[go: up one dir, main page]

JP3455775B2 - Optically driven wavefront correction imaging method and apparatus - Google Patents

Optically driven wavefront correction imaging method and apparatus

Info

Publication number
JP3455775B2
JP3455775B2 JP2000227874A JP2000227874A JP3455775B2 JP 3455775 B2 JP3455775 B2 JP 3455775B2 JP 2000227874 A JP2000227874 A JP 2000227874A JP 2000227874 A JP2000227874 A JP 2000227874A JP 3455775 B2 JP3455775 B2 JP 3455775B2
Authority
JP
Japan
Prior art keywords
light
phase
phase modulation
image
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000227874A
Other languages
Japanese (ja)
Other versions
JP2002040368A (en
Inventor
智宏 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000227874A priority Critical patent/JP3455775B2/en
Publication of JP2002040368A publication Critical patent/JP2002040368A/en
Application granted granted Critical
Publication of JP3455775B2 publication Critical patent/JP3455775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工業計測や医療機
器として用いられる顕微鏡、望遠鏡、カメラ等の映像装
置において、光路中の媒質の位相変動により、得られた
像が不鮮明となることを防止する波面補正映像方法及び
その方法を実施する装置に関し、特に、その波面補正を
光書き込み型液晶空間位相変調素子により実時間で行う
ようにした光駆動型波面補正映像方法及びその方法を実
施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents an obtained image from becoming unclear due to phase fluctuations of a medium in an optical path in an image device such as a microscope, a telescope or a camera used for industrial measurement or medical equipment. And a device for implementing the method, and more particularly to an optical drive type wavefront corrected image method and a device for implementing the method, in which the wavefront correction is performed in real time by an optical writing type liquid crystal spatial phase modulator. Regarding

【0002】[0002]

【従来の技術】工業計測や医療機器として利用される顕
微鏡、望遠鏡、カメラ等の映像装置は、除去することが
本質的に難しい光路中の媒質の位相変動によって、その
分解能が制限されることが知られている。例えば機械加
工技術分野において、加工物を現場でモニタリングする
際には工作機械の振動や発生熱に由来する空気のゆらぎ
により、また、医療用の眼底カメラにおいては眼の収差
(乱視)の影響により、得られた像が不鮮明となってし
まうことが知られている。
2. Description of the Related Art Image devices such as microscopes, telescopes and cameras used for industrial measurement and medical equipment are limited in resolution due to phase fluctuations of a medium in an optical path which is essentially difficult to remove. Are known. For example, in the field of machining technology, when monitoring a workpiece on-site, vibration of the machine tool and air fluctuations caused by generated heat, and in a medical fundus camera, due to the influence of eye aberration (astigmatism). It is known that the obtained image becomes unclear.

【0003】即ち、顕微鏡、望遠鏡、カメラ等に代表さ
れる各種映像システムは、物体(被写体)と結像面(観
察面)とを結ぶ光路中に存在する媒質の位相変動によ
り、その分解能が著しく低下する。その位相変動の影響
を実時間で補正する技術は補償光学(もしくは、アダプ
ティブ・オプティクス)と言われ既に、大型の天体望遠
鏡等に設置されその有効性が確かめられている。
That is, in various image systems represented by microscopes, telescopes, cameras, etc., the resolution is remarkably high due to the phase fluctuation of the medium existing in the optical path connecting the object (subject) and the image plane (observation plane). descend. The technology for correcting the effect of the phase fluctuation in real time is called adaptive optics (or adaptive optics), and its effectiveness has already been confirmed by installing it in a large astronomical telescope.

【0004】従来より広く用いられているシステムの構
成を図6に示す。基本的には、光路中の媒質の位相変動
の影響によって乱された波面60を形状可変鏡61で反
射させ、その反射光の一部をビームスプリッター(B
S)62によって取り出し、それを波面センサー63に
入射させる。ここで、形状可変鏡61とは、薄い鏡64
の背面に電歪素子65が多数取り付けられ、それぞれの
電歪素子65に印可する電圧に応じて鏡の形状を任意に
変化させることができる装置である。
FIG. 6 shows the configuration of a system widely used conventionally. Basically, the wavefront 60 disturbed by the phase variation of the medium in the optical path is reflected by the variable shape mirror 61, and a part of the reflected light is reflected by the beam splitter (B
S) 62, and it is incident on the wavefront sensor 63. Here, the deformable mirror 61 is a thin mirror 64.
A large number of electrostrictive elements 65 are attached to the back surface of the device, and the shape of the mirror can be arbitrarily changed according to the voltage applied to each electrostrictive element 65.

【0005】波面センサー63では波面の乱れが計測さ
れ、そのデータが制御装置66へと導かれる。制御装置
66では、そのデータに基づいて波面を補正するために
必要な鏡の形状、すなわち各電歪素子65に印可する電
圧が計算され、それに基づいて形状可変鏡の形状を変化
させる。この一連の動作を素早く行うことで、反射光の
波面を実時間で補正することができる。この形状可変鏡
61を映像システムに組み込むことにより、波面の乱れ
によって低下した映像システムの分解能を向上させるこ
とができる。
The wavefront sensor 63 measures the disturbance of the wavefront, and the data is guided to the control device 66. The controller 66 calculates the shape of the mirror necessary for correcting the wavefront, that is, the voltage applied to each electrostrictive element 65 based on the data, and changes the shape of the deformable mirror based on the calculated voltage. By performing this series of operations quickly, the wavefront of the reflected light can be corrected in real time. By incorporating the deformable mirror 61 in the image system, it is possible to improve the resolution of the image system which is lowered due to the disturbance of the wavefront.

【0006】これを映像システムの一例である天体望遠
鏡に組み込むには、望遠鏡内部の反射鏡をこの形状可変
鏡61に置き換え、そこからの反射光の一部を波面セン
サー63に導入して鏡の制御信号を生成し、それに基づ
き鏡の形状を制御する。実際には、明るい星(参照星)
を観察することにより、大気のゆらぎによって乱された
光の波面を検出し、反射の過程で乱れた波面が補正され
るよう形状可変鏡を変形させる。この状態で、参照星の
近傍にある目的の星を観測すると、大気のゆらぎが補正
され鮮明な天体像が得られる。
In order to incorporate this into an astronomical telescope, which is an example of an image system, the reflecting mirror inside the telescope is replaced with the variable shape mirror 61, and a part of the reflected light from the variable shape mirror 61 is introduced into the wavefront sensor 63 to make the mirror. A control signal is generated and the shape of the mirror is controlled based on the control signal. In fact, a bright star (reference star)
By observing, the wavefront of the light disturbed by the fluctuation of the atmosphere is detected, and the deformable mirror is deformed so that the wavefront disturbed in the process of reflection is corrected. If you observe the target star near the reference star in this state, the fluctuation of the atmosphere is corrected and a clear astronomical image is obtained.

【0007】[0007]

【発明が解決しようとする課題】形状可変鏡は上記のよ
うに、薄い鏡の背面に電歪素子を多数(数十個から数百
個程度)貼り付け、個々の電歪素子に高電圧を印可する
ことによって、鏡の形状を変化させる装置である。その
ため、この形状可変鏡を用いた補償光学システムは、シ
ステム全体が高価となるばかりか、消費電力が莫大であ
り、かつ装置の駆動電源が電歪素子の数だけ必要となる
ため、システム全体が大規模になってしまう欠点があ
る。また、鏡の形状変化には物理的な限界があるため波
面補正の高分解能化が困難であり、さらに、例え電歪素
子の数を増加させ波面補正の高分解能化を図ったとして
も、素子の増加に伴い各素子を駆動する信号を生成する
ための演算が膨大となり実時間での波面補正が不可能と
なる。
As described above, the deformable mirror has a large number of electrostrictive elements (several tens to several hundreds) attached to the back surface of a thin mirror, and a high voltage is applied to each electrostrictive element. It is a device that changes the shape of the mirror by applying it. Therefore, the adaptive optics system using this deformable mirror not only makes the entire system expensive, but also consumes a large amount of power and requires a drive power source for the device by the number of electrostrictive elements. It has the drawback of becoming large-scale. In addition, since there is a physical limit to the change in the shape of the mirror, it is difficult to increase the resolution of the wavefront correction, and even if the number of electrostrictive elements is increased to increase the resolution of the wavefront correction, As a result, the number of calculations for generating the signals for driving the respective elements becomes enormous and the wavefront correction in real time becomes impossible.

【0008】上記のような形状可変鏡を用いた従来の補
償光学システムでは、 1)装置が高価となる。 2)消費電力が増大する。 3)装置が大規模化する。 4)波面補正の高分解能化が困難である。 5)波面補正の高分解能化に伴い実時間での波面補正が
困難になる。 等の問題があった。これらの問題により、この装置を各
種工業計測や医療機器に応用することは極めて困難とな
る。
In the conventional adaptive optics system using the deformable mirror as described above, 1) the device is expensive. 2) Power consumption increases. 3) The equipment becomes large-scale. 4) It is difficult to increase the resolution of wavefront correction. 5) As the resolution of wavefront correction increases, it becomes difficult to correct wavefront in real time. There was a problem such as. Due to these problems, it is extremely difficult to apply this device to various industrial measurement and medical equipment.

【0009】したがって本発明は、小形で安価な装置で
あって消費電力が少なく、波面補正の高分解能化が容易
であり、且つ波面補正を実時間で行うことができるよう
にした光駆動型波面補正映像方法及び装置を提供するこ
とを目的とする。
Therefore, the present invention is an optical drive type wavefront which is a small and inexpensive device, consumes less power, facilitates higher resolution of wavefront correction, and is capable of performing wavefront correction in real time. An object is to provide a corrected image method and apparatus.

【0010】[0010]

【課題を解決するための手段】本発明は、上記1)〜
4)の問題を解決するために、波面を補正する素子とし
て高分解能の液晶空間位相変調素子を導入し、さらに
5)を解決するために、素子の駆動のための演算を一切
必要としない光学的フィードバック干渉計に基づく光駆
動型の補償光学システムを導入した。すなわち、波面の
補正装置として高分解能の光書き込み型液晶空間位相変
調素子を利用し、それを光学的フィードバック干渉計に
組み込むことにより、光駆動型の補償光学システムを構
築し、それを映像システムに組み込んだものである。ま
た、この装置では、各種工業計測や医療用機器で使用す
ることを主な目的としているため、被測定物体を照明す
る光、及びこの補償光学システムを駆動する光は、高輝
度で干渉性に優れたレーザー光を利用している。
The present invention is based on the above 1) to.
In order to solve the problem of 4), a high-resolution liquid crystal spatial phase modulator is introduced as a device for correcting the wavefront, and in order to solve 5), an optical operation which does not require any driving of the device is required. An optically driven adaptive optics system based on dynamic feedback interferometer was introduced. That is, by using a high-resolution optical writing type liquid crystal spatial phase modulator as a wavefront correction device and incorporating it into an optical feedback interferometer, an optically driven adaptive optical system is constructed and used as an image system. It is built in. Further, since the main purpose of this device is to be used in various industrial measurement and medical equipment, the light for illuminating the object to be measured and the light for driving this adaptive optics system have high brightness and coherence. Uses excellent laser light.

【0011】上記のような考え方を元に、請求項1に係
る発明は、書き込み面に照射した光の強さに依存して、
その裏側の位相変調面の変調位相が変化する液晶空間位
相変調素子を用い、被測定物体を照射した物体照射光を
レンズを通して第1ビームスプリッタに導き、外部から
の参照光と共に擾乱物質を通過させて前記位相変調面で
反射させ、前記位相変調面で反射した物体照射光と参照
光とを、第2ビームスプリッタからレンズを通して、前
記参照光を結像面に微小結像させると共に物体照射光を
観察可能とし、前記第2ビームスプリッタで分離した
照光から擾乱媒質の位相分布を反映した干渉縞を得て、
前記書き込み面にこれを照射することにより擾乱媒質の
位相分布を打ち消すように位相変調面を形成し、前記物
体照射光を前記参照光に対して光軸を若干傾けることに
より、物体照射光を前記位相変調面に入ることを防ぐ
とを特徴とする光駆動型波面補正映像方法としたもので
ある。
Based on the above idea, the invention according to claim 1 depends on the intensity of the light applied to the writing surface.
Using a liquid crystal spatial phase modulator that changes the modulation phase of the phase modulation surface on the back side, the object irradiation light that irradiates the measured object
From the outside through the lens to the first beam splitter
On the phase modulation surface by passing the disturbing substance with the reference light of
Refer to the object irradiation light that is reflected and reflected by the phase modulation surface
The light from the second beam splitter through the lens and
The reference light is finely imaged on the imaging surface and the object irradiation light is
It is observable, and an interference fringe reflecting the phase distribution of the disturbing medium is obtained from the reference light separated by the second beam splitter ,
By irradiating the writing surface with this, a phase modulation surface is formed so as to cancel the phase distribution of the disturbing medium .
To slightly tilt the optical axis of the body irradiation light with respect to the reference light
According to another aspect of the present invention, there is provided a light-driven wavefront correction image method, which is characterized in that the object irradiation light is prevented from entering the phase modulation surface .

【0012】また、請求項2に係る発明は、書き込み面
に照射した光の強さに依存して、その裏側の位相変調面
の変調位相が変化する液晶空間位相変調素子と、被測定
物体を照射した物体照射光をレンズを通して第1ビーム
スプリッタに導き、外部からの参照光と共に擾乱物質を
通過させて前記位相変調面で反射させ、前記位相変調面
で反射した物体照射光と参照光とを、第2ビームスプリ
ッタからレンズを通して、前記参照光を結像面に微小結
像させると共に物体照射光を観察可能とする光学系統
と、前記第2ビームスプリッタで分離した参照光から擾
乱媒質の位相分布を反映した干渉縞を得て、前記書き込
み面にこれを照射することにより擾乱媒質の位相分布を
打ち消すように位相変調面を形成する光学系統とを備
え、前記物体照射光を前記参照光に対して光軸を若干傾
けたことを特徴とする光駆動型波面補正映像装置。
[0012] The invention according to claim 2, depending on the intensity of light irradiated on the writing surface, and a liquid crystal spatial phase modulation element modulating the phase of the phase modulation surface of the back side thereof is changed, the measured
First beam of light emitted from the object
Guide it to the splitter and remove the disturbing substance with the reference light from the outside.
The phase modulation surface is made to pass and reflected by the phase modulation surface.
The object irradiation light and the reference light reflected by the second beam split
From the shutter through the lens to a small amount of the reference light on the image plane.
An optical system that makes it possible to observe the irradiation light of an object while making an image
Then, an interference fringe reflecting the phase distribution of the disturbing medium is obtained from the reference light separated by the second beam splitter, and the writing surface is irradiated with the interference fringes, so that the phase modulating surface is changed so as to cancel the phase distribution of the disturbing medium. With optical system to form
The optical axis of the object irradiation light is slightly tilted with respect to the reference light.
An optical drive type wavefront correction image device characterized by being eccentric .

【0013】また、請求項3に係る発明は、前記被測定
物体が加工物の表面である請求項2記載の光駆動型波面
補正映像装置としたものである。
According to a third aspect of the present invention, there is provided the optically driven wavefront correction image device according to the second aspect, wherein the measured object is a surface of a workpiece.

【0014】また、請求項4に係る発明は、前記被測定
物体が遮蔽空間内の物体である請求項2記載の光駆動型
波面補正映像装置としたものである。
According to a fourth aspect of the invention, there is provided the optically driven wavefront correction image device according to the second aspect, wherein the measured object is an object in a shielded space.

【0015】また、請求項5に係る発明は、前記液晶空
間位相変調素子の書き込み面に、映写機器により前記干
渉縞を撮像した映像を照射する請求項2記載の光駆動型
波面補正映像装置としたものである。
According to a fifth aspect of the present invention, there is provided the light-driven wavefront correction image device according to the second aspect, in which a writing surface of the liquid crystal spatial phase modulation element is irradiated with a video image of the interference fringes captured by a projection device. It was done.

【0016】[0016]

【発明の実施の形態】本発明の実施例を図面に沿って説
明する。この発明の基本的な構成を図1及び図2に示
す。なお、紙面の関係上、一つの装置を二分割して表示
している。図1は、主に映像システムの部分であり、図
2は波面を補正する素子を駆動する補償光学システムの
部分を、一部重複して示している。
Embodiments of the present invention will be described with reference to the drawings. The basic structure of the present invention is shown in FIGS. Due to space limitations, one device is divided into two and displayed. FIG. 1 mainly shows a part of an image system, and FIG. 2 shows a part of an adaptive optics system for driving an element that corrects a wavefront in a partially overlapping manner.

【0017】図1において、直線偏光のレーザー光から
平面波を作成し、それによって被測定物体1を照明す
る。被測定物体1を透過した光波は、レンズL1、ビー
ムスプリッターBS1、レンズL2、L3を通過し、光
書き込み型液晶空間位相変調素子2の位相変調面3で反
射され、その反射光がビームスプリッターBS2とレン
ズL4を通過して観察面としての結像面6に結像され
る。
In FIG. 1, a plane wave is created from linearly polarized laser light, and the object 1 to be measured is illuminated thereby. The light wave transmitted through the object to be measured 1 passes through the lens L1, the beam splitter BS1, and the lenses L2 and L3, and is reflected by the phase modulation surface 3 of the optical writing type liquid crystal spatial phase modulation element 2, and the reflected light is the beam splitter BS2. Then, the light passes through the lens L4 and an image is formed on the image forming surface 6 as an observation surface.

【0018】上記光書き込み型液晶空間位相変調素子2
は、書き込み面4に照射した光の強さに依存して、その
裏側の位相変調面3の変調位相が変化する素子である。
ただし、位相変調には偏光依存性があり、液晶分子の配
向方向と平行な偏光成分の光波のみの位相を変調させ
る。また、この素子は書き込み面4に照射する強度パタ
ーンに応じて任意に位相変調を行うことができるため、
高分解能な波面補正能力を持つ。波面を乱す擾乱媒質5
はビームスプリッターBS1とレンズL2の間で、かつ
位相変調面3に対してレンズL2とL3による結像面と
なるように配置される。各レンズの焦点距離は、レンズ
L1とL4、及びレンズL2とL3をそれぞれ等しくす
る。これらの配置については、各レンズの焦点が一致す
るアフォーカル系とする。
The above optical writing type liquid crystal spatial phase modulator 2
Is an element in which the modulation phase of the phase modulation surface 3 on the back side of the writing surface 4 changes depending on the intensity of light applied to the writing surface 4.
However, the phase modulation has polarization dependency, and modulates only the phase of the light wave of the polarization component parallel to the alignment direction of the liquid crystal molecules. Further, since this element can arbitrarily perform phase modulation according to the intensity pattern irradiated on the writing surface 4,
Has high resolution wavefront correction capability. Disturbing medium 5 that disturbs the wavefront
Are arranged between the beam splitter BS1 and the lens L2 and so as to serve as an image plane formed by the lenses L2 and L3 with respect to the phase modulation plane 3. The focal lengths of the lenses are the same for the lenses L1 and L4 and the lenses L2 and L3, respectively. Regarding these arrangements, an afocal system is used in which the focal points of the respective lenses match.

【0019】この光学系においては、液晶空間位相変調
素子2の位相変調面の位相が擾乱媒質5の位相と向きが
反対で大きさがその半分の分布となると、反射の過程で
両者が相殺し合い、この映像システムにおける擾乱媒質
の影響が除去される。このとき、擾乱媒質の影響によっ
てぼやけていた結像面6上(この部分をのぞき込んで直
接見るか、カメラや顕微鏡等を設置する)の像は、鮮明
な像へと変化する。ただし、液晶空間位相変調素子2の
位相変調特性には偏光依存性があるため、反射した光波
の位相が十分に変調されるよう入射光の偏光方向は液晶
分子の配向方向(図では紙面に対して垂直方向とする)
と平行にしなければならない。
In this optical system, when the phase of the phase modulation surface of the liquid crystal spatial phase modulation element 2 is opposite in direction to the phase of the disturbing medium 5 and has a distribution of half its size, the two cancel each other out in the process of reflection. , The effects of disturbing media in this video system are eliminated. At this time, the image on the image plane 6 (which is directly looked into by looking at this portion or where a camera, a microscope, or the like is installed) which has been blurred due to the influence of the disturbing medium changes into a clear image. However, since the phase modulation characteristic of the liquid crystal spatial phase modulator 2 has polarization dependency, the polarization direction of incident light is such that the polarization direction of incident light is sufficiently modulated so that the phase of the reflected light wave is sufficiently modulated. Vertical direction)
Should be parallel to.

【0020】液晶空間位相変調素子2の位相変調面3の
位相分布を、擾乱媒質5の位相変動を相殺する分布にす
るには、図2に示す補償光学システムを用いる。まず、
前記図1に示すように、ビームスプリッターBS1を介
して擾乱媒質を直線偏光のレーザー光から作成した平面
波(前述の天体観測における『参照星』に相当)で照明
し、それをレンズL2とL3を介して位相変調素子の位
相変調面3に結像する。位相変調面3からの反射光は、
ビームスプリッターBS3を経て、レンズL5へと導か
れる(図2参照)。位相変調面3上の光波の分布はレン
ズL5とL6を介して仮想的な平面F1に入射され、更
に偏光ビームスプリッター7に入射する。この仮想的平
面F1はマッハ・ツェンダー型干渉計の入口となってい
る。
In order to make the phase distribution of the phase modulation surface 3 of the liquid crystal spatial phase modulator 2 a distribution that cancels the phase fluctuation of the disturbing medium 5, the adaptive optical system shown in FIG. 2 is used. First,
As shown in FIG. 1, the disturbing medium is illuminated through a beam splitter BS1 with a plane wave (corresponding to the “reference star” in the above-mentioned astronomical observation) created from a linearly polarized laser beam, and the lenses L2 and L3 are illuminated with it. An image is formed on the phase modulation surface 3 of the phase modulation element via the light. The reflected light from the phase modulation surface 3 is
It is guided to the lens L5 via the beam splitter BS3 (see FIG. 2). The distribution of the light wave on the phase modulation surface 3 is incident on the virtual plane F1 via the lenses L5 and L6, and further incident on the polarization beam splitter 7. This virtual plane F1 is the entrance of the Mach-Zehnder interferometer.

【0021】この干渉計では、光波の垂直偏光成分が偏
光ビームスプリッター7で反射され、レンズL7とL
8、半波長板8、さらにビームスプリッターBS4を介
して別の仮想的平面F2に入射される。一方、水平偏光
成分は偏光ビームスプリッター7を透過し、レンズL9
とL10を介してその大きさが拡大され乱れた波面から
擬似的に参照平面波が作成され仮想的平面F2上に結像
される。その結果F2上には映像システム中に存在する
擾乱媒質の位相分布を忠実に反映した干渉縞が形成され
る。
In this interferometer, the vertically polarized component of the light wave is reflected by the polarization beam splitter 7, and lenses L7 and L7
8, the half-wave plate 8, and the beam splitter BS4 to enter another virtual plane F2. On the other hand, the horizontal polarization component passes through the polarization beam splitter 7, and the lens L9
Then, a reference plane wave is pseudo-created from the disturbed wavefront whose size is enlarged via L10 and L10 and is imaged on the virtual plane F2. As a result, interference fringes that faithfully reflect the phase distribution of the disturbing medium existing in the video system are formed on F2.

【0022】なお、干渉縞を形成するためには重ね合わ
せられる二光波の偏光方向を揃える必要があるため、半
波長板を導入して一方の光波の偏光方向を90度回転さ
せ、二光波の偏光方向を揃えている。また、このシステ
ムを駆動するためのレーザーの偏光方向は、重ね合わせ
られる二光波の強度が等しくなるように調整する。
Since it is necessary to align the polarization directions of the two light waves to be superimposed in order to form the interference fringes, a half-wave plate is introduced to rotate the polarization direction of one light wave by 90 degrees and The polarization directions are aligned. In addition, the polarization direction of the laser for driving this system is adjusted so that the intensities of two light waves to be superposed are equal to each other.

【0023】上記のように仮想的平面F2面上に形成さ
れた干渉縞は、レンズL11とL12によって光書き込
み型液晶空間位相変調素子2の書き込み面4(位相変調
面3の裏側)に結像される。ただし、そのままでは像が
反転してしまうので、それを補うべく像回転プリズム9
を挿入している。個々のレンズの焦点距離については、
レンズL5とL12、L6とL11、L7とL8を等し
くし、各レンズの焦点が一致するアフォーカル系となる
ように配置する。
The interference fringes formed on the imaginary plane F2 surface as described above are imaged on the writing surface 4 (the back side of the phase modulation surface 3) of the optical writing type liquid crystal spatial phase modulation element 2 by the lenses L11 and L12. To be done. However, since the image is inverted as it is, the image rotating prism 9 is used to compensate for it.
Have been inserted. For the focal length of each lens,
The lenses L5 and L12, L6 and L11, and L7 and L8 are made equal to each other, and they are arranged so as to form an afocal system in which the focal points of the respective lenses are matched.

【0024】レンズL9とL10については、参照平面
波を作成するための拡大率に合わせて決定する(例え
ば、5倍の拡大率を得るためには、レンズL9とL10
の焦点距離の比を1対5にする)。以上を実現すると、
光書き込み型液晶空間位相変調素子2の偏光依存性によ
り、素子の位相変調面では、入射光のうち垂直偏光成分
の光波のみの位相が変調されることになり、約20年前
に米国MITのグループによってその原理が創出された
フイードバック干渉計が実現される。その結果、液晶空
間位相変調素子2の位相変調面3の位相分布が擾乱媒質
5の位相変動を打ち消すような分布となり、補償光学シ
ステムとして動作することになる。
The lenses L9 and L10 are determined according to the magnifying power for creating the reference plane wave (for example, to obtain a magnifying power of 5 times, the lenses L9 and L10 are determined).
The ratio of the focal lengths is 1 to 5). When the above is realized,
Due to the polarization dependence of the optical writing type liquid crystal spatial phase modulator 2, the phase of only the light wave of the vertically polarized component of the incident light is modulated on the phase modulation surface of the element. A feedback interferometer whose principle was created by the group is realized. As a result, the phase distribution of the phase modulation surface 3 of the liquid crystal spatial phase modulation element 2 becomes a distribution that cancels the phase fluctuation of the disturbing medium 5, and operates as an adaptive optical system.

【0025】なお、この光学系を正確に組むと、映像に
用いる光(物体照明用レーザー)が、BS3を介して図
2に示す補償光学システムを通って液晶空間位相変調素
子の書き込み面に入り込み、その正常な動作を妨げるこ
とになる。この現象は、物体を照明する光の入射方向を
若干傾けることにより回避する。一方、補償光学システ
ムを駆動する光(補償光学システム駆動用レーザー)
も、ビームスプリッターBS2を介して映像システムの
結像面に入り込むが、その光は結像面上では小さなスポ
ットとなることから、映像システムの動作に大きな影響
は与えない。
If this optical system is assembled correctly, the light used for the image (laser for object illumination) enters the writing surface of the liquid crystal spatial phase modulator through BS3 and the adaptive optical system shown in FIG. , Will interfere with its normal operation. This phenomenon is avoided by slightly tilting the incident direction of the light that illuminates the object. On the other hand, the light that drives the adaptive optics system (laser for driving the adaptive optics system)
Also enters the image plane of the image system via the beam splitter BS2, but since the light becomes a small spot on the image plane, it does not significantly affect the operation of the image system.

【0026】なお、上記実施例では各種工業計測や医療
用機器に用いる例を示しているため、高輝度で干渉性の
良いレーザー光を参照光及び被測定物体の照明光として
利用する構成としている。
Since the above-mentioned embodiment shows an example in which it is used for various industrial measurement and medical equipment, the laser light having high brightness and good coherence is used as the reference light and the illumination light of the object to be measured. .

【0027】以前より光駆動型の補償光学システムは、
それ自身の概念の提案と動作の検証実験に関する報告は
なされているものの、それを具体的な映像システムに組
み込んだ装置全体に関する具体的な提案はなされていな
い。これは、主に、補償光学システムの駆動に使う光と
映像システムに用いる光が互いに影響を及ぼし合うため
に、装置全体が正常に動作しないことが原因であると考
えられる。その点本発明の装置では、映像に用いる光波
と補償光学システムの駆動に用いる光波が互いに影響を
及ぼさないようになされているので、光駆動型補償光学
システムの機能が、映像システムに組み込んだ場合にで
も十分に発揮することができるようになったものであ
る。
Optically driven adaptive optics systems have been used since
Although the proposal of its own concept and the report on the verification experiment of the operation have been made, no specific proposal has been made for the whole device incorporating it into a concrete video system. It is considered that this is because the light used for driving the adaptive optics system and the light used for the image system influence each other, and the entire apparatus does not operate normally. In that respect, in the device of the present invention, the light wave used for the image and the light wave used for driving the adaptive optical system do not affect each other. Therefore, when the function of the optically driven adaptive optical system is incorporated in the video system. It is something that can now be fully used.

【0028】上記のような基本原理に基づく本発明は各
種の技術に用いることができる。その中の代表的な実施
例を説明する。図3には本発明の一実施例として、工場
での加工物をその場でモニタリングするシステムを示
す。加工物の多くは光を透過させて観察することが難し
いため、ここではビームスプリッターBS0を用い、被
測定物体である加工物10を正面からレーザーで照射し
ている。一般に、このままの状態で加工物10を観察す
ると、稼働している機械の振動や発生熱の影響で被測定
物体と観測面との間の空気がゆらぎ、観測面上での像が
劣化する。それを補償するために図3のシステムが用い
られる。このシステムは、基本的には図1に示したもの
と同様に機能する。ただし、このシステムにおける機器
の配置においては、補正すべき空気のゆらぎ11が、ビ
ームスプリッターBS1とレンズL2の間に来るように
配置する。なお、補償光学システムについては、前記図
2のシステムが用いられる。
The present invention based on the above-mentioned basic principle can be applied to various techniques. A typical example among them will be described. FIG. 3 shows, as an embodiment of the present invention, a system for monitoring a workpiece in a factory on the spot. Since it is difficult for many of the workpieces to transmit light for observation, the beam splitter BS0 is used here to irradiate the workpiece 10, which is the object to be measured, with a laser from the front. In general, when the workpiece 10 is observed in this state, the air between the object to be measured and the observation surface fluctuates due to the vibration of the operating machine and the generated heat, and the image on the observation surface deteriorates. The system of FIG. 3 is used to compensate for it. This system functions basically the same as that shown in FIG. However, in the arrangement of the devices in this system, the air fluctuation 11 to be corrected is arranged between the beam splitter BS1 and the lens L2. The system shown in FIG. 2 is used as the adaptive optics system.

【0029】本発明の他の実施例として、図4に遮蔽さ
れた空間15内にある物体のモニタリングシステムを示
す。高密度集積回路を初めとする微細加工物は、微小な
ダストの影響を受けやすいため、多くの場合はクリーン
ルーム内での作業が要求される。そこで加工されている
物体を観察するには、観察用の窓を介した撮影が必須と
なる。また、原子炉等、内部にカメラ等の精密機器を持
ち込めず、内部の状態の観察を遮蔽された空間の外部か
ら窓越しに行う状況も存在する。このとき、窓の厚さ、
密度の不均一さに由来する位相変動や、内部と外部との
環境の相違(温度差・気圧差等)に由来する界面での光
波の乱れが、観測面上での像の乱れを誘発する。図4の
配置においては、遮蔽された空間15の観察用窓16の
位置を、ちょうどビームスプリッターBS1とレンズL
2の間に来るように配置しているため、前記の補償光学
システムを用いることにより、その窓付近で発生する位
相の擾乱が補正され、像の乱れが回復される。
As another embodiment of the present invention, FIG. 4 shows a system for monitoring an object in the shielded space 15. Since microfabricated products such as high-density integrated circuits are easily affected by minute dust, work in a clean room is often required. Therefore, in order to observe the processed object, it is necessary to take an image through the observation window. In addition, there is also a situation in which a precision instrument such as a camera cannot be brought inside such as a nuclear reactor, and observation of the internal state is performed through a window from the outside of a shielded space. At this time, the thickness of the window,
Disturbance of light waves at the interface caused by phase fluctuations due to non-uniformity of density and environmental differences between inside and outside (temperature difference, pressure difference, etc.) induces image disturbance on the observation surface. . In the arrangement of FIG. 4, the position of the observation window 16 in the shielded space 15 is set exactly at the beam splitter BS1 and the lens L.
By using the adaptive optics system described above, the phase disturbance generated in the vicinity of the window is corrected and the image disturbance is restored.

【0030】光駆動型の補償光学システムの基本構成は
前記図2に示したが、その構成を変形して用いることが
できる。その一つを図5に示す。同図では、仮想的平面
F2に形成される干渉縞を、CCDカメラ20等で撮影
し。それをビデオプロジェクター21等の映写機器を使
って、実時間で位相変調素子2の書き込み面4に結像さ
せる。このとき、位相変調面3の光波と書き込み面4の
光波が1対1に対応するように、干渉縞の拡大もしくは
縮小を映写機器側で行う必要がある。基本的には、仮想
的平面F2上に形成される干渉縞を位相変調素子3の書
き込み面4に結像させているため、この光学系は図2の
光学系と全く同じ動作が行われる。
The basic structure of the optically driven adaptive optics system is shown in FIG. 2, but the structure can be modified and used. One of them is shown in FIG. In the figure, the interference fringes formed on the virtual plane F2 are photographed by the CCD camera 20 or the like. The image is formed on the writing surface 4 of the phase modulation element 2 in real time using a projection device such as the video projector 21. At this time, it is necessary to enlarge or reduce the interference fringes on the projection device side so that the light waves of the phase modulation surface 3 and the light waves of the writing surface 4 have a one-to-one correspondence. Basically, since the interference fringes formed on the virtual plane F2 are imaged on the writing surface 4 of the phase modulation element 3, this optical system operates exactly the same as the optical system of FIG.

【0031】[0031]

【発明の効果】本発明は上記のように構成したので、高
分解能の液晶空間位相変調素子を利用したことにより、
形状可変鏡を利用する補償光学システムと比較すると、
小型、安価、低消費電力、高分解能の補正能力をもつと
いう効果がある。更に、位相変調素子の制御に電子的な
演算処理を必要としないので、位相変調素子が今後さら
に飛躍的に高分解能化されても、制御の実時間性が失わ
れない利点がある。
Since the present invention is configured as described above, by using a high resolution liquid crystal spatial phase modulator,
Compared to adaptive optics systems that use deformable mirrors,
The advantages are small size, low cost, low power consumption, and high resolution correction capability. Furthermore, since electronic calculation processing is not required to control the phase modulation element, there is an advantage that the real-time property of control is not lost even if the phase modulation element has a dramatically higher resolution in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的構成において、主に映像システ
ム部分を示す光学機器構成図である。
FIG. 1 is a configuration diagram of an optical device mainly showing a video system portion in a basic configuration of the present invention.

【図2】本発明の基本的構成において、主に補償光学シ
ステム部分を示す光学機器構成図である。
FIG. 2 is a configuration diagram of an optical device mainly showing an adaptive optics system portion in the basic configuration of the present invention.

【図3】本発明を工場での加工物をその場でモニタリン
グするために用いた例を示す、映像システムの部分の光
学機器構成図である。
FIG. 3 is an optical device configuration diagram of a part of a video system showing an example in which the present invention is used to monitor a work piece in a factory on the spot.

【図4】本発明を遮蔽された空間内の被測定物体の観察
に用いた例を示す、映像システムの部分の光学機器構成
図である。
FIG. 4 is a configuration diagram of optical equipment of a portion of a video system, showing an example in which the present invention is used for observing an object to be measured in a shielded space.

【図5】光駆動型の補償光学システムの他の実施例を示
す光学機器構成図である。
FIG. 5 is a configuration diagram of an optical device showing another embodiment of the optically driven adaptive optics system.

【図6】形状可変鏡を用いた従来の補償光学システムの
概念図である。
FIG. 6 is a conceptual diagram of a conventional adaptive optics system using a deformable mirror.

【符号の説明】[Explanation of symbols]

1 被測定物体 2 光書き込み型液晶空間位相変調素子 3 位相変調面 4 書き込み面 5 擾乱媒質 6 結像面 7 偏光ビームスプリッター 8 半波長板 9 像回転プリズム 1 Object to be measured 2 Optical writing type liquid crystal spatial phase modulator 3 Phase modulation plane 4 Writing surface 5 Disturbing medium 6 Image plane 7 Polarizing beam splitter 8 Half-wave plate 9 Image rotation prism

フロントページの続き (56)参考文献 T.Shirai et al,AD APTIVE WAVE−FRONT CORRECTION BY MEAN S OF ALL−OPTICAL F EEDBACK INTERFEROM ETRY,Optics Letter s,2000年 6月 1日,vol.25, no.11,pp.773−775 T.Shirai et al,SU RFACE−PROFILE MEAS UREMENT BY MEANS O F A POLARIZATION S AGNAC INTERFEROMET ER WITH PARALLEL O PTICAL..,Optics Le tters,1999年 3月 1日,vo l.24,no.5,pp.297−299 (58)調査した分野(Int.Cl.7,DB名) G02B 27/46 Continuation of the front page (56) Reference T. Shirai et al, AD ACTIVE WAVE-FRONT CORRECTION BY MEANS OF ALL-OPTICAL F EEDBACK INTERFROM ETRY, Optics Letters, June 1, 2000, vol. 25, no. 11, pp. 773-775 T.I. Shirai et al, SU RFACE-PROFILE MEAS UREMENT BY MEANS OF AF A POLARIZATION S AGNAC INTERFROMETER WITH PARALLEL OPTICAL. . , Optics Letters, March 1, 1999, vol. 24, no. 5, pp. 297-299 (58) Fields investigated (Int.Cl. 7 , DB name) G02B 27/46

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 書き込み面に照射した光の強さに依存し
て、その裏側の位相変調面の変調位相が変化する液晶空
間位相変調素子を用い、被測定物体を照射した物体照射光をレンズを通して第1
ビームスプリッタに導き、外部からの参照光と共に擾乱
物質を通過させて前記位相変調面で反射させ、 前記位相変調面で反射した物体照射光と参照光とを、第
2ビームスプリッタからレンズを通して、前記参照光を
結像面に微小結像させると共に物体照射光を観察可能と
し、 前記第2ビームスプリッタで分離した 参照光から擾乱媒
質の位相分布を反映した干渉縞を得て、前記書き込み面
にこれを照射することにより擾乱媒質の位相分布を打ち
消すように位相変調面を形成し、前記物体照射光を前記参照光に対して光軸を若干傾ける
ことにより、物体照射光を前記位相変調面に入ることを
防ぐ ことを特徴とする光駆動型波面補正映像方法。
1. A liquid crystal spatial phase modulation element, in which the modulation phase of a phase modulation surface on the back side of the writing surface changes depending on the intensity of the light irradiated onto the writing surface, and the object irradiation light irradiated onto the object to be measured is lensed. Through first
It is guided to the beam splitter and disturbed with the reference light from the outside.
The substance irradiating light and the reference light which have passed through the substance and are reflected by the phase modulation surface and reflected by the phase modulation surface are
From the 2 beam splitter through the lens,
Able to observe the object irradiation light while forming a minute image on the image plane
Then, an interference fringe that reflects the phase distribution of the disturbing medium is obtained from the reference light separated by the second beam splitter, and the writing surface is irradiated with the interference fringes so that the phase modulating surface is formed so as to cancel the phase distribution of the disturbing medium. And tilt the optical axis of the object irradiation light with respect to the reference light slightly
This allows the object irradiation light to enter the phase modulation surface.
An optical drive type wavefront correction image method characterized by preventing .
【請求項2】 書き込み面に照射した光の強さに依存し
て、その裏側の位相変調面の変調位相が変化する液晶空
間位相変調素子と、被測定物体を照射した物体照射光をレンズを通して第1
ビームスプリッタに導き、外部からの参照光と共に擾乱
物質を通過させて前記位相変調面で反射させ、前記位相
変調面で反射した物体照射光と参照光とを、第2ビーム
スプリッタからレンズを通して、前記参照光を結像面に
微小結像させると共に物体照射光を観察可能とする光学
系統と、 前記第2ビームスプリッタで分離した 参照光から擾乱媒
質の位相分布を反映した干渉縞を得て、前記書き込み面
にこれを照射することにより擾乱媒質の位相分布を打ち
消すように位相変調面を形成する光学系統とを備え、 前記物体照射光を前記参照光に対して光軸を若干傾けた
ことを特徴とする光駆動型波面補正映像装置。
2. A liquid crystal spatial phase modulation element in which a modulation phase of a phase modulation surface on the back side of the writing surface changes depending on the intensity of light applied to the writing surface, and an object irradiation light that irradiates an object to be measured through a lens. First
It is guided to the beam splitter and disturbed with the reference light from the outside.
The substance passes through and is reflected by the phase modulation surface,
The object irradiation light reflected by the modulation surface and the reference light are used as a second beam.
From the splitter, through the lens, the reference beam to the image plane
Optical that makes it possible to observe the irradiation light of an object while forming a minute image
An interference fringe reflecting the phase distribution of the disturbing medium is obtained from the system and the reference light separated by the second beam splitter, and the writing surface is irradiated with the interference fringes to cancel the phase distribution of the disturbing medium. And an optical system for forming the optical system, wherein the optical axis of the object irradiation light is slightly inclined with respect to the reference light .
【請求項3】 前記被測定物体が加工物の表面である請
求項2記載の光駆動型波面補正映像装置。
3. The light-driven wavefront correction image device according to claim 2, wherein the measured object is a surface of a workpiece.
【請求項4】 前記被測定物体が遮蔽空間内の物体であ
る請求項2記載の光駆動型波面補正映像装置。
4. The optically driven wavefront correction image apparatus according to claim 2, wherein the measured object is an object in a shielded space.
【請求項5】 前記液晶空間位相変調素子の書き込み面
に、映写機器により前記干渉縞を撮像した映像を照射す
る請求項2記載の光駆動型波面補正映像装置。
5. The light-driven wavefront correction image device according to claim 2, wherein the writing surface of the liquid crystal spatial phase modulation element is irradiated with an image obtained by imaging the interference fringes by a projection device.
JP2000227874A 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus Expired - Lifetime JP3455775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227874A JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227874A JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Publications (2)

Publication Number Publication Date
JP2002040368A JP2002040368A (en) 2002-02-06
JP3455775B2 true JP3455775B2 (en) 2003-10-14

Family

ID=18721266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227874A Expired - Lifetime JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Country Status (1)

Country Link
JP (1) JP3455775B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2559324A1 (en) 2004-03-11 2005-09-22 Nano-Or Technologies (Israel) Ltd. Methods and apparatus for wavefront manipulations and improved 3-d measurements
CH697495B1 (en) * 2005-04-01 2008-11-14 Baumer Electric Ag Optical sensor and method for suppressing stray light errors.
EP2469221A1 (en) 2010-12-21 2012-06-27 Universite Pierre Et Marie Curie - Paris 6 Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect.
JP5676234B2 (en) * 2010-12-22 2015-02-25 日本放送協会 Imaging apparatus and control method using adaptive optics
GB201201190D0 (en) 2012-01-25 2012-03-07 Cambridge Entpr Ltd Optical device and methods
JP6394850B2 (en) 2013-09-20 2018-09-26 大学共同利用機関法人自然科学研究機構 Compensating optical system and optical apparatus
CN105785609B (en) * 2016-04-28 2023-04-07 长春理工大学 Wavefront correction method and device based on transmission type liquid crystal spatial light modulator
GB201620744D0 (en) 2016-12-06 2017-01-18 Roadmap Systems Ltd Multimode fibre optical switching systems
US10578722B2 (en) * 2017-03-27 2020-03-03 Honeywell International Inc. System and method for glare suppression and ranging
CN114859583B (en) * 2022-04-11 2023-12-12 汕头大学 A device and light adjustment method for optimizing the performance of liquid crystal light-driven display samples

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.Shirai et al,ADAPTIVE WAVE−FRONT CORRECTION BY MEANS OF ALL−OPTICAL FEEDBACK INTERFEROMETRY,Optics Letters,2000年 6月 1日,vol.25,no.11,pp.773−775
T.Shirai et al,SURFACE−PROFILE MEASUREMENT BY MEANS OF A POLARIZATION SAGNAC INTERFEROMETER WITH PARALLEL OPTICAL..,Optics Letters,1999年 3月 1日,vol.24,no.5,pp.297−299

Also Published As

Publication number Publication date
JP2002040368A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US5042950A (en) Apparatus and method for laser beam diagnosis
KR100372214B1 (en) Real-time Optical Correlation System
JP4664031B2 (en) Optical pattern forming method and apparatus, and optical tweezers
US5764363A (en) Apparatus for observing a surface using polarized light
US5426521A (en) Aberration correction method and aberration correction apparatus
Osten et al. Evaluation and application of spatial light modulators for optical metrology
JP6656722B2 (en) How to evaluate alignment
JP7153552B2 (en) Variable focal length lens system including focus reference subsystem
KR102144989B1 (en) Low noise, high stability, deep ultra-violet, continuous wave laser
St-Hilaire Scalable optical architecture for electronic holography
US8934097B2 (en) Laser beam centering and pointing system
US8115933B2 (en) Interferometer for optically measuring an object
US5166742A (en) Optical deformation measuring apparatus by double-writing speckle images into a spatial light modulator
JP3455775B2 (en) Optically driven wavefront correction imaging method and apparatus
JP3627014B2 (en) Fundus camera with adaptive optics
Giles et al. Setting up a liquid crystal phase screen to simulate atmospheric turbulence
Korkiakoski et al. Calibrating a high-resolution wavefront corrector with a static focal-plane camera
CN212903585U (en) Alignment device for digital optical phase conjugation
JP2744494B2 (en) Speckle utilization measuring device
JP3915978B2 (en) Laser Doppler vibrometer
CN118883434B (en) Scanning quantitative phase microscopy device and method based on polarization multiplexing modulation
EP4049080B1 (en) Optical system
JPH0221207A (en) Interferometry and interferometer for aspheric surface measurement using optical spatial phase modulation element using liquid crystal
JP2771665B2 (en) Optical correlation processing method
Havranek Overview of OTF measurement

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3455775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term