressure of 1 t / cm 2 using a pellet molding machine. This was put on an alumina boat, transferred to the center of the flow of the electric furnace, fired at 550 ° C. for 15 hours in an air atmosphere, and then pulverized to obtain a sample A made of lithium manganese nickel composite oxide. The firing temperatures were 650 ° C., 750 ° C., 850 ° C., 950 ° C., 10
Except that the temperature was set to 00 ° C., samples B, C, D, E, and
F was produced. The sample F was pressed again using a pellet molding machine at a pressure of 1 t / cm 2 , calcined at 700 ° C. for 15 hours in an air atmosphere, and pulverized to obtain a sample G made of lithium manganese nickel composite oxide. Obtained. The electrochemical characteristics of the obtained lithium manganese nickel composite oxide were evaluated by preparing a coin-type battery. Samples A, B, C, D, E, and G obtained under the respective firing conditions, acetylene black as a conductive agent, and polyvinylidene fluoride resin (P
VDF) in a ratio of 80:10:10 by weight,
A sheet-like molded product was obtained. Then, the molded product is punched into a disk shape and dried at 80 ° C. for about 15 hours in a vacuum.
A positive electrode was obtained. In addition, a sheet-shaped lithium metal was punched into a disk to form a negative electrode. A polyethylene microporous membrane is used as the separator, and the electrolytic solution is ethylene carbonate (EC): diethyl carbonate (DEC).
A non-aqueous electrolyte obtained by adding 1 mol of LiPF 6 to a mixed solvent of = 1: 1 (volume ratio) was used. The test cell was repeatedly charged and discharged between 3.0 and 4.7 V at a constant current value corresponding to a 10-hour rate. The charge / discharge curves at this time are shown in FIGS. Figures 10-14
Are for samples A, B, C, D, E and G, respectively. Low temperature (FIGS. 10 and 11, 650 ° C. and 750
C), the shape of the charge-discharge curve was smooth and flat, but showed large polarization. On the other hand, it was found that those fired at a high temperature (FIGS. 12 to 13, 850 to 950 ° C.) had small polarization, but poor flatness of the charge / discharge curve. On the other hand, as shown in FIG. 14, the sample F fired at 1000 ° C. and then re-oxidized at 700 ° C.
It was found that the charge-discharge curve was sufficiently flat and showed extremely small polarization. This characteristic indicates that the lithium manganese nickel composite oxide of the present invention is a superior positive electrode material for lithium ion secondary batteries of the 5V class. Further, from FIG. 14, since the voltage suddenly changes from 5 V to 4 V at the time of discharging, such a change in the discharge potential can be used for the purpose of detecting when the battery is charged. According to the production method of the present invention, a lithium manganese nickel composite oxide having a highly crystalline spinel structure, wherein the atomic ratio of manganese to nickel is substantially 3: 1. Having a lattice constant of at least 8.18 ° and an infrared absorption spectrum of 400 to 800 cm.
-1 with characteristic microstructure, specific surface area is 1.0m 2
/ G or less, exhibiting high flatness and low polarization charge / discharge characteristics, whereby a positive electrode active material for nonaqueous electrolyte batteries can be obtained. Further, an excellent lithium ion secondary battery characterized by containing such a lithium manganese nickel composite oxide as a positive electrode active substance component can be obtained.

【図面の簡単な説明】 【図1】各温度で焼成したときに得られたリチウムマン
ガンニッケル複合酸化物のX線回折図を示す。 【図2】各温度で焼成したときに得られたリチウムマン
ガンニッケル複合酸化物の格子定数を示す。 【図3】650℃の焼成温度で合成したリチウムマンガ
ンニッケル複合酸化物の熱重量分析の結果を示す。 【図4】マンガンニッケル複合酸化物のSEM写真を示
す。 【図5】550℃の焼成温度で合成したリチウムマンガ
ンニッケル複合酸化物のSEM写真を示す。ここで(a)
〜(d)はそれぞれ2000倍、5000倍、20000
倍、50000倍の倍率での写真を示す。 【図6】1000℃の焼成温度で合成したリチウムマン
ガンニッケル複合酸化物のSEM写真を示す。ここで
(a)〜(d)はそれぞれ2000倍、5000倍、200
00倍、50000倍の倍率での写真を示す。 【図7】1000℃の焼成温度で合成後700℃で再酸
化したリチウムマンガンニッケル複合酸化物のX線回折
図を示す。 【図8】1000℃の焼成温度で合成後700℃で再酸
化したリチウムマンガンニッケル複合酸化物のSEM写
真を示す。ここで(a)〜(d)はそれぞれ2000倍、5
000倍、20000倍、50000倍の倍率での写真
を示す。 【図9】各焼成条件で合成したリチウムマンガンニッケ
ル複合酸化物の赤外吸収スペクトルを示す。 【図10】650℃の焼成温度で合成したリチウムマン
ガンニッケル複合酸化物を正極活物質としたコイン型電
池の充放電曲線を示す。 【図11】750℃の焼成温度で合成したリチウムマン
ガンニッケル複合酸化物を正極活物質としたコイン型電
池の充放電曲線を示す。 【図12】850℃の焼成温度で合成したリチウムマン
ガンニッケル複合酸化物を正極活物質としたコイン型電
池の充放電曲線を示す。 【図13】950℃の焼成温度で合成したリチウムマン
ガンニッケル複合酸化物を正極活物質としたコイン型電
池の充放電曲線を示す。 【図14】1000℃の焼成温度で合成後700℃で再
酸化したリチウムマンガンニッケル複合酸化物を正極活
物質としたコイン型電池の充放電曲線を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an X-ray diffraction diagram of a lithium manganese nickel composite oxide obtained when calcined at various temperatures. FIG. 2 shows lattice constants of a lithium manganese nickel composite oxide obtained when firing at each temperature. FIG. 3 shows the results of thermogravimetric analysis of a lithium manganese nickel composite oxide synthesized at a firing temperature of 650 ° C. FIG. 4 shows an SEM photograph of a manganese nickel composite oxide. FIG. 5 shows an SEM photograph of a lithium manganese nickel composite oxide synthesized at a firing temperature of 550 ° C. Where (a)
~ (D) are 2000 times, 5000 times, and 20000 times, respectively.
The photograph is shown at a magnification of × 5, 50,000. FIG. 6 shows an SEM photograph of a lithium manganese nickel composite oxide synthesized at a firing temperature of 1000 ° C. here
(a) to (d) are 2000 times, 5000 times, and 200 times, respectively.
Photographs at magnifications of 00 and 50,000 are shown. FIG. 7 shows an X-ray diffraction diagram of a lithium manganese nickel composite oxide synthesized at a firing temperature of 1000 ° C. and then reoxidized at 700 ° C. FIG. 8 shows an SEM photograph of a lithium manganese nickel composite oxide synthesized at a firing temperature of 1000 ° C. and reoxidized at 700 ° C. Here, (a) to (d) are 2000 times, 5
Photographs at 000, 20,000 and 50,000 magnifications are shown. FIG. 9 shows infrared absorption spectra of lithium manganese nickel composite oxide synthesized under each firing condition. FIG. 10 shows a charge-discharge curve of a coin-type battery using a lithium manganese nickel composite oxide synthesized at a firing temperature of 650 ° C. as a positive electrode active material. FIG. 11 shows a charge / discharge curve of a coin-type battery using a lithium manganese nickel composite oxide synthesized at a firing temperature of 750 ° C. as a positive electrode active material. FIG. 12 shows a charge / discharge curve of a coin-type battery using a lithium manganese nickel composite oxide synthesized at a firing temperature of 850 ° C. as a positive electrode active material. FIG. 13 shows a charge / discharge curve of a coin-type battery using a lithium manganese nickel composite oxide synthesized at a firing temperature of 950 ° C. as a positive electrode active material. FIG. 14 shows a charge / discharge curve of a coin-type battery using a lithium manganese nickel composite oxide synthesized at a firing temperature of 1000 ° C. and then reoxidized at 700 ° C. as a positive electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株式会社田中化学研究所内 (56)参考文献 特開2001−143704(JP,A) 特開 平8−298115(JP,A) 特開 平10−172568(JP,A) 特開 平7−6761(JP,A) 特開2001−185145(JP,A) 特開2002−63904(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 C01G 53/00 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tokuyoshi Iida 45-10, Sakahama-wari, 45, Shirakata-cho, Fukui-shi, Fukui In Tanaka Chemical Laboratory Co., Ltd. (56) References JP-A-2001-143704 (JP, A JP-A-8-298115 (JP, A) JP-A-10-172568 (JP, A) JP-A-7-6761 (JP, A) JP-A-2001-185145 (JP, A) JP-A 2002-63904 (JP, A) JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 C01G 53/00 H01M 4/02 H01M 10/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 高結晶性スピネル構造を有するリチウム
マンガンニッケル複合酸化物であって、マンガンとニッ
ケルの原子比が実質的に3:1であること、格子定数が
8.18Å以上であること、比表面積が1.0m2/g以下
であること、5V級の高い平坦性と低分極性の充放電特
性を示すことを特徴とする非水電解質電池用正極活物質
の製造方法であって、 pH9〜13の水溶液中で錯化剤の存在下、マンガンと
ニッケルの原子比が実質的に3:1であるマンガン塩と
ニッケル塩の混合水溶液をアルカリ溶液と反応、共沈殿
させてマンガンとニッケルの原子比が実質的に3:1で
あるマンガンニッケル複合水酸化物および/またはマン
ガンニッケル複合酸化物を得る工程1と、マンガンとニ
ッケルの合計の原子比とリチウムの原子比が実質的に
2:1となるように、前記水酸化物および/または酸化
物とリチウム化合物との混合物を850℃以上で焼成す
る工程2と、工程2で得られた焼成後の混合物をさらに
650〜800℃で焼成する工程3とからなることを特
徴とする製造方法。
(57) [Claim 1] A lithium manganese nickel composite oxide having a highly crystalline spinel structure, wherein the atomic ratio of manganese to nickel is substantially 3: 1; A non-aqueous electrolyte battery positive electrode characterized by having a specific surface area of not less than 8.18 °, a specific surface area of not more than 1.0 m 2 / g, and exhibiting charge / discharge characteristics of high flatness and low polarization of 5V class. A method for producing an active material, comprising: mixing a mixed aqueous solution of a manganese salt and a nickel salt having an atomic ratio of manganese and nickel of substantially 3: 1 with an alkaline solution in the presence of a complexing agent in an aqueous solution having a pH of 9 to 13. Reacting and co-precipitating to obtain a manganese-nickel composite hydroxide and / or manganese-nickel composite oxide having an atomic ratio of manganese and nickel of substantially 3: 1, and a total atomic ratio of manganese and nickel; Lichi And baking the mixture of the hydroxide and / or oxide and the lithium compound at a temperature of 850 ° C. or more so that the atomic ratio of aluminum is substantially 2: 1. And b. Further baking the mixture at 650-800 ° C.
JP2000349629A 2000-11-16 2000-11-16 Lithium manganese nickel composite oxide and method for producing the same Expired - Fee Related JP3461800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349629A JP3461800B2 (en) 2000-11-16 2000-11-16 Lithium manganese nickel composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349629A JP3461800B2 (en) 2000-11-16 2000-11-16 Lithium manganese nickel composite oxide and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003184785A Division JP4707939B2 (en) 2003-06-27 2003-06-27 Lithium manganese nickel composite oxide

Publications (2)

Publication Number Publication Date
JP2002158007A JP2002158007A (en) 2002-05-31
JP3461800B2 true JP3461800B2 (en) 2003-10-27

Family

ID=18822995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349629A Expired - Fee Related JP3461800B2 (en) 2000-11-16 2000-11-16 Lithium manganese nickel composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3461800B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475941B2 (en) 2003-12-12 2010-06-09 日本化学工業株式会社 Method for producing lithium manganese nickel composite oxide
JP4683527B2 (en) 2004-07-22 2011-05-18 日本化学工業株式会社 Modified lithium manganese nickel-based composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
FR2879822B1 (en) * 2004-12-21 2009-05-22 Commissariat Energie Atomique OPTIMIZED POSITIVE ELECTRODE MATERIAL FOR LITHIUM BATTERIES, PROCESS FOR PRODUCING THE SAME, ELECTRODE, BATTERY AND BATTERY USING THE MATERIAL
FR2890241B1 (en) * 2005-08-25 2009-05-22 Commissariat Energie Atomique HIGH SPEED SPINELLE STRUCTURE POSITIVE ELECTRODE MATERIAL BASED ON NICKEL AND MANGANESE FOR LITHIUM ACCUMULATORS
JP5076307B2 (en) * 2005-11-25 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and method for producing lithium composite oxide
JP5392035B2 (en) * 2009-12-02 2014-01-22 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP5392036B2 (en) * 2009-12-02 2014-01-22 住友金属鉱山株式会社 Manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP6015886B2 (en) * 2010-07-20 2016-10-26 国立研究開発法人産業技術総合研究所 Lithium manganese composite oxide and method for producing the same
WO2012127920A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2012127919A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material and secondary battery provided with same
PL2693534T3 (en) 2011-03-31 2022-10-31 Toda Kogyo Corp. Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
US9831493B2 (en) 2012-04-18 2017-11-28 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
JP6045194B2 (en) * 2012-05-23 2016-12-14 日揮触媒化成株式会社 Method for producing lithium / manganese composite oxide, lithium / manganese composite oxide obtained by the production method, positive electrode active material for secondary battery containing the same, and lithium ion secondary battery using the same as positive electrode active material
WO2015064478A1 (en) * 2013-10-28 2015-05-07 旭硝子株式会社 Lithium-containing composite oxide production method, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6436094B2 (en) 2013-12-04 2018-12-12 日本電気株式会社 Positive electrode active material for secondary battery, method for producing the same, and secondary battery
CN107256965A (en) * 2017-06-22 2017-10-17 芜湖浙鑫新能源有限公司 A kind of high pure spherical nickel ion doped prepared based on annealing method and preparation method thereof
CN114094060B (en) * 2021-10-08 2023-05-02 中南大学 Preparation method of high-voltage positive electrode material with core-shell structure

Also Published As

Publication number Publication date
JP2002158007A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US12087943B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
JP7398015B2 (en) Single-crystal multi-component cathode material, manufacturing method and use thereof
US9774036B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
CN119503912A (en) Nickel-based active material precursor, preparation method thereof, nickel-based active material and lithium secondary battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and method for producing the same
EP4144703A1 (en) Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including cathode including the same
KR20050121727A (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
CN110650923A (en) Method for preparing positive electrode active material
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7012856B2 (en) Positive active material for lithium secondary battery and its manufacturing method, lithium secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2020524384A (en) Method for manufacturing positive electrode active material
JP6237229B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2012146639A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
CN114830375A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery including the same
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR100668050B1 (en) Manganese Composite Oxide, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Method for Manufacturing the Same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees