JP3451288B2 - Collision type air flow pulverizer, fine powder production apparatus and toner production method - Google Patents
Collision type air flow pulverizer, fine powder production apparatus and toner production methodInfo
- Publication number
- JP3451288B2 JP3451288B2 JP11617692A JP11617692A JP3451288B2 JP 3451288 B2 JP3451288 B2 JP 3451288B2 JP 11617692 A JP11617692 A JP 11617692A JP 11617692 A JP11617692 A JP 11617692A JP 3451288 B2 JP3451288 B2 JP 3451288B2
- Authority
- JP
- Japan
- Prior art keywords
- collision
- chamber
- fine powder
- crushed
- crushing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 220
- 238000004519 manufacturing process Methods 0.000 title claims description 64
- 239000000463 material Substances 0.000 claims description 93
- 230000001133 acceleration Effects 0.000 claims description 74
- 238000010298 pulverizing process Methods 0.000 claims description 40
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 15
- 238000000227 grinding Methods 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 239000003086 colorant Substances 0.000 claims description 5
- 238000003801 milling Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 55
- 238000009826 distribution Methods 0.000 description 26
- 229920001577 copolymer Polymers 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- -1 vinyl benzoate Chemical compound 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 10
- 239000000428 dust Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical group [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Natural products OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 229960004889 salicylic acid Drugs 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- UIYCHXAGWOYNNA-UHFFFAOYSA-N vinyl sulfide Chemical compound C=CSC=C UIYCHXAGWOYNNA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 1
- OSNILPMOSNGHLC-UHFFFAOYSA-N 1-[4-methoxy-3-(piperidin-1-ylmethyl)phenyl]ethanone Chemical compound COC1=CC=C(C(C)=O)C=C1CN1CCCCC1 OSNILPMOSNGHLC-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- DPNGUUBTOATYSA-UHFFFAOYSA-N 1-ethenylnaphthalene;styrene Chemical compound C=CC1=CC=CC=C1.C1=CC=C2C(C=C)=CC=CC2=C1 DPNGUUBTOATYSA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- XGRZWVWRMKAQNU-UHFFFAOYSA-K 2-carboxyphenolate;chromium(3+) Chemical compound [Cr+3].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O XGRZWVWRMKAQNU-UHFFFAOYSA-K 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- FEIQOMCWGDNMHM-UHFFFAOYSA-N 5-phenylpenta-2,4-dienoic acid Chemical compound OC(=O)C=CC=CC1=CC=CC=C1 FEIQOMCWGDNMHM-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- HIBWGGKDGCBPTA-UHFFFAOYSA-N C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 HIBWGGKDGCBPTA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 206010022979 Iron excess Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Natural products CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QFFVPLLCYGOFPU-UHFFFAOYSA-N barium chromate Chemical compound [Ba+2].[O-][Cr]([O-])(=O)=O QFFVPLLCYGOFPU-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- UTOVMEACOLCUCK-PLNGDYQASA-N butyl maleate Chemical compound CCCCOC(=O)\C=C/C(O)=O UTOVMEACOLCUCK-PLNGDYQASA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- ZARXZEARBRXKMO-UHFFFAOYSA-N n,n-bis(ethenyl)aniline Chemical compound C=CN(C=C)C1=CC=CC=C1 ZARXZEARBRXKMO-UHFFFAOYSA-N 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HILCQVNWWOARMT-UHFFFAOYSA-N non-1-en-3-one Chemical compound CCCCCCC(=O)C=C HILCQVNWWOARMT-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical class C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002102 polyvinyl toluene Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003066 styrene-(meth)acrylic acid ester copolymer Polymers 0.000 description 1
- 229920006249 styrenic copolymer Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Developing Agents For Electrophotography (AREA)
- Disintegrating Or Milling (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ジェット気流の如き高
圧気体を用いた衝突式気流粉砕機、気流分級手段及び高
圧気体を用いて粉砕を行うための衝突式気流粉砕手段を
具備する微粉体製造装置、及び静電荷像現像用トナーを
製造するための方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine powder having a collision type air flow pulverizer using a high pressure gas such as a jet air flow, an air flow classification means and a collision type air flow pulverization means for pulverizing using a high pressure gas. The present invention relates to a manufacturing apparatus and a method for manufacturing a toner for developing an electrostatic image.
【0002】[0002]
【従来の技術】ジェット気流の如き高圧気体を用いた衝
突式気流粉砕機は、ジェット気流で粉体原料を搬送し、
加速管の出口より噴射し、粉体原料を加速管の出口の開
口面に対向して設けた衝突部材の衝突面に衝突させて、
その衝撃力により粉体原料を粉砕している。2. Description of the Related Art A collision type air flow crusher using a high pressure gas such as a jet air flow conveys a powder raw material by a jet air flow,
It is injected from the outlet of the acceleration tube, and the powder raw material is collided with the collision surface of the collision member provided facing the opening surface of the outlet of the acceleration tube,
The powder material is crushed by the impact force.
【0003】例えば、図23に示す衝突式気流粉砕機で
は、高圧気体供給ノズル47を接続した加速管46の出
口45に対向して衝突部材43を設け、前記加速管46
に供給した高圧気体により、加速管46の中途に連通さ
せた粉体原料供給口から加速管46内に粉体原料を吸引
し、粉体原料を高圧気体とともに噴出して衝突部材43
の衝突面に衝突させ、その衝撃によって粉砕している。For example, in the collision type air flow crusher shown in FIG. 23, a collision member 43 is provided so as to face the outlet 45 of the acceleration pipe 46 to which the high pressure gas supply nozzle 47 is connected, and the acceleration pipe 46 is provided.
The high pressure gas supplied to the suction pipe 46 sucks the powder raw material into the acceleration pipe 46 from the powder raw material supply port communicating with the middle of the acceleration pipe 46 and ejects the powder raw material together with the high pressure gas to collide with the collision member 43.
It collides with the collision surface of and is crushed by the impact.
【0004】しかしながら、図23の衝突式気流粉砕機
では、被粉砕物の供給口40が加速管46の中途に設け
られているため、加速管46内に吸引導入された被粉砕
物は、被粉砕物供給口40を通過直後に、高圧気体供給
ノズル47より噴出する高圧気流により加速管出口方向
に向かって流路を変更しながら高圧気流中に分散され急
加速される。この状態において被粉砕物の比較的粗粒子
は、慣性力の影響から加速管内の低流部を流れ、また、
比較的微粒子は、加速管内の高流部を流れるので、高圧
気流中に十分に均一に分散されずに、被粉砕物濃度の高
い流れと低い流れに分離したまま、被粉砕物が対向する
衝突部材に部分的に集中して衝突することになり、粉砕
効率が低下しやすく、処理能力の低下を引き起こしやす
い。However, in the collision type air flow crusher of FIG. 23, since the supply port 40 for the object to be ground is provided in the middle of the acceleration pipe 46, the object to be ground sucked and introduced into the acceleration pipe 46 is Immediately after passing through the pulverized material supply port 40, the high-pressure gas jetted from the high-pressure gas supply nozzle 47 disperses in the high-pressure air stream while changing the flow path toward the exit of the accelerating pipe and is rapidly accelerated. In this state, the relatively coarse particles of the object to be crushed flow in the low flow part in the acceleration tube due to the influence of inertial force, and
Since the relatively fine particles flow in the high flow part in the acceleration tube, they are not sufficiently evenly dispersed in the high pressure air flow, and the objects to be ground face each other in a collision where the particles to be ground are separated into a high-concentration flow and a low-concentration flow. This results in a partial concentrated collision with the member, which tends to reduce the pulverization efficiency and the processing capacity.
【0005】衝突面41は、その近傍において、局部的
に被粉砕物及び粉砕物からなる粉塵濃度の高い部分が発
生しやすいため、被粉砕物が樹脂等の低融点物質を含有
する場合は、被粉砕物の融着、粗粒化、凝集等が発生し
易い。また、被粉砕物に摩耗性がある場合は、衝突部材
の衝突面や、加速管に局部的な粉体摩耗が起こり易く、
衝突部材の交換頻度が多くなり、連続的に安定に生産す
るという面では改良すべき点があった。In the vicinity of the collision surface 41, the crushed material and a portion of the crushed material having a high dust concentration are likely to be locally generated. Therefore, when the crushed material contains a low melting point substance such as resin, The objects to be crushed are likely to be fused, coarsened, or agglomerated. Further, when the crushed object has abradability, local powder wear is likely to occur on the collision surface of the collision member and the acceleration tube,
The collision member has to be replaced more frequently, and there is a point to be improved in terms of continuous and stable production.
【0006】衝突部材の衝突面の先端部分が、頂角11
0〜175°を有する円錐形状のもの(特開平1−25
4266号公報)や、衝突面が衝突部材の中心軸の延長
線と直角に交わる平面上に突起を有した衝突板形状(実
開平1−148740号公報)が提案されている。これ
らの粉砕機では、衝突面近傍での局部的な粉塵濃度の上
昇をおさえることができるために、粉砕物の融着、粗粒
化、凝集等を多少やわらげることができ、粉砕効率的も
若干向上するが、さらなる改良が望まれている。The tip of the collision surface of the collision member has an apex angle of 11
Conical shape having 0 to 175 ° (Japanese Patent Laid-Open No. 1-25
No. 4266) or a collision plate shape having a projection on a plane where the collision surface intersects at right angles with the extension line of the central axis of the collision member (Japanese Utility Model Laid-Open No. 1-148740). These pulverizers can suppress the local increase in dust concentration in the vicinity of the collision surface, so that the fusion, coarsening, and agglomeration of the pulverized material can be somewhat softened, and the pulverization efficiency can be slightly improved. Although improved, further improvement is desired.
【0007】従来、微粉体製造装置として、衝突式気流
粉砕機と組合される気流分級機は、種々の分級機が提案
されている。その代表的なものとして、図24に示した
ようなディスパージョンセパレーター(日本ニューマチ
ック工業社製)が一般的に用いられている。Various air classifiers have been proposed as an apparatus for producing fine powder, which are combined with a collision type air flow crusher. As a typical example thereof, a dispersion separator (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) as shown in FIG. 24 is generally used.
【0008】図24に示したようなこの種の気流分級機
の分級室64への粉体材料供給部は、サイクロン状の形
状をなしており、上部カバー70の上面中央部には案内
管62を起立状に設け、該案内管62の上部外周面に供
給管63が接続されている。供給管63は、供給される
粉体材料が案内管円周接線方向に導入されるように接続
されている。The powder material supply portion to the classification chamber 64 of this type of air flow classifier as shown in FIG. 24 has a cyclone shape, and the guide pipe 62 is provided at the center of the upper surface of the upper cover 70. Is provided upright, and the supply pipe 63 is connected to the upper outer peripheral surface of the guide pipe 62. The supply pipe 63 is connected so that the powder material to be supplied is introduced in the circumferential tangential direction of the guide pipe.
【0009】図24に示す気流分吸機において、本体ケ
ーシング71の下部には円周方向に配列する分級ルーバ
ー65を設け、外部から分級室64へ旋回流を起こす分
級エアーを分級ルーバー65を介して取り入れている。In the air flow sucker shown in FIG. 24, a classification louver 65 arranged in the circumferential direction is provided in the lower portion of the main body casing 71, and classification air that causes a swirling flow from the outside to the classification chamber 64 is passed through the classification louver 65. I am taking it in.
【0010】分級室64の底部に、中央部が高くなる円
錐状(傘状)の分級板67を設け、該分級板67の外周
囲に粗粉排出口66を形成する。また、分級板67の中
央部には微粉排出管68を接続し、該微粉排出管68の
下端部をL字形に屈曲し、この屈曲端部を下部ケーシン
グ72の側壁より外部に位置させる。さらに該微粉排出
管68はサイクロンや集塵機のような微粉回収手段を介
して吸引ファンに接続しており、該吸引ファンにより分
級室64に吸引力を作用させ、該ルーバー65間より分
級室64に流入する吸引エアーによって分級に要する旋
回流を起こしている。At the bottom of the classifying chamber 64, a conical (umbrella) classifying plate 67 having a high central portion is provided, and a coarse powder discharge port 66 is formed on the outer periphery of the classifying plate 67. Further, a fine powder discharge pipe 68 is connected to the central portion of the classification plate 67, the lower end portion of the fine powder discharge pipe 68 is bent into an L shape, and the bent end portion is located outside the side wall of the lower casing 72. Further, the fine powder discharge pipe 68 is connected to a suction fan via a fine powder collecting means such as a cyclone or a dust collector, and a suction force is applied to the classification chamber 64 by the suction fan so that the classification chamber 64 is moved between the louvers 65. The swirling flow required for classification is caused by the inflowing suction air.
【0011】供給管63より案内管62内に粉体材料を
供給すると、該粉体材料は案内管62の内周面に沿って
旋回しながら下降する。この場合粉体材料は、供給管6
3より案内管62内周面に沿って帯状に下降するため、
分級室64に流入する粉体材料の分布及び濃度が不均一
となり(分級室へ案内筒内周面の一部からのみ粉体材料
は流入する)、分散が悪い。When the powder material is supplied from the supply pipe 63 into the guide tube 62, the powder material descends while swirling along the inner peripheral surface of the guide tube 62. In this case, the powder material is the supply pipe 6
3 descends in a strip shape along the inner peripheral surface of the guide tube 62,
The distribution and concentration of the powder material flowing into the classification chamber 64 becomes nonuniform (the powder material flows into the classification chamber only from a part of the inner peripheral surface of the guide cylinder), and the dispersion is poor.
【0012】また、処理量を大きくとると粉体材料の凝
集が一層起こり易く、さらに分散が十分に行われなくな
り、高精度の分級が行えないという問題点がある。ま
た、粉体材料を搬送するエアー量が多い場合、分級室に
流入するエアーの量が多いため分級室において旋回する
粒子の中心向き速度が大きくなり分離粒子径が大きくな
るという問題点がある。Further, when the treatment amount is increased, the powder material is more likely to be agglomerated, the dispersion is not sufficiently performed, and high-precision classification cannot be performed. In addition, when the amount of air that conveys the powder material is large, the amount of air that flows into the classifying chamber is large, so that there is a problem that the velocity of the particles swirling in the classifying chamber toward the center becomes large and the separated particle size becomes large.
【0013】したがって、通常分離粒子径を小さくする
場合、案内管上部よりエアーをダンパー61によりコン
トロールして抜いているが、抜くエアー量が多いと粉体
材料の一部も排出し、損失するという実用上の問題点が
生じる場合もある。Therefore, in order to reduce the size of the separated particles, air is extracted from the upper part of the guide tube by controlling the damper 61. However, if the amount of air to be extracted is large, part of the powder material is also discharged and lost. There may be practical problems.
【0014】近年、複写機やプリンター等の高画質化、
高精細化に伴い現像剤としてのトナーに要求される性能
も一段とシビアになってきており、トナーの粒径は小さ
くなり、トナーの粒度分布としては、粗粒子の無い、微
粉の少ないシャープなものが要求される様になってきて
いる。In recent years, high image quality of copying machines and printers,
The performance required for toner as a developer has become more severe with higher definition, and the particle size of the toner has become smaller, and the particle size distribution of the toner is sharp with no coarse particles and few fine powder. Are becoming required.
【0015】静電荷像現像用トナーの一般的な製造方法
としては、被転写材に定着させるための結着樹脂、トナ
ーとしての色味を出させる各種着色剤、粒子に電荷を付
与させるための荷電制御剤、また特開昭54−4214
1号公報、特開昭55−18656号公報に示されるよ
うないわゆる一成分現像法においては、トナー自身に搬
送性等を付与するための各種磁性材料を用い、他に必要
に応じて離型剤、流動性付与剤を乾式混合し、しかる後
ロールミル、エクストルーダー等の汎用混練装置にて溶
融混練し、冷却固化した後に、ジェット気流式粉砕機、
機械衝撃式粉砕機等の各種粉砕装置により微砕化し、各
種風力分級機により分級を行うことにより、トナーとし
て必要な粒径にそろえる。これに必要に応じて流動化剤
や滑剤等々を乾式混合しトナーとする。また二成分現像
方法に用いる場合は各種磁性キャリアとトナーとを混ぜ
合わせた後、画像形成に供する。As a general method for producing a toner for developing an electrostatic image, a binder resin for fixing the toner on a transfer material, various colorants for giving a tint as a toner, and a charge for imparting an electric charge to particles are used. Charge control agent, and JP-A-54-4214
In the so-called one-component developing method as disclosed in JP-A No. 1 and JP-A No. 55-18656, various magnetic materials for imparting transportability and the like to the toner itself are used. Agent, a fluidity-imparting agent are dry-mixed, and then melt-kneaded with a roll mill, a general-purpose kneading device such as an extruder, and after cooling and solidifying, a jet stream type pulverizer,
Fine particles are pulverized by various crushing devices such as a mechanical impact crusher and classified by various air classifiers, so that the particle size required for the toner is adjusted. If necessary, a fluidizing agent, a lubricant and the like are dry mixed to obtain a toner. When used in the two-component developing method, various magnetic carriers and toner are mixed and then used for image formation.
【0016】上述の如く、微細粒子であるトナー粒子を
得るためには、従来、図25のフローチャートに示され
る方法または該方法を一部分として使用する方法が一般
的に採用されている。As described above, in order to obtain toner particles which are fine particles, conventionally, the method shown in the flow chart of FIG. 25 or a method of using the method as a part is generally adopted.
【0017】トナー粗砕物は、第1分級手段に連続的ま
たは逐次供給されて分級され、分級された規定粒度以上
の粗粒子群を主成分とする粗粉は粉砕手段に送って粉砕
された後、再度第1分級手段に循環される。The coarsely pulverized toner is continuously or sequentially supplied to the first classifying means to be classified, and the classified coarse powder mainly containing a group of coarse particles having a size not less than the specified size is sent to the pulverizing means and pulverized. , Is again circulated to the first classification means.
【0018】他の規定粒径範囲内の粒子及び規定粒径以
下の粒子を主成分とするトナー微粉砕品は第2分級手段
に送られ、規定粒度を有する粒子群を主成分とする中粉
体と規定粒度以下の粒子群を主成分とする細粉体とに分
級される。The finely pulverized toner particles containing other particles within the specified particle size range and particles with the specified particle size or less as the main component are sent to the second classifying means, and the intermediate powder containing the particle group having the specified particle size as the main component. It is classified into a body and a fine powder whose main component is a particle group having a particle size not larger than a prescribed size.
【0019】粉砕手段としては、各種粉砕装置が用いら
れるが、結着樹脂を主とするトナー粗粉砕物の粉砕に
は、図23に示す如きジェット気流を用いたジェット気
流式粉砕機、特に衝突式気流粉砕機が用いられている。
前述の如く、図23に示す粉砕機は、粉砕効率が低い、
処理能力が少ない、衝突面上での粉砕物の融着物の発
生、及び衝突部材の局部摩耗に依る交換頻度が多い等の
問題点がある。Various crushing devices may be used as the crushing means. To crush the coarsely crushed toner mainly composed of the binder resin, a jet airflow type crusher using a jet airflow as shown in FIG. 23, particularly a collision is used. Airflow crusher is used.
As described above, the pulverizer shown in FIG. 23 has low pulverization efficiency,
There are problems such as low processing capacity, generation of a fusion product of pulverized material on the collision surface, and frequent replacement due to local wear of the collision member.
【0020】また、第1分級手段として用いる分級機と
しては、分級羽根の回転により強制的に旋回気流をつく
り分級を行うロータ型分級機や外部から導入される気流
に依り旋回気流をつくり分級を行うスパイラル気流分級
機があるが、結着樹脂を主とするトナーの分級には、粉
体が接触する部分に可動部分の少ないスパイラル気流分
級機が好ましく用いられる。As a classifier used as the first classifying means, a rotor type classifier forcibly creating a swirling airflow by rotation of a classifying blade or a classifying device that creates a swirling airflow by an airflow introduced from the outside Although there is a spiral airflow classifier that does this, a spiral airflow classifier having few moving parts in a portion in contact with the powder is preferably used for classifying a toner mainly composed of a binder resin.
【0021】前述の如く、粉体材料(トナー粉体)は、
図24において、供給管63より案内筒62内周面に沿
って帯状に下降するため分級室64に流入する粉体材料
(トナー粉体)の分布及び濃度が不均一となり(分級室
へ案内筒内周面の一部からのみ粉体材料(トナー粉体)
は流入する。)分散が悪く、処理量を大きくとると粉体
材料の凝集がいっそう起こり易く、さらに分散が十分に
行われなくなる為、分級精度が悪化し、トナー微粉砕品
は、粒度分布がシャープなものが得られずブロードなも
のとなり、トナーとしての品質、部どまり等が問題とな
り易い。As described above, the powder material (toner powder) is
In FIG. 24, the powder material (toner powder) flowing into the classification chamber 64 becomes uneven in distribution and concentration since it descends from the supply pipe 63 along the inner peripheral surface of the guide cylinder 62 in a strip shape ((guide cylinder to the classification chamber). Powder material (toner powder) only from a part of the inner surface
Flows in. ) Dispersion is poor, and if the amount of treatment is large, the powder material is more likely to agglomerate, and the dispersion is not performed sufficiently, so the classification accuracy deteriorates, and the finely pulverized toner product has a sharp particle size distribution. It is not obtained, and becomes broad, and problems such as quality as a toner and misalignment are likely to occur.
【0022】[0022]
【発明が解決しようとする課題】本発明の目的は、上述
の如き問題点を解決した衝突式気流粉砕機、微粉体製造
装置及び静電荷像現像用トナーの製造方法を提供するこ
とにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a collision type airflow pulverizer, a fine powder producing apparatus and a method for producing a toner for developing an electrostatic charge image, which solves the above problems.
【0023】本発明の目的は、被粉砕物を効率よく粉砕
できる衝突式気流粉砕機及び微粉体製造装置を提供する
ことにある。An object of the present invention is to provide a collision type air flow crusher and a fine powder manufacturing apparatus capable of efficiently crushing an object to be crushed.
【0024】本発明の目的は、粉砕物の融着及び凝集を
防止し得る衝突式気流粉砕機及び微粉体製造装置を提供
することにある。It is an object of the present invention to provide a collision type air flow crusher and a fine powder manufacturing apparatus capable of preventing fusion and agglomeration of crushed products.
【0025】本発明の目的は、粗粒子の生成を防止し得
る衝突式気流粉砕機及び微粉体製造装置を提供すること
にある。An object of the present invention is to provide a collision type air flow pulverizer and a fine powder manufacturing apparatus capable of preventing the generation of coarse particles.
【0026】本発明の目的は、衝突部材の衝突面及び加
速管での局部的摩耗を防止し得る衝突式気流粉砕機及び
微粉体製造装置を提供することにある。An object of the present invention is to provide a collision type air flow crusher and a fine powder manufacturing apparatus capable of preventing local wear on the collision surface of the collision member and the acceleration tube.
【0027】本発明の目的は、被粉砕物の粉砕効率が高
く、粒度分布のシャープな微粉砕物を生成し得る微粉体
製造装置を提供することにある。An object of the present invention is to provide an apparatus for producing fine powder which has a high pulverization efficiency of the pulverized material and can produce a pulverized material having a sharp particle size distribution.
【0028】本発明の目的は、精緻な粒度分布を有する
静電荷像現像用トナーの製造方法を提供することにあ
る。An object of the present invention is to provide a method for producing a toner for developing an electrostatic charge image having a fine particle size distribution.
【0029】本発明の目的は、効率良く静電荷像現像用
トナーを生成し得る製造方法を提供することにある。An object of the present invention is to provide a manufacturing method capable of efficiently producing a toner for developing an electrostatic image.
【0030】[0030]
【課題を解決するための手段及び作用】本発明は、高圧
気体により被粉砕物を搬送し加速するための加速管と、
被粉砕物を微粉砕するための粉砕室とを有する衝突式気
流粉砕機において、該加速管の後端部には、該加速管の
中心軸と同軸上に位置する高圧気体噴出ノズルが具備さ
れ、該高圧気体噴出ノズルは、長軸方向の途中にスロー
ト部を有し、流路断面積が長軸方向下流側に向かって一
旦絞られた後、再度広がっている形状を有しており、該
高圧気体噴出ノズルの周囲には、該高圧気体噴出ノズル
から高圧気体を噴出することによって発生するエゼクタ
ー効果により、該被粉砕物を加速管内に供給するための
被粉砕物供給口が設けられており、該粉砕室内には、該
加速管の出口の開口面に対向して設けた衝突面を有する
衝突部材が具備されており、該衝突部材の衝突面は、加
速管の長軸に対して90°よりも小さい傾きθ1を有す
る斜面を有しており、該粉砕室は、該加速管出口を有す
る粉砕室前壁及び該衝突部材で粉砕された被粉砕物を衝
突によりさらに粉砕するための粉砕室側壁を有し、該粉
砕室前壁と該粉砕室側壁とが連設されており、該粉砕室
側壁と該衝突部材の縁端部との最近接距離l1は、該衝
突面に対向する該粉砕室前壁と該衝突部材の縁端部との
最近接距離l2よりも短いことを特徴とする衝突式気流
粉砕機に関する。SUMMARY OF THE INVENTION The present invention comprises an accelerating tube for conveying and accelerating an object to be crushed by a high pressure gas.
In a collision type air flow crusher having a crushing chamber for finely crushing an object to be crushed, a high pressure gas jet nozzle located coaxially with a central axis of the accelerating pipe is provided at a rear end portion of the accelerating pipe. The high-pressure gas ejection nozzle has a throat part in the middle of the long axis direction, and has a shape in which the flow passage cross-sectional area is once narrowed toward the downstream side in the long axis direction and then spreads again. Around the high-pressure gas ejection nozzle, there is provided a crushed object supply port for supplying the crushed object into the acceleration pipe by an ejector effect generated by ejecting high-pressure gas from the high-pressure gas injection nozzle. The crushing chamber is provided with a collision member having a collision surface provided facing the opening surface of the outlet of the acceleration tube, and the collision surface of the collision member is relative to the long axis of the acceleration tube. Has a slope with an inclination θ1 less than 90 ° The crushing chamber has a crushing chamber front wall having the accelerating pipe outlet and a crushing chamber side wall for further crushing the object to be crushed by the collision member by collision, and the crushing chamber front wall and the crushing chamber The chamber side walls are connected to each other, and the closest distance l 1 between the crushing chamber side wall and the edge of the collision member is such that the crushing chamber front wall facing the collision surface and the edge of the collision member. It relates to a collision type airflow crusher characterized by being shorter than the closest distance l 2 to.
【0031】さらに、本発明は、気流分級手段と、衝突
式気流粉砕手段とが連通している微粉体製造装置におい
て、
(a)気流分級手段は、粉体供給管と分級室を有し;分
級室の上部に粉体供給管と連通する案内室が設けられて
おり;案内室と分級室との間に複数の導入ルーバーが設
けられており、導入ルーバーの間隙を介して粉体が搬送
エアーとともに案内室から分級室へ導入され;分級室の
底部に、中央部が高くなっている分級板が設けられてお
り;分級室の側壁に分級ルーバーを有し、分級室におい
て搬送エアーとともに供給された粉体は、分級ルーバー
間の間隙を介して流入するエアーによって旋回流動さ
れ、粉体は、遠心力によって微粉と粗粉に分級され;分
級された微粉を排出するための微粉排出口が分級板の中
央部に設けられ、微粉排出口には微粉排出管が接続され
ており;分級された粗粉を排出するための粗粉排出口が
分級板の外周部に形成されており;排出された粗粉を衝
突式気流粉砕手段に供給するための連通手段が具備され
ており、
(b)衝突式気流粉砕手段は、高圧気体により供給され
た粗粉を搬送加速するための加速管と、粗粉を微粉砕す
るための粉砕室とを有し;該加速管の後端部には、該加
速管の中心軸と同軸上に位置する高圧気体噴出ノズルが
具備され、該高圧気体噴出ノズルは、長軸方向の途中に
スロート部を有し、流路断面積が長軸方向下流側に向か
って一旦絞られた後、再度広がっている形状を有してお
り、該高圧気体噴出ノズルの周囲には、該高圧気体噴出
ノズルから高圧気体を噴出することによって発生するエ
ゼクター効果により、粗粉を加速管内に供給するための
粗粉供給口が設けられており;該粉砕室内には、該加速
管の出口の開口面に対向して設けた衝突面を有する衝突
部材が具備されており、該衝突部材の衝突面は、加速管
の長軸に対して90°よりも小さい傾きθ1を有する斜
面を有しており;該粉砕室は、該加速管出口を有する粉
砕室前壁及び該衝突部材で粉砕された粗粉の粉砕物を衝
突によりさらに粉砕するための粉砕室側壁を有し、該粉
砕室前壁と該粉砕室側壁とが連設されており;該粉砕室
側壁と該衝突部材の縁端部との最近接距離l1は、該衝
突面に対向する該粉砕室前壁と該衝突部材の縁端部との
最近接距離l2よりも短いことを特徴とする微粉体製造
装置に関する。Further, the present invention provides a fine powder manufacturing apparatus in which an air flow classifying means and a collision type air flow crushing means are in communication with each other, wherein (a) the air flow classifying means has a powder supply pipe and a classification chamber; A guide chamber communicating with the powder supply pipe is provided above the classification chamber; a plurality of introduction louvers are provided between the guide chamber and the classification chamber, and the powder is conveyed through the gap between the introduction louvers. Introduced from the guide room to the classifying chamber together with air; a classifying plate with a high central part is provided at the bottom of the classifying chamber; a classifying louver is provided on the side wall of the classifying chamber and is supplied together with the carrier air in the classifying chamber The separated powder is swirled and flowed by the air flowing in through the gap between the classification louvers, and the powder is classified into fine powder and coarse powder by centrifugal force; a fine powder discharge port for discharging the classified fine powder is provided. Installed in the center of the classifier , A fine powder discharge pipe is connected to the fine powder discharge port; a coarse powder discharge port for discharging the classified coarse powder is formed on the outer peripheral portion of the classification plate; A communication means for supplying the crushing means is provided, and (b) the collision type airflow crushing means is for accelerating the conveyance of the coarse powder supplied by the high-pressure gas, and for finely pulverizing the coarse powder. A crushing chamber; a high-pressure gas jet nozzle located coaxially with the central axis of the accelerating pipe is provided at the rear end of the accelerating pipe. Has a throat portion, and has a shape in which the flow passage cross-sectional area is once narrowed toward the downstream side in the major axis direction and then re-expanded, and the high pressure gas jet nozzle is surrounded by the high pressure gas. Due to the ejector effect generated by ejecting high-pressure gas from the ejection nozzle, A coarse powder supply port for supplying powder into the accelerating tube is provided; a collision member having a collision surface provided facing the opening surface of the outlet of the accelerating tube is provided in the crushing chamber. The impingement surface of the impingement member has a slope with an inclination θ1 of less than 90 ° with respect to the longitudinal axis of the acceleration tube; A crushing chamber side wall for further crushing the crushed coarse powder crushed by the collision member by collision is provided, and the crushing chamber front wall and the crushing chamber side wall are connected to each other; the crushing chamber side wall and the crushing chamber side wall. The closest distance l 1 to the edge of the collision member is smaller than the closest distance l 2 between the front wall of the crushing chamber facing the collision surface and the edge of the collision member. The present invention relates to a body manufacturing device.
【0032】さらに、本発明は、結着樹脂及び着色剤を
少なくとも含有する混合物を溶融混練し、混練物を冷却
し、冷却物を粉砕手段によって粉砕して粉砕物を得、得
られた粉砕物を気流分級手段で、粗粉と微粉とに分級
し、分級された粗粉を衝突式気流粉砕手段により微粉砕
して微粉体を生成し、生成した微粉体から気流分級手段
で微粉を分級し、分級された微粉から静電荷像現像用ト
ナーを製造する方法において、
(a)前記気流分級手段は、粉体供給管と分級室を有
し;分級室の上部に粉体供給管と連通する案内室が設け
られており;案内室と分級室との間に複数の導入ルーバ
ーが設けられており、導入ルーバーの間隙を介して粉体
が搬送エアーとともに案内室から分級室へ導入され;分
級室の底部に、中央部が高くなっている分級板が設けら
れており;分級室の側壁に分級ルーバーを有し、分級室
において搬送エアーとともに供給された粉体は、分級ル
ーバー間の間隙を介して流入するエアーによって旋回流
動され、粉体は、遠心力によって微粉と粗粉に分級さ
れ;分級された微粉を排出するための微粉排出口が分級
板の中央部に設けられ、微粉排出口には微粉排出管が接
続されており;分級された粗粉を排出するための粗粉排
出口が分級板の外周部に形成されており、
(b)衝突式気流粉砕手段は、高圧気体により供給され
た粗粉を搬送加速するための加速管と、粗粉を微粉砕す
るための粉砕室とを有し;該加速管の後端部には、該加
速管の中心軸と同軸上に位置する高圧気体噴出ノズルが
具備され、該高圧気体噴出ノズルは、長軸方向の途中に
スロート部を有し、流路断面積が長軸方向下流側に向か
って一旦絞られた後、再度広がっている形状を有してお
り、該高圧気体噴出ノズルの周囲には、該高圧気体噴出
ノズルから高圧気体を噴出することによって発生するエ
ゼクター効果により、粗粉を加速管内に供給するための
粗粉供給口が設けられており;該粉砕室内には、該加速
管の出口の開口面に対向して設けた衝突面を有する衝突
部材が具備されており、該衝突部材の衝突面は、加速管
の長軸に対して90°よりも小さい傾きθ1を有する斜
面を有しており;該粉砕室は、該加速管出口を有する粉
砕室前壁及び該衝突部材で粉砕された粗粉の粉砕物を衝
突によりさらに粉砕するための粉砕室側壁を有し、該粉
砕室前壁と該粉砕室側壁とが連設されており;該粉砕室
側壁と該衝突部材の縁端部との最近接距離l1は、該衝
突面に対向する該粉砕室前壁と該衝突部材の縁端部との
最近接距離l2よりも短く、
(c)前記気流分級手段から排出された粗粉を前記衝突
式気流粉砕手段に供給し、該粉砕室内において該粗粉を
該衝突部材の衝突面及び該粉砕室の側壁に衝突させて粗
粉の粉砕及び粗粉の粉砕物のさらなる粉砕を行うことを
特徴とするトナーの製造方法に関する。Further, in the present invention, a mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled, and the cooled product is pulverized by a pulverizing means to obtain a pulverized product. Is classified into coarse powder and fine powder by the air flow classification means, and the classified coarse powder is finely pulverized by the collision type air flow pulverization means to generate fine powder, and the fine powder is classified from the generated fine powder by the air flow classification means. In the method for producing a toner for developing an electrostatic charge image from classified fine powders, (a) the airflow classification means has a powder supply pipe and a classification chamber; the upper part of the classification chamber communicates with the powder supply pipe. A guide chamber is provided; a plurality of introduction louvers are provided between the guide chamber and the classification chamber, and the powder is introduced into the classification chamber from the guide chamber with the carrier air through the gap between the introduction louvers; Classification plate with a high central part at the bottom of the chamber Is provided; the side wall of the classification chamber has a classification louver, and the powder supplied together with the carrier air in the classification chamber is swirled by the air flowing in through the gap between the classification louvers, and the powder is Fine powder and coarse powder are classified by centrifugal force; a fine powder discharge port for discharging the classified fine powder is provided in the center of the classifying plate, and a fine powder discharge pipe is connected to the fine powder discharge port; A coarse powder discharge port for discharging the coarse powder is formed in the outer peripheral portion of the classifying plate, and (b) the collision type air flow crushing means is an acceleration pipe for accelerating the conveyance of the coarse powder supplied by the high pressure gas. A crushing chamber for finely crushing coarse powder; a high pressure gas jet nozzle located coaxially with the central axis of the acceleration pipe is provided at the rear end of the acceleration pipe, and the high pressure gas jet The nozzle has a throat part in the middle of the long axis direction, The cross-sectional area has a shape in which the cross-sectional area is once narrowed toward the downstream side in the major axis direction and then widens again, and high-pressure gas is jetted from the high-pressure gas jet nozzle to the periphery of the high-pressure gas jet nozzle. A coarse powder supply port for supplying coarse powder into the accelerating tube is provided by the ejector effect generated by; a collision surface provided opposite to the opening surface of the outlet of the accelerating tube is provided in the crushing chamber. And a collision surface of the collision member having a slope having an inclination θ1 of less than 90 ° with respect to a long axis of the acceleration tube; A crushing chamber front wall and a crushing chamber side wall for further crushing a crushed material of coarse powder crushed by the collision member, and the crushing chamber front wall and the crushing chamber side wall are connected to each other. Cage; closest distance l between the side wall of the crushing chamber and the edge of the collision member 1 is shorter than the closest distance l 2 between the crushing chamber front wall facing the collision surface and the edge of the collision member, and (c) the coarse powder discharged from the airflow classifying means is used in the collision type. The air-flow crushing means is supplied, and the coarse powder is collided with the collision surface of the collision member and the side wall of the pulverization chamber in the pulverization chamber to further pulverize the coarse powder and further pulverize the coarse powder. The present invention relates to a method for producing a toner.
【0033】[0033]
【実施例】以下、本発明をさらに具体的に説明する。The present invention will be described in more detail below.
【0034】実施例1
図1乃至図6は、本発明の衝突式気流粉砕機の一具体例
を説明するための図である。 Embodiment 1 FIGS. 1 to 6 are views for explaining a specific example of the collision type airflow crusher of the present invention.
【0035】図1において、被粉砕物供給管5より供給
された被粉砕物80は、加速管1の加速管スロート部2
の内壁と、高圧気体噴出ノズル3の外壁との間で形成さ
れた被粉砕物供給口4(スロート部分でもある)から加
速管1へ供給される。In FIG. 1, the crushed material 80 supplied from the crushed material supply pipe 5 is the accelerating pipe throat portion 2 of the accelerating pipe 1.
Is supplied to the accelerating pipe 1 from the object to be crushed supply port 4 (which is also a throat portion) formed between the inner wall of the above and the outer wall of the high pressure gas jet nozzle 3.
【0036】高圧気体噴出ノズル3の中心軸と、加速管
1の中心軸とは実質的に同軸上にある。The central axis of the high-pressure gas jet nozzle 3 and the central axis of the accelerating tube 1 are substantially coaxial.
【0037】一方、高圧気体は、高圧気体供給口6より
導入され、高圧気体チャンバー7を経由して好ましく
は、複数本の高圧気体導入管8を通り高圧気体噴出ノズ
ル3より加速管出口9方向に向って急激に膨張しながら
噴出する。この時、加速管スロート部2の近傍で発生す
るエゼクター効果により、被粉砕物80は、被粉砕物8
0と共存している気体に同伴されながら、被粉砕物供給
口4より、加速管出口9方向に向って加速管スロート部
2において高圧気体と均一に混合されながら急加速さ
れ、加速管出口9に対向した衝突部材10の衝突面16
に、粉塵濃度の偏りなく均一な固気混合流の状態で衝突
する。衝突時に発生する衝撃力は、十分分散した個々の
粒子(被粉砕物80)に与えられる為、非常に効率の良
い粉砕が実施できる。On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 6, passes through the high-pressure gas chamber 7, preferably through a plurality of high-pressure gas introduction pipes 8, and from the high-pressure gas ejection nozzle 3 toward the acceleration pipe outlet 9. Ejects while rapidly expanding toward. At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 2, the crushed object 80 is crushed by the crushed object 8
While being mixed with the gas coexisting with 0, it is rapidly accelerated from the object to be crushed supply port 4 toward the acceleration pipe outlet 9 while being uniformly mixed with the high-pressure gas in the acceleration pipe throat section 2, and the acceleration pipe outlet 9 The collision surface 16 of the collision member 10 facing the
Collide with each other in the state of a uniform solid-gas mixture flow with no uneven dust concentration. Since the impact force generated at the time of collision is given to the sufficiently dispersed individual particles (object 80 to be crushed), crushing can be performed very efficiently.
【0038】衝突部材10の衝突面16にて粉砕された
粉砕物は、さらに粉砕室12の側壁14と二次衝突(ま
たは、三次衝突)し、衝突部材10の後方に配設された
粉砕物排出口13より排出される。The crushed material crushed by the collision surface 16 of the collision member 10 further collides with the side wall 14 of the crushing chamber 12 in a secondary collision (or tertiary collision), and the pulverized material disposed behind the collision member 10 is crushed. It is discharged from the discharge port 13.
【0039】また、衝突部材10の衝突面16が図1に
示す如く、錐体形状や、図21及び図22に示す如く、
衝突面16が円錐状の突起を有する衝突面であること
が、粉砕室12内における粉砕物の分散を均一に行い、
側壁14との二次衝突を効率良く行う上で好ましい。さ
らに、粉砕物排出口13が衝突部材10よりも後方にあ
る場合、粉砕物の排出を円滑に行うことができる。Further, the collision surface 16 of the collision member 10 has a cone shape as shown in FIG. 1 or has a collision shape as shown in FIGS.
When the collision surface 16 is a collision surface having a conical projection, the crushed material is uniformly dispersed in the crushing chamber 12,
This is preferable for efficiently performing the secondary collision with the side wall 14. Further, when the crushed material discharge port 13 is located behind the collision member 10, the crushed material can be discharged smoothly.
【0040】図2は、粉砕室の拡大図を示す。図2にお
いて、衝突部材10の縁端部15と側壁14との最近接
距離l1 は、前壁17と衝突部材10の縁端部15との
最近接距離l2 よりも短いことが、加速管出口9の近傍
の粉砕室内の粉体濃度を高くしない為に重要である。さ
らに、最近接距離l1 が最近接距離l2 より短いので、
側壁での粉砕物の二次衝突を効率良くおこなうことがで
きる。また、衝突部材10は、加速管の長軸に対して9
0°よりも小さい傾きθ1 (より好ましくは、55°〜
87.5°、さらに好ましくは60°〜85°の傾きθ
1 )を有する斜面を衝突面として有することが、粉砕物
を均一に分散し、側壁14で二次衝突を効率良くおこな
うためには好ましい。FIG. 2 shows an enlarged view of the grinding chamber. In FIG. 2, the closest distance l 1 between the edge 15 of the collision member 10 and the side wall 14 is shorter than the closest distance l 2 between the front wall 17 and the edge 15 of the collision member 10. This is important in order not to increase the powder concentration in the crushing chamber near the tube outlet 9. Furthermore, since the closest distance l 1 is shorter than the closest distance l 2 ,
The secondary collision of the pulverized material on the side wall can be efficiently performed. Further, the collision member 10 is set to 9 with respect to the long axis of the acceleration tube.
Inclination θ 1 smaller than 0 ° (more preferably 55 ° to
Inclination θ of 87.5 °, more preferably 60 ° to 85 °
It is preferable to have an inclined surface having 1 ) as the collision surface in order to uniformly disperse the pulverized material and efficiently perform the secondary collision on the side wall 14.
【0041】図23に示す如く、衝突面41が加速管4
6に対して、90度の平面状の衝突部材である粉砕機に
比べ、傾斜した衝突面を有する粉砕機は、樹脂や粘着性
のある物質を粉砕する場合、被粉砕物の融着,凝集,粗
粒化が発生しにくく、高い粉塵濃度での粉砕が可能にな
る。また摩耗性のある被粉砕物においては、加速管内壁
や衝突部材の衝突面に発生する摩耗が局部的に集中する
ことがなく長寿命化が図れ、安定的な運転が可能にな
る。As shown in FIG. 23, the collision surface 41 has the acceleration tube 4
In contrast to the crusher, which is a flat collision member of 90 degrees, the crusher having an inclined collision surface, when crushing resin or sticky substances, melts and agglomerates the crushed object. , Agglomeration does not occur easily, and it is possible to pulverize with high dust concentration. Further, in the object to be crushed having wear properties, wear generated on the inner wall of the acceleration tube and the collision surface of the collision member is not locally concentrated, the life is extended, and stable operation is enabled.
【0042】また、加速管1の長軸方向の傾きは、好ま
しくは、鉛直方向に対して0〜45°の範囲内であれ
ば、被粉砕物80が被粉砕物供給口4で閉塞することな
く処理可能である。If the inclination of the accelerating tube 1 in the long axis direction is preferably within the range of 0 to 45 ° with respect to the vertical direction, the crushed material 80 is blocked at the crushed material supply port 4. It can be processed without.
【0043】被粉砕物の流動性が良好でないものは、被
粉砕物供給管5の下方にコーン状部材を有する場合、小
量ではあるが、コーン状部材の下部に滞留する傾向があ
り、加速管1の傾きとしては、鉛直方向に対して0〜2
0°(より好ましくは0〜5°)範囲内であれば下方コ
ーン状部での被粉砕物の滞留もなく、被粉砕物をスム−
ズに加速管に供給し得る。If the fluidity of the crushed material is not good, when the crushed material supply pipe 5 has a cone-shaped member below the crushed material, the crushed material tends to stay in the lower part of the cone-shaped member, although the amount is small. The inclination of the pipe 1 is 0 to 2 with respect to the vertical direction.
Within the range of 0 ° (more preferably 0 to 5 °), there is no retention of the material to be ground in the lower cone portion, and the material to be ground is smooth.
Can be supplied to the acceleration tube.
【0044】粉砕室の形状は、図5に示す如くC−C′
断面において側壁が実質的に円形または楕円形を有して
いることが粉砕の均一性及び粉砕物を円滑に排出する点
で好ましい。The shape of the crushing chamber is CC 'as shown in FIG.
It is preferable that the side wall has a substantially circular or elliptical shape in cross section, from the viewpoint of uniform crushing and smooth discharge of the crushed material.
【0045】図3は、図1におけるA−A′断面図を示
す。図3からは、被粉砕物80が加速管1へ円滑に供給
されることが理解される。FIG. 3 is a sectional view taken along the line AA 'in FIG. From FIG. 3, it is understood that the object to be ground 80 is smoothly supplied to the acceleration tube 1.
【0046】加速管中心軸の延長と直角に交わる、加速
管出口9の面と対向する衝突部材10の衝突面16の最
外周端部15との距離l2 は、衝突部材10の直径の
0.2倍から2.5倍の範囲が粉砕効率的に好ましく、
0.4倍から1.0倍の範囲内であればより良好であ
る。The distance l 2 between the surface of the accelerating tube outlet 9 and the outermost peripheral end portion 15 of the collision surface 16 of the collision member 10 which intersects the extension of the central axis of the accelerating tube at a right angle is 0 of the diameter of the collision member 10. A range of 2 times to 2.5 times is preferable in terms of grinding efficiency,
It is better if it is in the range of 0.4 to 1.0 times.
【0047】距離l2 が0.2倍未満では、衝突面16
近傍の粉塵濃度が異常に高くなる場合があり、また、
2.5倍を超える場合は、衝撃力が弱まり、その結果、
粉砕物が低下する傾向がある。When the distance l 2 is less than 0.2 times, the collision surface 16
The dust concentration in the vicinity may become abnormally high.
If it exceeds 2.5 times, the impact force will weaken, and as a result,
The crushed product tends to decrease.
【0048】衝突部材10の最外周端部15と側壁14
との最短距離l1 は、衝突部材10の直径の0.1倍か
ら2倍の範囲が好ましい。The outermost peripheral end portion 15 and the side wall 14 of the collision member 10
The shortest distance l 1 between and is preferably in the range of 0.1 to 2 times the diameter of the collision member 10.
【0049】0.1倍未満では、高圧気体の通過時の圧
力損失が大きく、粉砕効率が低下し易く、粉砕物の流動
状態がスムーズにいかない傾向があり、2倍を超える場
合は、粉砕室内壁14での被粉砕物の二次衝突の効果が
減少し、粉砕効率が低下する傾向がみられる。If it is less than 0.1 times, the pressure loss during passage of the high-pressure gas is large, the pulverization efficiency is likely to be lowered, and the flow state of the pulverized product tends not to be smooth. There is a tendency that the effect of the secondary collision of the object to be crushed on the inner wall 14 is reduced and the crushing efficiency is lowered.
【0050】より具体的には、加速管の長さは、50〜
500mmが好ましく、衝突部材10の直径は30〜3
00mmを有することが好ましい。More specifically, the length of the accelerating tube is 50 to
500 mm is preferable, and the diameter of the collision member 10 is 30 to 3
It is preferable to have 00 mm.
【0051】さらに、衝突部材10の衝突面16及び側
壁14は、セラミックで形成されていることが耐久性の
点では好ましい。Further, it is preferable that the collision surface 16 and the side wall 14 of the collision member 10 are made of ceramic in terms of durability.
【0052】図4は、図1におけるB−B′断面図を示
す。図4において、被粉砕物供給口4を通過する被粉砕
物供給口4の鉛直方向に対する垂直面内の被粉砕物の分
布状態は、加速管1の鉛直方向に対する傾きが大きい
程、分布上に偏りがある為、傾きが小さい程分布は、よ
り均一化される。加速管1の傾きとしては、0〜5°の
範囲内が最も良好であることが、加速管1を透明なアク
リル樹脂製の内部観察用加速管に変えることにより確認
できた。FIG. 4 is a sectional view taken along the line BB 'in FIG. In FIG. 4, the distribution state of the crushed objects in the vertical plane of the crushed object supply port 4 passing through the crushed object supply port 4 is distributed as the inclination of the acceleration tube 1 with respect to the vertical direction increases. Due to the bias, the smaller the inclination, the more uniform the distribution. It was confirmed that the inclination of the accelerating tube 1 was best in the range of 0 to 5 ° by changing the accelerating tube 1 to a transparent acrylic resin internal observation accelerating tube.
【0053】図5は、図1におけるC−C′断面図を示
す。図5において、衝突部材支持体11と側壁14との
間の粉砕室12を通って粉砕物は後方に排出される。FIG. 5 shows a sectional view taken along the line CC 'in FIG. In FIG. 5, the crushed material is discharged rearward through the crushing chamber 12 between the collision member support 11 and the side wall 14.
【0054】図6は、図1におけるD−D′断面図を示
す。図6においては、2本の高圧気体導入管8が設置さ
れているが、場合により、高圧気体導入管8は1本であ
っても3本以上であっても良い。FIG. 6 is a sectional view taken along the line DD 'in FIG. Although two high pressure gas introduction pipes 8 are installed in FIG. 6, the number of high pressure gas introduction pipes 8 may be one or three or more depending on the case.
【0055】実施例2
図7及び図8は、加速管出口9と被粉砕物供給口4との
間に二次気体導入口18を有する衝突式気流粉砕機の一
具体例を示す図である。 Embodiment 2 FIG. 7 and FIG. 8 are views showing a concrete example of a collision type airflow crusher having a secondary gas inlet 18 between the accelerating pipe outlet 9 and the object to be crushed supply 4. .
【0056】該被粉砕物供給口4と該加速管出口9との
間に設けた二次気体導入口18は、該高圧気体噴出口よ
り噴出した高圧気体が、加速管内で急速膨張、急加速す
る際に、加速管内壁近傍に発生する過流による気流の乱
れを防止し、整流させる為の気体の供給口である。The secondary gas inlet 18 provided between the crushed material supply port 4 and the accelerating pipe outlet 9 allows the high-pressure gas ejected from the high-pressure gas ejection port to rapidly expand and accelerate in the accelerating pipe. This is a gas supply port for preventing turbulence of the air flow due to an overflow that occurs near the inner wall of the acceleration pipe and rectifying the gas.
【0057】該加速管内で急速膨張した高圧気体に同伴
された被粉砕物が急加速される際に、該二次気体導入口
より供給された二次気体の整流効果により、さらに加速
性能の向上が図れ、粉砕効率の向上に役立っている。When the object to be crushed entrained in the high-pressure gas that has rapidly expanded in the accelerating pipe is rapidly accelerated, the rectifying effect of the secondary gas supplied from the secondary gas inlet further improves the acceleration performance. This helps to improve the grinding efficiency.
【0058】該二次気体導入口の形状に関しては、図8
に示す様な、加速管の中心軸と直角に交わる加速管内壁
の同心円上に複数設けられたものが例示されているが、
これらに限定されるものではない。The shape of the secondary gas inlet is shown in FIG.
As shown in Fig. 2, a plurality of them are provided on a concentric circle of the inner wall of the accelerating tube that intersects the central axis of the accelerating tube at right angles.
It is not limited to these.
【0059】また、該二次気体導入口より供給する気体
の圧力は、大気圧または加圧気体が使用可能であり、空
気の如き気体の圧力、流量等は、適宜、状況に合わせて
調整することが可能である。As the pressure of the gas supplied from the secondary gas inlet, atmospheric pressure or pressurized gas can be used, and the pressure and flow rate of the gas such as air are appropriately adjusted according to the situation. It is possible.
【0060】実施例3
図9及び図10は、加速管出口9と被粉砕物供給口4と
の間に環状の二次気体導入口19を有する衝突式気流粉
砕機の一具体例を示す図である。二次気体導入口19へ
は、気体導入部材20から常圧の空気または加圧された
空気または気体が供給される。 Embodiment 3 FIG. 9 and FIG. 10 are views showing a concrete example of a collision type air flow crusher having an annular secondary gas inlet 19 between the accelerating pipe outlet 9 and the crushed substance supply port 4. Is. To the secondary gas introduction port 19, normal pressure air or pressurized air or gas is supplied from the gas introduction member 20.
【0061】図10は、図9におけるF−F′断面図を
示す。FIG. 10 shows a sectional view taken along the line FF 'in FIG.
【0062】参考例1
図11乃至図13は、参考例としての衝突式気流粉砕機
の一具体例を示す該略図である。 Reference Example 1 FIGS. 11 to 13 are schematic views showing a specific example of a collision type air flow pulverizer as a reference example.
【0063】図11において、図1と同一の番号は、同
一部材を示す。In FIG. 11, the same numbers as those in FIG. 1 indicate the same members.
【0064】図11に示す衝突式気流粉砕機において、
鉛直線を基準にして、加速管1の長軸方向の傾きが好ま
しくは0〜45°(より好ましくは0〜20°、さらに
好ましくは0〜5°)となる様に設置された被粉砕物供
給口20より加速管スロート部4を通過して被粉砕物8
0は加速管1に供給される。加速管1には圧縮空気の如
き圧縮気体が該スロート部内壁と該被粉砕物供給口外壁
から導入されており、加速管1に供給された被粉砕物8
0は瞬時に加速されて高速度を有するようになる。そし
て、高速度で加速管出口9から粉砕室12に噴出された
被粉砕物80は、衝突部材10の衝突面16に衝突して
粉砕される。In the collision type air flow crusher shown in FIG.
The crushed object installed such that the inclination of the acceleration tube 1 in the long axis direction is preferably 0 to 45 ° (more preferably 0 to 20 °, further preferably 0 to 5 °) with respect to the vertical line. The material to be crushed 8 from the supply port 20 through the accelerating tube throat section 4
0 is supplied to the acceleration tube 1. Compressed gas such as compressed air is introduced into the accelerating tube 1 from the inner wall of the throat portion and the outer wall of the crushed object supply port, and the crushed object 8 supplied to the accelerating tube 1
Zero is instantly accelerated to have a high speed. Then, the crushed object 80 ejected from the accelerating pipe outlet 9 into the crushing chamber 12 at a high speed collides with the collision surface 16 of the collision member 10 and is crushed.
【0065】被粉砕物80を加速管1のスロート4の中
央部から投入し、加速管1内の被粉砕物80を分散し、
加速管出口9から被粉砕物80を均一に噴出させ、対向
する衝突部材10の衝突面16に効率よく衝突させるこ
とで、粉砕効率を従来より向上させることができる。The crushed object 80 is introduced from the central portion of the throat 4 of the acceleration tube 1 to disperse the crushed object 80 in the acceleration tube 1,
By uniformly ejecting the object 80 to be crushed from the acceleration tube outlet 9 and efficiently colliding with the collision surface 16 of the opposing collision member 10, the pulverization efficiency can be improved as compared with the conventional case.
【0066】また、衝突部材10の衝突面16が、図1
1に示す様な錐体形状や図21及び図22に記す様な、
衝突面上に円錐状の突起を有した形状であると、衝突後
の分散も良好となり被粉砕物の融着、凝集、粗粒化が発
生せず、高粉塵濃度での粉砕が可能であり、また摩耗性
のある被粉砕物においては、加速管内壁や衝突部材の衝
突面に発生する摩耗が局部的に集中することがなく長寿
命化が図れ安定的な運転が可能になる。Further, the collision surface 16 of the collision member 10 is shown in FIG.
1 and the cone shape as shown in FIG. 21 and FIG.
With a shape having a conical projection on the collision surface, dispersion after collision is good, and fusion, aggregation, and coarsening of the pulverized material do not occur, and pulverization with a high dust concentration is possible. In addition, in the case of an object to be crushed having wear, the wear generated on the inner wall of the acceleration tube and the collision surface of the collision member is not locally concentrated, the life is extended, and stable operation is possible.
【0067】図12は、図11におけるG−G′断面図
を示す。被粉砕物供給ノズル20から被粉砕物80が加
速管1に供給され、スロート部4を通って高圧気体が加
速管1に供給される。FIG. 12 is a sectional view taken along line GG 'in FIG. The crushed material supply nozzle 20 supplies the crushed material 80 to the acceleration tube 1, and the high-pressure gas is supplied to the acceleration tube 1 through the throat portion 4.
【0068】図13は、図11におけるH−H′断面図
を示す。図1に示す粉砕機と同様に、加速管1の長軸方
向の傾きは0〜45°の範囲内であれば、被粉砕物80
が、被粉砕物供給口20で閉塞することなく処理できる
が、被粉砕物80の流動性が良好でないものは、被粉砕
物供給管5の下部で滞留する傾向があり、加速管1の傾
きとしては、0〜20°(さらに好ましくは、0〜5
°)の範囲であれば、被粉砕物80の滞留もなく、被粉
砕物80がスムーズに加速管1内に供給される。FIG. 13 is a sectional view taken along line HH 'in FIG. Similar to the crusher shown in FIG. 1, if the inclination of the acceleration tube 1 in the major axis direction is within the range of 0 to 45 °, the object to be crushed 80
Can be processed without being blocked at the pulverized material supply port 20, but the pulverized material 80 having poor fluidity tends to stay in the lower portion of the pulverized material supply pipe 5, and the inclination of the acceleration pipe 1 As 0 to 20 ° (more preferably 0 to 5
Within the range of (°), there is no retention of the crushed object 80, and the crushed object 80 is smoothly supplied into the acceleration tube 1.
【0069】図1に示す粉砕機と、図11に示す粉砕機
とを比較した場合、図1に示す粉砕機の方が、被粉砕物
80が加速管内に良好に分散されて供給されるので粉砕
効率が良好であった。When the pulverizer shown in FIG. 1 and the pulverizer shown in FIG. 11 are compared, the pulverizer shown in FIG. 1 supplies the object 80 to be pulverized in a state of being well dispersed in the acceleration tube. The grinding efficiency was good.
【0070】参考例2
図14及び図15は、加速管出口9とスロート部4との
間に二次気体導入口18を有する参考例としての衝突式
気流粉砕機の一具体例を示す図である。 Reference Example 2 FIGS. 14 and 15 are views showing a concrete example of a collision type air flow pulverizer as a reference example having a secondary gas inlet 18 between the accelerating tube outlet 9 and the throat section 4. is there.
【0071】図15は、図14におけるI−I′断面図
を示す。FIG. 15 is a sectional view taken along the line II 'in FIG.
【0072】参考例3
図16及び図17は、加速管出口9とスロート部4との
間に環状の二次気体導入口19を有する参考例としての
衝突式気流粉砕機の一具体例を示す図である。二次気体
導入口19へは、気体導入部材20から常圧の空気また
は加圧された空気または気体が供給される。 Reference Example 3 FIG. 16 and FIG. 17 show a concrete example of a collision type air flow pulverizer as a reference example having an annular secondary gas inlet 19 between the accelerating tube outlet 9 and the throat section 4. It is a figure. To the secondary gas introduction port 19, normal pressure air or pressurized air or gas is supplied from the gas introduction member 20.
【0073】図17は、図16におけるJ−J′断面図
を示す。FIG. 17 shows a sectional view taken along the line JJ 'in FIG.
【0074】実施例4
図18は、本発明の微粉体製造装置の一具体例を示す概
略図である。 Embodiment 4 FIG. 18 is a schematic view showing a specific example of the fine powder manufacturing apparatus of the present invention.
【0075】図18において、衝突式気流粉砕機の被粉
砕物供給管と気流分級機の粗粉排出口を有するホッパー
とを連通させ、かつ衝突式気流粉砕機の粉砕物排出口1
3と気流分級機の粉体供給管24とを連通させた装置で
ある。In FIG. 18, the crushed material supply pipe of the collision type airflow crusher is connected to the hopper having the coarse powder discharge port of the airflow classifier, and the crushed material discharge port 1 of the collision type airflow crusher is connected.
3 and the powder supply pipe 24 of the air flow classifier are in communication with each other.
【0076】本実施例に用いた衝突式気流粉砕機は、図
1に示す衝突式気流粉砕機と同形のものを使用した。The collision type airflow crusher used in this example had the same shape as the collision type airflow crusher shown in FIG.
【0077】図18において、36は筒状の本体ケーシ
ングを示し、31は下部ケーシングを示し、その下部に
粗粉排出用のホッパー32が接続されている。本体ケー
シング36の内部は、分級室28が形成されており、こ
の分級室28の上部は本体ケーシング36の上部に取付
けた環状の案内室26と中央部が高くなる円錐状(傘
状)の上部カバー25によって閉鎖されている。In FIG. 18, reference numeral 36 indicates a cylindrical main body casing, 31 indicates a lower casing, and a hopper 32 for discharging coarse powder is connected to the lower portion thereof. A classification chamber 28 is formed inside the main body casing 36. An upper part of the classification chamber 28 is an annular guide chamber 26 attached to the upper part of the main body casing 36 and a conical (umbrella) upper part having a higher central portion. It is closed by a cover 25.
【0078】分級室28と案内室26の間の仕切壁に円
周方向に配列する複数の導入ルーバー27を設け、案内
室26に送り込まれた粉体材料とエアーを各導入ルーバ
ー27の間より分級室28に旋回させて流入させる。な
お、供給筒24を経て案内室45の中を流動するエアー
と粉体材料は、各導入ルーバー27に均一に分配される
ことが精度よく分級する為に好ましい。導入ルーバー2
7へ到達するまでの流路は遠心力による濃縮が起りにく
い形状にする必要があり、本実施例では供給管24を分
級室28の水平面に対して垂直な上方向から接続させて
いるが、これに限定されるものではない。A plurality of introduction louvers 27 arranged in the circumferential direction are provided on the partition wall between the classification chamber 28 and the guide chamber 26, and the powder material and air sent into the guide chamber 26 are introduced between the respective introduction louvers 27. It swirls and flows into the classification chamber 28. In addition, it is preferable that the air and the powder material flowing in the guide chamber 45 via the supply cylinder 24 are uniformly distributed to the respective introduction louvers 27 for accurate classification. Introduction louver 2
It is necessary for the flow path to reach 7 to have a shape in which concentration due to centrifugal force does not easily occur. In this embodiment, the supply pipe 24 is connected from above in a direction perpendicular to the horizontal plane of the classification chamber 28. It is not limited to this.
【0079】このようにして、導入ルーバー27を介し
て、エアーと粉砕材料は分級室28へ供給され、導入ル
ーバー27を介して、分級室28へ供給する際に従来の
方式より著しい分散の向上が得られる。また、導入ルー
バー27は可動であり、導入ルーバー間隔は調整でき
る。In this manner, the air and the pulverized material are supplied to the classification chamber 28 via the introduction louver 27, and when the particles are supplied to the classification chamber 28 via the introduction louver 27, the dispersion is remarkably improved as compared with the conventional method. Is obtained. Further, the introduction louver 27 is movable, and the introduction louver interval can be adjusted.
【0080】本体ケーシング36の下部には円周方向に
配列する分級ルーバー37を設け、外部から分級室28
へ旋回流を起す分級エアーを分級ルーバー37を介して
取り入れている。A classification louver 37 arranged in the circumferential direction is provided at the bottom of the main body casing 36, and a classification chamber 28 is provided from the outside.
The classification air that causes a swirling flow is taken in through the classification louver 37.
【0081】分級室28の底部に、中央部が高くなる円
錐状(傘状)の分級板29を設け、該分級板29の外周
囲に粗粉排出口38を形成する。また、分級板29の中
央部には微粉排出口81を有する微粉排出管30を接続
し、該微粉排出管30の下端部をL字形に屈曲し、この
屈曲端部を下部ケーシング31の側壁より外部に位置さ
せる。さらに該微粉排出管30はサイクロンや集塵機の
ような微粉回収手段33を介して吸引ファン34に接続
しており、該吸引ファン34により分級室28に吸引力
を作用させ、該分級ルーバー37間より分級室28に流
入する吸引エアーによって分級に要する旋回流を起して
いる。At the bottom of the classifying chamber 28, a conical (umbrella) classifying plate 29 having a high central portion is provided, and a coarse powder discharge port 38 is formed on the outer periphery of the classifying plate 29. Further, a fine powder discharge pipe 30 having a fine powder discharge port 81 is connected to the center of the classifying plate 29, the lower end of the fine powder discharge pipe 30 is bent into an L-shape, and the bent end is formed from the side wall of the lower casing 31. Position it outside. Further, the fine powder discharge pipe 30 is connected to a suction fan 34 via a fine powder collecting means 33 such as a cyclone or a dust collector, and a suction force is applied to the classification chamber 28 by the suction fan 34, so that the classification louvers 37 are connected to each other. The suction air flowing into the classification chamber 28 causes a swirling flow required for classification.
【0082】本実施例で示す気流分級機は、上記の構造
から成り、供給管24より案内室26内に粉体材料をエ
アーとともに供給すると、この粉体材料を含むエアー
は、案内室26から各ルーバー27間を通過して分級室
28に旋回しながら均一の濃度で分散されながら流入す
る。The airflow classifier shown in this embodiment has the above-mentioned structure. When the powder material is supplied from the supply pipe 24 into the guide chamber 26 together with the air, the air containing the powder material is discharged from the guide chamber 26. It passes between the louvers 27 and swirls into the classification chamber 28 while being dispersed with a uniform concentration.
【0083】分級室28内に旋回しながら流入した粉体
材料は、微粉排出管30に接続した吸引ファン34によ
り、分級室下部の分級ルーバー27間より流入する吸引
エアー流にのって旋回を増し、各粒子に作用する遠心力
によって粗粉と微粉とに遠心分離され、分級室28内の
外周を旋回する粗粉は粗粉排出口38より排出され、下
部のホッパー32より排出され、被粉砕物供給管5に供
給される。また、分級板29の上部傾斜面に沿って中央
部へと移行する微粉は微粉排出管30により、微粉回収
手段33へ排出される。The powder material that swirls into the classifying chamber 28 while swirling is swirled by the suction fan 34 connected to the fine powder discharge pipe 30 along with the suction air flow flowing between the classifying louvers 27 in the lower part of the classifying chamber. The centrifugal force acting on each particle causes centrifugal force to separate into coarse powder and fine powder, and the coarse powder swirling around the outer periphery of the classification chamber 28 is discharged from the coarse powder discharge port 38 and discharged from the lower hopper 32. It is supplied to the pulverized material supply pipe 5. Further, the fine powder that moves to the central portion along the upper inclined surface of the classification plate 29 is discharged to the fine powder collecting means 33 by the fine powder discharge pipe 30.
【0084】分級室28に粉体材料とともに流入するエ
アーは、旋回流となって流入するため、分級室28内で
旋回する粒子の中心向きの速度は遠心力に比べ相対的に
小さくなり、分級室28において粒子径の小さな粒子の
分級が良好に行われ、粒子径の非常に小さな微粉を微粉
排出管30に効率良く排出させることができる。しか
も、粉体材料がほぼ均一な濃度で分級室に流入する為精
緻な分布の粉体として得ることができる。Since the air flowing into the classification chamber 28 together with the powder material flows in as a swirling flow, the velocity of the particles swirling in the classification chamber 28 toward the center becomes relatively smaller than the centrifugal force, and the classification is performed. Particles having a small particle size are well classified in the chamber 28, and fine powder having a very small particle size can be efficiently discharged to the fine powder discharge pipe 30. Moreover, since the powder material flows into the classification chamber at a substantially uniform concentration, a finely distributed powder can be obtained.
【0085】粉砕用原料は適宜の導入手段35により、
供給管24へ導入され、また最終的に得られた粉砕物は
微粉排出管30よりサイクロンや、バグフィルター等の
微粉補集器を経て系外へに取り出される。The pulverizing raw material is supplied by an appropriate introducing means 35.
The pulverized material introduced into the supply pipe 24 and finally obtained is taken out of the system from the fine powder discharge pipe 30 through a fine powder collector such as a cyclone or a bag filter.
【0086】図19は、図18におけるK−K′断面図
を示す。FIG. 19 is a sectional view taken along the line KK 'of FIG.
【0087】図18に示す気流分級機と衝突式気流粉砕
機とを組み合わせて使用することにより、微粉の粉砕機
への混入が良好に抑制または阻止されて、粉砕物の過粉
砕が防止され、また、分級された粗粉が粉砕機へ円滑に
供給され、さらに加速管へ均一に分散され、粉砕室で良
好に粉砕されるので粉砕物の収率及び単位重量あたりの
エネルギー効率を高めることができる。By using the airflow classifier shown in FIG. 18 in combination with a collision type airflow crusher, fine powder is satisfactorily suppressed or prevented from being mixed into the crusher, and overcrushing of the crushed material is prevented. Further, the classified coarse powder is smoothly supplied to the crusher, further uniformly dispersed in the accelerating tube, and satisfactorily crushed in the crushing chamber, so that the yield of the crushed product and the energy efficiency per unit weight can be increased. it can.
【0088】参考例4
図20は、参考例としての微粉体製造装置の他の具体例
を示す概略図である。 Reference Example 4 FIG. 20 is a schematic view showing another specific example of the fine powder manufacturing apparatus as a reference example.
【0089】衝突式気流粉砕機として、図11に示す粉
砕機を使用している。As the collision type air flow crusher, the crusher shown in FIG. 11 is used.
【0090】本発明の微粉体製造装置は、静電荷像を現
像する為に使用されるトナー粒子の生成に好ましく使用
することができる。The fine powder producing apparatus of the present invention can be preferably used for producing toner particles used for developing an electrostatic image.
【0091】静電荷像現像用トナー(例えば、重量平均
分子量3〜20μm)を作製するには着色剤または磁性
粉及びビニル系、非ビニル系の熱可塑性樹脂、必要に応
じて荷電制御剤、その他の添加剤等をヘンシエルミキサ
ーまたはボールミルの如き混合機により充分混合してか
ら加熱ロール、ニーダー、エクストルーダーの如き熱混
練機を用いて熔融、捏和及び練肉して樹脂類を互いに相
溶せしめた中に顔料または染料を分散または溶解せし
め、冷却固化後粉砕及び分級を行ってトナーを得ること
ができる。To prepare a toner for developing an electrostatic image (for example, a weight average molecular weight of 3 to 20 μm), a coloring agent or magnetic powder and a vinyl type or non-vinyl type thermoplastic resin, a charge control agent if necessary, and the like. The additives, etc. are thoroughly mixed with a mixer such as a Henschel mixer or a ball mill, and then melted, kneaded and kneaded with a heat kneader such as a heating roll, kneader, or extruder to make the resins compatible with each other. The toner can be obtained by dispersing or dissolving a pigment or a dye in the mixture, cooling and solidifying, and then pulverizing and classifying.
【0092】粉砕工程及び分級工程で、本発明の微粉体
製造装置が使用される。The fine powder producing apparatus of the present invention is used in the pulverizing step and the classifying step.
【0093】次に、トナーの構成材料について説明す
る。Next, the constituent materials of the toner will be described.
【0094】トナーに使用される結着樹脂としては、オ
イル塗布する装置を有する加熱加圧定着装置または加熱
加圧ローラ定着装置を使用する場合には、下記トナー用
結着樹脂の使用が可能である。As the binder resin used for the toner, when a heating / pressurizing fixing device having an oil applying device or a heating / pressurizing roller fixing device is used, the following binder resin for toner can be used. is there.
【0095】例えば、ポリスチレン、ポリ−p−クロル
スチレン、ポリビニルトルエン等のスチレン及びその置
換体の単重合体;スチレン−p−クロルスチレン共重合
体、スチレン−ビニルトルエン共重合体、スチレン−ビ
ニルナフタリン共重合体、スチレン−アクリル酸エステ
ル共重合体、スチレン−メタクリル酸エステル共重合
体、スチレン−α−クロルメタクリル酸メチル共重合
体、スチレン−アクリロニトリル共重合体、スチレン−
ビニルメチルエーテル共重合体、スチレン−ビニルエチ
ルエーテル共重合体、スチレン−ビニルメチルケトン共
重合体、スチレン−ブタジエン共重合体、スチレン−イ
ソプレン共重合体、スチレン−アクリロニトリル−イン
デン共重合体等のスチレン系共重合体;ポリ塩化ビニ
ル、フェノール樹脂、天然変性フェノール樹脂、天然樹
脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹
脂、ポリ酢酸ビニール、シリコーン樹脂、ポリエステル
樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エ
ポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テ
ルペン樹脂、クマロンインデン樹脂、石油系樹脂等が使
用できる。For example, polystyrene, homopolymers of styrene such as polystyrene, poly-p-chlorostyrene, polyvinyltoluene and the like, and substitution products thereof; styrene-p-chlorostyrene copolymers, styrene-vinyltoluene copolymers, styrene-vinylnaphthalene. Copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid ester copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-
Styrene such as vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer -Based copolymer; polyvinyl chloride, phenol resin, natural modified phenol resin, natural resin modified maleic acid resin, acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin, polyester resin, polyurethane, polyamide resin, furan resin, epoxy resin , Xylene resin, polyvinyl butyral, terpene resin, coumarone indene resin, petroleum resin and the like can be used.
【0096】オイルを殆ど塗布しないかまたは全く塗布
しない加熱加圧定着方式または加熱加圧ローラ定着方式
においては、トナー像支持体部材上のトナー像の一部が
ローラに転移するいわゆるオフセット現象、及びトナー
像支持部材に対するトナーの密着性が重要な問題であ
る。より少ない熱エネルギーで定着するトナーは、通常
保存中もしくは現像器中でブロッキングもしくはケーキ
ングし易い性質があるので、同時にこれらの問題も考慮
しなければならない。これらの現象には、トナー中の結
着樹脂の物性が最も大きく関与しているが、本発明者ら
の研究によれば、トナー中の磁性体の含有量を減らす
と、定着時にトナー像支持体に対するトナーの密着性は
良くなるが、オフセットが起こり易くなり、またブロッ
キングもしくはケーキングも生じ易くなる。それゆえ、
本発明においてオイルを殆ど塗布しない加熱加圧ローラ
定着方式を用いる時には、結着樹脂の選択がより重要で
ある。好ましい結着物質としては、架橋されたスチレン
系共重合体もしくは架橋されたポリエステルがある。In the heating / pressurizing fixing method or the heating / pressurizing roller fixing method in which little or no oil is applied, a so-called offset phenomenon in which a part of the toner image on the toner image support member is transferred to the roller, and Adhesion of the toner to the toner image supporting member is an important issue. Toners that fix with less heat energy usually tend to be blocked or caked during storage or in a developing device, so these problems must be taken into consideration at the same time. The physical properties of the binder resin in the toner are most involved in these phenomena. However, according to the research conducted by the present inventors, when the content of the magnetic material in the toner is reduced, the toner image is supported at the time of fixing. Adhesion of the toner to the body is improved, but offset is likely to occur, and blocking or caking is likely to occur. therefore,
In the present invention, when the heating and pressure roller fixing method in which the oil is hardly applied is used, the selection of the binder resin is more important. Preferred binder materials include crosslinked styrenic copolymers or crosslinked polyesters.
【0097】スチレン系共重合体のスチレンモノマーに
対するコモノマーとしては、例えば、アクリル酸、アク
リル酸メチル、アクリル酸エチル、アクリル酸ブチル、
アクリル酸ドデシル、アクリル酸オクチル、アクリル酸
−2−エチルヘキシル、アクリル酸フェニル、メタクリ
ル酸、メタクリル酸メチル、メタクリル酸エチル、メタ
クリル酸ブチル、メタクリル酸オクチル、アクリロニト
リル、メタクリニトリル、アクリルアミド等のような二
重結合を有するモノカルボン酸もしくはその置換体;例
えば、マレイン酸、マレイン酸ブチル、マレイン酸メチ
ル、マレイン酸ジメチル等のような二重結合を有するジ
カルボン酸及びその置換体;例えば塩化ビニル、酢酸ビ
ニル、安息香酸ビニル等のようなビニルエステル類;例
えばエチレン、プロピレン、ブチレン等のようなエチレ
ン系オレフィン類;例えばビニルメチルケトン、ビニル
ヘキシルケトン等のようなビニルケトン類;例えばビニ
ルメチルエーテル、ビニルエチルエーテル、ビニルイソ
ブチルエーテル等のようなビニルエーテル類;等のビニ
ル単量体が単独もしくは2つ以上用いられる。Examples of the comonomer for the styrene monomer of the styrene type copolymer include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate,
Duplex such as dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide etc. A monocarboxylic acid having a bond or a substituted product thereof; for example, a dicarboxylic acid having a double bond such as maleic acid, butyl maleate, methyl maleate, dimethyl maleate and the like; and a substituted product thereof; for example, vinyl chloride, vinyl acetate, Vinyl esters such as vinyl benzoate, etc .; Ethylene-based olefins such as ethylene, propylene, butylene, etc .; Vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, etc .; Vinyl ethyl ether, vinyl ethers such as vinyl isobutyl ether; vinyl monomers are used alone or two or more.
【0098】ここで架橋剤としては主として2個以上の
重合可能な二重結合を有する化合物が用いられ、例え
ば、ジビニルベンゼン、ジビニルナフタレン等のような
芳香族ジビニル化合物;例えばエチレングリコールジア
クリレート、エチレングリコールジメタクリレート、
1,3−ブタンジオールジメタクリレート等のような二
重結合を2個有するカルボン酸エステル;ジビニルアニ
リン、ジビニルエーテル、ジビニルスルフィド、ジビニ
ルスルホン等のジビニル化合物;及び3個以上のビニル
基を有する化合物;が単独もしくは混合物として用いら
れる。As the cross-linking agent, a compound having two or more polymerizable double bonds is mainly used. For example, an aromatic divinyl compound such as divinylbenzene, divinylnaphthalene, etc .; for example, ethylene glycol diacrylate, ethylene. Glycol dimethacrylate,
A carboxylic acid ester having two double bonds such as 1,3-butanediol dimethacrylate; a divinyl compound such as divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfone; and a compound having three or more vinyl groups; Are used alone or as a mixture.
【0099】また、加圧定着方式または軽加熱加圧定着
方式を用いる場合には、亜知力定着トナー用結着樹脂の
使用が可能であり、例えばポリエチレン、ポリプロピレ
ン、ポリメチレン、ポリウレタンエラストマー、エチレ
ン−エチルアクリレート共重合体、エチレン−酢酸ビニ
ル共重合体、アイオノマー樹脂、スチレン−ブタジエン
共重合体、スチレン−イソプレン共重合体、線状飽和ポ
リエステル、パラフィン等がある。When the pressure fixing method or the light heat pressure fixing method is used, it is possible to use the binder resin for the intelligent fixing toner, for example, polyethylene, polypropylene, polymethylene, polyurethane elastomer, ethylene-ethyl. There are acrylate copolymers, ethylene-vinyl acetate copolymers, ionomer resins, styrene-butadiene copolymers, styrene-isoprene copolymers, linear saturated polyesters, paraffins and the like.
【0100】また、トナーには荷電制御剤をトナー粒子
に配合(内添)して用いることが好ましい。荷電制御剤
によって、現像システムに応じた最適の荷電量コントロ
ールが可能となり、特に本発明では粒度分布と荷電との
バランスをさらに安定したものとすることが可能であ
り、荷電制御剤を用いることで先に述べたところの粒径
範囲毎による高画質化の為の機能分離及び相互補完性を
より明確にすることができる。正荷電制御剤としては、
ニグロシン及び脂肪酸金属塩等による変成物;トリブチ
ルベンジルアンモニウム−1−ヒドロキシ−4−ナフト
スルフォン酸塩、テトラブチルアンモニウムテトラフル
オロボレート等の四級アンモニウム塩;を単独であるい
は2種類以上組み合わせて用いることができる。これら
の中でも、ニグロシン系化合物、四級アンモニウム塩の
如き荷電制御剤が特に好ましく用いられる。Further, it is preferable that a charge control agent is blended (added internally) to the toner particles in the toner. The charge control agent makes it possible to control the optimum charge amount according to the developing system, and particularly in the present invention, it is possible to further stabilize the balance between the particle size distribution and the charge. As described above, it is possible to clarify the function separation and the mutual complementarity for improving the image quality according to each particle size range. As a positive charge control agent,
A modified product of nigrosine and a fatty acid metal salt or the like; a quaternary ammonium salt such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetrafluoroborate; or a combination of two or more thereof may be used. it can. Among these, charge control agents such as nigrosine compounds and quaternary ammonium salts are particularly preferably used.
【0101】また、一般式In addition, the general formula
【0102】[0102]
【外1】
R1 :H,CH3
R2,R3 :置換または未置換のアルキル基(好ましく
は、C1 〜C4 )で表されるモノマーの単重合体:また
は前述したようなスチレン、アクリル酸エステル、メタ
クリル酸エステル等の重合性モノマーとの共重合体を正
荷電性制御剤として用いることができ、この場合これら
の荷電制御剤は、結着樹脂(の全部または一部)として
の作用をも有する。[Outer 1] R 1: H, CH 3 R 2, R 3: ( preferably, C 1 -C 4) substituted or unsubstituted alkyl group homopolymers of monomers represented by: or styrene as described above, acrylic acid esters , A copolymer with a polymerizable monomer such as methacrylic acid ester can be used as a positive charge control agent, and in this case, these charge control agents also function as (all or part of) the binder resin. Have.
【0103】負荷電性制御剤としては、例えば有機金属
錯体、キレート化合物が有効で、その例としてはアルミ
ニウムアセチルアセトナート、鉄(II)アセチルアセ
トナート、3,5−ジターシャリーブチルサリチル酸ク
ロムまたは亜鉛等があり、特にアセチルアセトン金属錯
体、サリチル酸系金属錯体または塩が好ましく、特にサ
リチル酸系金属錯体またはサリチル酸系金属塩が好まし
い。As the negative charge control agent, for example, an organometallic complex and a chelate compound are effective, and examples thereof include aluminum acetylacetonate, iron (II) acetylacetonate, 3,5-ditertiarybutyl salicylate chromium or zinc. Etc., acetylacetone metal complex, salicylic acid metal complex or salt are particularly preferable, and salicylic acid metal complex or salicylic acid metal salt are particularly preferable.
【0104】上述した荷電制御剤(結着樹脂としての作
用を有しないもの)は、微粒子状として用いることが好
ましい。この場合、この荷電制御剤の個数平均粒径は、
具体的には、4μm以下(更には3μm以下)が好まし
い。The above-mentioned charge control agent (which does not act as a binder resin) is preferably used in the form of fine particles. In this case, the number average particle size of this charge control agent is
Specifically, it is preferably 4 μm or less (further, 3 μm or less).
【0105】トナーに内添する際、このような荷電制御
剤は、結着樹脂100重量部に対して0.1〜20重量
部(更には0.2〜10重量部)用いることが好まし
い。When internally added to the toner, such a charge control agent is preferably used in an amount of 0.1 to 20 parts by weight (more preferably 0.2 to 10 parts by weight) with respect to 100 parts by weight of the binder resin.
【0106】トナーが磁性トナーの場合は、磁性トナー
中に含まれる磁性材料としては、マグネタイト、γ一酸
化鉄、フェライト、鉄過剰型フェライト等の酸化鉄;
鉄、コバルト、ニッケルのような金属あるいはこれらの
金属とアルミニウム、コバルト、銅、鉛、マグネシウ
ム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、
カドミウム、カルシウム、マンガン、セレン、チタン、
タングステン、バナジウムのような金属との合金及びそ
の混合物等が挙げられる。When the toner is a magnetic toner, the magnetic material contained in the magnetic toner is iron oxide such as magnetite, γ-iron monoxide, ferrite, iron-excess type ferrite or the like;
Metals such as iron, cobalt, nickel or these metals and aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth,
Cadmium, calcium, manganese, selenium, titanium,
Examples thereof include alloys with metals such as tungsten and vanadium, and mixtures thereof.
【0107】これらの強磁性体は平均粒径が0.1〜1
μm、好ましくは0.1〜0.5μm程度のものが望ま
しく、磁性トナー中に含有させる量としては樹脂成分1
00重量部に対し60〜110重量部、好ましくは樹脂
成分100重量部に対し65〜100重量部である。These ferromagnetic materials have an average particle size of 0.1 to 1
μm, preferably about 0.1 to 0.5 μm, and the resin component 1 is contained in the magnetic toner.
60 to 110 parts by weight with respect to 00 parts by weight, and preferably 65 to 100 parts by weight with respect to 100 parts by weight of the resin component.
【0108】トナーに使用される着色剤としては従来よ
り知られている染料及び/または顔料が使用可能であ
る。例えば、カーボンブラック、フタロシアニンブル
ー、ピーコックブルー、パーマネントレッド、レーキレ
ッド、ローダミンレーキ、ハンザイエロー、パーマネン
トイエロー、ベンジジンイエロー等を使用することがで
きる。その含有量として、結着樹脂100部に対して
0.1〜20重量部、好ましくは0.5〜20重量部、
さらにトナー像を定着したOHPフィルムの透過性を良
くする為には12重量部以下が好ましく、さらに好まし
くは0.5〜9重量部が良い。As the colorant used in the toner, conventionally known dyes and / or pigments can be used. For example, carbon black, phthalocyanine blue, peacock blue, permanent red, lake red, rhodamine lake, Hansa yellow, permanent yellow, benzidine yellow and the like can be used. Its content is 0.1 to 20 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts of the binder resin,
Further, in order to improve the transparency of the OHP film on which the toner image is fixed, the amount is preferably 12 parts by weight or less, more preferably 0.5 to 9 parts by weight.
【0109】次に、トナーの製造例を具体的に説明す
る。Next, a toner production example will be specifically described.
【0110】実施例5
・スチレン−ブチルアクリレート−ジビニルベンゼン共
重合体 100重量部(モノマー重合重量比80.0/
19.0/1.0,重量平均分子量Mw35万)
・磁性酸化鉄(平均粒径0.18μm) 100重量部
・ニグロシン 2重量部
・低分子量エチレン−プロピレン共重合体 4重量部 Example 5 Styrene-butyl acrylate-divinylbenzene copolymer 100 parts by weight (monomer polymerization weight ratio 80.0 /
19.0 / 1.0, weight average molecular weight Mw 350,000) Magnetic iron oxide (average particle size 0.18 μm) 100 parts by weight Nigrosine 2 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight
【0111】上記の処方の材料をヘンシェルミキサー
(FM−75型,三井三池化工機(株)製)でよく混合
した後、温度150℃に設定した2軸混練機(PCM−
30型,池貝鉄工(株)製)にて混練した。得られた混
練物を冷却し、ハンマーミルにて1mm以下に粗粉砕
し、トナー製造用の粗砕物を得た。The ingredients of the above formulation were thoroughly mixed with a Henschel mixer (FM-75 type, manufactured by Mitsui Miike Kakoki Co., Ltd.), and then a twin-screw kneader (PCM-
It was kneaded with a 30-type, manufactured by Ikegai Tekko KK. The obtained kneaded product was cooled and coarsely pulverized to 1 mm or less with a hammer mill to obtain a coarsely pulverized product for toner production.
【0112】得られたトナー粗砕物を図18に示す気流
分級機と衝突式気流粉砕機で構成された微粉体製造装置
(以下、微粉体製造装置Aとする)にて、分級及び粉砕
した。衝突式気流粉砕機は、鉛直線を基準とした加速管
の長軸方向の傾き(以下、加速管傾きとする)が約0°
(即ち、実質的に鉛直に設置)であり、衝突部材は、衝
突面が頂角の160°の円錐形状で外径(直径)100
mmのものを使用しており、加速管中心軸と直角に交わ
る加速管出口面と対向する衝突部材の衝突面の最外周端
部との最短距離l2 は、50mmであり、粉砕室の形状
は、内径150mmの円筒状粉砕室を用いた。したがっ
て、最短距離l1 は25mmである。テーブル式の定量
供給機にて粗砕物を35.4kg/Hの割合で、インジ
ェクションフィーダーにて、原料導入部及び供給管を介
して気流分級機に供給し、分級された粗粉は、粗粉排出
ホッパーを介して、該衝突式気流粉砕機の被粉砕物供給
管より供給され、圧力6.0kg/cm2 (G),6.
0Nm3 /minの圧縮空気を用いて粉砕された後、原
料導入部にて供給されている粗砕物と混合されながら、
再び該気流分級機に循環され、閉回路粉砕を行い、分級
された微粉は、排気ファンからの吸引エアーに同伴され
ながらサイクロンにて捕集され、重量平均径8.4μm
のシャープな粒度分布の微粉砕分級品を得た。The obtained toner coarsely pulverized product was classified and pulverized by a fine powder production apparatus (hereinafter referred to as fine powder production apparatus A) composed of an air flow classifier and a collision type air flow pulverizer shown in FIG. In the collision type airflow crusher, the inclination of the acceleration tube in the long axis direction (hereinafter referred to as the acceleration tube inclination) with respect to the vertical line is about 0 °.
(I.e., installed substantially vertically), the collision member has a conical surface with an apex angle of 160 ° and an outer diameter (diameter) of 100.
mm, the shortest distance l 2 between the acceleration pipe exit surface intersecting at right angles with the central axis of the acceleration tube and the outermost peripheral end of the collision surface of the collision member is 50 mm, and the shape of the crushing chamber is Used a cylindrical crushing chamber having an inner diameter of 150 mm. Therefore, the shortest distance l 1 is 25 mm. The coarsely pulverized material was supplied at a rate of 35.4 kg / H using a table-type constant quantity feeder to the air flow classifier through the raw material introduction part and the supply pipe by the injection feeder, and the classified coarse powder was coarse powder. It is supplied from the object to be crushed supply pipe of the collision type airflow crusher through the discharge hopper, and the pressure is 6.0 kg / cm 2 (G), 6.
After being pulverized using compressed air of 0 Nm 3 / min, while being mixed with the coarsely pulverized material supplied in the raw material introduction section,
The fine powder that was circulated through the airflow classifier again and was subjected to closed-circuit pulverization was classified by the cyclone while being entrained by the suction air from the exhaust fan, and the weight average diameter was 8.4 μm.
A finely pulverized and classified product having a sharp particle size distribution was obtained.
【0113】得られた微粉砕分級品をさらに、ディスパ
ージョンセパレータDS5UR(日本ニューマチック工
業社製)を用いて規定粒度以下の細粉を除去するための
分級をおこなうことにより収率良く調製された分級品
は、トナー用として優れていた。The finely pulverized and classified product thus obtained was further classified by using a dispersion separator DS5UR (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) to remove fine powder having a particle size not larger than a prescribed particle size, whereby a high yield was prepared. The classified product was excellent for toner.
【0114】微粉砕分級品及びトナーの粒度分布は種々
の方法によって測定できるが、本実施例では、コールタ
ーカウンターを用いて行った。The particle size distributions of the finely pulverized and classified product and the toner can be measured by various methods. In this example, a Coulter counter was used.
【0115】測定装置としてはコールターカウンターT
A−II型(コールター社製)を用い、個数分布、体積
分布を出力するインターフェイス(日科機製)及びCX
−1パーソナルコンピュータ(キヤノン製)を接続し、
電解液は1級塩化ナトリウムを用いて1%NaCl水溶
液を調製する。測定法としては前記電解水溶液100〜
150ml中に分散剤として界面活性剤、好ましくはア
ルキルベンゼンスルホン酸塩を0.1〜5ml加え、さ
らに測定試料を2〜20mg加える。試料を懸濁した電
解液は超音波分散器で約1〜3分間分散処理を行い、前
記コールターカウンターTA−II形により、アパチャ
ーとして100μアパチャーを用いて、個数を基準とし
て2〜40μの粒子の粒度分布を測定して、それから重
量平均粒径、体積平均径等の値を求めた。As a measuring device, a Coulter counter T
An interface (made by Nikkaki) and a CX that outputs number distribution and volume distribution using A-II type (made by Coulter)
-1 Connect a personal computer (made by Canon),
As the electrolytic solution, a 1% NaCl aqueous solution is prepared using first grade sodium chloride. As a measuring method, the electrolytic aqueous solution 100 to
To 150 ml, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes by an ultrasonic disperser, and the Coulter counter TA-II type is used to form a 100 μ aperture as an aperture, and the number of particles of 2 to 40 μ is based on the number. The particle size distribution was measured, and the values such as the weight average particle diameter and the volume average diameter were obtained from the measured particle size distribution.
【0116】実施例6
実施例5と同様のトナー粗砕物を用いて、同様の微粉体
製造装置Aにて、加速管傾きを15°として、粗砕物供
給量33.6kg/Hで粉砕を行い重量平均径8.6μ
mのシャープな粒度分布の微粉砕分級品を得た。 Example 6 Using the same toner coarsely pulverized product as in Example 5, the same fine powder production apparatus A was used to pulverize the pulverized product supply rate 33.6 kg / H with the acceleration tube tilted at 15 °. Weight average diameter 8.6μ
A finely pulverized and classified product having a sharp particle size distribution of m was obtained.
【0117】実施例7
実施例5と同様のトナー粗砕物を用いて、同様の微粉体
製造装置Aにて、衝突板距離を100mmとして、粗砕
物供給量32.6kg/Hで粉砕を行い重量平均径8.
5μmのシャープな粒度分布の微粉砕分級品を得た。 Example 7 The same toner coarsely pulverized product as in Example 5 was used to pulverize with the same fine powder production apparatus A with the collision plate distance set to 100 mm and the coarsely pulverized product supply amount 32.6 kg / H. Average diameter 8.
A finely pulverized and classified product having a sharp particle size distribution of 5 μm was obtained.
【0118】実施例8
実施例5と同様のトナー粗砕物及び微粉体製造装置Aに
て、衝突板距離を30mmとして、トナー粗砕物供給量
30.3kg/Hで粉砕を行ったところ重量平均径8.
4μmのシャープな粒度分布の微粉砕分級品を得た。 Example 8 In the same apparatus A for producing coarsely pulverized toner and fine powder as in Example 5, the collision plate distance was set to 30 mm, and the pulverized toner was pulverized at a supply rate of 30.3 kg / H. 8.
A finely pulverized and classified product having a sharp particle size distribution of 4 μm was obtained.
【0119】実施例9
実施例5と同様のトナー粗砕物及び微粉体製造装置Aに
て、衝突板距離を220mmとして、粗砕物供給量2
2.5kg/Hにて粉砕を行ったところ、微粉砕分級品
の重量平均径は、8.4μmであった。 Example 9 In the same apparatus A for producing coarsely pulverized toner and fine powder as in Example 5, the collision plate distance was 220 mm and the amount of coarsely pulverized material supplied was 2
When pulverized at 2.5 kg / H, the weight-average diameter of the finely pulverized and classified product was 8.4 μm.
【0120】実施例10
実施例5と同様のトナー粗砕物及び微粉体製造装置Aに
て、円筒粉砕室内径を120mmとして、粗砕物供給量
32.6kg/Hで粉砕を行ったところ、重量平均径
8.6μmのシャープな粒度分布の微粉砕分級品が得ら
れた。 Example 10 In the same apparatus A for producing coarsely pulverized toner and fine powder as in Example 5, the inner diameter of the cylindrical pulverization chamber was set to 120 mm, and the pulverized material was supplied at a rate of 32.6 kg / H. A finely pulverized and classified product having a sharp particle size distribution and a diameter of 8.6 μm was obtained.
【0121】実施例11
実施例5と同様のトナー粗砕物及び微粉体製造装置Aに
て、円筒粉砕室内径を220mmとして、粗砕物供給量
28.6kg/Hで粉砕を行ったところ、重量平均径
8.5μmのシャープな粒度分布の微粉砕分級品が得ら
れた。 Example 11 In the same apparatus A for producing a coarsely pulverized toner and fine powder as in Example 5, the inner diameter of the cylindrical pulverization chamber was set to 220 mm and the pulverized material was supplied at a rate of 28.6 kg / H. A finely pulverized and classified product having a sharp particle size distribution and a diameter of 8.5 μm was obtained.
【0122】実施例12
実施例5と同様のトナー粗砕物及び微粉体製造装置Aに
て、衝突板形状を図21及び22に示す外径100m
m,突起状円錐部の頂角55°のものを用い、衝突板距
離l2 50mmとして、粗砕物供給量35.4kg/H
で粉砕を行ったところ、重量平均径8.4μmのシャー
プな粒度分布の微粉砕分級品が得られた。 Example 12 In the same apparatus A for producing coarsely pulverized toner and fine powder as in Example 5, the collision plate shape is 100 m in outer diameter shown in FIGS.
m, a projection-shaped conical portion having an apex angle of 55 °, a collision plate distance of l 2 50 mm, and a roughly crushed material supply amount of 35.4 kg / H
When pulverized with, a finely pulverized and classified product having a sharp particle size distribution and a weight average diameter of 8.4 μm was obtained.
【0123】参考例5
実施例5と同様のトナー粗砕物を用いて図20に示す気
流分級機と衝突式気流粉砕機で構成された微粉体製造装
置(以下、微粉製造装置Bとする)にて分級及び粉砕を
行った。加速管の傾きは0°、衝突部材は衝突面が頂角
160°の円錐形状で外径100mmの円柱状のものを
使用しており、衝突板距離l2 は、50mmであり、粉
砕室形状は、内径150mmの円筒状粉砕室を用いた。
最短距離l1 は25mmであった。 Reference Example 5 A fine powder manufacturing apparatus (hereinafter referred to as fine powder manufacturing apparatus B) constituted by an airflow classifier and a collision type airflow crusher shown in FIG. And classified and crushed. The inclination of the accelerating tube is 0 °, and the collision member is a conical shape having a conical surface with an apex angle of 160 ° and an outer diameter of 100 mm. The collision plate distance l 2 is 50 mm. Used a cylindrical crushing chamber having an inner diameter of 150 mm.
The shortest distance l 1 was 25 mm.
【0124】テーブル式の定量供給機にて、トナー粗砕
物を26.5kg/Hの割り合いでインジェンクション
フィーダーにて供給し、圧力6.0kg/cm2
(G),6.0Nm3 /minの圧縮空気を用いて閉回
路粉砕を行い、重量平均径8.6μmの微粉砕分級品を
得た。[0124] A table-type quantitative feeder supplies the coarsely pulverized toner with an injection feeder at a rate of 26.5 kg / H, and the pressure is 6.0 kg / cm 2.
(G), closed circuit pulverization was performed using compressed air of 6.0 Nm 3 / min to obtain a finely pulverized and classified product having a weight average diameter of 8.6 μm.
【0125】比較例1
衝突式気流粉砕機として図23に示した粉砕機を使用
し、気流式分級機として図24に示した分級機を使用
し、図25に示したフローチャートの分級粉砕システム
(以下、「微粉砕製造装置C」と称す)により、実施例
9で調製した粗砕物と同様な粗砕物を導入し、圧縮空気
6.0kg/cm2 (G),6.0Nm3 /minの割
合で高圧気体を衝突式気流粉砕機に供給し、粗砕物の処
理量16.4kg/Hで分級粉砕を行った。 Comparative Example 1 The crusher shown in FIG. 23 was used as the collision type air flow crusher, the classifier shown in FIG. 24 was used as the air flow classifier, and the classification and pulverization system of the flow chart shown in FIG. 25 ( Hereinafter, the same crushed material as the crushed material prepared in Example 9 was introduced by "fine crushing production apparatus C"), and compressed air of 6.0 kg / cm 2 (G), 6.0 Nm 3 / min was used. High-pressure gas was supplied to the collision-type airflow crusher at a ratio, and the crushed material was classified and crushed at a throughput of 16.4 kg / H.
【0126】微粉砕分級品の重量平均粒径は、8.4μ
mであり、微粉及び粗粉の含有割合が多く、粒度分布は
ブロードであった。The weight average particle diameter of the finely pulverized and classified product is 8.4 μm.
m, the content ratio of fine powder and coarse powder was large, and the particle size distribution was broad.
【0127】さらに、加速管への粗粉の供給の円滑性及
び分散の均一性は、実施例5と比較して劣っていた。Furthermore, the smoothness of the supply of coarse powder to the accelerating tube and the uniformity of dispersion were inferior to those of Example 5.
【0128】比較例2
衝突面の形状が頂角160°の円錐形状のものを使用す
ること以外は、比較例1と同様な分級粉砕システム(以
下、「微粉砕製造装置D」と称す)により、実施例9で
調製した粗砕物と同様な粗砕物を処理量20.4kg/
Hで、分級粉砕を行った。 Comparative Example 2 By the same classification and pulverization system as in Comparative Example 1 (hereinafter referred to as "fine pulverization production apparatus D"), except that the collision surface has a conical shape with an apex angle of 160 °. The same amount of the coarsely crushed material as that prepared in Example 9 was treated at 20.4 kg /
At H, classification and pulverization was performed.
【0129】得られた微粉砕分級品の重量平均粒径は、
8.5μmであり、実施例5と比較した粒度分布はブロ
ードであった。The weight average particle diameter of the obtained finely pulverized and classified product was
It was 8.5 μm, and the particle size distribution compared with Example 5 was broad.
【0130】実施例5乃至12、参考例1及び比較例1
及び2の製造条件及び結果を下記表に示す。Examples 5 to 12, Reference Example 1 and Comparative Example 1
The production conditions and results of No. 2 and No. 2 are shown in the following table.
【0131】[0131]
【表1】 [Table 1]
【0132】従来方法にてトナーを粉砕したトナー製造
方法である比較例に比べ、本発明のトナー製造方法によ
る粉砕方法にて粉砕した実施例の粉砕効率比は、得られ
た微粉砕品の重量平均径が8.4〜8.6μmにおい
て、1.1〜1.74倍と高く、粒度分布も比較例に比
べ粗粉、微粉の少ないシャープなものとなっており、本
発明のトナー製造方法が非常に優れいることを示してい
る。Compared with the comparative example which is a toner manufacturing method in which the toner is pulverized by the conventional method, the pulverization efficiency ratio of the example pulverized by the pulverizing method according to the toner manufacturing method of the present invention is the weight of the obtained finely pulverized product. When the average diameter is 8.4 to 8.6 μm, it is 1.1 to 1.74 times higher, and the particle size distribution is sharper with less coarse powder and fine powder than the comparative example. Is very good.
【0133】[0133]
【発明の効果】本発明の衝突式気流粉砕機は、従来の衝
突式気流粉砕機に比べ、被粉砕物を一層効率良く粉砕
し、被粉砕物による融着、凝集、粗粉化の発生を防止
し、さらには衝突部材及び加速管等の被粉砕物による局
部的な摩耗を防ぐ効果がある。INDUSTRIAL APPLICABILITY The collision-type airflow crusher of the present invention crushes the object to be crushed more efficiently than the conventional collision-type airflow crusher, and prevents the object to be fused, aggregated, or coarsened. This has the effect of preventing local wear due to crushed objects such as collision members and acceleration tubes.
【0134】本発明の微粉体製造装置は、粉砕効率が高
く、粒度分布がシャープな微粉砕品を得ることができ
る。The fine powder manufacturing apparatus of the present invention has high pulverization efficiency and can obtain finely pulverized products having a sharp particle size distribution.
【0135】本発明の静電荷像現像用トナーの製造方法
は、シャープな粒度分布のトナーが高い粉砕効率で得ら
れ、しかもトナーの融着、凝集、粗粉化の発生を防止
し、トナー成分による装置要部の局部的摩耗を防ぎ、連
続して安定した生産が行える利点がある。In the method for producing a toner for developing an electrostatic charge image of the present invention, a toner having a sharp particle size distribution can be obtained with high pulverization efficiency, and further, fusion of toner, aggregation, and coarsening of toner can be prevented, and a toner component can be obtained. There is an advantage that local wear of the main part of the device due to the above can be prevented and continuous and stable production can be performed.
【図1】本発明の衝突式気流粉砕機の一具体例の概略断
面図である。FIG. 1 is a schematic cross-sectional view of a specific example of the collision type airflow crusher of the present invention.
【図2】図1における粉砕室の拡大図である。FIG. 2 is an enlarged view of a crushing chamber in FIG.
【図3】図1におけるA−A′断面図である。3 is a cross-sectional view taken along the line AA ′ in FIG.
【図4】図1におけるB−B′断面図である。FIG. 4 is a sectional view taken along line BB ′ in FIG.
【図5】図1におけるC−C′断面図である。5 is a sectional view taken along line CC ′ in FIG.
【図6】図1におけるD−D′断面図である。FIG. 6 is a sectional view taken along the line DD ′ in FIG.
【図7】本発明の衝突式気流粉砕機の他の具体例の概略
断面図である。FIG. 7 is a schematic cross-sectional view of another specific example of the collision type airflow crusher of the present invention.
【図8】図7におけるE−E′断面図である。8 is a cross-sectional view taken along the line EE 'in FIG.
【図9】本発明の衝突式気流粉砕機の他の具体例の概略
断面図である。FIG. 9 is a schematic sectional view of another specific example of the collision type airflow crusher of the present invention.
【図10】図9におけるF−F′断面図である。10 is a sectional view taken along the line FF ′ in FIG.
【図11】参考例としての衝突式気流粉砕機の一具体例
の概略断面図である。FIG. 11 is a schematic cross-sectional view of a specific example of a collision type airflow pulverizer as a reference example.
【図12】図11におけるG−G′断面図である。12 is a sectional view taken along line GG ′ in FIG.
【図13】図11におけるH−H′断面図である。13 is a cross-sectional view taken along the line HH 'in FIG.
【図14】参考例としての衝突式気流粉砕機の一具体例
の概略断面図である。FIG. 14 is a schematic cross-sectional view of a specific example of a collision type airflow crusher as a reference example.
【図15】図14におけるI−I′断面図である。15 is a cross-sectional view taken along the line I-I 'of FIG.
【図16】参考例としての衝突式気流粉砕機の一具体例
の概略断面図である。FIG. 16 is a schematic cross-sectional view of a specific example of a collision type airflow crusher as a reference example.
【図17】図16におけるJ−J′断面図である。17 is a cross-sectional view taken along the line JJ ′ in FIG.
【図18】本発明の微粉体製造装置の一具体例を示す図
である。FIG. 18 is a diagram showing a specific example of a fine powder manufacturing apparatus of the present invention.
【図19】図18におけるK−K′断面図である。19 is a cross-sectional view taken along the line KK 'of FIG.
【図20】参考例としての微粉体製造装置の一具体例を
示す図である。FIG. 20 is a diagram showing a specific example of a fine powder manufacturing apparatus as a reference example.
【図21】中央部に突起を有する円錐衝突部材の正面図
である。FIG. 21 is a front view of a conical collision member having a protrusion in the center.
【図22】中央部に突起を有する円錐衝突部材の平面図
である。FIG. 22 is a plan view of a conical collision member having a protrusion in the center.
【図23】従来の衝突式気流粉砕機の概略的断面図を示
す。FIG. 23 shows a schematic cross-sectional view of a conventional collision type airflow crusher.
【図24】従来の一般的な気流分級機の概略的断面図を
示す。FIG. 24 shows a schematic sectional view of a conventional general airflow classifier.
【図25】比較例で使用した分級粉砕システムのフロー
チャートを示す。FIG. 25 shows a flow chart of the classification and pulverization system used in the comparative example.
1 加速管 2 加速管スロート部 3 高圧気体噴出ノズル 4 被粉砕物供給口 5 被粉砕物供給管 6 高圧気体供給口 7 高圧気体チャンバー 8 高圧気体導入管 9 加速管出口 10 衝突部材 11 衝突部材支持体 12 粉砕室 13 粉砕物排出口 14 側壁 15 衝突部材の縁端部 16 衝突面 17 前壁 80 被粉砕物 1 Accelerator 2 Accelerator throat section 3 High-pressure gas jet nozzle 4 Grinding object supply port 5 crushed material supply pipe 6 High pressure gas supply port 7 High pressure gas chamber 8 High pressure gas introduction pipe 9 Accelerator outlet 10 Collision member 11 Collision member support 12 Grinding chamber 13 Crushed material outlet 14 Side wall 15 Edge of collision member 16 collision surface 17 front wall 80 crushed objects
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三ッ村 聡 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (72)発明者 高市 桃介 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (56)参考文献 特開 昭54−117971(JP,A) 特開 平1−254266(JP,A) 特開 平3−206466(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Satoshi Mitsumura 3-30-2 Shimomaruko, Ota-ku, Tokyo Non non corporation (72) Inventor Momosuke Takaichi 3-30-2 Shimomaruko, Ota-ku, Tokyo Non non corporation (56) Reference JP-A-54-117971 (JP, A) JP-A-1-254266 (JP, A) JP-A-3-206466 (JP, A)
Claims (37)
るための加速管と、被粉砕物を微粉砕するための粉砕室
とを有する衝突式気流粉砕機において、 該加速管の後端部には、該加速管の中心軸と同軸上に位
置する高圧気体噴出ノズルが具備され、該高圧気体噴出
ノズルは、長軸方向の途中にスロート部を有し、流路断
面積が長軸方向下流側に向かって一旦絞られた後、再度
広がっている形状を有しており、該高圧気体噴出ノズル
の周囲には、該高圧気体噴出ノズルから高圧気体を噴出
することによって発生するエゼクター効果により、該被
粉砕物を加速管内に供給するための被粉砕物供給口が設
けられており、 該粉砕室内には、該加速管の出口の開口面に対向して設
けた衝突面を有する衝突部材が具備されており、該衝突
部材の衝突面は、加速管の長軸に対して90°よりも小
さい傾きθ1を有する斜面を有しており、 該粉砕室は、該加速管出口を有する粉砕室前壁及び該衝
突部材で粉砕された被粉砕物を衝突によりさらに粉砕す
るための粉砕室側壁を有し、該粉砕室前壁と該粉砕室側
壁とが連設されており、 該粉砕室側壁と該衝突部材の縁端部との最近接距離l1
は、該衝突面に対向する該粉砕室前壁と該衝突部材の縁
端部との最近接距離l2よりも短いことを特徴とする衝
突式気流粉砕機。1. A collision type air flow crusher having an accelerating pipe for conveying and accelerating an object to be crushed by a high pressure gas, and a crushing chamber for finely crushing the object to be crushed, wherein a rear end portion of the accelerating tube Is located coaxially with the central axis of the accelerating tube.
High pressure gas ejection nozzle location is provided, the high pressure gas ejection
The nozzle has a throat part in the middle of the long axis direction,
Once the area has been narrowed down to the downstream side in the long axis direction,
It has a widened shape and ejects high-pressure gas from the high-pressure gas ejection nozzle around the high-pressure gas ejection nozzle.
The ejector effect generated by, the and grinding object supply opening for supplying to the acceleration tube is provided a grinding object, the said grinding chamber, opposite the opening surface of the outlet of the pressurized-speed tube A collision member having a provided collision surface is provided, and the collision surface of the collision member has a slope having an inclination θ1 smaller than 90 ° with respect to the long axis of the acceleration tube, and the crushing chamber is A crushing chamber front wall having the accelerating pipe outlet and a crushing chamber side wall for further crushing the object to be crushed by the collision member by collision, and the crushing chamber front wall and the crushing chamber side wall are connected to each other. The closest distance l 1 between the side wall of the crushing chamber and the edge of the collision member is provided.
Is a shorter distance than the closest distance l 2 between the crushing chamber front wall facing the collision surface and the edge of the collision member.
速管の長軸方向の傾きが0°〜45°となるように設置
されている請求項1に記載の衝突式気流粉砕機。2. The collision type air flow crushing according to claim 1, wherein the acceleration tube is installed so that the inclination of the acceleration tube in the long axis direction is 0 ° to 45 ° with respect to the vertical line. Machine.
速管の長軸方向の傾きが0°〜20°となるように設置
されている請求項1に記載の衝突式気流粉砕機。3. The collision type air flow crushing according to claim 1, wherein the acceleration tube is installed so that the inclination of the acceleration tube in the long axis direction is 0 ° to 20 ° with respect to the vertical line. Machine.
速管の長軸方向の傾きが0°〜5°となるように設置さ
れている請求項1に記載の衝突式気流粉砕機。4. The collision-type airflow crushing according to claim 1, wherein the acceleration tube is installed such that the inclination of the acceleration tube in the long axis direction is 0 ° to 5 ° with respect to the vertical line. Machine.
スロート部近傍にある請求項1に記載の衝突式気流粉砕
機。5. The collision type airflow crusher according to claim 1, wherein the tip of the high-pressure gas jet nozzle is located in the vicinity of the accelerating pipe throat.
された被粉砕物を排出するための粉砕物排出口が設けら
れている請求項1に記載の衝突式気流粉砕機。6. The collision type airflow crusher according to claim 1, wherein a crushed material discharge port for discharging the crushed crushed object is provided behind the collision surface of the collision member.
に二次空気導入口を有する請求項1に記載の衝突式気流
粉砕機。7. The collision type airflow crusher according to claim 1, further comprising a secondary air inlet between the accelerating pipe outlet and the crushed object supply port.
砕室の後壁に粉砕された被粉砕物を排出するための粉砕
物排出口を有している請求項1に記載の衝突式気流粉砕
機。8. The collision according to claim 1, wherein the crushing chamber has a crushed material discharge port for discharging a crushed object to be crushed on a rear wall of the crushing chamber facing the exit surface of the acceleration tube. Type airflow crusher.
対して90°よりも小さい傾きθ1を有する斜面を有
し、且つ中央部が突出している錐体形状の突出部をさら
に有している請求項1に記載の衝突式気流粉砕機。9. The collision surface of the collision member has a slope having an inclination θ1 smaller than 90 ° with respect to the long axis of the acceleration tube, and further has a cone-shaped protrusion having a central portion protruding. The collision type airflow crusher according to claim 1, which has.
に対して55°〜87.5°の傾きθ1を有する斜面を
有している請求項1に記載の衝突式気流粉砕機。10. The collision type airflow crusher according to claim 1, wherein the collision surface of the collision member has a slope having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the acceleration tube. .
に対して55°〜87.5°の傾きθ1を有する斜面を
有し、且つ中央部が突出している錐体形状の突出部をさ
らに有している請求項10に記載の衝突式気流粉砕機。11. The collision surface of the collision member has a sloped surface having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the accelerating tube, and has a cone-shaped protrusion with a central portion protruding. The collision type airflow crusher according to claim 10, further comprising a part.
とが連通している微粉体製造装置において、 (a)気流分級手段は、粉体供給管と分級室を有し;分
級室の上部に粉体供給管と連通する案内室が設けられて
おり;案内室と分級室との間に複数の導入ルーバーが設
けられており、導入ルーバーの間隙を介して粉体が搬送
エアーとともに案内室から分級室へ導入され;分級室の
底部に、中央部が高くなっている分級板が設けられてお
り;分級室の側壁に分級ルーバーを有し、分級室におい
て搬送エアーとともに供給された粉体は、分級ルーバー
間の間隙を介して流入するエアーによって旋回流動さ
れ、粉体は、遠心力によって微粉と粗粉に分級され;分
級された微粉を排出するための微粉排出口が分級板の中
央部に設けられ、微粉排出口には微粉排出管が接続され
ており;分級された粗粉を排出するための粗粉排出口が
分級板の外周部に形成されており;排出された粗粉を衝
突式気流粉砕手段に供給するための連通手段が具備され
ており、 (b)衝突式気流粉砕手段は、高圧気体により供給され
た粗粉を搬送加速するための加速管と、粗粉を微粉砕す
るための粉砕室とを有し;該加速管の後端部には、該加
速管の中心軸と同軸上に位置する高圧気体噴出ノズルが
具備され、該高圧気体噴出ノズルは、長軸方向の途中に
スロート部を有し、流路断面積が長軸方向下流側に向か
って一旦絞られた後、再度広がっている形状を有してお
り、該高圧気体噴出ノズルの周囲には、該高圧気体噴出
ノズルから高圧気体を噴出することによって発生するエ
ゼクター効果により、粗粉を加速管内に供給するための
粗粉供給口が設けられており;該粉砕室内には、該加速
管の出口の開口面に対向して設けた衝突面を有する衝突
部材が具備されており、該衝突部材の衝突面は、加速管
の長軸に対して90°よりも小さい傾きθ1を有する斜
面を有しており;該粉砕室は、該加速管出口を有する粉
砕室前壁及び該衝突部材で粉砕された粗粉の粉砕物を衝
突によりさらに粉砕するための粉砕室側壁を有し、該粉
砕室前壁と該粉砕室側壁とが連設されており;該粉砕室
側壁と該衝突部材の縁端部との最近接距離l1は、該衝
突面に対向する該粉砕室前壁と該衝突部材の縁端部との
最近接距離l2よりも短いことを特徴とする微粉体製造
装置。12. A fine powder manufacturing apparatus in which an air flow classifying unit and a collision type air flow crushing unit communicate with each other, wherein (a) the air flow classifying unit has a powder supply pipe and a classifying chamber; and an upper part of the classifying chamber. Is provided with a guide chamber communicating with the powder supply pipe; a plurality of introduction louvers is provided between the guide chamber and the classification chamber, and the powder is guided together with the carrier air through the gap between the introduction louvers. From the bottom of the classification chamber is provided with a classifying plate whose center is higher; the side wall of the classification chamber has a classification louver, and the powder supplied with the carrier air in the classification chamber Is swirled and flowed by the air flowing in through the gap between the classification louvers, and the powder is classified into fine powder and coarse powder by centrifugal force; the fine powder discharge port for discharging the classified fine powder is at the center of the classification plate. Is provided in the A fine powder discharge pipe is connected; a coarse powder discharge port for discharging classified coarse powder is formed on the outer periphery of the classifying plate; for supplying the discharged coarse powder to the collision type air flow pulverizing means (B) The collision type air flow crushing means has an accelerating tube for accelerating the conveyance of the coarse powder supplied by the high-pressure gas, and a pulverizing chamber for finely pulverizing the coarse powder. teeth; the rear end of the pressurized-speed tube, the pressurized
A high-pressure gas jet nozzle located coaxially with the central axis of the speed tube is provided, and the high- pressure gas jet nozzle is provided in the middle of the long axis direction.
It has a throat part and the flow path cross-sectional area is directed to the downstream side in the long axis direction.
After being squeezed once, it has a shape that spreads again.
Ri, the periphery of the high pressure gas ejection nozzle, the high pressure gas ejection
The energy generated by ejecting high-pressure gas from the nozzle.
Due to the Zector effect, a coarse powder supply port for supplying coarse powder into the accelerating pipe is provided; a collision member having a collision surface provided in the crushing chamber so as to face the opening surface of the outlet of the accelerating pipe. The collision surface of the collision member has a slope having an inclination θ1 smaller than 90 ° with respect to the longitudinal axis of the acceleration tube; the crushing chamber has a crushing unit having the acceleration tube outlet. The chamber front wall and a crushing chamber side wall for further crushing the crushed material of the coarse powder crushed by the collision member, and the crushing chamber front wall and the crushing chamber side wall are connected to each other; The closest distance l 1 between the side wall of the crushing chamber and the edge of the collision member is shorter than the closest distance l 2 between the front wall of the crushing chamber facing the collision surface and the edge of the collision member. A fine powder manufacturing apparatus characterized by:
加速管の長軸方向の傾きが0°〜45°となるように設
置されている請求項12に記載の微粉体製造装置。13. The fine powder manufacturing apparatus according to claim 12, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the longitudinal direction is 0 ° to 45 ° with respect to the vertical line. .
加速管の長軸方向の傾きが0°〜20°となるように設
置されている請求項12に記載の微粉体製造装置。14. The fine powder manufacturing apparatus according to claim 12, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the major axis direction is 0 ° to 20 ° with respect to the vertical line. .
加速管の長軸方向の傾きが0°〜5°となるように設置
されている請求項12に記載の微粉体製造装置。15. The fine powder manufacturing apparatus according to claim 12, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the major axis direction is 0 ° to 5 ° with respect to the vertical line. .
に貯留され、次いで、微粉砕手段に供給される請求項1
2に記載の微粉体製造装置。16. The dispersed coarse powder is stored in a coarse powder discharge hopper and then supplied to a fine pulverizing means.
2. The fine powder manufacturing apparatus described in 2.
管スロート部近傍にある請求項12に記載の微粉体製造
装置。17. The fine powder manufacturing apparatus according to claim 12, wherein the tip of the high-pressure gas jet nozzle is located near the accelerating tube throat.
砕された粗粉の粉砕物を排出するための粉砕物排出口が
設けられている請求項12に記載の微粉体製造装置。18. The fine powder manufacturing apparatus according to claim 12, wherein a crushed material discharge port for discharging the crushed material of the crushed coarse powder is provided behind the collision surface of the collision member.
粉の粉砕物を該気流分級手段へ循環するための連通手段
を有する請求項12に記載の微粉体製造装置。19. The fine powder manufacturing apparatus according to claim 12, further comprising a communicating means for circulating a pulverized product of the fine powder pulverized by the collision type air flow pulverizing means to the air stream classifying means.
間に二次空気導入口を有する請求項12に記載の微粉体
製造装置。20. The fine powder manufacturing apparatus according to claim 12, further comprising a secondary air introduction port between the acceleration pipe outlet and the pulverized material supply port.
粉砕室の後壁に粉砕された粗粉の粉砕物を排出するため
の粉砕物排出口を有している請求項12に記載の微粉体
製造装置。21. The crushing chamber has a crushed material discharge port for discharging a crushed coarse crushed material on a rear wall of the crushing chamber facing the accelerating tube outlet surface. Fine powder manufacturing equipment.
に対して90°よりも小さい傾きθ1を有する斜面を有
し、且つ中央部が突出している錐体形状の突出部をさら
に有している請求項12に記載の微粉体製造装置。22. The collision surface of the collision member has a sloped surface having an inclination θ1 smaller than 90 ° with respect to the long axis of the acceleration tube, and further has a cone-shaped protruding portion having a protruding central portion. The fine powder manufacturing apparatus according to claim 12, which has.
に対して55°〜87.5°の傾きθ1を有する斜面を
有している請求項12に記載の微粉体製造装置。23. The fine powder manufacturing apparatus according to claim 12, wherein the collision surface of the collision member has an inclined surface having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the acceleration tube.
に対して55°〜87.5°の傾きθ1を有する斜面を
有し、且つ中央部が突出している錐体形状の突出部をさ
らに有している請求項23に記載の微粉体製造装置。24. The conical surface of the collision member has a sloped surface having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the accelerating tube, and has a cone-shaped protrusion with a central portion protruding. The fine powder manufacturing apparatus according to claim 23, further comprising a part.
する混合物を溶融混練し、混練物を冷却し、冷却物を粉
砕手段によって粉砕して粉砕物を得、得られた粉砕物を
気流分級手段で、粗粉と微粉とに分級し、分級された粗
粉を衝突式気流粉砕手段により微粉砕して微粉体を生成
し、生成した微粉体から気流分級手段で微粉を分級し、
分級された微粉から静電荷像現像用トナーを製造する方
法において、 (a)前記気流分級手段は、粉体供給管と分級室を有
し;分級室の上部に粉体供給管と連通する案内室が設け
られており;案内室と分級室との間に複数の導入ルーバ
ーが設けられており、導入ルーバーの間隙を介して粉体
が搬送エアーとともに案内室から分級室へ導入され;分
級室の底部に、中央部が高くなっている分級板が設けら
れており;分級室の側壁に分級ルーバーを有し、分級室
において搬送エアーとともに供給された粉体は、分級ル
ーバー間の間隙を介して流入するエアーによって旋回流
動され、粉体は、遠心力によって微粉と粗粉に分級さ
れ;分級された微粉を排出するための微粉排出口が分級
板の中央部に設けられ、微粉排出口には微粉排出管が接
続されており;分級された粗粉を排出するための粗粉排
出口が分級板の外周部に形成されており、 (b)衝突式気流粉砕手段は、高圧気体により供給され
た粗粉を搬送加速するための加速管と、粗粉を微粉砕す
るための粉砕室とを有し;該加速管の後端部には、該加
速管の中心軸と同軸上に位置する高圧気体噴出ノズルが
具備され、該高圧気体噴出ノズルは、長軸方向の途中に
スロート部を有し、流路断面積が長軸方向下流側に向か
って一旦絞られた後、再度広がっている形状を有してお
り、該高圧気体噴出ノズルの周囲には、該高圧気体噴出
ノズルから高圧気体を噴出することによって発生するエ
ゼクター効果により、粗粉を加速管内に供給するための
粗粉供給口が設けられており;該粉砕室内には、該加速
管の出口の開口面に対向して設けた衝突面を有する衝突
部材が具備されており、該衝突部材の衝突面は、加速管
の長軸に対して90°よりも小さい傾きθ1を有する斜
面を有しており;該粉砕室は、該加速管出口を有する粉
砕室前壁及び該衝突部材で粉砕された粗粉の粉砕物を衝
突によりさらに粉砕するための粉砕室側壁を有し、該粉
砕室前壁と該粉砕室側壁とが連設されており;該粉砕室
側壁と該衝突部材の縁端部との最近接距離l1は、該衝
突面に対向する該粉砕室前壁と該衝突部材の縁端部との
最近接距離l2よりも短く、 (c)前記気流分級手段から排出された粗粉を前記衝突
式気流粉砕手段に供給し、該粉砕室内において該粗粉を
該衝突部材の衝突面及び該粉砕室の側壁に衝突させて粗
粉の粉砕及び粗粉の粉砕物のさらなる粉砕を行うことを
特徴とするトナーの製造方法。25. A mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled, and the cooled product is crushed by a crushing device to obtain a crushed product. In, classified into coarse powder and fine powder, finely pulverized the classified coarse powder by collision type air flow pulverizing means to produce fine powder, classify the fine powder by the air stream classification means from the produced fine powder,
In the method for producing a toner for developing an electrostatic charge image from classified fine powder, (a) the airflow classification means has a powder supply pipe and a classification chamber; a guide communicating with the powder supply pipe at the upper part of the classification chamber. A chamber is provided; a plurality of introduction louvers are provided between the guide chamber and the classification chamber, and the powder is introduced from the guide chamber to the classification chamber together with the carrier air through the gap between the introduction louvers; the classification chamber At the bottom of the, there is provided a classifying plate with a high central part; the side wall of the classifying chamber has a classifying louver, and the powder supplied with the conveying air in the classifying chamber passes through the gap between the classifying louvers. Is swirled and flowed by the inflowing air, and the powder is classified into fine powder and coarse powder by centrifugal force; a fine powder discharge port for discharging the classified fine powder is provided at the center of the classifying plate, and the fine powder discharge port is provided. Is connected to the fine powder discharge pipe Cage; a coarse powder discharge port for discharging the classified coarse powder is formed in the outer peripheral portion of the classifying plate, and (b) the collision type air flow crushing means conveys and accelerates the coarse powder supplied by the high pressure gas. It has an accelerating tube for the coarse powder and the grinding chamber for pulverizing; the rear end of the pressurized-speed tube, the pressurized
A high-pressure gas jet nozzle located coaxially with the central axis of the speed tube is provided, and the high- pressure gas jet nozzle is provided in the middle of the long axis direction.
It has a throat part and the flow path cross-sectional area is directed to the downstream side in the long axis direction.
After being squeezed once, it has a shape that spreads again.
Ri, the periphery of the high pressure gas ejection nozzle, the high pressure gas ejection
The energy generated by ejecting high-pressure gas from the nozzle.
Due to the Zector effect, a coarse powder supply port for supplying coarse powder into the accelerating pipe is provided; a collision member having a collision surface provided in the crushing chamber so as to face the opening surface of the outlet of the accelerating pipe. The collision surface of the collision member has a slope having an inclination θ1 smaller than 90 ° with respect to the longitudinal axis of the acceleration tube; the crushing chamber has a crushing unit having the acceleration tube outlet. The chamber front wall and a crushing chamber side wall for further crushing the crushed material of the coarse powder crushed by the collision member, and the crushing chamber front wall and the crushing chamber side wall are connected to each other; The closest distance l 1 between the crushing chamber side wall and the edge of the collision member is shorter than the closest distance l 2 between the crushing chamber front wall facing the collision surface and the edge of the collision member, (C) The coarse powder discharged from the airflow classifying means is supplied to the collision type airflow crushing means, and the coarse powder is supplied in the crushing chamber. Method for producing a toner, wherein a coarse powder for further grinding of the ground product of the milling and coarse coarse powder by colliding with the collision surface and the side of the grinding chamber of the impact member.
加速管の長軸方向の傾きが0°〜45°となるように設
置されている請求項25に記載のトナーの製造方法。26. The method for producing a toner according to claim 25, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the major axis direction is 0 ° to 45 ° with respect to the vertical line. .
加速管の長軸方向の傾きが0°〜20°となるように設
置されている請求項25に記載のトナーの製造方法。27. The method for producing a toner according to claim 25, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the major axis direction is 0 ° to 20 ° with respect to the vertical line. .
加速管の長軸方向の傾きが0°〜5°となるように設置
されている請求項25に記載のトナーの製造方法。28. The method for producing a toner according to claim 25, wherein the accelerating tube is installed such that an inclination of the accelerating tube in a major axis direction is 0 ° to 5 ° with respect to a vertical line. .
に貯留され、次いで、微粉砕手段に供給される請求項2
5に記載のトナーの製造方法。29. The dispersed coarse powder is stored in a coarse powder discharge hopper and then supplied to a fine pulverizing means.
5. The method for producing the toner according to item 5.
管スロート部近傍にある請求項25に記載のトナーの製
造方法。30. The method for producing a toner according to claim 25, wherein the tip of the high-pressure gas jet nozzle is in the vicinity of the throat portion of the acceleration tube.
砕された粗粉の粉砕物を排出するための粉砕物排出口が
設けられている請求項25に記載のトナーの製造方法。31. The method for producing a toner according to claim 25, wherein a crushed material discharge port for discharging a crushed material of the crushed coarse powder is provided behind the collision surface of the collision member.
粉の粉砕物は、該気流分級手段に循環され、分級される
請求項25に記載のトナーの製造方法。32. The method for producing a toner according to claim 25, wherein the pulverized product of the fine powder pulverized by the collision type airflow pulverizing means is circulated and classified by the airstream classification means.
間に二次空気導入口を有する請求項25に記載のトナー
の製造方法。33. The method for producing a toner according to claim 25, further comprising a secondary air inlet between the outlet of the acceleration tube and the inlet for supplying the material to be crushed.
粉砕室の後壁に粉砕された粗粉の粉砕物を排出するため
の粉砕物排出口を有している請求項25に記載のトナー
の製造方法。34. The crushing chamber has a crushed material discharge port for discharging the crushed material of the crushed coarse powder on the rear wall of the crushing chamber facing the exit surface of the acceleration tube. Manufacturing method of toner.
に対して90°よりも小さい傾きθ1を有する斜面を有
し、且つ中央部が突出している錐体形状の突出部をさら
に有している請求項25に記載のトナーの製造方法。35. The collision surface of the collision member has a sloped surface having an inclination θ1 smaller than 90 ° with respect to the long axis of the acceleration tube, and further has a cone-shaped protruding portion having a protruding central portion. The method for producing a toner according to claim 25, which has.
に対して55°〜87.5°の傾きθ1を有する斜面を
有している請求項25に記載のトナーの製造方法。36. The method for producing a toner according to claim 25, wherein the collision surface of the collision member has an inclined surface having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the acceleration tube.
に対して55°〜87.5°の傾きθ1を有する斜面を
有し、且つ中央部が突出している錐体形状の突出部をさ
らに有している請求項36に記載のトナーの製造方法。37. The collision surface of the collision member has a sloped surface having an inclination θ1 of 55 ° to 87.5 ° with respect to the long axis of the acceleration tube, and has a cone-shaped projection with a central portion protruding. The method for producing a toner according to claim 36, further comprising a part.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11617692A JP3451288B2 (en) | 1992-05-08 | 1992-05-08 | Collision type air flow pulverizer, fine powder production apparatus and toner production method |
EP92112063A EP0523653B1 (en) | 1991-07-16 | 1992-07-15 | Pneumatic impact pulverizer |
EP95109863A EP0679442A3 (en) | 1991-07-16 | 1992-07-15 | Fine powder production apparatus. |
DE69222480T DE69222480T2 (en) | 1991-07-16 | 1992-07-15 | Pneumatic impact mill |
KR1019920012582A KR950006885B1 (en) | 1991-07-16 | 1992-07-15 | Impingement air pulverizer, fine powder production device and toner manufacturing method |
EP95109861A EP0679441A3 (en) | 1991-07-16 | 1992-07-15 | Toner production process. |
CN92105740A CN1057025C (en) | 1991-07-16 | 1992-07-16 | Collided air-jet mill, apparatus for meparation of micropoder and process for preparation of mix colours agent. |
US08/375,173 US5577670A (en) | 1991-07-16 | 1995-01-18 | Pneumatic impact pulverizer system |
US08/640,633 US5839670A (en) | 1991-07-16 | 1996-05-01 | Pneumatic impact pulverizer, fine powder production apparatus, and toner production process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11617692A JP3451288B2 (en) | 1992-05-08 | 1992-05-08 | Collision type air flow pulverizer, fine powder production apparatus and toner production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05309288A JPH05309288A (en) | 1993-11-22 |
JP3451288B2 true JP3451288B2 (en) | 2003-09-29 |
Family
ID=14680679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11617692A Expired - Lifetime JP3451288B2 (en) | 1991-07-16 | 1992-05-08 | Collision type air flow pulverizer, fine powder production apparatus and toner production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3451288B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5934575A (en) * | 1996-12-27 | 1999-08-10 | Canon Kabushiki Kaisha | Pneumatic impact pulverizer and process for producing toner |
JP2008112181A (en) * | 1999-04-08 | 2008-05-15 | Ricoh Co Ltd | Toner, method of producing the same and image forming method |
JP5504629B2 (en) | 2009-01-05 | 2014-05-28 | 株式会社リコー | Airflow type pulverization classification device |
CN115155427B (en) * | 2022-09-02 | 2022-11-25 | 安徽医学高等专科学校 | Medical science inspection homogenate device |
-
1992
- 1992-05-08 JP JP11617692A patent/JP3451288B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05309288A (en) | 1993-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5839670A (en) | Pneumatic impact pulverizer, fine powder production apparatus, and toner production process | |
US5447275A (en) | Toner production process | |
JP3005132B2 (en) | Method of manufacturing toner and manufacturing apparatus system therefor | |
JP3451288B2 (en) | Collision type air flow pulverizer, fine powder production apparatus and toner production method | |
JP3352313B2 (en) | Manufacturing method of toner | |
JP3486524B2 (en) | Method and system for manufacturing toner | |
JP3740202B2 (en) | Toner production method | |
JPH1115196A (en) | Production of toner and production system | |
JPH1115194A (en) | Production of toner | |
JP3176757B2 (en) | Method for producing toner for developing electrostatic images | |
JPH0792735A (en) | Manufacture of toner and device for manufacturing the same | |
JP3155855B2 (en) | Method for producing toner for developing electrostatic images | |
JP3327762B2 (en) | Manufacturing method of toner | |
JP2961463B2 (en) | Collision type air flow pulverizer, fine powder production apparatus and toner production method | |
JP3210774B2 (en) | Manufacturing method of toner | |
JP3302270B2 (en) | Manufacturing method of toner | |
JP3210132B2 (en) | Method for producing toner for developing electrostatic images | |
JPH1090948A (en) | Manufacture of toner | |
JPH0788393A (en) | Pulverizing method by impact pneumatic pulverizer and production of toner | |
JP3138379B2 (en) | Method for producing toner for developing electrostatic images | |
JP3220918B2 (en) | Method and apparatus for manufacturing toner | |
JPH1090934A (en) | Manufacture of toner | |
JPH0756388A (en) | Method and device for producing toner | |
JP3382468B2 (en) | Manufacturing method of toner | |
JPH1090935A (en) | Manufacture of toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090718 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090718 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100718 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100718 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |