JP3456777B2 - Dynamic pressure air bearing type optical deflector - Google Patents
Dynamic pressure air bearing type optical deflectorInfo
- Publication number
- JP3456777B2 JP3456777B2 JP33613194A JP33613194A JP3456777B2 JP 3456777 B2 JP3456777 B2 JP 3456777B2 JP 33613194 A JP33613194 A JP 33613194A JP 33613194 A JP33613194 A JP 33613194A JP 3456777 B2 JP3456777 B2 JP 3456777B2
- Authority
- JP
- Japan
- Prior art keywords
- air bearing
- type optical
- dynamic pressure
- optical deflector
- bearing type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 230000035939 shock Effects 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 238000007747 plating Methods 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000004513 sizing Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000002861 polymer material Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 241000252203 Clupea harengus Species 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Sliding-Contact Bearings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は情報機器、画像機器、計
測機器に用いられる動圧空気軸受型光偏向器に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure air bearing type optical deflector used in information equipment, image equipment and measuring equipment.
【0002】[0002]
【従来の技術】従来例の動圧空気軸受型光偏向器の一例
の構造と作用を図11乃至図13を参照して説明する。2. Description of the Related Art The structure and operation of an example of a conventional dynamic pressure air bearing type optical deflector will be described with reference to FIGS.
【0003】図11は従来例の動圧空気軸受型光偏向器
の断面図である。図12は従来例の動圧空気軸受機構の
上面図、図13は図12の一部拡大図である。この動圧
空気軸受型光偏向器は、回転部と固定部とを具えてい
る。ケースとケースに立設した固定軸とで固定部を形成
し、また固定軸の外周を回転自在に設けられたモータ等
で回転部を形成して、回転部は固定部のケース内に収容
されている。21は固定軸で、固定部を形成するケース
11に固着されており、また固定軸21の外周面には図
13で示すように、互いに反対向きの吸入角を持つ動圧
発生用のヘリングボーン溝23が設けてある。固定部を
形成するケース11の内側に固着した固定子鉄芯13、
コイル14、ホール素子15、固定軸21の外側を回転
自在の中空回転軸22の外周に設けたマグネット12等
から構成された回転部を形成するモータをコイル14を
励磁することにより、図12で示す矢印方向に駆動する
と、マグネット12を固着した中空回転軸22が回転
し、同時に中空回転軸22のミラー搭載部4に搭載、固
定された回転多面鏡3がスラスト磁気軸受8に支承され
て回転する。この際、固定軸21と中空回転軸22との
間の隙間の空気吸入口Sより流入した流体により前記隙
間に動圧が発生し、この動圧により剛性が生じることに
より、符号24で示す部分が動圧空気軸受機構となるも
のである。符号27は動圧空気軸受機構作動中に内部の
空気を排出するための空気流通孔である。FIG. 11 is a sectional view of a conventional dynamic pressure air bearing type optical deflector. FIG. 12 is a top view of a conventional dynamic pressure air bearing mechanism, and FIG. 13 is a partially enlarged view of FIG. This dynamic pressure air bearing type optical deflector includes a rotating portion and a fixed portion. The case and a fixed shaft that is erected on the case form a fixed part, and the outer periphery of the fixed shaft is formed by a motor or the like that is rotatably provided to form the rotary part. The rotary part is housed in the case of the fixed part. ing. Reference numeral 21 denotes a fixed shaft, which is fixed to a case 11 forming a fixed portion, and the outer peripheral surface of the fixed shaft 21 has a herringbone for generating a dynamic pressure having suction angles opposite to each other as shown in FIG. A groove 23 is provided. A stator iron core 13 fixed to the inside of a case 11 forming a fixed portion,
By exciting the coil 14 with a motor that forms a rotating portion composed of the coil 14, the hall element 15, and the magnet 12 provided on the outer circumference of the hollow rotating shaft 22 that is rotatable outside the fixed shaft 21, the coil 14 is excited as shown in FIG. When driven in the direction of the arrow shown, the hollow rotary shaft 22 to which the magnet 12 is fixed rotates, and at the same time, the rotary polygon mirror 3 mounted and fixed on the mirror mounting portion 4 of the hollow rotary shaft 22 is supported by the thrust magnetic bearing 8 to rotate. To do. At this time, the fluid introduced from the air inlet S in the gap between the fixed shaft 21 and the hollow rotary shaft 22 generates a dynamic pressure in the gap, and the dynamic pressure causes rigidity, whereby a portion indicated by reference numeral 24. Is a dynamic pressure air bearing mechanism. Reference numeral 27 is an air circulation hole for discharging internal air during operation of the dynamic pressure air bearing mechanism.
【0004】ここで、固定軸21の外周にヘリングボー
ン溝23が形成されていない場合には、真円動圧空気軸
受機構となり、回転軸が垂直の場合には剛性を生じる
が、常にホワール現象が発生するため、如何なる回転数
でも不安定な状態となる。動圧空気軸受の性能を表すも
のに臨界質量というパラメータがあるが、この臨界質量
とは、ある回転数で安定状態で回転させることができる
最大の回転体質量を示すものであり、真円動圧空気軸受
の場合には、全ての回転数においてこの臨界質力が0で
ある。しかし、固定軸外周にヘリングボーン溝23を設
けることにより、ある回転数までは所望の臨界質量を有
するように構成することができる。このため、従来の動
圧空気軸受型光偏向器では、ホワール現象の発生を防
ぎ、安定状態で回転させるために、固定軸外周にヘリン
グボーン溝23を設けると共に動圧軸受機構24の空気
が外部へ排出されるための流通孔27を採用している。Here, when the herringbone groove 23 is not formed on the outer periphery of the fixed shaft 21, a perfect circular dynamic pressure air bearing mechanism is formed, and when the rotating shaft is vertical, rigidity occurs, but the whirl phenomenon is always present. Occurs, the state becomes unstable at any rotation speed. There is a parameter called critical mass that expresses the performance of a dynamic pressure air bearing.This critical mass indicates the maximum mass of a rotating body that can be rotated in a stable state at a certain number of revolutions. In the case of compressed air bearings, this critical force is zero at all speeds. However, by providing the herringbone groove 23 on the outer periphery of the fixed shaft, it can be configured to have a desired critical mass up to a certain number of rotations. Therefore, in the conventional hydrodynamic air bearing type optical deflector, in order to prevent the occurrence of the whirl phenomenon and rotate in a stable state, the herringbone groove 23 is provided on the outer periphery of the fixed shaft and the air of the hydrodynamic bearing mechanism 24 is exposed to the outside. The circulation hole 27 for discharging to is adopted.
【0005】[0005]
【発明の解決しようとする課題】従来の動圧空気軸受型
光偏向器では、固定軸外周面にヘリングボーン溝を加工
しなければならず、外形が真円の軸の場合には、外周形
状を製作するのには旋盤加工又は研摩加工だけで済むも
のであるが、このようにヘリングボーン溝の加工を必要
とする場合には、外周形状を製作するために旋盤加工又
は研摩加工を施し、更にヘリングボーン溝を加工するた
めに、エッチング加工又はブラスト加工を施さなければ
ならず、多くの加工時間を要し且つコスト高になる等の
問題があった。更に、ヘリングボーン溝の形状に起因し
て、回転部の回転方向が一方向に限定されてしまうた
め、時計回り又は反時計回りのいずれかの方向にしか回
転させることができないという問題があった。In the conventional hydrodynamic air bearing type optical deflector, a herringbone groove must be formed on the outer peripheral surface of the fixed shaft, and when the outer shape is a perfect circle shaft, the outer peripheral shape is formed. However, if it is necessary to process the herringbone groove in this way, then perform lathe processing or polishing processing to produce the outer peripheral shape, and then perform herring processing. In order to process the bone groove, etching or blasting must be performed, which requires a lot of processing time and increases costs. Further, due to the shape of the herringbone groove, the rotation direction of the rotating portion is limited to one direction, so that there is a problem that it can be rotated only in either a clockwise direction or a counterclockwise direction. .
【0006】また、ヘリングボーン溝を形成した場合に
は、ヘリングボーン溝の加工又は固定軸の組立時に、ヘ
リングボーン溝幅(L1、L1´)に寸法差が生じ、こ
の寸法差に起因して固定軸の軸方向に空気の流れが生じ
る。したがって、動作時に実効的にこのヘリングボーン
溝幅(L1,L1´)の寸法差をなくすことは技術的に
困難である上に、中空回転軸の回転中に振動・衝撃等の
外力が加わることにより同様に寸法差が生じることか
ら、ヘリングボーン溝を形成する場合には必ず空気流通
孔27が必要となる(図11)。このため、回転部のス
ラスト方向への動きを抑制するための密閉状態の空気室
を構成することができないので、振動・衝撃等の外力に
より、回転部にスラスト方向の振動を生じた場合に、こ
れを抑制することができないという問題があった。Further, when the herringbone groove is formed, a dimensional difference occurs in the herringbone groove width (L1, L1 ') at the time of processing the herringbone groove or assembling the fixed shaft, and due to this dimensional difference. Airflow occurs in the axial direction of the fixed shaft. Therefore, it is technically difficult to effectively eliminate the dimensional difference in the herringbone groove widths (L1, L1 ') during operation, and in addition, external force such as vibration or impact is applied during the rotation of the hollow rotary shaft. Due to the same dimensional difference, the air circulation hole 27 is always required when forming the herringbone groove (FIG. 11). For this reason, it is impossible to configure an air chamber in a sealed state for suppressing the movement of the rotating portion in the thrust direction, and therefore, when external force such as vibration or impact causes vibration in the rotating portion in the thrust direction, There is a problem that this cannot be suppressed.
【0007】さらに、回転部は常時スラスト磁気軸受8
により浮上保持されており、スラスト磁気軸受の保持力
以上の衝撃が外部より加わった場合には、固定部のケー
スと回転部との当接部において構成部材同志がぶつかり
合い、回転多面鏡や中空回転軸等の構成部材が破損して
しまう危険性があるために、輸送中は回転部をねじ等に
より固定、保護することにより、これらの破損を防止し
ている。しかし、使用状態において発生する衝撃に対し
ては、何等対策が講じられていないという問題があっ
た。Further, the rotating portion is always a thrust magnetic bearing 8
When a shock greater than the holding force of the thrust magnetic bearing is applied from the outside, the constituent members collide with each other at the abutting part between the case of the fixed part and the rotating part, and the rotating polygon mirror or hollow Since there is a risk of damage to components such as the rotating shaft, the rotating part is fixed and protected by screws or the like during transportation to prevent such damage. However, there has been a problem that no measures have been taken against the impact that occurs during use.
【0008】その他に、固定軸の外周と中空回転軸の内
周との半径隙間は、通常2μmから5μm程度であり、
中空回転軸の内周の円筒度は±1μm程度で、しかも鏡
面に近い表面状態が必要とされている。これらの要求を
満足するためには、中空回転軸の内周を仕上げるため
に、研摩加工やラッピング加工が必要なことから、多く
の加工時間を要し且つコスト高となるなどの問題があっ
た。更に、従来例の動圧空気軸受型光偏向器では、固定
軸と中空回転軸の両部材は、共にステンレス鋼やセラミ
クス、アルミニウム等が使用されているが、両部材の構
成材質が異なり線膨張係数が大きく異なってしまうと、
一般的に動圧空気軸受型光偏向器が使用される温度環境
下では、固定軸の外周と中空回転軸の内周との半径隙間
を所定の範囲に維持することができなくなり、円滑な回
転を行うことが不可能となったり、極端な場合には、回
転が停止してしまうという現象が生じ、加工上の利便性
等を基準として構成材質を選定することができないとい
う問題があった。In addition, the radial gap between the outer circumference of the fixed shaft and the inner circumference of the hollow rotary shaft is usually about 2 μm to 5 μm,
The cylindricity of the inner circumference of the hollow rotary shaft is about ± 1 μm, and a surface condition close to a mirror surface is required. In order to satisfy these requirements, polishing and lapping are required to finish the inner circumference of the hollow rotating shaft, which requires a lot of processing time and is costly. . Further, in the conventional hydrodynamic air bearing type optical deflector, both the fixed shaft and the hollow rotary shaft are made of stainless steel, ceramics, aluminum, etc. If the coefficients differ greatly,
Generally, in a temperature environment in which a dynamic pressure air bearing type optical deflector is used, it becomes impossible to maintain the radial gap between the outer circumference of the fixed shaft and the inner circumference of the hollow rotary shaft within a predetermined range, resulting in smooth rotation. There is a problem in that it is impossible to perform the above, or in an extreme case, the rotation stops, which makes it impossible to select the constituent material based on the convenience in processing.
【0009】本発明は以上のような従来の欠点に鑑み、
加工が容易でコストが安く、外力による回転部のスラス
ト方向の振動が抑制できるとともに、急激な外部の衝撃
による構成部材の破損を防ぎ、任意な方向に回転可能
で、一段と回転性能を高めた動圧空気軸受型光偏向器を
提供することを目的としている。In view of the above conventional drawbacks, the present invention is
It is easy to process and low in cost. It can suppress vibration of the rotating part in the thrust direction due to external force, prevent damage to component parts due to sudden external impact, and can rotate in any direction, which further improves rotation performance. An object is to provide a compressed air bearing type optical deflector.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に、本発明は中空回転軸内周と固定軸外周との間に僅か
な隙間を設け、中空回転軸が回転することにより前記隙
間に動圧を発生させるラジアル軸受機構を具えた動圧空
気軸受型光偏向器において、固定軸外周形状を等径多円
弧形状あるいは等径歪円形状となし、かつ前記固定軸外
周と中空回転軸内周との隙間の形状をN個、好ましくは
奇数個の正弦波状に形成し、かつ回転部がスラスト方向
に変位することに伴って内部圧力を変化せしめる空気室
を設けた動圧空気軸受型光偏向器を提供している。さら
に、本発明は前記回転部と固定部との当接部分に弾性部
材等からなる衝撃吸収部材を設け、また、前記中空回転
軸を線膨張係数が同等の焼結メタルにより形成し、内径
にサイジング加工を施し、前記固定軸の表面をアルマイ
ト処理し、前記中空回転軸の内周表面にニッケルメッキ
あるいはニッケルメッキ後に高分子物質を含浸し、また
上記ニッケルメッキ後に高分子物質との共折メッキある
いは高分子物質をコーティングした動圧空気軸受型光偏
向器を提供する。In order to solve the above-mentioned problems, the present invention provides a slight gap between the inner circumference of a hollow rotary shaft and the outer circumference of a fixed shaft, and the hollow rotary shaft is rotated to cause a gap in the gap. In a dynamic pressure air bearing type optical deflector equipped with a radial bearing mechanism for generating dynamic pressure, the fixed shaft outer peripheral shape is made into an equal-diameter multi-arc shape or an equal-diameter strain circular shape, and the fixed shaft outer circumference and the hollow rotary shaft are A dynamic pressure air bearing type optical device in which the shape of the gap with the circumference is formed in a sinusoidal shape of N, preferably an odd number, and an air chamber is provided for changing the internal pressure when the rotating part is displaced in the thrust direction. We provide a deflector. Further, according to the present invention, a shock absorbing member made of an elastic member or the like is provided at a contact portion between the rotating portion and the fixed portion, and the hollow rotating shaft is formed of a sintered metal having an equal linear expansion coefficient, and has an inner diameter. Sizing is performed, the surface of the fixed shaft is anodized, and the inner peripheral surface of the hollow rotary shaft is nickel-plated or impregnated with a polymer substance after nickel-plating, and after the nickel-plating is co-plated with the polymer substance. Alternatively, a dynamic pressure air bearing type optical deflector coated with a polymer material is provided.
【0011】[0011]
【作用】上記のように構成された動圧空気軸受型光偏向
器では、コイルを励磁することにより中空回転軸が回転
し、この中空回転軸の回転によって、外周形状を等径多
円弧形状あるいは等径歪円形状に構成した固定軸の外周
と中空回転軸の内周との隙間に動圧を発生させ、ホワー
ル現象を発生させずして任意な方向に回転可能で、且
つ、回転部がスラスト方向に変位することに伴って内部
の圧力が変化する密閉状態の空気室により、回転部のス
ラスト方向の振動を抑制でき、固定軸あるいは中空回転
軸の表面処理により摩擦係数を低く押え一段と回転性能
を高められると共に、回転部と固定部との当接部分に設
けた衝撃吸収部材により、輸送時はもちろん使用時にお
いても、外部の衝撃を吸収し構成部材の破損を未然に防
止することができる。更に、固定軸と線膨張係数をほぼ
同一にし、焼結メタルで中空回転軸を構成することによ
り、中空回転軸の加工が容易になり、更なるコスト削減
が可能になると共に、広範囲な使用温度環境下において
も、安定した回転性能を得ることができる。[Function] The dynamic pressure air bearing type optical deflector constructed as described above.
In the device, the hollow rotary shaft rotates by exciting the coil.
However, by rotating this hollow rotary shaft, the outer peripheral shape is
The outer circumference of the fixed shaft configured in an arc shape or a circle of equal diameter strain
Dynamic pressure is generated in the gap between the inner circumference of the hollow rotary shaft and the
It can be rotated in any direction without
The inside of the rotor due to the displacement of the rotating part in the thrust direction
The sealed air chamber that changes the pressure of
Vibration in the last direction can be suppressed and fixed shaft or hollow rotation
The surface treatment of the shaft keeps the friction coefficient low and further improves rotation performance.
It can be installed at the contact part between the rotating part and the fixed part.
With a shock absorbing member, it can be used not only during transportation but also during use.
Even if there is, it will absorb external shocks and prevent damage to the components.
You can stop. Furthermore, the fixed shaft and the linear expansion coefficient are almost
By making them the same and configuring the hollow rotary shaft with sintered metal,
This makes it easier to process the hollow rotary shaft and further reduces costs.
In a wide range of operating temperature environment
Also, stable rotation performance can be obtained.
【0012】[0012]
【実施例】以下図面に示す実施例により、本発明を詳細
に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in the drawings.
【0013】以下添付図面を参照して、本発明の実施例
について説明する。図1は固定軸1の上面図、図2は固
定軸1の外周形状が等径三円弧形状で、中空回転軸2の
内周形状が真円の場合に、固定軸1と中空回転軸2と組
み合わせたときの軸上面図である。又、図3はこの場合
の固定軸1の外周と中空回転軸2の内周によって構成さ
れる隙間の形状を円周方向に展開したものである。図4
は、本発明に係る動圧空気軸受型光偏向器の断面図であ
る。尚、従来例を説明する際に用いた符号と同一のもの
は同一の部材であるから、その詳細な説明を省略する。
図1乃至図4を参照して、本発明の一実施例について、
更に詳細に説明すれば、固定軸1はアルミニウム等の材
質で、軸外周形状が多円弧例えば三円弧形状に形成さ
れ、軸表面にアルマイト処理を施してあり、ケース11
に固着されている。中空回転軸2は、固定軸1と同等の
線膨張係数を持つ焼結メタルをサイジング加工により内
周を真円形状に形成し、内周の表面に無電解ニッケルメ
ッキを施してあり、ケース11に固着されたスラスト磁
気軸受8に支承されて、固定軸1の外周に回転自在に保
持されている。ここでは、無電解ニッケルメッキにより
表面処理を行っているが、この他に、無電解ニッケルメ
ッキ後にポーラス状に高分子(例えば、フッ素樹脂、P
TFE(ポリテトラフルオロエチレン))等の低摩擦係
数の樹脂を含浸したり、高分子とニッケル等の共折メッ
キをしたり、高分子をコーティングするなどにより表面
処理を行ってもよい。図3は、固定軸1の外周と中空回
転軸2の内周との間に形成された隙間の形状を円周方向
に展開した図であり、この図において、水平線クリアラ
ンスCrが例えばN=3個の正弦波に形成されており、
この隙間を用いて動圧空気軸受機構9を構成している。
4はミラー搭載部で、中空回転軸2の外周に固着されて
おり、中空回転軸2の回転に伴って回転する。3は回転
多面鏡で、ミラー搭載部4にキャップ5等により固定さ
れており、中空回転軸2の回転に伴ってミラー搭載部4
と共に回転する。又、固定軸1の上方には、キャップ5
と中空回転軸2により密閉され、中空回転軸2、ミラー
搭載部4、ミラー3,マグネット12等よりなる回転部
が作動中にスラスト方向に変位することに伴って、内部
圧力が変化するように空気室6が形成されている。又、
この空気室6を形成するのに図5、図6、図7に図示の
ように、キャップ5と中空回転軸2とを固着するための
ねじ10を用いることもできる。7aはゴム等の衝撃吸
収部材で、固定軸1の外周凹部に嵌合しており、その他
円柱状の弾性部材7b,スプリング7c,板バネ7d等
の弾性部材がケース11の内側面に設けられている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a top view of the fixed shaft 1, and FIG. 2 is a plan view of the fixed shaft 1 and the hollow rotary shaft 2 when the outer peripheral shape of the fixed shaft 1 is a tri-arc shape with an equal diameter and the inner peripheral shape of the hollow rotary shaft 2 is a perfect circle. It is an axial top view when it combines with. Further, FIG. 3 shows the shape of the gap formed by the outer circumference of the fixed shaft 1 and the inner circumference of the hollow rotary shaft 2 in this case, which is developed in the circumferential direction. Figure 4
FIG. 3 is a sectional view of a dynamic pressure air bearing type optical deflector according to the present invention. The same reference numerals as those used in describing the conventional example are the same members, and thus detailed description thereof will be omitted.
1 to 4, one embodiment of the present invention will be described.
More specifically, the fixed shaft 1 is made of a material such as aluminum, and the outer peripheral shape of the shaft is formed in a multi-arc shape, for example, a tri-arc shape, and the shaft surface is anodized.
Is stuck to. The hollow rotary shaft 2 is formed by sizing a sintered metal having a linear expansion coefficient equivalent to that of the fixed shaft 1 into a perfect circular inner circumference, and the surface of the inner circumference is electroless nickel plated. It is supported by a thrust magnetic bearing 8 which is fixed to and is rotatably held on the outer periphery of the fixed shaft 1. Here, the surface treatment is performed by electroless nickel plating, but in addition to this, a polymer (for example, fluororesin, P
The surface treatment may be performed by impregnating a resin having a low friction coefficient such as TFE (polytetrafluoroethylene), co-plating a polymer with nickel or the like, or coating a polymer. FIG. 3 is a diagram in which the shape of the gap formed between the outer circumference of the fixed shaft 1 and the inner circumference of the hollow rotary shaft 2 is developed in the circumferential direction. In this figure, the horizontal line clearance Cr is, for example, N = 3. Are formed into individual sine waves,
The dynamic pressure air bearing mechanism 9 is configured using this gap.
Reference numeral 4 denotes a mirror mounting portion, which is fixed to the outer periphery of the hollow rotary shaft 2 and rotates as the hollow rotary shaft 2 rotates. Reference numeral 3 denotes a rotary polygon mirror, which is fixed to the mirror mounting portion 4 by a cap 5 or the like, and the mirror mounting portion 4 is rotated as the hollow rotary shaft 2 rotates.
Rotate with. Further, the cap 5 is provided above the fixed shaft 1.
The hollow rotary shaft 2 is hermetically sealed by the hollow rotary shaft 2, and the internal pressure is changed as the rotary part including the hollow rotary shaft 2, the mirror mounting portion 4, the mirror 3, and the magnet 12 is displaced in the thrust direction during operation. An air chamber 6 is formed. or,
In order to form the air chamber 6, a screw 10 for fixing the cap 5 and the hollow rotary shaft 2 can be used as shown in FIGS. 5, 6 and 7. Reference numeral 7a denotes a shock absorbing member such as rubber, which is fitted into the outer peripheral recess of the fixed shaft 1, and other elastic members such as a columnar elastic member 7b, a spring 7c and a leaf spring 7d are provided on the inner surface of the case 11. ing.
【0014】コイル14の励磁によりこれに対面するマ
グネット12と、マグネット12が固着された中空回転
軸2が回転し、中空回転軸2の回転と同時に、中空回転
軸2に設けられたミラー搭載部4や、ミラー搭載部4に
固定されている回転多面鏡3が回転する。この際に、固
定軸1の外周と中空回転軸2の内周との間に形成された
隙間には動圧が発生して剛性を生じると共に、固定軸1
の外周形状が真円ではなく、等径多円弧形状あるいは等
径歪円形状に形成されているため、ホワール現象が発生
することもなく、所望の臨界質量を有する動圧空気軸受
機構9を構成することができる。When the coil 14 is excited, the magnet 12 facing it and the hollow rotary shaft 2 to which the magnet 12 is fixed rotate, and at the same time as the hollow rotary shaft 2 rotates, the mirror mounting portion provided on the hollow rotary shaft 2 is rotated. 4 and the rotary polygon mirror 3 fixed to the mirror mounting portion 4 rotate. At this time, dynamic pressure is generated in the gap formed between the outer circumference of the fixed shaft 1 and the inner circumference of the hollow rotary shaft 2 to generate rigidity, and at the same time, the fixed shaft 1
Since the outer peripheral shape of is not a perfect circle but is formed into a multi-circular shape of equal diameter or a circular shape of equal diameter strain, the whirl phenomenon does not occur and the dynamic pressure air bearing mechanism 9 having a desired critical mass is configured. can do.
【0015】中空回転軸2の回転中に外部から振動・衝
撃等が加えられると、固定軸1の上方に設けられ、回転
部がスラスト方向に変位することに伴って内部圧力が変
化する空気室6のダンパ効果により、回転部のスラスト
方向の振動が抑制され、スラスト方向の振動のない安定
した回転を得ることができる。この空気室6は、従来の
ヘリングボーン型の動圧空気軸受機構のように軸方向へ
の空気の流通が生じないために、外部との空気流通孔が
不要となり密閉な状態を作りだすことができる。このた
め、空気流通孔27を必要とする従来の動圧空気軸受型
光偏向器にはない顕著なダンパ効果を得ることができ
る。また、外部との空気の流通がないことから、固定軸
1と中空回転軸2との間に、ごみ等の異物が巻き込まれ
る不具合もないために、より安定した回転性能を得るこ
とができる。An air chamber which is provided above the fixed shaft 1 and whose internal pressure changes as the rotating part is displaced in the thrust direction when external vibration or shock is applied during rotation of the hollow rotating shaft 2. Due to the damper effect of 6, vibration of the rotating portion in the thrust direction is suppressed, and stable rotation without vibration in the thrust direction can be obtained. Unlike the conventional herringbone type dynamic pressure air bearing mechanism, this air chamber 6 does not allow air to flow in the axial direction, so that an air flow hole with the outside is unnecessary and a sealed state can be created. . Therefore, it is possible to obtain a remarkable damper effect which is not present in the conventional dynamic pressure air bearing type optical deflector which requires the air circulation hole 27. Further, since there is no circulation of air with the outside, there is no problem that foreign matter such as dust is caught between the fixed shaft 1 and the hollow rotary shaft 2, so that more stable rotation performance can be obtained.
【0016】空気室6の作用について、図8乃至図9を
用いて説明する。図8は空気室がある場合とそうでない
場合の、スラスト方向の振動減衰状況を示した図で、
(A)空気室がない場合には、外部からの振動・衝撃が
加えられると、一度発生したスラスト方向の振動がかな
りの時間に亘って継続してしまうが、(B)空気室があ
る場合には、空気室のダンパ効果により、短い時間でス
ラスト方向の振動が減衰していることがわかる。また、
図9は空気室がある場合とそうでない場合の、外部の振
動周波数に対するスラスト方向の振動振幅を示した図
で、(A)空気室がない場合には、特定の振動周波数に
おいて、共振によるスラスト方向の振動幅の増大が生じ
てしまうが、(B)空気室がある場合には、空気室のダ
ンパ効果により、このような共振によるスラスト方向の
振動幅の増大は生じないことが分かる。The operation of the air chamber 6 will be described with reference to FIGS. 8 to 9. FIG. 8 is a diagram showing the vibration damping state in the thrust direction with and without the air chamber,
(A) When there is no air chamber, when vibration or impact is applied from the outside, the generated vibration in the thrust direction continues for a considerable time, but (B) when there is an air chamber It can be seen that the vibration in the thrust direction is attenuated in a short time due to the damper effect of the air chamber. Also,
FIG. 9 is a diagram showing the vibration amplitude in the thrust direction with respect to the external vibration frequency with and without the air chamber. (A) When there is no air chamber, the thrust due to resonance occurs at a specific vibration frequency. Although the vibration width in the directional direction increases, it can be seen that (B) when there is an air chamber, the vibration width in the thrust direction due to such resonance does not increase due to the damper effect of the air chamber.
【0017】中空回転軸2を固定軸1と同等の線膨張係
数を有する焼結メタルにより形成しているため、広範囲
な使用温度環境下において、固定軸1と中空回転軸2と
の線膨張係数の差異に起因する両部材間の寸法変化が生
じないために、両部材間の隙間を適正な寸法に保つこと
ができ、常に安定した回転を得ることができる。また、
従来例の動圧空気軸受型光偏向器の中空回転軸22で
は、内周を仕上げるために、研摩加工やラッピング加工
が必要であったが、本発明においては中空回転軸2が焼
結メタルにより形成されているため、焼結メタルの内部
に存在する多数のポーラスを利用することにより、図1
0に示すように、中空回転軸2が動かないよう固定治具
16で固定し、中空回転軸2の内径より僅かに外径の大
きいサイジングピン17やボール(図示せず)を中空回
転軸2の内周へ通すことにより、その内径が広がって所
定の寸法に仕上げることが容易となり、焼結メタルのポ
ーラスが潰れて鏡面に近い表面状態を得ることができ
る。更に、この方法による中空回転軸2の内径の仕上が
り寸法精度は、±1μm程度と非常に高いため、これ以
上余分の加工が不要となり、コストを低減することがで
きる。更に、焼結メタルの構成材質として、固定軸1が
ステンレス鋼の場合には、ステンレス製焼結メタルや鉄
系焼結メタルを、固定軸1がアルミ合金の場合には、ア
ルミ合金製焼結メタルやアルミ系焼結メタルを採用する
というように、固定軸1の材質に応じて線膨張係数が同
等の焼結メタルを適宜使用することができる。Since the hollow rotary shaft 2 is made of sintered metal having a linear expansion coefficient equal to that of the fixed shaft 1, the linear expansion coefficient of the fixed shaft 1 and the hollow rotary shaft 2 is wide under a wide range of operating temperature environment. Since there is no dimensional change between the two members due to the difference, the gap between the two members can be maintained at an appropriate size, and stable rotation can always be obtained. Also,
The hollow rotary shaft 22 of the conventional hydrodynamic air bearing type optical deflector requires polishing or lapping to finish the inner circumference, but in the present invention, the hollow rotary shaft 2 is made of sintered metal. Since it is formed, it is possible to obtain the structure shown in FIG.
As shown in FIG. 0, the hollow rotary shaft 2 is fixed by a fixing jig 16 so that the hollow rotary shaft 2 does not move, and a sizing pin 17 or a ball (not shown) having an outer diameter slightly larger than the inner diameter of the hollow rotary shaft 2 is attached. By passing it through the inner periphery of the, the inner diameter is expanded and it is easy to finish to a predetermined size, and the porous of the sintered metal is crushed to obtain a surface state close to a mirror surface. Further, since the finished dimensional accuracy of the inner diameter of the hollow rotary shaft 2 by this method is very high, about ± 1 μm, no further machining is required and the cost can be reduced. Further, as the constituent material of the sintered metal, when the fixed shaft 1 is stainless steel, stainless sintered metal or iron-based sintered metal is used, and when the fixed shaft 1 is an aluminum alloy, aluminum alloy sintered metal is used. Sintered metal having the same linear expansion coefficient can be appropriately used depending on the material of the fixed shaft 1, such as the use of metal or aluminum-based sintered metal.
【0018】固定軸1の表面にアルマイト処理を施し、
中空回転軸2の内周面に無電解ニッケルメッキ処理を施
してあるため、モータ起動時の摩擦抵抗を低減すること
ができ、迅速にモータを起動することができるととも
に、高速回転時においても安定した回転性能を得ること
ができる。又、両部材表面の損傷を少なくすることがで
き、寿命をのばすことができる。The surface of the fixed shaft 1 is anodized,
Since the inner peripheral surface of the hollow rotary shaft 2 is subjected to electroless nickel plating, it is possible to reduce the frictional resistance at the time of starting the motor, which allows the motor to be started quickly and is stable even at high speed rotation. It is possible to obtain the desired rotation performance. Further, the damages on the surfaces of both members can be reduced, and the service life can be extended.
【0019】従来例の動圧空気軸受型光偏向器では、輸
送時における外部の衝撃による構成部材の破損を防止す
るために輸送中は回転部をねじ等により仮固定してこれ
に対処している場合が多いが、使用中に加えられる外部
よりの衝撃に対しては何等対処されていない状況であっ
た。しかし、後述するように、衝撃吸収部材を設けたこ
とにより、使用中においても、スラスト軸受8で保持し
きれないほどの衝撃が外部から加えられた場合には、回
転部と固定部との当接する部分に設けられた前記衝撃吸
収部材がスラスト方向に向かって発生する回転部の過度
な衝撃を吸収し、回転多面鏡3や中空回転軸2等の構成
部材の破損を未然に防止することができる。前述の衝撃
吸収部材は、図4に図示の第1の実施例のように、固定
軸1の外周に形成した凹部に嵌合した、Oリング状の弾
性部材、例えばゴム7aよりなる。又、図5乃至図7に
示すその他の実施例のように、円柱状の弾性部材7b,
スプリング7c,板バネ7d等を固定部のケース11の
内側面に適宜に設けることができる。尚、本発明の衝撃
吸収部材は、これらの実施例に限定されるものではな
い。更に、本実施例ではスラスト方向に向かって発生す
る回転部の過度な衝撃のうち、下方向への衝撃を吸収す
る構成についてのみ説明しているが、同一原理により、
上方向への衝撃を吸収するための衝撃吸収部材を設けて
もよいことはいうまでもない。In the conventional hydrodynamic air bearing type optical deflector, in order to prevent damage to the constituent members due to external impact during transportation, the rotating portion is temporarily fixed with screws or the like during transportation to deal with this. In many cases, there was no countermeasure against external shocks applied during use. However, as will be described later, due to the provision of the shock absorbing member, when a shock that cannot be held by the thrust bearing 8 is applied from the outside even during use, the rotating part and the fixed part are in contact with each other. The impact absorbing member provided in the contacting portion absorbs an excessive impact of the rotating portion generated in the thrust direction, and damages to the components such as the rotary polygon mirror 3 and the hollow rotating shaft 2 can be prevented in advance. it can. The impact absorbing member described above is made of an O-ring-shaped elastic member, for example, rubber 7a, which is fitted in the recess formed on the outer periphery of the fixed shaft 1 as in the first embodiment shown in FIG. In addition, like the other embodiments shown in FIGS. 5 to 7, the columnar elastic member 7b,
The spring 7c, the leaf spring 7d, etc. can be appropriately provided on the inner side surface of the case 11 of the fixed portion. The impact absorbing member of the present invention is not limited to these examples. Furthermore, in the present embodiment, only the structure that absorbs the downward impact of the excessive impact of the rotating portion that occurs in the thrust direction is described, but the same principle
It goes without saying that a shock absorbing member for absorbing the shock in the upward direction may be provided.
【0020】[0020]
【発明の効果】以上の説明から明らかなように、本発明
にあっては、次に列挙する効果が得られる。As is apparent from the above description, the following effects can be obtained in the present invention.
【0021】固定軸外周形状を等径多円弧形状あるいは
等径歪円形状となし、かつ前記固定軸外周と中空回転軸
内周との隙間の形状をN個の正弦波状に形成したことに
より、所望の臨界質量を有することにより、ホワール現
象の発生を防ぎ、安定した回転性能の動圧空気軸受型光
偏向器を構成することができる。また、ヘリングボーン
溝を加工するためのエッチング加工又はブラスト加工を
行う必要がなくなるため、加工が容易になり加工時間の
短縮やコストの低減が計れる。更に、外部より軸方向へ
の空気の流通を遮断しているので、動圧空気軸受機構内
への異物の巻き込みがなく、安定した回転機能を維持す
ることができる。By forming the outer circumference of the fixed shaft into a multi-arc shape of equal diameter or a circular shape of equal diameter strain, and forming the gap between the outer circumference of the fixed shaft and the inner circumference of the hollow rotary shaft into N sinusoidal shapes, By having a desired critical mass, it is possible to prevent the occurrence of the whirl phenomenon and form a dynamic pressure air bearing type optical deflector with stable rotation performance. Further, since it is not necessary to perform etching or blasting for processing the herringbone groove, the processing becomes easy, and the processing time and cost can be reduced. Furthermore, since the flow of air from the outside in the axial direction is blocked, foreign matter is not caught in the dynamic pressure air bearing mechanism, and a stable rotating function can be maintained.
【0022】回転部がスラスト方向に変位することに伴
って圧力が変化する空気室を設けたことにより、外部か
らの振動・衝撃によるスラスト方向の振動を抑制するこ
とができ、外乱に対して安定した高精度な回転を得るこ
とができる。By providing the air chamber whose pressure changes with the displacement of the rotating portion in the thrust direction, vibration in the thrust direction due to external vibration or shock can be suppressed, and stable against external disturbance. It is possible to obtain a highly accurate rotation.
【0023】中空回転軸を固定軸と同等の線膨張係数を
有する焼結メタルにより形成していることにより、固定
軸と中空回転軸との線膨張係数の差異に起因する両部材
間の寸法等の変化が生じないために、両部材間の隙間の
寸法を所定の範囲に保つことができ、広範囲な使用温度
環境下において、安定した回転性能を得ることができ
る。また、焼結メタルがポーラスであるため、中空回転
軸の内径を仕上げる際に、研摩工程やラッピング工程が
不要となり、サイジング加工あるいはボールによる加工
を施すだけで、所望の寸法精度及び面精度得ることがで
きるため、加工作業が容易になり加工時間の短縮やコス
トの低減が計れる。Since the hollow rotary shaft is made of a sintered metal having a linear expansion coefficient equivalent to that of the fixed shaft, the dimension between the fixed shaft and the hollow rotary shaft due to the difference in linear expansion coefficient between the two members. Therefore, the size of the gap between both members can be maintained within a predetermined range, and stable rotation performance can be obtained under a wide range of operating temperature environments. Also, since the sintered metal is porous, no polishing or lapping steps are required when finishing the inner diameter of the hollow rotating shaft, and the desired dimensional and surface accuracy can be obtained simply by performing sizing or ball processing. As a result, processing work is facilitated, and processing time and cost can be reduced.
【0024】固定軸の外周と中空回転軸の内周とに表面
処理を施していることにより、両部材間の摩擦係数を低
くすることができるため、起動がスムーズになり、安定
した回転を得ることができる。また、両部材外周、内周
面の損傷を少なくすることができるため、動圧空気軸受
型光偏向器の寿命を伸ばすことができる。By applying the surface treatment to the outer circumference of the fixed shaft and the inner circumference of the hollow rotary shaft, the coefficient of friction between both members can be lowered, so that the start-up is smooth and stable rotation is obtained. be able to. Further, since damage to the outer and inner peripheral surfaces of both members can be reduced, the life of the dynamic pressure air bearing type optical deflector can be extended.
【0025】回転部と固定部との当接部分に衝撃吸収部
材を設けたことにより、輸送時や使用時における外部の
衝撃を吸収することができるため、構成部材の損傷を未
然に防止することができる。Since the impact absorbing member is provided at the abutting portion between the rotating portion and the fixed portion, it is possible to absorb an external impact during transportation or use, so that damage to the constituent members can be prevented. You can
【図1】本発明に係る固定軸の上面図。FIG. 1 is a top view of a fixed shaft according to the present invention.
【図2】本発明に係る固定軸と中空回転軸とを組み合わ
せた状態の上面図。FIG. 2 is a top view of a state in which a fixed shaft and a hollow rotary shaft according to the present invention are combined.
【図3】本発明に係る固定軸外周と中空回転軸内周によ
り構成される隙間の展開図。FIG. 3 is a development view of a gap formed by an outer circumference of a fixed shaft and an inner circumference of a hollow rotary shaft according to the present invention.
【図4】本発明に係る動圧空気軸受型光偏向器の第1実
施例の断面図。FIG. 4 is a sectional view of the first embodiment of the dynamic pressure air bearing type optical deflector according to the present invention.
【図5】本発明に係る動圧空気軸受型光偏向器の第2実
施例の断面図。FIG. 5 is a sectional view of a second embodiment of a dynamic pressure air bearing type optical deflector according to the present invention.
【図6】本発明に係る動圧空気軸受型光偏向器の第3実
施例の断面図。FIG. 6 is a sectional view of a dynamic pressure air bearing type optical deflector according to a third embodiment of the present invention.
【図7】本発明に係る動圧空気軸受型光偏向器の第4実
施例の断面図。FIG. 7 is a sectional view of a dynamic pressure air bearing type optical deflector according to a fourth embodiment of the present invention.
【図8】スラスト方向振動の減衰状況を示した図。FIG. 8 is a diagram showing a damping state of thrust direction vibration.
【図9】外部の振動周波数に対するスラスト方向振動振
幅を示した図。FIG. 9 is a diagram showing a thrust direction vibration amplitude with respect to an external vibration frequency.
【図10】本発明に係る中空回転軸のサイジング加工の
説明図。FIG. 10 is an explanatory view of sizing processing of the hollow rotary shaft according to the present invention.
【図11】従来例の動圧空気軸受型光偏向器の断面図。FIG. 11 is a cross-sectional view of a conventional dynamic pressure air bearing type optical deflector.
【図12】従来例の動圧空気軸受型光偏向器において、
外周にヘリングボーン溝を設けた固定軸と中空回転軸と
を組み合わせた状態の上面図。FIG. 12 shows a conventional dynamic pressure air bearing type optical deflector.
The top view of the state which combined the fixed shaft which provided the herringbone groove on the outer periphery, and the hollow rotating shaft.
【図13】図12の一部拡大図。13 is a partially enlarged view of FIG.
1 固定軸 2 中空回転軸 3 回転多面鏡 4 ミラー搭載部 5 キャップ 6 空気室 7a,7b,7c,7d 衝撃吸収部材 8 スラスト磁気軸受 9 動圧空気軸受機構 10 ねじ 11 ケース 12 マグネット 13 固定子鉄芯 14 コイル 15 ホール素子 16 固定治具 17 サイジングピン 1 fixed axis 2 Hollow rotating shaft 3 rotating polygon mirror 4 Mirror mounting part 5 caps 6 air chamber 7a, 7b, 7c, 7d Shock absorbing member 8 Thrust magnetic bearing 9 Dynamic pressure air bearing mechanism 10 screws 11 cases 12 magnets 13 Stator core 14 coils 15 Hall element 16 Fixing jig 17 Sizing Pin
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−106632(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 26/10 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-5-106632 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 26/10
Claims (9)
かな隙間を設け、中空回転軸が回転することにより前記
隙間に動圧を発生させるラジアル軸受機構を具えた動圧
空気軸受型光偏向器において、固定軸外周形状を等径多
円弧形状あるいは等径歪円形状となし、かつ前記固定軸
外周と中空回転軸内周との隙間の形状をN個の正弦波状
に形成し、回転部がスラスト方向に変位することに伴っ
て内部圧力を変化せしめる空気室を設けたことを特徴と
する動圧空気軸受型光偏向器。1. A hydrodynamic air bearing comprising a radial bearing mechanism for providing a dynamic pressure in the clearance by providing a slight clearance between the inner circumference of the hollow rotary shaft and the outer circumference of the fixed shaft. Type optical deflector, the outer circumference of the fixed shaft is formed into a multi-arc shape of equal diameter or a circular shape of equal diameter distortion, and the shape of the gap between the outer circumference of the fixed shaft and the inner circumference of the hollow rotary shaft is formed into N sine waves. , A dynamic pressure air bearing type optical deflector, characterized in that an air chamber for changing the internal pressure when the rotating part is displaced in the thrust direction is provided.
求項1記載の動圧空気軸受型光偏向器。2. The dynamic pressure air bearing type optical deflector according to claim 1, wherein the N is an odd number.
部材を設けたことを特徴とする請求項1記載の動圧空気
軸受型光偏向器。3. The dynamic pressure air bearing type optical deflector according to claim 1, wherein a shock absorbing member is provided at a contact portion between the rotating portion and the fixed portion.
とを特徴とする請求項3に記載の動圧空気軸受型光偏向
器。4. The dynamic pressure air bearing type optical deflector according to claim 3, wherein the shock absorbing member is made of an elastic member.
し、内径にサイジング加工を施したことを特徴とする請
求項1又は2記載の動圧空気軸受型光偏向器。5. The dynamic air bearing type optical deflector according to claim 1, wherein the hollow rotary shaft is formed of sintered metal, and the inner diameter is subjected to sizing processing.
同等の焼結メタルにより形成したことを特徴とする請求
項1,2又は5記載の動圧空気軸受型光偏向器。6. The dynamic air bearing type optical deflector according to claim 1, wherein the hollow rotary shaft is formed of a sintered metal having a linear expansion coefficient equal to that of the fixed shaft.
ことを特徴とする請求項1,2,5又は6記載の動圧空
気軸受型光偏向器。7. The dynamic pressure air bearing type optical deflector according to claim 1, 2, 5 or 6, wherein the surface of said fixed shaft is alumite treated.
ッキあるいはニッケルメッキ後に高分子物質を含浸した
ことを特徴とする請求項1,2,5,6又は7記載の動
圧空気軸受型光偏向器。8. The dynamic pressure air bearing type light according to claim 1, wherein the inner peripheral surface of the hollow rotary shaft is nickel-plated or impregnated with a polymer substance after nickel plating. Deflector.
ッキ後に高分子物質との共折メッキあるいは高分子物質
をコーティングしたことを特徴とする請求項1,2,
5,6,7又は8記載の動圧空気軸受型光偏向器。9. The inner peripheral surface of the hollow rotating shaft is nickel-plated and then co-plated with a polymer material or coated with a polymer material.
5. A dynamic pressure air bearing type optical deflector according to 5, 6, 7 or 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33613194A JP3456777B2 (en) | 1993-12-24 | 1994-12-22 | Dynamic pressure air bearing type optical deflector |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34762593 | 1993-12-24 | ||
JP5-347625 | 1993-12-24 | ||
JP34762493 | 1993-12-24 | ||
JP5-347624 | 1993-12-24 | ||
JP33613194A JP3456777B2 (en) | 1993-12-24 | 1994-12-22 | Dynamic pressure air bearing type optical deflector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07230056A JPH07230056A (en) | 1995-08-29 |
JP3456777B2 true JP3456777B2 (en) | 2003-10-14 |
Family
ID=27340766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33613194A Expired - Fee Related JP3456777B2 (en) | 1993-12-24 | 1994-12-22 | Dynamic pressure air bearing type optical deflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3456777B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0837257B1 (en) * | 1996-04-30 | 2004-10-27 | Sumitomo Electric Industries, Ltd | Dynamic-pressure gas bearing structure, method of producing the same and method of using it |
KR100513708B1 (en) * | 1997-10-29 | 2005-12-21 | 삼성전기주식회사 | Hydrodynamic air bearing structure for supporting a rotating body |
WO1999046516A1 (en) | 1998-03-10 | 1999-09-16 | Sumitomo Electric Industries, Ltd. | Dynamic pressure gas bearing structure |
JP2000002233A (en) | 1998-06-12 | 2000-01-07 | Sumitomo Electric Ind Ltd | Dynamic pressure gas bearing and manufacturing method thereof |
CN100381717C (en) | 2003-02-04 | 2008-04-16 | 日本发条株式会社 | Shaft for hydrodynamic bearing, hydrodynamic bearing device and shaft manufacturing method |
JP7210886B2 (en) | 2018-03-13 | 2023-01-24 | 日本電産株式会社 | motors and fan motors |
-
1994
- 1994-12-22 JP JP33613194A patent/JP3456777B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07230056A (en) | 1995-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3602732B2 (en) | motor | |
US4934836A (en) | Dynamic pressure type fluid bearing device | |
US5036235A (en) | Brushless DC motor having a stable hydrodynamic bearing system | |
US5289067A (en) | Bearing device | |
JP2777011B2 (en) | Surface-facing motor | |
US5914832A (en) | Spindle motor having a thrust plate etched to form a dynamic pressure bearing groove and circumferential portion | |
US7514831B2 (en) | Motor having fluid dynamic bearing and disk drive with the-like motor | |
JP3456777B2 (en) | Dynamic pressure air bearing type optical deflector | |
JP3400632B2 (en) | Spindle motor | |
JPH10104544A (en) | Rotating polygon mirror motor | |
WO1996038679A1 (en) | High-speed rotary body | |
JPH03277807A (en) | Gas bearing structure | |
JPH0327747A (en) | Rotational driving gear for polygon mirror | |
JPH0571532A (en) | Bearing device | |
JPH05106632A (en) | Dynamic pressure fluid bearing and polygon scanner using it | |
JPH06294937A (en) | Rotary polygon mirror driving device | |
JP2002027706A (en) | Dynamic air pressure bearing motor and polygon scanner | |
JP4067686B2 (en) | Hydrodynamic air bearing motor and polygon scanner | |
JPH11117935A (en) | Bearing device | |
JP2000333404A (en) | Motor and rotating polygon-mirror driver using the same motor | |
JP2653119B2 (en) | Scanner unit | |
JP4033283B2 (en) | DYNAMIC PRESSURE AIR BEARING TYPE OPTICAL DEFLECTOR, METHOD OF PROCESSING THE ROTATING BODY, AND RECYCLING METHOD OF COMPONENT FOR DYNAMIC PRESSURE AIR BEARING TYPE OPTICAL DEFLECTOR | |
JPH0516575Y2 (en) | ||
US20010013735A1 (en) | Motor with dynamic pressure bearings | |
JPH08247139A (en) | Rotating polygon mirror scanning device and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030625 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100801 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |