JP3454525B2 - Micromachines and power systems in micromachines - Google Patents
Micromachines and power systems in micromachinesInfo
- Publication number
- JP3454525B2 JP3454525B2 JP19685692A JP19685692A JP3454525B2 JP 3454525 B2 JP3454525 B2 JP 3454525B2 JP 19685692 A JP19685692 A JP 19685692A JP 19685692 A JP19685692 A JP 19685692A JP 3454525 B2 JP3454525 B2 JP 3454525B2
- Authority
- JP
- Japan
- Prior art keywords
- micromachine
- energy
- power
- photovoltaic element
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910003307 Ni-Cd Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T30/00—Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
Landscapes
- Micromachines (AREA)
- Manipulator (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、数ミリメートル、或い
はそれ以下の大きさの微小機械であるマイクロマシンに
関し、特にマシン外部から無索でエネルギーが供給され
るマイクロマシンに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micromachine, which is a micromachine having a size of several millimeters or less, and more particularly to a micromachine to which energy is supplied from the outside of the machine without a rope.
【0002】[0002]
【従来の技術】近年、マイクロマシンと称して数ミリメ
ートル、或いはそれ以下の大きさの微小機械が提案さ
れ、実用化を目指して様々な研究開発が為されている。
斯種マイクロマシンの駆動方式として、各種アクチュエ
ータを具えたマシンユニットに対して外部からケーブル
を介してエネルギー(電力)及び制御信号を供給する有索
方式と、マシンユニット内に蓄電池等のエネルギー源を
具えて外部からは無線で制御信号のみを供給する無索方
式とが知られている。2. Description of the Related Art In recent years, a micromachine called a micromachine, which has a size of several millimeters or less, has been proposed, and various researches and developments have been carried out for practical use.
As a driving method for such a micromachine, a cable-operated method for supplying energy (electric power) and a control signal from outside to a machine unit equipped with various actuators via a cable, and an energy source such as a storage battery are provided in the machine unit. It is also known that there is a wireless system in which only control signals are wirelessly supplied from the outside.
【0003】有索方式の場合はエネルギー源がマシンユ
ニットの外部にあるためにユニット自体を小形化出来る
と共に、駆動エネルギー量に制限を受けないので、マイ
クロマシンの設計の自由度が大きい利点がある。しかし
その反面、エネルギー供給の為のケーブルが不可欠であ
るので、マシンユニットの動作範囲や動きに制約があ
る。In the case of the cable system, since the energy source is outside the machine unit, the unit itself can be miniaturized, and the amount of driving energy is not limited, so that the degree of freedom in designing the micromachine is large. However, on the other hand, since the cable for supplying energy is indispensable, the operating range and movement of the machine unit are limited.
【0004】一方、無索方式の場合、マシンユニットの
動きの制限はなくなるが、マシンユニットを駆動するた
めのエネルギー源をユニットに搭載しなければならない
ので、マシン全体の大きさや重量が増し、マイクロマシ
ン本来の機能を損う欠点がある。On the other hand, in the case of the ropeless type, the movement of the machine unit is not limited, but the energy source for driving the machine unit must be mounted in the unit, which increases the size and weight of the entire machine and increases the size of the micromachine. There are drawbacks that impair the original function.
【0005】そこで、無索方式のマイクロマシンにおい
て、エネルギー源をマシンユニットには搭載せず、光線
等の電磁波をマシンユニットへ照射することによって、
エネルギーの供給を外部から無索で行なう方式が検討さ
れている(例えば特願平3−7243号)。この場合、マ
イクロマシンユニットの表面は、太陽電池等の光起電力
素子によって覆い、照射された電磁波を電力に変換す
る。Therefore, in the ropeless micromachine, the energy source is not mounted on the machine unit, but electromagnetic waves such as light rays are radiated to the machine unit.
A method of supplying energy from the outside without a rope has been studied (for example, Japanese Patent Application No. 3-7243). In this case, the surface of the micromachine unit is covered with a photovoltaic element such as a solar cell to convert the applied electromagnetic waves into electric power.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、マイク
ロマシンにおいては、可能な限りの小形化が図られてい
るから、電磁波の受信面積(受光面積)には限りがある。
然も、太陽電池等の光起電力素子の電力変換効率は低
く、現状では高々20〜30%程度である。However, since the micromachine is miniaturized as much as possible, the electromagnetic wave reception area (light reception area) is limited.
However, the power conversion efficiency of a photovoltaic element such as a solar cell is low, and is at most about 20 to 30% at present.
【0007】又、管壁検査等のためにマイクロマシンを
無索方式にて管内へ装入し、管内のマイクロマシンへ電
磁波を供給する場合、電磁波の送信源は管の入口に設置
されることになるから、マイクロマシンが管の奥部へ進
行するにつれて、マイクロマシンに到達する電磁波のエ
ネルギーは弱まる。Further, when a micromachine is inserted into the pipe in a cordless manner for the purpose of inspecting the pipe wall and the electromagnetic wave is supplied to the micromachine in the pipe, the transmission source of the electromagnetic wave is installed at the entrance of the pipe. Therefore, as the micromachine advances to the inner part of the tube, the energy of the electromagnetic wave reaching the micromachine weakens.
【0008】仮に、マイクロマシンを所定位置まで移動
させることが出来たとしても、その位置にて管壁検査等
の本来の動作を行なわしめる際、電力不足が生じる虞れ
がある。Even if it is possible to move the micromachine to a predetermined position, there is a risk of power shortage when performing the original operation such as pipe wall inspection at that position.
【0009】本発明の目的は、無索方式のマイクロマシ
ンにおいて、電力不足の生じる虞れのないマイクロマシ
ンおよびマイクロマシンにおける電力システムを提供す
ることである。An object of the present invention, in the micromachine of untethered mode, micromachines no possibility of occurrence of power shortage
And to provide a power system in micromachines .
【0010】[0010]
【課題を解決する為の手段】本発明に係るマイクロマシ
ンにおいては、光線、マイクロ波、音波等の複数種類の
エネルギー線を受信すべき複数のエネルギー線受信手段
と、各エネルギー線受信手段によって受信されたエネル
ギー線を電力に変換する複数の起電力手段と、管内部を
自走するための機構とを具えるとともに、マイクロマシ
ン本体は、筒軸状の胴部と、該胴部の前端部或いは後端
部へ同軸に突設されたテーパ部とを具え、エネルギー変
換手段の一つとして光起電力素子が、少なくとも前記マ
シン本体のテーパ部の表面を覆って配設されている。Micromachine according to the present invention
Oite the emission had a light, microwave, a plurality of converting a plurality of energy beam receiving unit to receive the plurality of kinds of energy rays wave or the like, the energy beam received by the energy beam receiving means to the power electromotive Power means and inside the tube
In addition to being equipped with a mechanism for self-propelled,
The main body consists of a barrel-shaped body and a front or rear end of the body.
Section has a taper part that is coaxially projected to
As one of the replacement means, a photovoltaic element is at least the above-mentioned matrix.
The thin body is provided so as to cover the surface of the tapered portion .
【0011】又、必要に応じて、前記起電力手段によっ
て変換された電力を蓄電する手段を装備する。Further, if necessary, a means for accumulating the electric power converted by the electromotive force means is provided.
【0012】[0012]
【作用】上記マイクロマシンにおいては、例えばエネル
ギー線受信手段の一つとして光起電力素子を装備する場
合、該光起電力素子によってマイクロマシンの全表面を
覆ったとしても、マイクロ波−電力変換器等の他のエネ
ルギー線受信手段を追加装備することが可能である。こ
れによって、光線による最大エネルギー供給量を越え
て、更に多くのエネルギーをマイクロマシンに供給する
ことが可能となる。In the above micromachine , for example, when a photovoltaic element is provided as one of the energy ray receiving means, even if the entire surface of the micromachine is covered by the photovoltaic element, a microwave-power converter, etc. It is possible to additionally equip other energy ray receiving means. This makes it possible to supply more energy to the micromachine, exceeding the maximum amount of energy supplied by the light beam.
【0013】又、マイクロマシン本来の動作を行なうべ
き所定位置に近接して、例えば音波発信器(61)を配置
し、該音波発信器(61)からマイクロマシンへ向けてエネ
ルギー線である音波を放射すれば、音波エネルギーは殆
ど弱まることなく、マイクロマシンに到達し、所定動作
のための動力を充分に賄うことが出来る。Further, for example, a sound wave transmitter (61) is arranged close to a predetermined position where the original operation of the micro machine is to be performed, and a sound wave which is an energy ray is emitted from the sound wave transmitter (61) toward the micro machine. For example, the sonic energy can reach the micromachines with almost no weakening, and can sufficiently cover the power for a predetermined operation.
【0014】更に、起電力手段によって変換された電力
を蓄電する手段を装備すれば、消費電力の低いときに該
蓄電手段を充電し、必要時には、該蓄電手段を放電させ
ることにより、一時的に大電力を発生することも可能で
ある。Further, if a means for storing the electric power converted by the electromotive force means is provided, the electricity storage means is charged when the power consumption is low, and the electricity storage means is discharged when necessary, so that the electricity is temporarily stored. It is also possible to generate high power.
【0015】更に又、一つのエネルギー線として光線を
用いる場合、マイクロマシンの本体を筒軸状の胴部とテ
ーパ部から構成し、該テーパ部へ向けて光線を照射すれ
ば、垂直壁に光起電力素子を配置した場合よりも、該テ
ーパ部での光の吸収効率を上げることが出来る。Further, when a light ray is used as one energy ray, the main body of the micromachine is composed of a barrel-shaped barrel portion and a taper portion, and when the light ray is irradiated toward the taper portion, the vertical wall is photo-generated. It is possible to increase the light absorption efficiency in the tapered portion, as compared with the case where the power element is arranged.
【0016】この場合、マシン本体の胴部に回折格子板
等の光学手段を突設して、胴部と管内壁の間隙へ向かっ
て管軸方向に進行する平行光線を胴部表面の光起電力素
子へ向けて屈折或いは反射せしめる構成を採れば、更に
受光量の増大を図ることが出来る。In this case, an optical means such as a diffraction grating plate is provided on the body of the machine body so as to project parallel rays traveling in the tube axis direction toward the gap between the body and the inner wall of the tube. If the configuration is such that the light is refracted or reflected toward the power element, the amount of received light can be further increased.
【0017】[0017]
【発明の効果】本発明に係るマイクロマシンによれば、
例えば全ての電力を光起電力によって賄う場合よりも大
きな起電力を得ることが出来るから、電力不足の生ずる
虞れはない。According to the micro machine according to the present invention,
For example, since a larger electromotive force can be obtained than in the case where all the electric power is covered by the photoelectromotive force, there is no fear of power shortage.
【0018】[0018]
【実施例】以下、本発明の一実施例につき、図面に沿っ
て詳述する。図1に示す如くマイクロマシンユニット
(1)は、直径が略5〜10mm程度の管(9)内に装入さ
れて、管壁検査等の所定動作を行なうもので、複数本の
駆動脚(2)及びマイクロマシンユニット(1)本体の伸縮
動作によって管(9)内を前進、後退移動することが可能
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. Micromachine unit as shown in FIG.
(1) is to be inserted into a pipe (9) having a diameter of about 5 to 10 mm to perform a predetermined operation such as a pipe wall inspection, and a plurality of driving legs (2) and a micromachine unit (1). It is possible to move the pipe (9) forward and backward by expanding and contracting the main body.
【0019】本実施例では、外部から照射すべきエネル
ギー線として、レーザ光線、マイクロ波、音波、及び磁
力線の4種類を用いる。In this embodiment, four types of energy rays to be irradiated from the outside are used: laser beams, microwaves, sound waves, and magnetic force lines.
【0020】マイクロマシンユニット(1)は、マシン本
体が、伸縮可能な筒軸状の胴部と、該胴部の前端部に突
設されたテーパ部とから構成され、マシン外部から供給
されるレーザ光線を電力に変換するべく、前記胴部及び
テーパ部の表面を覆って多数の光起電力素子(3)が配設
されている。In the micromachine unit (1), the main body of the machine is composed of an expandable / contractible barrel portion and a taper portion protruding from the front end portion of the barrel portion. The laser is supplied from the outside of the machine. A large number of photovoltaic elements (3) are arranged so as to cover the surfaces of the body and the tapered portion in order to convert light rays into electric power.
【0021】又、マシン本体には、筒部とテーパ部の境
界線上から管(9)内壁へ向けて、複数の回折格子板(30)
が突設され、本体筒部と管内壁の間隙へ向かって管軸方
向に進行する光線を、図2に示す如く胴部表面の光起電
力素子(3)へ向けて屈折せしめ、光起電力素子(3)の受
光量の増大を図っている。Further, in the machine body, a plurality of diffraction grating plates (30) are arranged from the boundary line between the cylindrical portion and the tapered portion toward the inner wall of the tube (9).
, A light beam traveling in the tube axis direction toward the gap between the main body tube portion and the inner wall of the tube is refracted toward the photovoltaic element (3) on the body surface as shown in FIG. The amount of light received by the element (3) is increased.
【0022】光起電力素子(3)は図3に示す如きa−S
i太陽電池であって、例えばプラズマCVD法によっ
て、透明絶縁基板(37)上に、透明電極(35)、a−Si基
板(31)及び裏面電極(36)を積層したものである。a−S
i基板(31)は、厚さ略150オングストロームのp層(3
2)、厚さ略5000〜10000オングストロームのi
層(33)、及び厚さ略500オングストロームのn層(34)
からなる周知の接合構造を有している。The photovoltaic element (3) is an aS shown in FIG.
The i solar cell is formed by laminating a transparent electrode (35), an a-Si substrate (31) and a back surface electrode (36) on a transparent insulating substrate (37) by, for example, a plasma CVD method. a-S
The i-substrate (31) has a p-layer (3
2), i with a thickness of approximately 5000 to 10000 angstroms
Layer (33) and n-layer (34) approximately 500 angstroms thick
It has a well-known joining structure consisting of.
【0023】上記光起電力素子(3)によれば、例えば入
射光強度が1mW/mm2、受光面積が50mm2、変換
効率が30%の場合、透明電極(35)と裏面電極(36)間に
は15mW程度の電力Pが得られることになる。According to the above photovoltaic element (3), when the incident light intensity is 1 mW / mm 2 , the light receiving area is 50 mm 2 , and the conversion efficiency is 30%, the transparent electrode (35) and the back electrode (36) are used. In the meantime, the electric power P of about 15 mW is obtained.
【0024】又、図1に示す様に、マイクロマシンユニ
ット(1)の先端部には、第2のエネルギー線となるマイ
クロ波を受信するアンテナ(5)が装備され、これによっ
て受信されたマイクロ波はマイクロ波−電力変換器(51)
へ供給される。Further, as shown in FIG. 1, the tip of the micromachine unit (1) is equipped with an antenna (5) for receiving a microwave which is a second energy ray, and the microwave received by the antenna (5). Is a microwave-power converter (51)
Is supplied to.
【0025】例えばマイクロ波−電力変換器(51)はモ
ノリシックマイクロ波ICによって構成され、外部から
供給されるマイクロ波の電力が2mW/mm2、受波面
積が20mm2、アンテナ効率が60%の場合、24m
Wの出力が得られることになる。For example, the microwave-power converter (51) is composed of a monolithic microwave IC, and the microwave power supplied from the outside is 2 mW / mm 2 , the receiving area is 20 mm 2 , and the antenna efficiency is 60%. In case of 24m
An output of W will be obtained.
【0026】管(9)の外壁には、第3のエネルギー線と
なる超音波を発すべき音波発信器(61)が設置されてい
る。該音波発信器(61)からの超音波は管壁を経て管(9)
内へ放射され、マイクロマシンユニット(1)の後部に突
設した音起電力素子(6)へ到達する。On the outer wall of the tube (9), a sound wave transmitter (61) for emitting an ultrasonic wave as a third energy ray is installed. The ultrasonic wave from the sound wave transmitter (61) passes through the wall of the tube and is guided by the tube (9).
It is radiated inside and reaches the electromotive force element (6) provided in the rear portion of the micromachine unit (1).
【0027】音起電力素子(6)は、圧電材料からなる振
動板であって、例えば入射音波の強度が20mW/mm
2、受音面積が25mm2、変換効率が0.2%の場合、
1mWの電力を発生する。The sound electromotive force element (6) is a vibrating plate made of a piezoelectric material, and the intensity of the incident sound wave is, for example, 20 mW / mm.
2 , when the sound receiving area is 25 mm 2 and the conversion efficiency is 0.2%,
Generates 1 mW of power.
【0028】更に管(9)の外壁を包囲して、第4のエネ
ルギー線となる磁力線を放射すべき1次側コイル(71)が
装備されている。一方、マイクロマシンユニット(1)の
内部には、1次側コイル(71)と電磁結合すべき2次側コ
イル(7)が配置されている。Further, a primary side coil (71) which surrounds the outer wall of the tube (9) and radiates a magnetic field line which becomes a fourth energy line is provided. On the other hand, inside the micromachine unit (1), a secondary coil (7) to be electromagnetically coupled with the primary coil (71) is arranged.
【0029】1次側コイル(71)に交流電源を接続するこ
とよって、2次側コイル(7)には誘導起電力が発生す
る。例えば、2次側コイル(7)に対する入力磁場を32
5T、コイルギャップを2mmとして、2次側コイル
(7)の出力を整流した後に、直径13.5mm及び長さ
3.5mmのNi−Cd電池へ充電すると仮定した場
合、3.75mW程度の電力を得ることが出来る。By connecting an AC power source to the primary coil (71), an induced electromotive force is generated in the secondary coil (7). For example, if the input magnetic field to the secondary coil (7) is 32
Secondary coil with 5T and coil gap of 2 mm
After rectifying the output of (7), assuming that the Ni-Cd battery having a diameter of 13.5 mm and a length of 3.5 mm is charged, an electric power of about 3.75 mW can be obtained.
【0030】マイクロマシン(1)の自走機構としては、
図5に示す如く、マシン本体を伸縮可能な前本体(1a)
と後本体(1b)とから構成し、前本体(1a)及び後本体
(1b)の外周面には、夫々複数本の伸縮可能な前駆動脚
(2a)と後駆動脚(2b)を突設している。As a self-propelled mechanism of the micromachine (1),
As shown in Fig. 5, the front body (1a) that can expand and contract the machine body
And a rear body (1b), and a front body (1a) and a rear body
The outer peripheral surface of (1b) has a plurality of extendable front drive legs, respectively.
(2a) and the rear drive leg (2b) are projected.
【0031】上記本体及び駆動脚の伸縮駆動機構には、
図4に示す如き積層型圧電アクチュエータ(4)が採用出
来る。積層型圧電アクチュエータ(4)は、圧電セラミッ
クス片(43)を挟んで両側に、正電極(41)及び負電極(42)
を対向配備して構成され、両電極(41)(42)間へ所定電圧
Vdを印加することによって、圧電セラミックス片(43)
が鎖線の如く伸縮するものである。The extension / contraction drive mechanism for the main body and drive leg includes
A laminated piezoelectric actuator (4) as shown in FIG. 4 can be adopted. The laminated piezoelectric actuator (4) has a positive electrode (41) and a negative electrode (42) on both sides of the piezoelectric ceramic piece (43).
Of the piezoelectric ceramic pieces (43) by applying a predetermined voltage Vd between the electrodes (41) and (42).
Expands and contracts like a chain line.
【0032】マイクロマシン(1)の前進移動の際には、
図5(a)の如く前本体(1a)と後本体(1b)が互いに縮
んでおり、且つ前駆動脚(2a)と後駆動脚(2b)が突出
して先端部が管(9)内壁に圧接された状態から、図5
(b)の如く前駆動脚(2a)を縮め、更に前本体(1a)を
前方へ伸ばす。When the micromachine (1) moves forward,
As shown in FIG. 5 (a), the front main body (1a) and the rear main body (1b) are contracted with each other, and the front drive leg (2a) and the rear drive leg (2b) are protruded so that the tip end is on the inner wall of the pipe (9). From the pressed state,
As shown in (b), the front drive leg (2a) is contracted, and the front body (1a) is further extended forward.
【0033】次に、図5(c)の如く前駆動脚(2a)を伸
ばして先端部を管(9)内壁に圧接せしめ、更に後駆動脚
(2b)を縮めた状態で、後本体(1b)を前本体(1a)側
へ縮める。その後、後駆動脚(2b)を伸ばして図5(a)
の状態へ戻るのである。Next, as shown in FIG. 5 (c), the front drive leg (2a) is extended to press the tip end thereof against the inner wall of the pipe (9), and then the rear drive leg (2).
With the (2b) contracted, the rear body (1b) is contracted to the front body (1a) side. Then, extend the rear drive leg (2b) and
It returns to the state of.
【0034】以上の行程によって、マイクロマシン(1)
は前本体(1a)と後本体(1b)の伸縮量Lだけ前進する
ことになり、この行程を繰り返すことによって、前進を
続けることが出来る。同様にして後退移動も可能であ
る。Through the above steps, the micromachine (1)
Moves forward by the amount of expansion and contraction L of the front body (1a) and the rear body (1b), and the forward movement can be continued by repeating this process. Similarly, backward movement is also possible.
【0035】図6は上記マイクロマシンユニット(1)の
回路構成を示しており、上述の光起電力素子(3)の出力
は制御回路(81)へ供給され、マイクロ波−電力変換器(5
1)、音起電力素子(6)及び2次側コイル(7)の出力はA
C−DCコンバータ(8)を介して直流に変換された後、
制御回路(81)へ供給される。FIG. 6 shows the circuit configuration of the micromachine unit (1). The output of the photovoltaic element (3) is supplied to the control circuit (81), and the microwave-power converter (5
1), the output of the electromotive force element (6) and the secondary coil (7) is A
After being converted to direct current through the C-DC converter (8),
It is supplied to the control circuit (81).
【0036】制御回路(81)は、前述の自走機構を構成す
る圧電アクチュエータ等の駆動系(11)と、管壁検査等の
マイクロマシン本来の動作機能を実現するための動作系
(12)へ、夫々必要な電力を分配するものであって、制御
回路(81)の出力はDC−DCコンバータ(83)によって電
圧調整等が施された後、駆動系(11)及び動作系(12)へ供
給される。The control circuit (81) includes a drive system (11) such as a piezoelectric actuator which constitutes the above-mentioned self-propelled mechanism, and an operation system for realizing the original operation function of the micromachine such as pipe wall inspection.
Each of the necessary electric power is distributed to the (12), and the output of the control circuit (81) is subjected to voltage adjustment and the like by the DC-DC converter (83), and then the drive system (11) and the operating system. Supplied to (12).
【0037】又、制御回路(81)には、Ni−Cd電池や
リチウム2次電池等の蓄電池(82)が接続されており、余
剰電力を蓄電する様に構成されている。Further, a storage battery (82) such as a Ni-Cd battery or a lithium secondary battery is connected to the control circuit (81) and is configured to store surplus power.
【0038】上記マイクロマシンユニット(1)によれ
ば、全てのエネルギー線の供給を同時に受けた場合、最
大出力が40mWを越えることになり、例えば光起電力
素子(3)のみによる電力供給では困難な高負荷作業が可
能となる。According to the above-mentioned micromachine unit (1), the maximum output exceeds 40 mW when all the energy rays are supplied at the same time. For example, it is difficult to supply power only by the photovoltaic element (3). High-load work becomes possible.
【0039】又、制御回路(81)の制御によって、低負荷
時の余剰電力を蓄電池(82)に蓄えておくことにより、高
負荷時には蓄電池(82)を放電させて、必要な電力を賄う
ことも出来る。Further, by controlling the control circuit (81), the surplus power at the time of low load is stored in the storage battery (82), so that the storage battery (82) is discharged at the time of high load to cover the necessary power. You can also
【0040】尚、図1の音波発信器(61)や1次側コイル
(71)をマイクロマシンユニット(1)に追従移動させる構
成とすれば、電力変換効率を更に上げることが出来る
が、前述の如くマイクロマシンユニット(1)に蓄電池(8
2)を装備することによって、音波発信器(61)や1次側コ
イル(71)は任意位置に設けて、この位置を電力供給ステ
ーションとする構成も可能である。The sound wave transmitter (61) and the primary coil of FIG.
If the configuration is such that the (71) is moved following the micromachine unit (1), the power conversion efficiency can be further increased. However, as described above, the storage battery (8
It is also possible to provide the sound wave transmitter (61) and the primary side coil (71) at arbitrary positions by installing the device 2), and use this position as a power supply station.
【0041】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.
【0042】例えば、上記実施例では複数のエネルギー
線のエネルギーを区別せず、共通の電力源として用いて
いるが、エネルギー線の特性、例えば電圧値等によって
用途を区別する構成とすれば、更に効率的なエネルギー
利用が可能となる。又、エネルギー線としては、更に電
気力線の利用が考えられる。For example, in the above embodiment, the energy of a plurality of energy rays is not distinguished and is used as a common electric power source. However, if the constitution is such that the uses are distinguished by the characteristics of the energy rays, for example, the voltage value, etc., It is possible to use energy efficiently. Further, it is possible to use electric lines of force as the energy lines.
【図1】本発明に係るマイクロマシンにおける電力シス
テムの構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a power system in a micromachine according to the present invention.
【図2】回折格子板の作用を説明する図である。FIG. 2 is a diagram illustrating an operation of a diffraction grating plate.
【図3】光起電力素子の構成を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing the structure of a photovoltaic element.
【図4】圧電アクチュエータの概略構成を示す正面図で
ある。FIG. 4 is a front view showing a schematic configuration of a piezoelectric actuator.
【図5】マイクロマシンユニットの自走動作を示す一連
の側面図である。FIG. 5 is a series of side views showing the self-propelled movement of the micromachine unit.
【図6】本発明に係るマイクロマシンにおける電力シス
テムの回路構成を示すブロック図である。FIG. 6 is a block diagram showing a circuit configuration of a power system in a micromachine according to the present invention.
(1) マイクロマシンユニット (2) 駆動脚 (3) 光起電力素子 (30) 回折格子板 (5) マイクロ波アンテナ (6) 音起電力素子 (61) 音波発信器 (7) 2次側コイル (71) 1次側コイル (1) Micromachine unit (2) Drive leg (3) Photovoltaic device (30) Diffraction grating plate (5) Microwave antenna (6) Photovoltaic device (61) Sound wave transmitter (7) Secondary coil (71) Primary coil
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B81B 7/02 B81B 7/02 (72)発明者 堂本 洋一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 細川 弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 伊豆 博昭 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 桑原 隆 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 山本 恵章 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 木山 精一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平4−112305(JP,A) 特開 平3−107341(JP,A) 特開 平5−58359(JP,A) 特開 平4−164581(JP,A) 特開 平1−298901(JP,A) 特開 昭63−114888(JP,A) 特開 昭62−137546(JP,A) 国際公開92/001415(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H02J 17/00 B25J 7/00,19/00 B61B 13/10 B81B 7/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI B81B 7/02 B81B 7/02 (72) Inventor Yoichi Domoto 2-18 Kyohanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hiroshi Hosokawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hiroaki Izu 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72 ) Inventor Takashi Kuwahara 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Keisho Yamamoto 2-18-2 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Invention Seiichi Kiyama 2-18-18 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-4-112305 (JP, A) JP-A-3-107341 (JP, A) JP Flat 5-58359 ( P, A) JP 4-164581 (JP, A) JP 1-298901 (JP, A) JP 63-114888 (JP, A) JP 62-137546 (JP, A) International publication 92/001415 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H02J 17/00 B25J 7 / 00,19 / 00 B61B 13/10 B81B 7/02
Claims (4)
エネルギー線を受信すべき複数のエネルギー線受信手段
と、各エネルギー線受信手段によって受信されたエネル
ギー線を電力に変換する複数の起電力手段と、管内部を
自走するための機構とを具えるとともに、マイクロマシ
ン本体は、筒軸状の胴部と、該胴部の前端部或いは後端
部へ同軸に突設されたテーパ部とを具え、エネルギー変
換手段の一つとして光起電力素子が、少なくとも前記マ
シン本体のテーパ部の表面を覆って配設されているマイ
クロマシン。 1. A plurality of energy ray receiving means for receiving a plurality of types of energy rays such as light rays, microwaves and sound waves, and a plurality of electromotive forces for converting the energy rays received by each energy ray receiving means into electric power. Means and inside the tube
In addition to being equipped with a mechanism for self-propelled,
The main body consists of a barrel-shaped body and a front or rear end of the body.
Section has a taper part that is coaxially projected to
As one of the replacement means, a photovoltaic element is at least the above-mentioned matrix.
A micromachine provided so as to cover the surface of the tapered portion of the thin body .
電力を蓄電する手段を具えている請求項1に記載のマイ
クロマシン。 2. The micromachine according to claim 1, further comprising means for accumulating the electric power converted by each electromotive force means .
表面から胴部の表面を覆って配設されると共に、マシン
本体には、胴部表面と管内壁の間の空間へ向かって管軸
方向に進行する光線を、胴部表面の光起電力素子へ向け
て屈曲せしめる光学手段が突設されている請求項1に記
載のマイクロマシン。 3. The photovoltaic element is a taper portion of a machine body.
The machine is installed from the surface to cover the surface of the body.
The main body has a tube axis facing the space between the body surface and the inner wall of the tube.
A light beam that travels in a direction to a photovoltaic element on the body surface
The micromachine according to claim 1 , further comprising an optical unit that is bent to bend .
イクロマシンを具えたマイクロマシンにおける電力シス
テム。 4. The mask according to claim 1, wherein
Power system in micromachine with micromachine
Tem.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19685692A JP3454525B2 (en) | 1992-07-23 | 1992-07-23 | Micromachines and power systems in micromachines |
US08/095,770 US5428961A (en) | 1992-07-21 | 1993-07-19 | Micromachines |
DE4324500A DE4324500B4 (en) | 1992-07-21 | 1993-07-21 | Micro machine and power supply system for a micro machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19685692A JP3454525B2 (en) | 1992-07-23 | 1992-07-23 | Micromachines and power systems in micromachines |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0646539A JPH0646539A (en) | 1994-02-18 |
JP3454525B2 true JP3454525B2 (en) | 2003-10-06 |
Family
ID=16364799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19685692A Expired - Fee Related JP3454525B2 (en) | 1992-07-21 | 1992-07-23 | Micromachines and power systems in micromachines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3454525B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9060708B2 (en) | 2008-03-05 | 2015-06-23 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US9433371B2 (en) | 2007-09-25 | 2016-09-06 | Proteus Digital Health, Inc. | In-body device with virtual dipole signal amplification |
US9444503B2 (en) | 2006-11-20 | 2016-09-13 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US9603550B2 (en) | 2008-07-08 | 2017-03-28 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US9941931B2 (en) | 2009-11-04 | 2018-04-10 | Proteus Digital Health, Inc. | System for supply chain management |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US11928614B2 (en) | 2006-05-02 | 2024-03-12 | Otsuka Pharmaceutical Co., Ltd. | Patient customized therapeutic regimens |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2747421B2 (en) * | 1994-03-29 | 1998-05-06 | 三洋電機株式会社 | Power supply system in micromachine |
JP2747422B2 (en) * | 1994-03-29 | 1998-05-06 | 三洋電機株式会社 | Power supply system in micromachine |
JP3448642B2 (en) | 2000-08-25 | 2003-09-22 | 独立行政法人産業技術総合研究所 | Cableless power supply method |
JP4706036B2 (en) * | 2005-02-03 | 2011-06-22 | 学校法人東京理科大学 | Non-contact power supply system and medical system using the same |
JP2007097358A (en) * | 2005-09-30 | 2007-04-12 | Toshiba Corp | Information collecting device and method therefor |
MY154699A (en) | 2007-11-27 | 2015-07-15 | Proteus Digital Health Inc | Transbody communication systems employing communication channels |
JP2009171706A (en) * | 2008-01-15 | 2009-07-30 | Yamatake Corp | Actuator |
KR20110103446A (en) | 2009-01-06 | 2011-09-20 | 프로테우스 바이오메디컬, 인코포레이티드 | Intake-Related Biofeedback and Individualized Medical Treatment Methods and Systems |
JP2010273408A (en) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | Power device, power generation method, and power device manufacturing method |
TWI557672B (en) | 2010-05-19 | 2016-11-11 | 波提亞斯數位康健公司 | Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device |
WO2012064896A2 (en) * | 2010-11-09 | 2012-05-18 | The Regents Of The University Of California | Wireless power mechanisms for lab-on-a-chip devices |
CA2823254A1 (en) * | 2010-12-29 | 2012-07-05 | Proteus Digital Health, Inc. | Wirelesss energy sources for integrated circuits |
US9290219B2 (en) * | 2013-03-14 | 2016-03-22 | The Boeing Company | Locomotion system and method of controlling a robotic device |
JP6417389B2 (en) | 2013-03-15 | 2018-11-07 | パルマー ラボ,エルエルシー | Launch transportation means and system and its economical and efficient launch method |
JP6114595B2 (en) * | 2013-03-26 | 2017-04-12 | 学校法人関西学院 | Multi-segment robot and its body segment |
JP6381091B2 (en) | 2015-02-27 | 2018-08-29 | オリンパス株式会社 | Moving device and moving method of moving device |
CA3046580A1 (en) | 2016-12-13 | 2018-06-21 | 8 Rivers Capital, Llc | Vehicle launch system and method |
JP7125948B2 (en) | 2017-03-02 | 2022-08-25 | 8 リバーズ キャピタル,エルエルシー | Systems and methods for improving the efficiency of electromagnetic non-magnetic launchers |
CN112886708B (en) * | 2021-01-15 | 2024-11-01 | 悉拓(上海)安全技术有限公司 | Radio frequency energy collection wireless monitoring equipment and using method thereof |
-
1992
- 1992-07-23 JP JP19685692A patent/JP3454525B2/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11928614B2 (en) | 2006-05-02 | 2024-03-12 | Otsuka Pharmaceutical Co., Ltd. | Patient customized therapeutic regimens |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US11357730B2 (en) | 2006-10-25 | 2022-06-14 | Otsuka Pharmaceutical Co., Ltd. | Controlled activation ingestible identifier |
US9444503B2 (en) | 2006-11-20 | 2016-09-13 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US9433371B2 (en) | 2007-09-25 | 2016-09-06 | Proteus Digital Health, Inc. | In-body device with virtual dipole signal amplification |
US9258035B2 (en) | 2008-03-05 | 2016-02-09 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US9060708B2 (en) | 2008-03-05 | 2015-06-23 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US11217342B2 (en) | 2008-07-08 | 2022-01-04 | Otsuka Pharmaceutical Co., Ltd. | Ingestible event marker data framework |
US9603550B2 (en) | 2008-07-08 | 2017-03-28 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US10305544B2 (en) | 2009-11-04 | 2019-05-28 | Proteus Digital Health, Inc. | System for supply chain management |
US9941931B2 (en) | 2009-11-04 | 2018-04-10 | Proteus Digital Health, Inc. | System for supply chain management |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US11950615B2 (en) | 2014-01-21 | 2024-04-09 | Otsuka Pharmaceutical Co., Ltd. | Masticable ingestible product and communication system therefor |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10797758B2 (en) | 2016-07-22 | 2020-10-06 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
Also Published As
Publication number | Publication date |
---|---|
JPH0646539A (en) | 1994-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3454525B2 (en) | Micromachines and power systems in micromachines | |
US5428961A (en) | Micromachines | |
US8653784B2 (en) | System and method for relaying energy from a space transmitter to an electronic device via an earth station | |
US6635818B2 (en) | Wireless power supply method | |
US4947825A (en) | Solar concentrator - radiator assembly | |
EP0971417A3 (en) | Photovoltaic element and production method therefor | |
WO2003047019A3 (en) | Efficient load-following power generating system | |
JP2008130922A (en) | Solar power generation system | |
US8487229B2 (en) | Portable, durable, integrated solar power generation device | |
US20220294382A1 (en) | System and Method for Converting and Transmitting Energy | |
KR20190055915A (en) | Energy harvesting system using more than two kinds of ambient energy | |
JPH10150215A (en) | Power generating device utilizing sunlight | |
JP2810549B2 (en) | Micro machine | |
CN109672261B (en) | Micro-nano polymer satellite power supply system and power supply method | |
KR101998197B1 (en) | Solar power generating system | |
US20060082158A1 (en) | Method and device for supplying power from acoustic energy | |
Alexzander et al. | Recent trends in power systems (wireless power transmission system) and supercapacitor application | |
KR102185391B1 (en) | Photovoltaic cell module with smooth attached to outer surface of building structure to ensure installation convenience and photoelectric efficiency | |
CN108832299B (en) | Intelligent wall structure based on solid-state plasma | |
CN113852295A (en) | Multimode collision low-frequency piezoelectric energy harvester | |
US20060119850A1 (en) | Device for supplying with electric energy a sensor that has a high electric potential | |
US20240286509A1 (en) | Dc-dc vehicle charger | |
KR102535198B1 (en) | Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System | |
JPH0645630A (en) | Micromachine | |
JP2003153565A (en) | Power generation system using transmitted energy from laser optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030701 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |