JP3454363B2 - Fiber structure and manufacturing method thereof - Google Patents
Fiber structure and manufacturing method thereofInfo
- Publication number
- JP3454363B2 JP3454363B2 JP5868493A JP5868493A JP3454363B2 JP 3454363 B2 JP3454363 B2 JP 3454363B2 JP 5868493 A JP5868493 A JP 5868493A JP 5868493 A JP5868493 A JP 5868493A JP 3454363 B2 JP3454363 B2 JP 3454363B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- elastic
- heat
- fibers
- thermoplastic elastomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非弾性捲縮短繊維をマ
トリックスとし、その中に熱可塑性エラストマ−からな
る弾性複合繊維により接点を熱接着されたネットワ−ク
構造を形成した繊維構造体に関する。更には、家具、ベ
ッド、電車、自動車等のクッション材としたとき、優れ
たクッション性、優れた抗へたり性と耐熱耐久性を有す
るリサイクルが可能な繊維構造体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure in which a non-elastic crimped short fiber is used as a matrix, and a contact point is thermally bonded by an elastic composite fiber made of a thermoplastic elastomer to form a network structure. . Further, the present invention relates to a recyclable fibrous structure having excellent cushioning properties, excellent sag resistance and heat resistance durability when used as a cushioning material for furniture, beds, trains, automobiles and the like.
【0002】[0002]
【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材で、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。2. Description of the Related Art Currently, it is used as a cushion material for furniture, beds, trains, automobiles, etc., using urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.
【0003】しかしながら、発泡ウレタンはクッション
材としての耐久性は良好だが、床つき感が大きく、透湿
透水性に劣り蓄熱性があるため蒸れやすく、かつ、燃焼
時の発生熱量が大きいため難燃性付与にはハロゲン化物
の添加が必要となり、火災時には多量の有毒ガス発生に
よる中毒の問題と、リサイクルが困難なため焼却される
場合、焼却炉の損傷が大きく、かつ、有毒ガス除去に経
費が掛かる。このため埋め立てされることが多くなった
が、地盤の安定化が困難なため埋め立て場所が限定され
経費も高くなっていく問題がある。また、加工性は優れ
るが製造中に使用される薬品の公害問題などもある。ま
た、ポリエステル繊維詰綿では繊維間が固定されていな
いため、使用時形態が崩れたり、繊維が移動して、か
つ、捲縮のへたりで嵩高性の低下や弾力性の低下が問題
になる。However, although urethane foam has a good durability as a cushioning material, it has a large feeling of being attached to a floor, is poor in moisture permeability and water permeability, and has a heat storage property. The addition of a halide is required to impart the properties, and the problem of poisoning due to the generation of a large amount of toxic gas in case of fire and damage to the incinerator when it is incinerated due to the difficulty of recycling, and the cost for removing the toxic gas are high. Hang up. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed to each other in the polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause the deterioration of bulkiness and elasticity. .
【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、ウ
レタンを用いたものとして特開昭61−137732号
公報等がある。これらのクッション材は耐久性に劣り、
且つリサイクルも出来ない等の問題、及び加工性の煩雑
さや製造中に使用される薬品の公害問題などもある。As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using urethane, there is JP-A-61-137732. These cushion materials have poor durability,
In addition, there are problems such as not being able to recycle, complexity of processability and pollution of chemicals used during manufacturing.
【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
変形しても回復するポリエステルエラストマ−を用いた
熱接着繊維が特開平4−240219号公報で、同繊維
を用いたクッション材がWO−91/19032号公報
で提案されている。この繊維構造物に使われる接着成分
はポリエステルエラストマ−のハ−ドセグメントの酸成
分にテレフタル酸を50〜80モル%含有し、ソフトセ
グメントとしてのポリアルキレングリコ−ルの含有量が
30〜50重量%を限定すると、他の酸成分組成として
融点が180℃以下となるには、特公昭60−1404
号公報に記載された繊維と同一と認められるので、イソ
フタル酸等を含有し非晶性が増すことになり、低溶融粘
度として熱接着部分の形成を良くしてアメーバー状の接
着部を形成しているが塑性変形しやいため、耐熱抗圧縮
性が低下する問題点がある。Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. Therefore, a heat-bonding fiber using a polyester elastomer which is soft and recovers even if it is deformed is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032. Proposed. The adhesive component used in this fiber structure contains 50 to 80 mol% of terephthalic acid in the acid component of the hard segment of polyester elastomer, and the content of polyalkylene glycol as the soft segment is 30 to 50% by weight. If the melting point is 180 ° C. or lower as the composition of other acid components if the content of% is limited,
Since it is recognized that it is the same as the fiber described in the publication, it contains isophthalic acid and the like to increase the non-crystallinity, and the low melt viscosity improves the formation of the heat-bonded portion to form an amoeber-like bonded portion. However, since it is easily plastically deformed, there is a problem that the heat resistance and compression resistance are lowered.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を改良し、優れたクッション性、へたり性、
優れた耐熱耐久性、及び着座時蒸れ難く座り心地の良い
クッション材となり、リサイクルが可能な繊維構造体を
提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has improved the above-mentioned problems of the prior art, and has excellent cushioning property, sag property,
An object of the present invention is to provide a recyclable fibrous structure which has excellent heat resistance and durability, becomes a cushioning material that does not easily get damp when sitting and is comfortable to sit on.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行った結果、熱可塑性エラ
ストマ−からなる複合繊維で伸縮性を有するネットワ−
ク構造を形成することで目的を達成できることを知見
し、本発明に到達した。即ち本発明は、非弾性捲縮短繊
維(A)と弾性複合繊維(B)が三次元的に混合されて
なる繊維構造体であり、上記弾性複合繊維(B)は、非
弾性捲縮短繊維(A)を形成するポリマーの融点より4
0℃以上低い融点を有する熱可塑性エラストマー(C)
と、該熱可塑性エラストマーより30℃以上高い融点を
有する熱可塑性エラストマー(D)よりなり、熱可塑性
エラストマー(C)が複合繊維の表面に少なくとも2分
の1以上露出しており、繊維(A)と繊維(B)あるい
は繊維(B)と繊維(B)が三次元的に形成された接点
で熱融着により接着した部分が散在しており、密度が
0.005〜0.10g/cm3 であることを特徴とする
繊維構造体および非弾性捲縮短繊維と熱接着成分に非弾
性巻縮短繊維を構成するポリマ−の融点より少なくとも
40℃以上低い融点を有する熱可塑性エラストマー
(C)と熱接着成分より少なくとも30℃高い融点を有
する熱可塑性エラストマ−(D)とからなり、前者
(C)が繊維表面に少なくとも1/2以上露出した弾性
複合繊維とを混綿、開繊して弾性複合繊維同士及び複合
繊維と非弾性捲縮短繊維との三次元的な繊維接点を形成
させた後、熱接着成分となる熱可塑性エラストマー
(C)の融点より少なくとも10℃以上高い温度で熱処
理し、繊維接点のうち、少なくとも一部の繊維接点を熱
接着させることを特徴とする繊維構造体の製法である。Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventors have found that a composite fiber made of a thermoplastic elastomer and having elasticity.
The present inventors have found that the object can be achieved by forming a black structure and arrived at the present invention. That is, the present invention is a fiber structure in which a non-elastic crimped short fiber (A) and an elastic composite fiber (B) are three-dimensionally mixed, and the elastic composite fiber (B) is a non-elastic crimped short fiber ( 4) from the melting point of the polymer forming A)
Thermoplastic elastomer (C) having a melting point lower than 0 ° C
And a thermoplastic elastomer (D) having a melting point higher than that of the thermoplastic elastomer by 30 ° C. or more, and the thermoplastic elastomer (C) is exposed on the surface of the composite fiber at least ½ or more, and the fiber (A) And fibers (B) or fibers (B) and fibers (B) at three-dimensionally formed contact points are scattered by heat fusion and have a density of 0.005 to 0.10 g / cm 3 And a thermoplastic elastomer (C) having a melting point at least 40 ° C. lower than the melting points of the fiber structure and the non-elastic crimped short fibers and the polymer constituting the non-elastic crimped short fibers in the heat-adhesive component. A thermoplastic elastomer (D) having a melting point that is at least 30 ° C. higher than that of the adhesive component, and the former (C) is mixed with an elastic composite fiber exposed at least ½ or more on the fiber surface, opened, and expanded. After forming three-dimensional fiber contact points between the functional composite fibers and between the composite fibers and the non-elastic crimped short fibers, heat treatment is performed at a temperature that is at least 10 ° C. higher than the melting point of the thermoplastic elastomer (C) serving as a heat-adhesive component. The method for producing a fiber structure is characterized in that at least a part of the fiber contacts are heat-bonded.
【0008】本発明の繊維構造体は非弾性捲縮繊維のマ
トリックスの中に熱接着成分となる熱可塑性エラストマ
−とネットワ−ク構造を支える熱可塑性エラストマ−と
からなる弾性複合繊維が該繊維同士の接点及び非弾性捲
縮短繊維との接点が熱融着により接着された良好な伸縮
性を有する接着点および伸縮性を有する熱可塑性エラス
トマ−からなる3次元ネットワ−ク構造を作っている。
良好な伸縮性を有する接着点および3次元ネットワ−ク
構造でマトリックスの非弾性巻縮繊維が接続されている
ので大変形を受けても接着点や3次元ネットワ−ク構造
が破壊されないで変形し、歪みを除去すると、エラスト
マ−の伸縮性が発現し元の構造に回復できる。本発明と
WO91/19032号公報との本質的な差異は、本発
明が熱可塑性エラストマ−からなる弾性複合繊維で3次
元ネットワ−ク構造を作っている点である。本発明では
弾性複合繊維でネットワ−クを形成しているため、極端
に伸張されてもが弾性複合繊維からなる伸縮性の優れた
3次元ネットワ−ク構造全体で伸ばされ、非弾性巻縮繊
維自身は大きく伸張されず、従って接着点も破壊されな
いが、WO91/19032号公報では接着点間が非弾
性体からなる繊維で直線的に結ばれており、大変形を受
けると繊維自身に伸張歪みを受け、接着点に大きな力が
集中して構造が破壊するか、または接着成分が紡錘状に
集中している部分と接着成分が流出して芯成分のみ残っ
た部分があり、芯成分のみの部分は細い非弾性繊維で且
つ、充分な熱延伸がされていないので力学特性も劣るた
め応力集中により繊維自身が破壊する場合がある。従っ
て、本発明の繊維構造体の方が全体がエラストマ−の伸
縮性をもつ弾性複合繊維で三次元ネットワ−ク状に連結
されている点から、WO91/19032号公報記載の
繊維構造体より耐へたり性、耐久性、及びクッション性
は優れたものとなる。In the fibrous structure of the present invention, an elastic composite fiber composed of a thermoplastic elastomer serving as a heat-adhesive component and a thermoplastic elastomer supporting a network structure is contained in a matrix of inelastic crimped fibers. And a contact point with the non-elastic crimped short fibers are bonded by heat fusion to form a three-dimensional network structure composed of an adhesive point having good elasticity and a thermoplastic elastomer having elasticity.
Since the non-elastic crimped fibers of the matrix are connected by the adhesive points having good stretchability and the three-dimensional network structure, the adhesive points and the three-dimensional network structure can be deformed without being destroyed even when subjected to a large deformation. When the strain is removed, the elasticity of the elastomer is developed and the original structure can be restored. The essential difference between the present invention and WO 91/19032 is that the present invention forms a three-dimensional network structure with elastic composite fibers composed of a thermoplastic elastomer. In the present invention, since the network is formed by the elastic composite fiber, even if it is extremely stretched, it is stretched by the entire three-dimensional network structure of the elastic composite fiber which is excellent in stretchability, and is a non-elastic crimped fiber. Although it does not stretch significantly, and therefore the bonding points are not destroyed, in WO91 / 19032, the bonding points are linearly connected by a fiber made of an inelastic material, and when subjected to a large deformation, the fiber itself is stretched and distorted. In response, a large force is concentrated on the adhesion point and the structure is destroyed, or there are a part where the adhesive component is concentrated in a spindle shape and a part where the adhesive component flows out and only the core component remains. The part is a thin non-elastic fiber, and since it is not sufficiently heat-stretched, its mechanical properties are inferior, and the fiber itself may be broken due to stress concentration. Therefore, the fiber structure of the present invention is more resistant than the fiber structure described in WO91 / 19032 from the point that the entire fiber structure is connected by elastic composite fibers having elasticity of elastomer in a three-dimensional network form. The sag, durability, and cushioning properties are excellent.
【0009】本発明繊維構造体の密度は0.005〜
0.1g/cm3 である。この密度が0.1g/cm3 以上
では、繊維密度が過度に高くなり熱可塑性エラストマ−
同士が過密に相互融着しやすくなり、厚み方向の弾力性
が著しく低下し、通気性も少なくなり蒸れやすくなるの
でクッション材として適さない。他方、この密度が0.
005g/cm3 未満では、マトリックスとなる非弾性捲
縮短繊維の構成本数が少なくなりクッション材としての
反発力が失われるので好ましくない。この点で特開昭5
8−197312号公報等に記載されるテ−プ、リボ
ン、シ−ト等の補強と曲げ易さを目的とした2次元的緻
密構造物とは異なるものである。The fiber structure of the present invention has a density of 0.005 to 0.005.
It is 0.1 g / cm 3 . If the density is 0.1 g / cm 3 or more, the fiber density becomes excessively high and the thermoplastic elastomer
They are not suitable as a cushioning material because they tend to be fused to each other in an excessively dense manner, the elasticity in the thickness direction is significantly reduced, the air permeability is reduced, and they tend to become stuffy. On the other hand, this density is 0.
If it is less than 005 g / cm 3 , the number of non-elastic crimped short fibers forming a matrix is reduced and the repulsive force as a cushioning material is lost, which is not preferable. In this respect, JP-A-5
It is different from the two-dimensional dense structure described in JP-A 8-197312 or the like for the purpose of reinforcing the tape, ribbon, sheet and the like and easiness of bending.
【0010】なお、本発明の繊維構造体中における伸縮
性の3次元ネットワ−ク構造を作っている該弾性複合繊
維の好ましい含有量は、10重量%以上70重量%以
下、より好ましくは20重量%以上50重量%以下であ
る。5重量%未満では、3次元ネットワ−ク構造が少な
くなり、耐へたり性、耐久性、クッション性が劣るので
好ましくない。70重量%以上では非弾性捲縮繊維の持
つ剛直性に由来する嵩高性や反発力が低下し、床つき感
が大きくなるのでクッション材としては適さなくなる。
また、クッション材は厚み方向に圧縮されて反発する素
材のため、その性能を発現させるには少なくとも5mm以
上とするのが好ましく、10mm以上とするのがより好ま
しい。The preferable content of the elastic composite fiber forming the stretchable three-dimensional network structure in the fiber structure of the present invention is 10% by weight or more and 70% by weight or less, more preferably 20% by weight. % To 50% by weight. If it is less than 5% by weight, the three-dimensional network structure is reduced, and the sag resistance, durability and cushioning property are deteriorated, which is not preferable. If it is 70% by weight or more, the bulkiness and the repulsive force derived from the rigidity of the non-elastic crimped fiber are lowered, and the feeling of floor attachment is increased, so that it is not suitable as a cushioning material.
Further, since the cushion material is a material which is compressed and repelled in the thickness direction, it is preferably at least 5 mm or more, and more preferably 10 mm or more in order to exert its performance.
【0011】本発明の繊維構造体を構成するマトリック
スの非弾性捲縮短繊維(A)は、熱可塑性ポリマ−を用
いることで再生が可能なものなら特に限定されないが、
力学特性、耐熱特性、燃焼時の有毒ガス発生等を考慮す
ると、好ましくは、ポリエステル繊維であり、例えば、
ポリエチレンテレフタレ−ト(PET)、ポリエチレン
ナフタレ−ト(PEN)、ポリシクロヘキシレンジメチ
レンテレフタレ−ト(PCHDT)、ポリブチレンテレ
フタレ−ト(PBT)、ポリアリレ−ト等、及びそれら
の共重合ポリエステルなどから選ばれた重合体を紡糸、
延伸、捲縮を付与した捲縮短繊維または、紡糸時、上記
重合体から熱的性質の異なる2種類の重合体を組み合わ
せ複合紡糸するか、非対称冷却法を用いて潜在捲縮能を
付与し、延伸後必要に応じ機械捲縮を掛け、または、及
び、そのまま立体捲縮を発現させた捲縮短繊維である。
これらのポリエステル捲縮短繊維の繊度や繊維断面形
状、力学特性などは所望する用途から決められるが、通
常、繊度は3〜500デニ−ル、好ましくは4〜200
デニ−ルである。断面形状は中空断面、多角形あるいは
多葉形の中空異形断面が好ましいる。なかでも、構造体
に成形された後でもモジュラスが高く(常温及び加熱下
での歪みに対する塑性変形による捲縮のへたりが少なく
なる)、例えばPETでは、好ましくは初期引張り抵抗
度で30g/デニ−ル以上、より好ましくは40g/デ
ニ−ル以上で、断面2次モ−メントの大きい断面形状、
好ましくは丸断面比の1.3倍以上、より好ましくは
1.5倍以上のものを用いると抗圧縮性や耐熱耐へたり
性を向上できるので特に好ましい。また、及び、立体捲
縮を有する繊維、好ましくは捲縮度で20%以上、より
好ましくは25%以上のものを用いると耐へたり性やク
ッション性が向上するので特に好ましい。この理由は、
耐熱耐へたり性、抗圧縮性の立体捲縮を有する非弾性捲
縮短繊維と伸縮性を有する弾性複合繊維とが熱接着接合
され、構造体全体が伸縮性を有する3次元ネットワ−ク
構造にできるのでどのような方向に大きい力が掛かった
り、大変形を与えられても個々の弾性複合繊維が少しず
つ変形して力や歪みをネットワ−ク構造全体で吸収でき
るため、マトリックスの非弾性巻縮繊維の受けるダメ−
ジを著しく軽減することで耐熱耐へたり性やクッション
性が向上する。The non-elastic crimped short fibers (A) of the matrix constituting the fiber structure of the present invention are not particularly limited as long as they can be regenerated by using a thermoplastic polymer.
Considering mechanical properties, heat resistance properties, generation of toxic gas during combustion, etc., preferably polyester fiber, for example,
Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHDT), polybutylene terephthalate (PBT), polyarylate, and the like, and combinations thereof. Spinning polymer selected from polymerized polyester,
Stretched and crimped crimped short fibers, or at the time of spinning, two types of polymers having different thermal properties from the above polymers are combined and spun into a composite, or a latent crimping ability is imparted by using an asymmetric cooling method, It is a crimped short fiber that is subjected to mechanical crimping as necessary after stretching and / or as it is to develop a three-dimensional crimp.
The fineness, fiber cross-sectional shape, mechanical properties and the like of these polyester crimped short fibers are determined depending on the desired application, but the fineness is usually 3 to 500 denier, preferably 4 to 200.
Denier. The cross-sectional shape is preferably a hollow cross section or a polygonal or multilobe hollow irregular cross section. Among them, the modulus is high even after being formed into a structure (the settling of crimp due to plastic deformation due to strain at room temperature and heating is reduced), and in PET, for example, the initial tensile resistance is preferably 30 g / denier. -More, more preferably 40 g / denier or more, and a cross-sectional shape with a large cross-sectional secondary moment,
It is particularly preferable to use one having a round cross-section ratio of 1.3 times or more, more preferably 1.5 times or more, since the anti-compression property and the heat and sag resistance can be improved. Also, it is particularly preferable to use fibers having a three-dimensional crimp, preferably those having a crimping degree of 20% or more, more preferably 25% or more, since the sag resistance and cushioning property are improved. The reason for this is
The non-elastic crimp short fibers having a three-dimensional crimp with heat-resistant sag resistance and anti-compression property and the elastic composite fibers having elasticity are heat-bonded to each other to form a three-dimensional network structure having elasticity. Therefore, even if a large force is applied in any direction or a large deformation is applied, each elastic composite fiber is gradually deformed and the force or strain can be absorbed by the entire network structure, so that the matrix inelastic winding can be absorbed. Use of crimped fibers
Heat resistance and cushioning property are improved by significantly reducing the fatigue resistance.
【0012】本発明の繊維構造体を構成する伸縮性の優
れた三次元ネットワ−ク構造を形成する弾性複合繊維
(B)は、熱接着成分となる熱可塑性エラストマ−とネ
ットワ−ク構造を支える熱可塑性エラストマ−とで形成
される。熱接着成分となる熱可塑性エラストマ−は、該
非弾性捲縮短繊維を構成するポリマ−の融点より40℃
以上、特には60℃以上低いことが好ましい。融点差が
40℃より少ないと、融着加工時の好ましい熱処理温度
が熱可塑性エラストマ−の融点より少なくとも10℃以
上高い温度、より好ましくは20℃以上高い温度とする
ため、該非弾性捲縮短繊維に対して過酷な温度となり、
該非弾性捲縮短繊維の捲縮のへたりや力学特性の低下を
招き、繊維構造体としての特性が劣るものとなる。ま
た、ネットワ−ク構造を形成する熱可塑性エラストマ−
の融点より高い温度で熱処理により接着点を形成したの
では、弾性複合繊維が溶融してネットワ−ク構造を形成
できないので(このためネットワ−ク構造を支える熱可
塑性エラストマ−が熱接着成分である熱可塑性エラスト
マ−の融点より少なくとも30℃高い融点、好ましくは
40℃以上高い融点とする。)熱接着成分となる熱可塑
性エラストマ−の融点は140℃以上190℃以下が好
ましい。更には、熱接着成分である熱可塑性エラストマ
−は、少なくとも繊維表面の1/2以上を占めないと接
着点が減少し、有効な伸縮性ネットワ−ク構造が形成で
きない。熱接着成分が繊維表面全体を占めることは接点
の全てで熱接着でき、有効な伸縮性ネットワ−ク構造が
形成できるので好ましい。また、ネットワ−ク構造を支
える熱可塑性エラストマ−が熱接着成分である熱可塑性
エラストマ−の融点より少なくとも30℃高い融点、好
ましくは40℃以上高い融点とするのに、伸縮性成分の
ソフトセグメントの含有量を少なくした場合は、伸張回
復性の良好な熱接着成分の熱可塑性エラストマ−で包ま
れているので、変形したネットワ−ク構造が容易に元の
構造に回復できる。この様な場合、構造体中の該弾性複
合繊維は表面の熱可塑性エラストマ−がやや流動不充分
な状態に保持されているほうが好ましい。該弾性複合繊
維を構成する熱可塑性エラストマ−の熱接着成分とネッ
トワ−ク構造を支える成分の複合比率は、20/80〜
70/30の範囲が適当である。該弾性複合繊維の形態
は、サイドバイサイド型でもよいが、好ましくは上述の
理由からシ−スコア型が望ましい。また、曲げ剛さを向
上できる中空のシ−スコア型とすることでクッション材
の弾発性の高いものとすることができるのでより好まし
い。The elastic composite fiber (B) forming the three-dimensional network structure having excellent stretchability, which constitutes the fiber structure of the present invention, supports the thermoplastic elastomer and the network structure which are the heat-adhesive components. It is formed with a thermoplastic elastomer. The thermoplastic elastomer as a heat-adhesive component has a melting point of 40 ° C. from the polymer constituting the non-elastic crimped short fibers.
Above, it is particularly preferable that the temperature is lower than 60 ° C. If the melting point difference is less than 40 ° C., the preferable heat treatment temperature during fusion processing is at least 10 ° C. higher than the melting point of the thermoplastic elastomer, and more preferably 20 ° C. higher. On the other hand, it becomes a harsh temperature,
The crimp of the non-elastic crimped short fibers is caused and the mechanical properties are deteriorated, so that the properties as a fiber structure are deteriorated. In addition, a thermoplastic elastomer that forms a network structure
If the adhesive points are formed by heat treatment at a temperature higher than the melting point of, the elastic composite fiber cannot be melted to form a network structure (therefore, the thermoplastic elastomer supporting the network structure is a heat bonding component). The melting point of the thermoplastic elastomer is at least 30 ° C. higher than the melting point of the thermoplastic elastomer, preferably 40 ° C. or higher.) The melting point of the thermoplastic elastomer serving as the heat-adhesive component is preferably 140 ° C. or higher and 190 ° C. or lower. Further, the thermoplastic elastomer, which is a heat-adhesive component, does not occupy at least ½ or more of the fiber surface, the adhesive points are reduced, and an effective stretchable network structure cannot be formed. It is preferable that the heat-adhesive component occupy the entire surface of the fiber because it can be heat-bonded at all of the contacts and an effective elastic network structure can be formed. Further, in order that the thermoplastic elastomer supporting the network structure has a melting point at least 30 ° C. higher than the melting point of the thermoplastic elastomer as a heat-adhesive component, preferably 40 ° C. or more, the soft segment of the elastic component is When the content is reduced, the deformed network structure can be easily restored to the original structure because it is wrapped with the thermoplastic elastomer of the heat-adhesive component having a good stretch recovery property. In such a case, it is preferable that the thermoplastic elastomer on the surface of the elastic composite fiber in the structure is kept in a state where the fluidity thereof is slightly insufficient. The composite ratio of the heat-adhesive component of the thermoplastic elastomer constituting the elastic composite fiber and the component supporting the network structure is 20/80 to.
A range of 70/30 is suitable. The form of the elastic composite fiber may be a side-by-side type, but is preferably a sheath-core type for the reasons described above. Further, it is more preferable to use a hollow sheath core type capable of improving bending rigidity because the cushioning material can have high elasticity.
【0013】熱可塑性エラストマ−の組成は、実用上の
問題が無い範囲で特に限定されないが、ハ−ドセグメン
トは結晶性の高いものを、ソフトセグメントは分子量の
比較的大きいポリエ−テルまたはポリエステルをブロッ
ク共重合したものを用いると熱接着部分及び3次元ネッ
トワ−ク構造を形成する弾性複合繊維の伸縮性及び耐熱
性が良好となるため、クッション材の耐熱、抗へたり性
が向上するので好ましい使用形態である。本発明のより
好ましい使用形態は、非弾性捲縮繊維をポリエステルと
する時、熱可塑性エラストマ−を接着性の良好なポリエ
ステル系とすることである。ポリエステル系エラストマ
−としては、熱可塑性ポリエステルをハ−ドセグメント
とし、ポリアルキレンジオ−ルをソフトセグメントとす
るポリエステルエ−テルブロック共重合体、または、脂
肪族ポリエステルをソフトセグメントとするポリエステ
ルエステルブロック共重合体が例示できる。ポリエステ
ルエ−テルブロック共重合体のより具体的な事例として
は、テレフタル酸、イソフタル酸、ナフタレン2・6ジ
カルボン酸、ナフタレン2・7ジカルボン酸、ジフェニ
ル4・4’ジカルボン酸等の芳香族ジカルボン酸、1・
4シクロヘキサンジカルボン酸等の脂環族ジカルボン
酸、琥珀酸、アジピン酸、セバチン酸ダイマ−酸等の脂
肪族ジカルボン酸または、これらのエステル形成性誘導
体などから選ばれたジカルボン酸の少なくとも1種と、
1・4ブタンジオ−ル、エチレングリコ−ル、トリメチ
レングリコ−ル、テトレメチレングリコ−ル、ペンタメ
チレングリコ−ル、ヘキサメチレングリコ−ル等の脂肪
族ジオ−ル、1・1シクロヘキサンジメタノ−ル、1・
4シクロヘキサンジメタノ−ル等の脂環族ジオ−ル、ま
たはこれらのエステル形成性誘導体などから選ばれたジ
オ−ル成分の少なくとも1種、および平均分子量が約3
00〜5000のポリエチレングリコ−ル、ポリプロピ
レングリコ−ル、ポリテトラメチレングリコ−ル、エチ
レンオキシド−プロピレンオキシド共重合体等のポリア
ルキレンジオ−ルのうち少なくとも1種から構成される
三元ブロック共重合体である。ポリエステルエステルブ
ロック共重合体としては、上記ジカルボン酸とジオ−ル
及び平均分子量が約300〜3000のポリラクトン等
の脂肪族ポリエステルのうち少なくとも各1種から構成
される三元ブロック共重合体である。熱接着性、耐加水
分解性、伸縮性、耐熱性等を考慮すると、ジカルボン酸
としてはテレフタル酸、または、及びナフタレン2・6
ジカルボン酸、ジオ−ル成分としては1・4ブタンジオ
−ル、ポリアルキレンジオ−ルとしてはポリテトラメチ
レングリコ−ルの3元ブロック共重合体が特に好まし
い。The composition of the thermoplastic elastomer is not particularly limited as long as there is no problem in practical use, but the hard segment is a highly crystalline one, and the soft segment is a polyether or polyester having a relatively large molecular weight. It is preferable to use a block copolymer because the elastic composite fibers forming the heat-bonded portion and the three-dimensional network structure have good stretchability and heat resistance, and the heat resistance and sag resistance of the cushioning material are improved. It is a usage form. A more preferable use form of the present invention is that when the non-elastic crimped fiber is made of polyester, the thermoplastic elastomer is made of a polyester system having good adhesiveness. As the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment A polymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. 1,
A cycloaliphatic dicarboxylic acid such as cyclohexanedicarboxylic acid, succinic acid, adipic acid, aliphatic dicarboxylic acid such as sebacic acid dimer acid, or at least one dicarboxylic acid selected from ester-forming derivatives thereof,
Aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane dimethanol 1
A cycloaliphatic diol such as 4-cyclohexanedimethanol, or at least one diol component selected from ester-forming derivatives thereof, and an average molecular weight of about 3
Tertiary block copolymer composed of at least one of polyalkylenediol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer, etc. Is. The polyester ester block copolymer is a ternary block copolymer composed of at least one dicarboxylic acid, diol and at least one aliphatic polyester such as polylactone having an average molecular weight of about 300 to 3,000. Considering thermal adhesion, hydrolysis resistance, stretchability, heat resistance, etc., the dicarboxylic acid may be terephthalic acid, or naphthalene 2.6.
A ternary block copolymer of 1,4 butanediol as the dicarboxylic acid and the diol component and polytetramethylene glycol as the polyalkylenediol is particularly preferable.
【0014】ハ−ドセグメントを構成するポリエステル
は結晶性の良好なものほど塑性変形しにくく、かつ、耐
熱抗へたり性が向上する。溶融熱成形後更に結晶化処理
すると耐熱抗へたり性が一段と向上する。この理由は明
らかではないが、テレフタル酸または、およびナフタレ
ン2・6ジカルボン酸の含有量が多いと示差走査型熱量
計(DSC)による融解曲線において、融点以下の温度
で吸熱ピークをより明確に発現する。このことから類推
するに、疑似結晶化様の架橋点が形成され、耐熱抗へた
り性が向上しているのではないかと考えられる。好まし
いテレフタル酸、または、およびナフタレン2・6ジカ
ルボン酸量は酸成分として90モル%以上、より好まし
くは100モル%である。テレフタル酸、または、およ
びナフタレン2・6ジカルボン酸が90モル未満では結
晶性が劣るので塑性変形し易く、且つ、耐熱抗へたり性
が劣る。溶融熱成形後更に結晶化処理しても耐熱抗へた
り性が向上しにくくなる。As the polyester constituting the hard segment has better crystallinity, it is less likely to be plastically deformed, and the heat resistance and sag resistance is improved. Further crystallization treatment after melt thermoforming will further improve the heat resistance and sag resistance. The reason for this is not clear, but when the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid is high, the endothermic peak appears more clearly at a temperature below the melting point in the melting curve by a differential scanning calorimeter (DSC). To do. By analogy with this, it is considered that pseudo-crystallization-like cross-linking points are formed and the heat resistance and sag resistance are improved. The preferred amount of terephthalic acid or naphthalene 2.6 dicarboxylic acid is 90 mol% or more, more preferably 100 mol% as an acid component. If the amount of terephthalic acid or naphthalene 2.6 dicarboxylic acid is less than 90 mol, the crystallinity is poor, and thus plastic deformation is likely to occur and the heat resistance and sag resistance are poor. Even if a crystallization treatment is further performed after the melt thermoforming, the heat resistance and sagging resistance are difficult to improve.
【0015】本発明の複合繊維を構成する熱可塑性エラ
ストマ−は、グリコ−ル成分として1−4ブタンジオ−
ルおよびポリテトラメチレングリコ−ルがブロック共重
合され、且つ、ポリテトラメチレングリコ−ルの共重合
量が10重量%以上、80重量%以下とするのが好まし
い。ゴム弾性に由来する回復性はポリテトラメチレング
リコ−ルの共重合量に比例する。同時に融点と耐熱性が
低下していく。ポリテトラメチレングリコ−ルの共重合
量が10重量%以下ではゴム弾性による回復性がかなり
低下してくる。他方80重量%以上では融点が低下して
耐熱性が劣ること、及び粘着性が発現し加工時の弾性複
合繊維を均一に分散開繊することが困難になるので好ま
しくない。本発明の熱接着成分である熱可塑性エラスト
マー(C)の好ましい組成はポリテトラメチレングリコ
−ルの共重合量は40重量%以上70重量%以下、より
好ましくは50重量%以上60重量%以下である。耐熱
性の保持から、ハ−ドセグメントの繰り返し単位を大き
くすると、ゴム弾性に由来する回復性も保持するためポ
リテトラメチレングリコ−ルの平均分子量も大きくする
必要があるが、大きくしすぎると相溶性を失い重合が進
まなくなるので適当な分子量を設定する必要がある。好
ましい平均分子量は500以上5000以下、特に好ま
しくは1000以上3000以下である。5000以上
のものを用いると低温での特性が著しく低下するので好
ましくない。他方、三次元ネットワ−ク構造を支える成
分である熱可塑性エラストマー(D)は、適度の伸縮性
以外に、熱接着成分より高融点で、かつ、形態保持の機
能も必要なため、ハ−ドセグメントの繰り返し単位を大
きくし、ゴム弾性に由来する回復性も保持するためポリ
テトラメチレングリコ−ルの平均分子量も相溶性の関係
から300以上の大きい分子量のものを用いるのが好ま
しい。ポリテトラメチレングリコ−ルの共重合量は10
重量%以上50重量%以下、より好ましくは20重量%
以上40重量%以下である。なお、本発明における好ま
しいポリエステルエ−テル共重合体の分子量は40℃フ
ェノ−ル/テトラクロルエタン混合溶媒中で測定した相
対粘度(η sp/c)が、ソフトセグメント含有量の多い熱
接着成分では1.8以上である。1.8未満では、流動
性は良くなり接着点形成性は良くなるが、接着点の回復
性が劣り、該弾性複合繊維が形成する3次元ネットワ−
ク構造の接続点の塑性変形が増加し、繊維構造体の耐へ
たり性、耐久性が劣るので好ましくない。熱接着成分の
より好ましい相対粘度は2.0以上2.5以下である。
2.5以上では200℃以下での熱接着時に流動性がや
や低下するので、接着点形成が不充分となる場合があ
る。他方、三次元ネットワ−ク構造を支える成分は、ソ
フトセグメント量が少ないため、相対粘度はやや低くな
る。好ましい相対粘度は1.0以上、より好ましくは
1.5以上とすることで、回復性とタフさを付与でき
る。Thermoplastic gallium constituting the composite fiber of the present invention
Stoma is 1-4 butanedio- as a glycol component.
Block and polytetramethylene glycol
And copolymerization of polytetramethylene glycol
It is preferable that the amount is 10% by weight or more and 80% by weight or less.
Yes. The recoverability derived from rubber elasticity is polytetramethylene
It is proportional to the amount of copolymerization of the liquor. At the same time the melting point and heat resistance
It will decrease. Copolymerization of polytetramethylene glycol
If the amount is less than 10% by weight, the recoverability due to rubber elasticity is considerably high.
It is decreasing. On the other hand, if it exceeds 80% by weight, the melting point will decrease.
Inferior heat resistance and development of adhesiveness, resulting in elastic
It is difficult to uniformly spread and spread synthetic fibers, so it is preferable.
Not good. Thermoplastic elastomer, which is the thermoadhesive component of the present invention
The preferred composition of the mer (C) is polytetramethylene glyco
-Copolymerization amount of 40 wt% or more and 70 wt% or less,
It is preferably 50% by weight or more and 60% by weight or less. Heat resistance
In order to maintain the sex, increase the size of the repeating unit of the hard segment.
If it is hardened, the recovery due to rubber elasticity will also be retained,
Increase the average molecular weight of Litetramethylene glycol
It is necessary, but if it is made too large, compatibility will be lost and polymerization will proceed.
Therefore, it is necessary to set an appropriate molecular weight. Good
A preferable average molecular weight is 500 or more and 5000 or less, and particularly preferable.
It is preferably 1000 or more and 3000 or less. 5000 or more
If used, the characteristics at low temperatures will deteriorate significantly, so it is preferable.
Not good. On the other hand, the structure that supports the three-dimensional network structure
The thermoplastic elastomer (D), which is a component, has an appropriate elasticity.
In addition, it has a higher melting point than the heat-adhesive component and is a machine that retains its shape.
No. No. is also required, so the repeat unit of the hard segment is large.
In order to maintain the combability and recoverability derived from rubber elasticity,
Relationship between average molecular weight of tetramethylene glycol and compatibility
It is preferable to use a high molecular weight product of
Good The copolymerization amount of polytetramethylene glycol is 10
% To 50% by weight, more preferably 20% by weight
It is above 40% by weight. In addition, the preferred in the present invention
The molecular weight of a new polyester ether copolymer is 40 ° C.
Phase measured in a mixed solvent of ethanol / tetrachloroethane
Viscosity (η sp / c) Is heat with a high soft segment content
The adhesive component is 1.8 or more. Below 1.8, flow
The adhesive property is improved and the bond point forming property is improved, but the bond point is recovered.
Three-dimensional network formed by the elastic composite fiber having poor elasticity
The plastic deformation of the connection points of the
It is not preferable because it has poor sag and durability. Thermal adhesive component
A more preferable relative viscosity is 2.0 or more and 2.5 or less.
When it is 2.5 or more, the fluidity is a little when heat-bonded at 200 ° C or less.
The adhesive spot formation may be insufficient.
It On the other hand, the component that supports the three-dimensional network structure is
The relative viscosity is slightly low due to the small amount of soft segment.
It The preferred relative viscosity is 1.0 or more, more preferably
By setting it to 1.5 or more, recoverability and toughness can be imparted.
It
【0016】本発明のより好ましい実施形態では弾性複
合繊維のエラストマ−成分にポリテトラメチレングリコ
−ルの共重合量が多いため熱安定性が250℃以上の高
温では熱分解による分子量低下が著しくなる。このため
本発明では積極的に抗酸化剤を好ましくは1重量%以
上、より好ましくは2重量%以上5重量%以下含有させ
る。このような組成とすることで高温での紡糸も可能と
なり、三次元ネットワ−ク構造を支える成分のハ−ドセ
グメントを結晶性の高い高融点のもの、例えば酸成分と
してテレフタレ−ト、ナフタレ−ト、グリコ−ル成分に
エチレングリコ−ル、ブタンジオ−ル、シクロヘキシレ
ンジメタノ−ルなどを用いた繰り返し単位の大きいもの
を使用することが可能となり、該弾性複合繊維が形成す
る伸縮性の三次元ネットワ−ク構造を耐熱抗へたり性と
することが出来る。更には、融点および分子量の高いエ
ラストマ−を用いて熱接着を空気中で200℃以上の高
温で溶融熱接着せしめることが可能であり、この時の分
子量低下を押さえられる。かくして、エラストマ−の分
子量を高く保持出来るので本発明の繊維構造体は耐熱抗
へたり性の向上と共に、ゴム弾性による回復性も著しく
向上する。本発明に用いる好ましい抗酸化剤としては、
従来公知のヒンダ−ドフェノ−ル化合物やヒンダ−ドア
ミン化合物がある。が特には燃焼時有毒ガスの出ないヒ
ンダ−ドフェノ−ル化合物が好ましい。本発明の繊維集
合体を構成する好ましいポリエステルエ−テル共重合体
は、例えば特開昭55−120626号公報等の従来公
知の方法で得ることができるが、抗酸化剤は重合時多量
に添加すると昇華して重合缶の詰まりなどのトラブルと
なり、かつ添加効果が激減するので、重合後加圧下で練
込むのが好ましい。In a more preferred embodiment of the present invention, since the copolymer component of polytetramethylene glycol is large in the elastomer component of the elastic composite fiber, the molecular weight is remarkably reduced by thermal decomposition at a high temperature of 250 ° C. or higher. . Therefore, in the present invention, the antioxidant is positively contained in an amount of preferably 1% by weight or more, more preferably 2% by weight or more and 5% by weight or less. With such a composition, spinning at high temperature is also possible, and the hard segment of the component supporting the three-dimensional network structure has a high melting point with high crystallinity, such as terephthalate or naphthalate as the acid component. It is possible to use a large number of repeating units using ethylene glycol, butanediol, cyclohexylene dimethanol, etc. as the glycol component as the glycol component, and the elastic tertiary fiber formed by the elastic composite fiber. The original network structure can have heat resistance and sag resistance. Furthermore, it is possible to perform heat-bonding in air at a high temperature of 200 ° C. or higher by using an elastomer having a high melting point and a high molecular weight, and it is possible to suppress the decrease in the molecular weight at this time. Thus, since the molecular weight of the elastomer can be kept high, the fibrous structure of the present invention has not only improved heat resistance and sag resistance but also markedly improved recovery by rubber elasticity. Preferred antioxidants used in the present invention include:
There are conventionally known hindered phenol compounds and hindered amine compounds. However, a hindered phenol compound which emits no toxic gas upon combustion is particularly preferable. The preferred polyester ether copolymer constituting the fiber assembly of the present invention can be obtained by a conventionally known method such as JP-A-55-120626, but the antioxidant is added in a large amount during the polymerization. Then, it sublimates to cause troubles such as clogging of the polymerization can and the effect of addition is drastically reduced. Therefore, it is preferable to knead under pressure after the polymerization.
【0017】非弾性捲縮短繊維マトリックス中に該弾性
複合繊維を均一に散在させるには、以下の手段で達成で
きる。すなわち、本発明の伸縮性の優れた接着点と3次
元ネットワ−ク構造を形成する該弾性複合繊維は従来公
知の方法例えば、サイドバイサイド型、シ−スコア型な
どの構造に紡糸して得ることができる。しかして、熱成
形までの加工時立体捲縮が発現していると、特にエラス
トマ−は粘着性があり、糸糸の摩擦係数が高いためカ−
ド開繊時開繊が不良となりやすい。このため、開繊し易
い機械捲縮をふよするのが好ましい。機械捲縮は捲縮数
が5〜30山/インチ、捲縮率が5〜30%の範囲であ
れば使用できるが、好ましくは捲縮数が10〜25山/
インチ、捲縮率が10〜25%である。仕上げ油剤は摩
擦係数が低くなる油剤を使用するのが特に好ましい。ゆ
えに、特開平4−240219号公報の如く潜在捲縮能
を発現させ低収縮化した立体捲縮繊維とするのは好まし
くない。本発明のより好ましい繊維集合体構造にする複
合繊維を得る好ましい延伸条件は延伸温度を温浴40〜
70℃で破断延伸倍率の0.8〜0.9倍で延伸し、次
いで100℃以下で緊張熱処理して収縮率を低減させ、
機械巻縮を付与し、機械巻縮が伸びないように低張力で
カッタ−に供給、切断することで得られる。高収縮化し
ていると成形後の繊維構造体が層間剥離し易くなるので
出来るだけ収縮率を下げるのが好ましい。なお、開繊/
混繊は通常のカ−ドで行い、得られた開繊/混繊散在さ
れて弾性複合繊維同士及び複合繊維と非弾性捲縮短繊維
との三次元的な繊維接点を形成させたウエッブは次いで
積層圧縮し、熱風や不活性ガスまたはスーパーヒ−トし
た蒸気にて熱接着成分となる熱可塑性エラストマーの融
点より少なくとも10℃以上高い温度で加熱融着処理し
て、繊維接点のうち少なくとも一部の繊維接点を熱接着
させ、冷却される。さらに本発明のより好ましい繊維構
造体を得るには、次いで、前述の理由から、熱可塑性ポ
リエステルエ−テル共重合体の融点より少なくとも20
℃以上低い温度で疑似結晶化処理すると回復性が向上す
るので好ましい。10%程度の圧縮歪みを付与して、熱
処理すると回復性がより向上するのでより好ましい。The uniform dispersion of the elastic composite fibers in the non-elastic crimped short fiber matrix can be achieved by the following means. That is, the elastic composite fiber of the present invention that forms a three-dimensional network structure with an adhesive point having excellent elasticity can be obtained by spinning into a conventionally known method, for example, a side-by-side type or a sheath-core type structure. it can. If a three-dimensional crimp is developed during processing up to thermoforming, the elastomer is particularly sticky and the yarn has a high friction coefficient, which is a key factor.
When opening, the opening tends to be defective. For this reason, it is preferable to eliminate mechanical crimps that are easy to open. Mechanical crimps can be used as long as the number of crimps is 5 to 30 ridges / inch and the crimp ratio is in the range of 5 to 30%, but preferably 10 to 25 ridges / crimp.
Inch, crimp ratio is 10 to 25%. It is particularly preferable to use an oil agent having a low friction coefficient as the finishing oil agent. Therefore, it is not preferable to use the three-dimensional crimped fiber having a low shrinkage by exhibiting the latent crimping ability as in JP-A-4-240219. The preferred drawing conditions for obtaining the composite fiber having the more preferred fiber aggregate structure of the present invention are as follows.
Stretching at 70 ° C. at 0.8 to 0.9 times the breaking stretch ratio, and then tension heat treatment at 100 ° C. or less to reduce the shrinkage ratio,
It can be obtained by applying a mechanical crimp and supplying and cutting to a cutter with a low tension so that the mechanical crimp does not extend. If the shrinkage is high, the fibrous structure after molding tends to be delaminated, so it is preferable to reduce the shrinkage ratio as much as possible. Opening /
Mixing is carried out by an ordinary card, and the obtained web is spread / mixed and dispersed to form three-dimensional fiber contact points between elastic composite fibers and between composite fibers and non-elastic crimped short fibers. At least some of the fiber contacts are laminated and compressed, and heat-fused with hot air, an inert gas, or superheated steam at a temperature at least 10 ° C. higher than the melting point of the thermoplastic elastomer serving as a heat-bonding component. The fiber contacts are heat bonded and cooled. To obtain a more preferred fibrous structure of the present invention, then, for the reasons set forth above, at least 20% above the melting point of the thermoplastic polyester ether copolymer.
Pseudo-crystallization treatment at a temperature lower than 0 ° C. is preferable because the recoverability is improved. It is more preferable to apply compressive strain of about 10% and heat-treat to improve the recoverability.
【0018】かくして得られた本発明のより好ましい繊
維構造体は、繊維クッションでは従来不可能と思われて
いた発泡ポリウレタンに近い耐熱耐久性と耐へたり性、
優れたクッション性を有すると共に着用時蒸れにくい、
及びリサイクルも可能なクッション材として供すること
が可能となった。The more preferable fiber structure of the present invention thus obtained has a heat resistance and sag resistance close to those of polyurethane foam, which has hitherto been considered impossible with a fiber cushion,
It has excellent cushioning properties and does not get stuffy when worn,
Also, it can be used as a cushioning material that can be recycled.
【0019】[0019]
【0020】実施例1〜2及び比較例1〜5
熱接着成分の作成
酸成分としてジメチルテレフタレ−ト(DMT)又はお
よびジメチルイソフタレ−ト(DMI)又はナフタレン
2・6ジカルボン酸(DMN)とグリコ−ル成分として
1−4ブタンジオ−ル(BG)およびポリテトラメチレ
ングリコ−ル(PTMG)を少量の触媒と安定剤ととも
に仕込み、公知の方法にてエステル交換反応後昇温減圧
しつつ重縮合してポリエステルエ−テルブロック共重合
エラストマ−を生成した。生成したポリエステルエ−テ
ルブロック共重合エラストマ−をペレット化し後加熱真
空乾燥し、抗酸化剤としてチバガイギ−社製アイオノッ
クス330を0〜3重量%混合して再度溶融混練りし、
ペレット化したものを乾燥した加熱不活性ガスにて水分
を充分に除去し熱接着成分に供した。得られたポリエス
テルエ−テルブロック共重合体の処方及び融点を表1に
示す。比較のため、酸成分としてジメチルテレフタレ−
ト(DMT)又はおよびジメチルイソフタレ−ト(DM
I)とグリコ−ル成分としてエチレングリコ−ル(E
G)を少量の触媒と安定剤とともに仕込み、公知の方法
にてエステル交換反応後昇温減圧しつつ重縮合して低融
点非弾性ポリエステルを生成し、ペレット化し、加熱真
空乾燥し、次いで2軸押出機で抗酸化剤を添加練込み、
再度ペレット化し、乾燥して熱接着成分に供した。得ら
れた低融点非弾性ポリエステルの処方及び融点を表1に
示す。Examples 1 and 2 and Comparative Examples 1 to 5 Preparation of Thermal Adhesion Component Dimethyl terephthalate (DMT) or and dimethyl isophthalate (DMI) or naphthalene 2.6 dicarboxylic acid (DMN) as an acid component. As a glycol component, 1-4 butanediol (BG) and polytetramethylene glycol (PTMG) were charged together with a small amount of a catalyst and a stabilizer, and after transesterification by a known method, the temperature was increased and the pressure was reduced. Condensation produced a polyester ether block copolymer elastomer. The produced polyester ether block copolymerization elastomer is pelletized and then heated and vacuum dried, and 0 to 3% by weight of Ionox 330 manufactured by Ciba-Geigy Co. as an antioxidant is mixed and melt-kneaded again.
The pelletized product was sufficiently removed of water with a dry heated inert gas and used as a heat-adhesive component. Table 1 shows the formulation and melting point of the obtained polyester ether block copolymer. For comparison, dimethyl terephthalate was used as the acid component.
(DMT) or and dimethyl isophthalate (DM
I) and ethylene glycol (E) as a glycol component
G) is charged with a small amount of a catalyst and a stabilizer, and transesterified by a known method, followed by polycondensation while heating and decompressing to produce a low melting point inelastic polyester, pelletized, heated and vacuum dried, and then biaxial. Add and knead the antioxidant with an extruder,
It was pelletized again, dried and subjected to a heat-adhesive component. Table 1 shows the formulation and melting point of the obtained low melting point non-elastic polyester.
【0021】[0021]
【表1】 [Table 1]
【0022】熱接着繊維の作成
得られたポリエステルエ−テルブロック共重合体を、熱
接着成分を鞘成分に、伸縮性三次元ネットワ−ク構造を
支える成分、または比較のポリブチレンテレフタレ−ト
(PBT)とポリエチレンテレフタレ−ト(PET)を
芯成分にし、鞘芯の重量比を50/50で常法により紡
糸温度を260℃〜285℃にて紡糸し未延伸糸を得
た。次いで、50℃の温浴で3.4倍に延伸し、次いで
乾熱90℃にて定長熱処理し、仕上げ油剤を付与した後
クリンパ−にて機械捲縮を付与し、機械捲縮が伸びない
張力でカッタ−に供給し51mmに切断して4デニ−ルの
熱接着複合短繊維を作成した。得られた繊維の特性を表
2に示す。なお、繊維中の鞘成分のポリエステルエ−テ
ルブロック共重合体および、低融点非弾性ポリエステル
の相対粘度は溶液粘度に加成性が成立するとして、各紡
糸条件と同一の条件で両成分に芯成分を供給して得た繊
維の相対粘度と繊維中の組成比で補正した相対粘度とし
て求めた。Preparation of Thermally Adhesive Fibers The resulting polyester ether block copolymer was prepared by using a thermal adhesive component as a sheath component, a component supporting a stretchable three-dimensional network structure, or a comparative polybutylene terephthalate. (PBT) and polyethylene terephthalate (PET) were used as core components, and the unstretched yarn was obtained by spinning at a spinning temperature of 260 ° C. to 285 ° C. by a conventional method with a weight ratio of the sheath / core of 50/50. Then, it is stretched 3.4 times in a warm bath at 50 ° C., then heat-treated at a fixed length at 90 ° C. for dry heat, and after applying a finishing oil agent, mechanical crimping is applied by a crimper so that the mechanical crimp does not extend. It was supplied to the cutter with tension and cut into 51 mm to prepare a 4-denier heat-bonded composite short fiber. The properties of the fibers obtained are shown in Table 2. Assuming that the relative viscosity of the polyester ether block copolymer of the sheath component in the fiber and the low-melting point inelastic polyester has an additive property to the solution viscosity, the core components of both components are the same under the same spinning conditions. It was determined as the relative viscosity of the fiber obtained by supplying the components and the relative viscosity corrected by the composition ratio in the fiber.
【0023】[0023]
【表2】 [Table 2]
【0024】繊維構造体の作成
得られた機械捲縮を持つ熱接着複合短繊維を30%と、
常法にて作成した13デニ−ルの中空で外側に突起を3
個有する断面で立体捲縮を有するPET短繊維を70%
とをカ−ドにて混繊−開繊して得たウエッブを密度0.
03g/cm3 となるよう圧縮し150℃〜210℃の熱
風で5分間熱処理し、平板のクッション材に成形し、一
旦冷却後、密度が0.04g/cm3 となるよう圧縮し、
100℃の熱風で30分再熱処理し冷却してクッション
材を得た。比較のため、密度を0.004g/cm3 のも
のと0.12g/cm3 のものを再熱処理しないで同様に
作成した。クッション材の作成条件と仕上がり状態を表
3に、得られたクッション材のその他の特性を表4に示
す。なお、70℃の圧縮残留歪み、常温での繰り返し圧
縮残留歪み及び、反発弾性はJISK−6401の方法
による。25%圧縮硬さはボ−ルドウイン社製テンシロ
ンにてφ150mmの円盤でクッション材の厚みの25%
圧縮時の圧縮力として測定する。座り心地は、30℃室
内でパネラ−10人に各1時間座らせて、床つき感と座
り心地、蒸れ感を評価した。なお、臀部や大腿部が痛く
なり1時間座れないものは座り心地は不良とした。Preparation of Fiber Structure 30% of the resulting heat-bonded composite short fibers having mechanical crimps,
It is a hollow of 13 denier made by a conventional method and has 3 protrusions on the outside.
70% PET short fiber with three-dimensional crimp in the cross section
And the web obtained by mixing and opening the fibers with a card having a density of 0.
Compressed so as to be 03G / cm 3 was heat-treated for 5 minutes with hot air at 0.99 ° C. to 210 ° C., and molded into the cushion material of the plate, once compressed so that after cooling, the density is 0.04 g / cm 3,
A cushioning material was obtained by re-heat treatment for 30 minutes with hot air at 100 ° C. and cooling. For comparison, were prepared in the same manner without reheating what the density of ones and 0.12 g / cm 3 of 0.004 g / cm 3. Table 3 shows the preparation conditions and the finished state of the cushion material, and Table 4 shows other characteristics of the obtained cushion material. The compression residual strain of 70 ° C., the repeated compression residual strain at room temperature, and the impact resilience are according to the method of JISK-6401. The compression hardness of 25% is 25% of the thickness of the cushion material with a disk of φ150 mm in Tensilon manufactured by Baldwin.
It is measured as the compression force during compression. As for the sitting comfort, 10 panelists were allowed to sit in the room at 30 ° C. for 1 hour each, and the feeling of sitting on the floor, sitting comfort, and stuffiness were evaluated. If the buttocks and thighs were sore that the person could not sit for 1 hour, the sitting comfort was poor.
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【表4】 [Table 4]
【0027】本発明の実施例1〜2のクッション材は弾
性複合繊維により伸縮性ネットワ−ク構造を作っている
ので優れたクッション性、優れた高温の耐熱耐へたり
性、及び常温でも優れた耐へたり性を示す。更に床つき
感を殆ど感じず、蒸れにくく、長時間着座ができるクッ
ション材である。特に、本発明の最も好ましい実施様態
の実施例は発泡ウレタンに近い耐熱耐久性と耐へたり性
を示し、座り心地が良好なクッション材である。鞘に融
点を下げるため非晶性の成分を共重合させた公知のエラ
ストマ−、芯が非弾性ポリエステルから成る弾性複合繊
維を用いた場合を比較例1に示す。接着点は充分にアメ
−バ−状に形成しており、紡錘状の節も形成している
が、エラストマ−が塑性変形し易く、且つ、芯部を囲む
エラストマ−成分が無くなっており、ネットワ−クが非
弾性ポリマ−で連結しているため、耐熱耐へたり性が悪
く、クッション材としては劣る特性を示す。形態的には
同一で、熱接着成分が非弾性ポリマ−の場合を比較例2
に示す。接着成分が脆く、塑性変形を容易に生じるため
特に耐熱性が悪く、常温での耐へたり性も劣り、伸縮性
がないので硬い風合いとなるため、床つき感は少ないが
臀部や大腿部が圧迫されて痛くなり長時間の着座が困難
なクッション材である。弾性複合繊維の接着成分との融
点差が少ない場合を比較例3に示す。弾性複合繊維の芯
成分がネットワ−ク構造形成に関与しないため、接着点
の数が少なくなり、耐熱耐久性やクッション性がやや劣
るものとなる。密度が本発明の範囲を外れて少ない場合
を比較例4に示す。定歪みを付与した場合嵩高なため個
々の繊維がうける応力が著しく小さくなるので50%歪
みでのへたりは悪くないが、ふかふかすぎてクッション
材には使えないものである。比較例5は本発明を外れる
高密度としたときである。ほとんどポリマ−の塊状にな
り50%圧縮するには塊を潰す大きな圧縮力が必要なた
め繰り返し圧縮残留歪みと25%圧縮硬さは測定器の能
力を越えていて測定が困難であった。当然座り心地もポ
リマ−の上に座るのと同じで最悪であった。なお、実施
例1〜2のクッション材を45°メセナミン法および4
5°アルコ−ルランプ法で難燃性の評価を行った結果、
実施例1〜2のクッション材は全て合格した。比較に発
泡ポリウレタンを評価した結果は不合格であった。ま
た、JISK−7217の方法で燃焼ガスの毒性指数を
測定した結果は実施例1〜2のクッション材はすべて
5.1であり、発泡ポリウレタンは7.5と高く、本発
明の好ましい実施形態での繊維構造体が安全性の高いこ
とを示す。Since the cushioning materials of Examples 1 and 2 of the present invention have the elastic network structure made of the elastic composite fiber, they are excellent in cushioning property, excellent resistance to heat and heat at high temperature, and excellent at room temperature. Shows sag resistance. Furthermore, it is a cushioning material that hardly feels like being on the floor, is resistant to stuffiness, and allows you to sit for a long time. In particular, the most preferred embodiment of the present invention is a cushioning material which exhibits heat resistance and fatigue resistance similar to urethane foam, and which is comfortable to sit on. Comparative Example 1 shows the case where a known elastomer in which an amorphous component is copolymerized in order to lower the melting point is used for the sheath and an elastic composite fiber whose core is made of non-elastic polyester is used. The bonding points are sufficiently formed in the shape of an ammo, and the spindle-shaped nodes are also formed.However, the elastomer is easily plastically deformed, and the elastomer component surrounding the core is eliminated, so that the network -Since the non-elastic polymer is connected, the heat resistance and sag resistance are poor and the cushioning material is inferior. Comparative Example 2 in which the thermo-adhesive component is a non-elastic polymer having the same morphology
Shown in. The adhesive component is brittle and plastic deformation easily occurs, so the heat resistance is particularly poor, and the settling resistance at room temperature is poor, and since it has a hard texture due to lack of elasticity, it does not feel like sticking to the floor but the buttocks and thighs. It is a cushioning material that makes it difficult to sit for a long time because it is pressed and becomes painful. Comparative Example 3 shows a case where the difference in melting point between the elastic composite fiber and the adhesive component is small. Since the core component of the elastic composite fiber does not participate in the formation of the network structure, the number of bonding points is reduced, and the heat resistance durability and cushioning property are slightly deteriorated. Comparative Example 4 shows the case where the density is small outside the range of the present invention. When a constant strain is applied, the fibers are bulky and the stress received by each fiber is significantly reduced, so the fatigue at 50% strain is not bad, but it is too fluffy and cannot be used as a cushioning material. Comparative Example 5 is a high density which is outside the scope of the present invention. Since it becomes almost a polymer block and a large compressive force for crushing the block is required for 50% compression, repeated compressive residual strain and 25% compression hardness exceed the capability of the measuring instrument and are difficult to measure. Of course, sitting comfort was the same as sitting on a polymer, which was the worst. In addition, the cushion materials of Examples 1 and 2 were tested by the 45 ° mesenamine method and 4
As a result of evaluating the flame retardancy by the 5 ° alcohol lamp method,
All the cushion materials of Examples 1 and 2 passed. The result of evaluating the polyurethane foam for comparison was a failure. Moreover, the results of measuring the toxicity index of the combustion gas by the method of JISK-7217 are 5.1 for all the cushion materials of Examples 1 and 2, and the foam polyurethane is as high as 7.5, which is a preferred embodiment of the present invention. It is shown that the fiber structure of is highly safe.
【0028】[0028]
【発明の効果】本発明の繊維構造体は、非弾性捲縮短繊
維のマトリックス中に熱可塑性エラストマ−からなる弾
性複合繊維により、非弾性捲縮短繊維を熱可塑性エラス
トマ−成分で熱接着された極めて伸縮性の優れた3次元
ネットワ−ク構造を形成した繊維構造体であるため、優
れたクッション性、優れた耐熱耐久性、優れた耐へたり
性を示し、着用時蒸れにくく、床つき感がなく座り心地
の良いクッション材に適した繊維構造体である。特に本
発明の最も好ましい実施形態の繊維構造体は発泡ポリウ
レタンに近い優れた耐熱耐久性、優れた耐へたり性を示
し、発泡ポリウレタンに比べ、安全性の高い快適なクッ
ション材に最適な繊維構造体及びその製法である。ま
た、該弾性複合繊維が熱可塑性ポリマ−からなる繊維構
造体であるので、開繊再成形することで再び繊維構造体
としてリサイクルができ、地球環境の保全にも極めて有
用である。本発明の繊維構造体の有用な用途としては、
特に使用条件が過酷な自動車用、鉄道車両用及び船舶用
に最適である。勿論、家具、ベット用途にも適してい
る。Industrial Applicability The fiber structure of the present invention has a structure in which the non-elastic crimped short fibers are heat-bonded with the thermoplastic elastomer component by the elastic composite fiber composed of the thermoplastic elastomer in the matrix of the non-elastic crimped short fibers. As it is a fibrous structure that forms a three-dimensional network structure with excellent elasticity, it has excellent cushioning properties, excellent heat resistance and durability, and excellent sag resistance. A fiber structure suitable for a cushioning material that is comfortable to sit on. In particular, the fiber structure of the most preferred embodiment of the present invention exhibits excellent heat resistance and durability similar to foamed polyurethane, and excellent settling resistance, and is the most suitable fiber structure for a cushioning material with higher safety than foamed polyurethane. The body and its manufacturing method. Further, since the elastic composite fiber is a fiber structure made of a thermoplastic polymer, it can be recycled as a fiber structure again by opening and remolding, and it is very useful for preservation of the global environment. Useful applications of the fiber structure of the present invention,
It is especially suitable for automobiles, railway vehicles, and ships that have severe operating conditions. Of course, it is also suitable for furniture and bed applications.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−357990(JP,A) 特開 平5−163657(JP,A) 特開 平5−163658(JP,A) 特開 平5−247819(JP,A) 国際公開91/019032(WO,A1) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-357990 (JP, A) JP-A-5-163657 (JP, A) JP-A-5-163658 (JP, A) JP-A-5- 247819 (JP, A) International publication 91/019032 (WO, A1) (58) Fields surveyed (Int.Cl. 7 , DB name) D04H 1/00-18/00 B68G 1/00-15/00 D01F 1 / 00-13/04
Claims (2)
(B)が三次元的に混合されてなる繊維構造体であり、
上記弾性複合繊維(B)は、非弾性捲縮短繊維(A)を
形成するポリマーの融点より40℃以上低い融点を有す
る熱可塑性エラストマー(C)と、該熱可塑性エラスト
マーより30℃以上高い融点を有する熱可塑性エラスト
マー(D)よりなり、熱可塑性エラストマー(C)が複
合繊維の表面に少なくとも2分の1以上露出しており、
繊維(A)と繊維(B)あるいは繊維(B)と繊維
(B)が三次元的に形成された接点で熱融着により接着
した部分が散在しており、密度が0.005〜0.10
g/cm3 であることを特徴とする繊維構造体。1. A fibrous structure obtained by three-dimensionally mixing non-elastic crimped short fibers (A) and elastic composite fibers (B),
The elastic conjugate fiber (B) has a thermoplastic elastomer (C) having a melting point of 40 ° C. or more lower than that of the polymer forming the non-elastic crimped short fiber (A), and a melting point of 30 ° C. or more higher than the thermoplastic elastomer. The thermoplastic elastomer (D) has, and the thermoplastic elastomer (C) is exposed on the surface of the composite fiber at least ½ or more,
At the contact points where the fibers (A) and the fibers (B) or the fibers (B) and the fibers (B) are three-dimensionally formed, the portions bonded by heat fusion are scattered, and the density is 0.005 to 0. 10
A fibrous structure characterized in that it is g / cm 3 .
巻縮短繊維を構成するポリマ−の融点より少なくとも4
0℃以上低い融点を有する熱可塑性エラストマー(C)
と熱接着成分より少なくとも30℃高い融点を有する熱
可塑性エラストマ−(D)とからなり、前者(C)が繊
維表面に少なくとも1/2以上露出した弾性複合繊維と
を混綿、開繊して弾性複合繊維同士及び複合繊維と非弾
性捲縮短繊維との三次元的な繊維接点を形成させた後、
熱接着成分となる熱可塑性エラストマー(C)の融点よ
り少なくとも10℃以上高い温度で熱処理し、繊維接点
のうち、少なくとも一部の繊維接点を熱接着させること
を特徴とする繊維構造体の製法。2. The melting point of the non-elastic crimped short fibers and the polymer constituting the non-elastic crimped short fibers in the heat-bonding component is at least 4 from the melting point.
Thermoplastic elastomer (C) having a melting point lower than 0 ° C
And a thermoplastic elastomer (D) having a melting point at least 30 ° C. higher than that of the heat-adhesive component, and the former (C) is mixed with the elastic composite fiber exposed at least ½ or more on the fiber surface to open and elastic After forming a three-dimensional fiber contact between the composite fibers and between the composite fiber and the non-elastic crimped short fiber,
A method for producing a fiber structure, which comprises heat-treating at a temperature at least 10 ° C. higher than a melting point of a thermoplastic elastomer (C) as a heat-bonding component to thermally bond at least a part of the fiber contacts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5868493A JP3454363B2 (en) | 1993-03-18 | 1993-03-18 | Fiber structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5868493A JP3454363B2 (en) | 1993-03-18 | 1993-03-18 | Fiber structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06269579A JPH06269579A (en) | 1994-09-27 |
JP3454363B2 true JP3454363B2 (en) | 2003-10-06 |
Family
ID=13091388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5868493A Expired - Lifetime JP3454363B2 (en) | 1993-03-18 | 1993-03-18 | Fiber structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3454363B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5027442B2 (en) * | 2006-05-18 | 2012-09-19 | 帝人ファイバー株式会社 | Manufacturing method of fiber cushion material |
JP5571454B2 (en) * | 2010-05-17 | 2014-08-13 | 帝人株式会社 | Manufacturing method of composite fiber sheet and composite fiber sheet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69127162T2 (en) * | 1990-05-28 | 1998-02-12 | Teijin Ltd | UPHOLSTERY MATERIAL AND ITS PRODUCTION |
JPH04357990A (en) * | 1991-05-31 | 1992-12-10 | Unitika Ltd | Polyester wadding for cushion material |
JP3092679B2 (en) * | 1992-02-27 | 2000-09-25 | 東洋紡績株式会社 | Cushioning material |
JPH05163657A (en) * | 1991-12-13 | 1993-06-29 | Teijin Ltd | Cushion structure and its use |
JPH05163658A (en) * | 1991-12-16 | 1993-06-29 | Teijin Ltd | Cushion structure and its use |
-
1993
- 1993-03-18 JP JP5868493A patent/JP3454363B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06269579A (en) | 1994-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0603853B1 (en) | Structured fiber material and its production | |
JP3454363B2 (en) | Fiber structure and manufacturing method thereof | |
JP3496724B2 (en) | Fiber structure and manufacturing method thereof | |
JP3204344B2 (en) | Elastomer-based heat-bonded conjugate fiber and method for producing the same | |
JP3654366B2 (en) | Fibrous wadding material and method for producing the same | |
JP3092679B2 (en) | Cushioning material | |
JP3157393B2 (en) | Fiber molded high elastic cushioning material | |
JP3275973B2 (en) | Elastomer-based heat-bonded fiber and method for producing the same | |
JP3275974B2 (en) | Polyester-based low-shrink heat-bonded fiber | |
JP3102529B2 (en) | Fiber structure | |
JP3129557B2 (en) | Heat resistant fiber structure | |
JP2002000408A (en) | Vehicle seat | |
JP3468341B2 (en) | Thermal adhesive polyester fiber | |
JP3643649B2 (en) | Elastic nonwoven fabric | |
JP3610405B2 (en) | Cushion chair | |
JP3646814B2 (en) | Cushion material and its manufacturing method | |
JP2001061605A (en) | Seat for vehicle | |
JP3627826B2 (en) | Mat and its manufacturing method | |
JPH0913219A (en) | Thermally adhesive fiber and its production | |
JPH06192916A (en) | Heat-resistant elastomeric hot-melt fiber | |
JP4269387B2 (en) | Thermal bonding fiber and cushioning material | |
JP3431092B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3637929B2 (en) | Mat and its manufacturing method | |
JPH07238462A (en) | Nonwoven fabric laminated structure, its production and product using the same | |
JPH07305256A (en) | Staple fiber nonwoven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20130725 |