JP3443702B2 - Heat pump water heater - Google Patents
Heat pump water heaterInfo
- Publication number
- JP3443702B2 JP3443702B2 JP2001112227A JP2001112227A JP3443702B2 JP 3443702 B2 JP3443702 B2 JP 3443702B2 JP 2001112227 A JP2001112227 A JP 2001112227A JP 2001112227 A JP2001112227 A JP 2001112227A JP 3443702 B2 JP3443702 B2 JP 3443702B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- buffer
- control circuit
- gas cooler
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/05—Refrigerant levels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はヒートポンプ給湯機
に係り、詳しくは年間を通じて効率よく安定した給湯を
可能ならしめる給湯システムで使用される炭酸ガス冷媒
を使用したヒートポンプ給湯機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater using a carbon dioxide gas refrigerant used in a hot water supply system that enables efficient and stable hot water supply throughout the year.
【0002】[0002]
【従来の技術】ヒートポンプ給湯機では季節(気温)の
変動による低圧側冷媒量の変動により目標とする高圧側
冷媒量が変動する。即ち、冬季の低温外気では蒸発温度
が低下するに従って圧力が低下し希薄なガスとなる。そ
のため、冷凍サイクル中の冷媒量が一定であると当然の
こととしてその分だけの冷媒は高圧側に移動することに
なり、高圧空間中のガス密度が上がり、高圧圧力も上昇
する。2. Description of the Related Art In a heat pump water heater, a target high-pressure side refrigerant amount fluctuates due to fluctuations in the low-pressure side refrigerant amount due to fluctuations in season (air temperature). That is, in the low temperature outside air in winter, the pressure decreases as the evaporation temperature decreases, and the gas becomes a lean gas. Therefore, if the amount of the refrigerant in the refrigeration cycle is constant, it is natural that the corresponding amount of the refrigerant moves to the high pressure side, the gas density in the high pressure space increases, and the high pressure also increases.
【0003】殊に圧縮機もしくは冷媒熱交換器と、蒸発
器の間に低圧側の冷媒レシーバを設ける方式では圧縮機
へ吸い込まれる冷媒ガスの過熱度が低くなったり、湿り
気味となり、低めの吐出ガス温度となり易く、適切な吐
出ガス温度,出湯は得られず、効率のよい給湯ができな
い。Particularly, in a system in which a low-pressure side refrigerant receiver is provided between a compressor or a refrigerant heat exchanger and an evaporator, the refrigerant gas sucked into the compressor has a low superheat degree, becomes moist, and has a low discharge. The gas temperature is likely to be reached, an appropriate discharge gas temperature and hot water discharge cannot be obtained, and efficient hot water supply cannot be achieved.
【0004】逆に夏季のヒートポンプ運転における冷媒
分布は気温が高く蒸発温度(低圧圧力)が上昇するため
に低圧空間の冷媒密度が上がり、低圧空間における冷媒
重量比率が上がるために、その分、高圧側の冷媒量が不
足して来て、高圧が低めとなり易い。On the contrary, in the heat pump operation in summer, the refrigerant distribution in the heat pump operation is high in temperature and the evaporation temperature (low pressure) is increased, so that the refrigerant density in the low pressure space is increased and the weight ratio of the refrigerant in the low pressure space is increased. The amount of refrigerant on the side becomes insufficient and the high pressure tends to be low.
【0005】そこで、夏季の運転のために最適な冷媒量
を閉サイクル内に充填すれば冬季に高圧が上昇しすぎて
冷凍サイクルとして成立しなくなる場合が起こる。つま
り過大な冷媒量が高圧側に存在することとなり、熱交換
以前に異常高圧となるので設計圧力以下に設計された保
護装置により運転停止することとなったり、不必要な高
圧で成績係数低下の原因となる。特に給湯負荷は冬季の
方が大きく運転時間も長い。また貯湯する場合でも高温
貯湯が要求されるのが普通であり、高圧は自然と高くな
り易い。Therefore, if the optimum amount of refrigerant is filled in the closed cycle for the summer operation, the high pressure may rise too much in the winter and the refrigeration cycle may not work. In other words, an excessive amount of refrigerant is present on the high pressure side, which causes an abnormally high pressure before heat exchange, so the operation will be stopped by a protective device designed below the design pressure, or the coefficient of performance will drop due to unnecessary high pressure. Cause. Especially, the hot water supply load is larger in winter and the operation time is longer. Further, even when storing hot water, it is usually required to store high temperature hot water, and the high pressure tends to be naturally high.
【0006】ところで、従来のヒートポンプ給湯機は使
用冷媒としてフロン冷媒が主として用いられていた。こ
のフロン冷媒は臨界点が高く、圧力が低いため、冬季に
おいて高圧空間の高圧が上昇しても特に問題はなく、運
転に別段、支障を生じることもなかった。しかし、近
時、フロンの地球環境に対する有害が取り上げられ、環
境にやさしい冷媒として炭酸ガス(CO2)の使用が急
速に促進され、今まで提供されたことのなかった炭酸ガ
ス冷媒を用いたヒートポンプ給湯機が検討されて来た。By the way, in a conventional heat pump water heater, a CFC refrigerant is mainly used as a refrigerant used. Since this CFC refrigerant has a high critical point and a low pressure, even if the high pressure in the high pressure space rises in winter, there was no particular problem, and there was no particular problem in operation. However, recently, the harmful effects of CFCs on the global environment have been taken up, and the use of carbon dioxide (CO 2 ) as an eco-friendly refrigerant has been rapidly promoted, and heat pumps using carbon dioxide refrigerant that had never been provided so far. Water heaters have been considered.
【0007】[0007]
【発明が解決しようとする課題】ところが、炭酸ガス冷
媒は前記従来のフロン冷媒に比し臨界点が低く、圧力が
数倍高いものであり、従来のフロン冷媒における高圧空
間をそのまま使用するときには、冬季、圧力が上昇し、
高圧側存在量が大きくなるような場合、破壊時エネルギ
ーが大きくなる危険を有している。勿論、その高圧に耐
える構造として、例えば管厚を厚くすることも考えられ
るが、コストが大になり好ましくない。そこで、低圧側
はとも角、高圧空間を安全性の面から出来るだけ減ら
し、狭くすることが考究された。しかし、高圧側空間を
狭くすれば低圧側空間の影響をより受け易くなり、気温
の影響を受ける。However, the carbon dioxide gas refrigerant has a lower critical point and a pressure several times higher than that of the conventional CFC refrigerant, and when the high pressure space in the conventional CFC refrigerant is used as it is, In winter, pressure increases,
There is a risk that the energy at breakage will become large if the existing amount on the high voltage side becomes large. Of course, as a structure capable of withstanding the high pressure, it is conceivable to increase the thickness of the pipe, for example, but this is not preferable because the cost becomes large. Therefore, it was sought to reduce both the corner and the high pressure space on the low pressure side as much as possible from the viewpoint of safety, and narrow the space. However, if the high-pressure side space is made narrower, it will be more easily affected by the low-pressure side space and will be affected by the temperature.
【0008】本発明は上述の如き実状に鑑み、これに対
処すべく冷凍サイクル中の冷媒量が一定である場合にお
いて、低圧側空間で冬季,夏季に応じ存在ガス量が変わ
るのに着目し、当該ガス量の差をクッションとしてプー
ルすることを見出すことにより高圧側の冷媒空間が少な
い冷凍サイクルで夏季と冬季で必要冷媒量を異にする炭
酸ガス用ヒートポンプ給湯機で安価な冷媒サイクルによ
り最適な冷媒量を保持せしめ、年間を通じて安全に、安
定した一定温度の給湯を可能ならしめることを目的とす
るものである。In view of the above situation, the present invention focuses on the fact that the amount of gas present changes in the low pressure side space depending on winter and summer when the amount of refrigerant in the refrigeration cycle is constant in order to cope with this. By finding that the difference in the amount of gas is pooled as a cushion, the heat pump water heater for carbon dioxide gas, which requires different amounts of refrigerant in summer and winter in a refrigeration cycle with less refrigerant space on the high pressure side, is more suitable for an inexpensive refrigerant cycle. The purpose of the invention is to keep the amount of refrigerant and to supply hot water at a stable constant temperature safely throughout the year.
【0009】なお、超臨界蒸気圧縮サイクルにおいて、
循環冷媒量を調節することにより高サイド圧力を制御
し、冷却能力を調整することは、例えば特公平7−18
602号公報などに開示されている。しかし、これらの
技術は冷却能力に着目して論じられているが、高圧側の
ガスクーラ放熱を水加熱として用いる給湯に着目したも
のではなく、気温に応じた出湯温度などは論じられてい
ない。In the supercritical vapor compression cycle,
The high side pressure is controlled by adjusting the amount of circulating refrigerant, and the cooling capacity is adjusted by, for example, Japanese Patent Publication No. 7-18.
No. 602 and the like. However, although these technologies are discussed focusing on the cooling capacity, they are not focused on hot water supply using the gas cooler heat radiation on the high pressure side as water heating, and the hot water outlet temperature according to the temperature is not discussed.
【0010】[0010]
【課題を解決するための手段】上記目的に適合し、その
課題を達成する本発明の特徴は、1つは圧縮機,ガスク
ーラ,冷媒熱交換器,冷媒膨張弁,蒸発器を冷媒配管に
より順次、接続し、圧縮機吸入側にアキュムレータを配
し、水を向流型ガスクーラへ通水せしめて昇温させるヒ
ートポンプ給湯機において、圧縮機吐出側よりガスクー
ラに至る配管途中より分岐してデフロスト電磁弁より冷
媒膨張弁下流に至る冷媒制御回路と、デフロスト電磁弁
以前で更に分岐して第1のバッファ電磁弁,冷媒バッフ
ァを経由して第2のバッファ電磁弁より前記冷媒膨張弁
下流の前記冷媒制御回路合流部に至る制御回路及び該制
御回路途中より冷媒膨張弁上流に至る冷媒制御回路を夫
々設け、第1,第2のバッファ電磁弁の何れか又は双方
を操作することにより冷媒バッファに冷凍サイクルの冷
媒を回収するか、もしくは冷凍サイクルに充填して必要
冷媒量の調整を可能ならしめた点にある。One of the features of the present invention that meets the above object and achieves the object is that a compressor, a gas cooler, a refrigerant heat exchanger, a refrigerant expansion valve, and an evaporator are sequentially arranged by a refrigerant pipe. , A heat pump water heater that connects and installs an accumulator on the suction side of the compressor to let water flow through a countercurrent gas cooler to raise the temperature, and branches from the middle of the piping from the discharge side of the compressor to the gas cooler to defrost solenoid valve. The refrigerant control circuit further downstream of the refrigerant expansion valve, and the refrigerant control downstream of the second buffer electromagnetic valve from the second buffer electromagnetic valve via the first buffer electromagnetic valve and the refrigerant buffer by further branching before the defrost electromagnetic valve. A control circuit reaching the circuit merging section and a refrigerant control circuit reaching the refrigerant expansion valve upstream from the middle of the control circuit are respectively provided to operate either or both of the first and second buffer solenoid valves. Ri recovery or refrigerant of the refrigeration cycle in the refrigerant buffer, or in point occupies possibly adjust the necessary refrigerant amount is filled in the refrigerating cycle.
【0011】請求項2の発明は、同様な目的,課題をも
つもう一つのヒートポンプ給湯機であり、前記圧縮機,
ガスクーラ,冷媒熱交換器,冷媒膨張弁,蒸発器を冷媒
配管により順次、接続し、圧縮機吸入側にアキュムレー
タを配し、水を向流型ガスクーラへ通水せしめて昇温さ
せるヒートポンプ給湯機において、圧縮機吐出側よりガ
スクーラに至る配管途中より分岐してデフロスト電磁弁
より冷媒膨張弁下流に至る冷媒制御回路と、ヒータが付
設された冷媒バッファよりバッファ電磁弁を経由して前
記冷媒膨張弁下流の前記冷媒制御回路合流部に至る制御
回路及び該制御回路途中より冷媒膨張弁上流に至る冷媒
制御回路を夫々設け、該制御回路のバッファ電磁弁を操
作することにより冷媒バッファに冷凍サイクルの冷媒を
回収するか、もしくはヒータ操作を加え、冷凍サイクル
に充填して必要冷媒量の調整を可能ならしめる構成を特
徴とする。The invention of claim 2 is another heat pump water heater having the same object and problem.
In a heat pump water heater that sequentially connects a gas cooler, a refrigerant heat exchanger, a refrigerant expansion valve, and an evaporator with a refrigerant pipe, arranges an accumulator on the compressor suction side, and passes water through a countercurrent gas cooler to raise the temperature. , A refrigerant control circuit that branches from the middle of the piping from the compressor discharge side to the gas cooler and reaches the refrigerant expansion valve downstream from the defrost electromagnetic valve, and the refrigerant expansion valve downstream from the refrigerant buffer equipped with a heater via the buffer electromagnetic valve A refrigerant control circuit reaching the refrigerant control circuit merging portion and a refrigerant control circuit reaching the refrigerant expansion valve upstream from the middle of the control circuit are respectively provided, and the refrigerant of the refrigeration cycle is supplied to the refrigerant buffer by operating the buffer solenoid valve of the control circuit. It is characterized in that the refrigerant can be collected or charged with a heater to fill the refrigeration cycle to adjust the required amount of refrigerant.
【0012】請求項3〜5は上記のヒートポンプ給湯機
におけるより具体的な態様であり、請求項3の発明は圧
縮機吸入側にアキュムレータを配し冷媒熱交換器の高圧
側がガスクーラ出口に、低圧側が空気熱交換器とアキュ
ムレータの間となるように設置されたことを特徴とす
る。[0012] Claims 3 to 5 are more specific aspects of the above heat pump water heater. In the invention of claim 3, an accumulator is arranged on the suction side of the compressor, and the high pressure side of the refrigerant heat exchanger is at the gas cooler outlet and the low pressure side is at low pressure. It is characterized in that it is installed so that the side is between the air heat exchanger and the accumulator.
【0013】また請求項4の発明は向流型ガスクーラと
して二重方式の熱交換器の如き高圧側冷媒量が少なくな
る向流型熱交換器を用いること、請求項5の発明は出湯
温度の調節を流量調節弁もしくは可変流量ポンプの調節
により給水流量を調節することにより行うことを夫々特
徴としている。The invention of claim 4 uses a countercurrent type heat exchanger such as a double type heat exchanger in which the amount of refrigerant on the high pressure side is small, as the countercurrent type gas cooler. Each is characterized in that the adjustment is performed by adjusting the feed water flow rate by adjusting a flow rate control valve or a variable flow rate pump.
【0014】[0014]
【作用】上記本発明ヒートポンプ給湯機は、図1におい
て、冷凍サイクルの第2のバッファ電磁弁を開けば図中
のA点よりC点を通じバッファ(冷媒レシーバ)に低圧
冷媒液を回収することができる。また、高圧側のB点よ
りC点を通じバッファに高圧側の冷媒液を回収すること
ができる。In the above heat pump water heater of the present invention, when the second buffer solenoid valve of the refrigeration cycle is opened in FIG. 1, the low-pressure refrigerant liquid can be collected in the buffer (refrigerant receiver) from point A to point C in the figure. it can. Further, the refrigerant liquid on the high pressure side can be collected in the buffer through the points C to B on the high pressure side.
【0015】一方、第1のバッファ電磁弁を開き、冷凍
サイクルの最高圧力となる圧縮機の吐出圧力をバッファ
内部にかけることにより内部の冷媒液をA点やB点に向
けて放出することができる。通常、気温で運転する場合
の最適冷媒量は冬季(−8℃)と夏季(+35℃)では
異なっており、冷媒量に差があるが、上記バッファ電磁
弁の開閉により冷媒量は制御され、給湯加熱のための目
標とする冷媒サイクル上の高圧側ガスクーラ出入口の圧
力,温度を最適となるように調整が可能となる。On the other hand, by opening the first buffer solenoid valve and applying the discharge pressure of the compressor, which is the maximum pressure of the refrigeration cycle, inside the buffer, the internal refrigerant liquid can be discharged toward points A and B. it can. Normally, the optimum amount of refrigerant when operating at ambient temperature is different in winter (-8 ° C) and summer (+ 35 ° C), and although there is a difference in the amount of refrigerant, the amount of refrigerant is controlled by opening and closing the buffer solenoid valve, It is possible to adjust the pressure and temperature at the high pressure side gas cooler inlet / outlet on the target refrigerant cycle for heating the hot water supply to be optimal.
【0016】また、図2の冷凍サイクル図ではバッファ
電磁弁を開いたときは図1と同様、A点よりC点を通じ
バッファに低圧冷媒液を回収することができるか、もし
くは高圧側のB点よりC点を通じバッファに高圧側冷媒
液を回収することができる。Further, in the refrigeration cycle diagram of FIG. 2, when the buffer solenoid valve is opened, the low pressure refrigerant liquid can be collected in the buffer from the point A through the point C as in the case of FIG. 1, or the point B on the high pressure side. Through the point C, the high pressure side refrigerant liquid can be collected in the buffer.
【0017】そして、一方、バッファ電磁弁を開き、ヒ
ータに通電加熱すると、バッファ内部の冷媒液は蒸発
し、内圧が上昇して内部の冷媒液をA点やB点に向けて
放出し、前者の電磁弁開放と相俟って目標とする適正や
圧力や温度における冷媒量に調整が可能となり、気温変
動に拘わらず一定温度の給湯を可能とする。On the other hand, when the buffer solenoid valve is opened and the heater is energized and heated, the refrigerant liquid inside the buffer evaporates, the internal pressure rises, and the inside refrigerant liquid is discharged toward points A and B. In combination with the opening of the solenoid valve, it becomes possible to adjust the target properness and the amount of refrigerant at the pressure and temperature, and it is possible to supply hot water at a constant temperature regardless of temperature fluctuations.
【0018】[0018]
【発明の実施の形態】以下、更に添付図面に示す冷凍サ
イクルを参照し、本発明ヒートポンプ給湯機の具体的態
様を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the heat pump water heater of the present invention will be described below with reference to the refrigeration cycle shown in the accompanying drawings.
【0019】図1は本発明ヒートポンプ給湯機の第1の
形態の冷凍サイクル図であり、図において、1は圧縮
機,2はガスクーラ,3は冷媒熱交換器,4は冷媒膨張
弁,5は蒸発器(空気熱交換器),6は送風機,7はア
キュムレータであって、これら圧縮機1,ガスクーラ
2,冷媒熱交換器3,冷媒膨張弁4,蒸発器5を冷媒配
管T1,T2により順次、接続し、かつ冷媒熱交換器3
において、高圧側配管T1と低圧側配管T2を向流熱交
換させると共に、圧縮機吸入側にアキュムレータ7を配
することによって基本的な一連の冷凍サイクルが形成さ
れており、蒸発器5にはこれに空気を流し、冷媒熱交換
器の熱源とするための送風機6を付設し、ガスクーラ2
は向流型ガスクーラとなして水入口13より給湯水出口
14に至る給水配管T3を向流状態で内挿し、水入口側
の給水配管T3に水ポンプ15と比例弁16を設置する
ことによって給湯系路を形成している。ここで、アキュ
ムレータ7は蒸発器5の冷媒液が冷媒熱交換器3によっ
て加熱蒸発できなかった場合に、圧縮機1が瞬時に液と
して吸い込めば、液圧縮となり破損することがあること
から設けられる低圧側保護空間で、通常、内部は液を含
まない過熱ガスである。FIG. 1 is a refrigeration cycle diagram of the first embodiment of the heat pump water heater of the present invention. In the figure, 1 is a compressor, 2 is a gas cooler, 3 is a refrigerant heat exchanger, 4 is a refrigerant expansion valve, and 5 is a refrigerant expansion valve. An evaporator (air heat exchanger), 6 is a blower, and 7 is an accumulator, and these compressor 1, gas cooler 2, refrigerant heat exchanger 3, refrigerant expansion valve 4, evaporator 5 are connected to refrigerant pipes T 1 , T 2. And the refrigerant heat exchanger 3
In, the high pressure side pipe T 1 and the low pressure side pipe T 2 are subjected to countercurrent heat exchange, and the accumulator 7 is arranged on the compressor suction side to form a basic series of refrigeration cycles. Attaches a blower 6 for flowing air through it to serve as a heat source for the refrigerant heat exchanger.
Is a counter-current type gas cooler, and a water supply pipe T 3 from the water inlet 13 to the hot water supply water outlet 14 is inserted in a countercurrent state, and a water pump 15 and a proportional valve 16 are installed in the water supply pipe T 3 on the water inlet side. This forms the hot water supply system passage. Here, the accumulator 7 is provided because if the refrigerant liquid in the evaporator 5 cannot be heated and evaporated by the refrigerant heat exchanger 3, if the compressor 1 instantly sucks it in as a liquid, it will be compressed and broken. It is a low-pressure side protection space that is usually filled with superheated gas that does not contain liquid.
【0020】しかして、図1に示す本発明は上記基本的
な冷凍サイクルにおいて、圧縮機1吐出側よりガスクー
ラ2に至る配管途中より分岐してデフロスト電磁弁8よ
り冷媒膨張弁4下流A点に至る冷媒回路の配管T4と、
該配管T4の上記分岐部と、デフロスト電磁弁8との間
より更に分岐して第1のバッファ電磁弁9よりバッファ
10に至る配管T5を経由して第2のバッファ電磁弁1
1より冷媒膨張弁4下流の前記冷媒回路配管T4の合流
部Aに至る制御回路を形成する配管T6と、上記第2の
バッファ電磁弁11と前記合流部Aとの間C点より分岐
して冷媒膨張弁4上流B点に至る冷媒回路配管T7が夫
々設けられている。なお、図中、12,12′は弁にご
み,異物が噛み込まないようにするフィルタの役割をも
つストレーナである。また、デフロスト電磁弁8は蒸発
器5に霜が付着した場合に高温吐出ガスにより霜を融か
すとき開く弁である。According to the present invention shown in FIG. 1, however, in the above basic refrigeration cycle, the pipe branches from the discharge side of the compressor 1 to the gas cooler 2 and branches from the defrost electromagnetic valve 8 to the downstream expansion point A of the refrigerant expansion valve 4. Piping T 4 of the refrigerant circuit to reach,
The second buffer solenoid valve 1 is routed through a pipe T 5 that branches further from the branch portion of the pipe T 4 and the defrost solenoid valve 8 to reach the buffer 10 from the first buffer solenoid valve 9.
A pipe T 6 to form a control circuit extending from 1 to merging portion A of the refrigerant expansion valve 4 downstream of the refrigerant circuit piping T 4, the branch from point C between the second buffer solenoid valve 11 and the merging section A The refrigerant circuit pipes T 7 reaching the point B upstream of the refrigerant expansion valve 4 are respectively provided. In the figure, 12 and 12 'are strainers having a role of a filter for preventing dust and foreign matter from being caught in the valve. The defrost electromagnetic valve 8 is a valve that opens when frost adheres to the evaporator 5 when the frost is melted by the high-temperature discharge gas.
【0021】次に、以上のような冷凍サイクルを備えた
ヒートポンプ給湯機により給湯を行う場合について説明
する。通常は蒸発器での冷媒蒸発温度は気温より10〜
15℃低くなる。つまり。気温により蒸発温度(定圧圧
力)がほぼ決まるので、圧縮機に吸い込まれ循環される
冷媒の密度が決まり冷媒循環量が決まる。Next, a case where hot water is supplied by the heat pump water heater having the above refrigeration cycle will be described. Usually, the evaporation temperature of the refrigerant in the evaporator is 10 to 10
15 ° C lower. That is. Since the evaporation temperature (constant pressure) is almost determined by the air temperature, the density of the refrigerant sucked into the compressor and circulated is determined, and the refrigerant circulation amount is determined.
【0022】適正な吸入過熱度、つまり、通常は蒸発温
度より5〜10℃高い温度のガスで圧縮機に吸い込まれ
ると、圧縮機より吐出されるガス温度は適正であり、そ
のときの高圧圧力により安定した一定値に決まる。高圧
圧力が高いほど吐出ガス温度が上昇する。吐出ガス温度
と高圧が決まると吐出側のエンタルピが決定できる。圧
縮機の吐出側はガスクーラ入口に連結されているので、
ガスクーラ入口エンタルピは圧縮機吐出部のエンタルピ
とほぼ等しいものである。When a gas having a proper suction superheat degree, that is, a temperature 5 to 10 ° C. higher than the evaporation temperature is sucked into the compressor, the temperature of the gas discharged from the compressor is appropriate and the high pressure at that time is high. Is determined to be a stable constant value. The higher the high pressure, the higher the discharge gas temperature. When the discharge gas temperature and the high pressure are determined, the enthalpy on the discharge side can be determined. Since the discharge side of the compressor is connected to the gas cooler inlet,
The enthalpy at the gas cooler inlet is approximately equal to the enthalpy at the compressor discharge.
【0023】ガスクーラ出口の冷媒温度は給水温度によ
り、通常給水温度より5〜10℃高くなるように調節で
きる。このように冷媒のガスクーラ出口温度と入口圧力
にほぼ等しい高圧が定まり、ガスクーラ出口エンタルピ
も決定できる。加熱能力はガスクーラの出入口エンタル
ピ差に冷媒循環量を掛けたものである。従って冷媒循環
量が大きい程、また、エンタルピ差が大きいほど、加熱
能力も大きくなる。ガスクーラで冷媒と熱交換し加熱さ
れた水の熱量は、この加熱能力にほぼ等しいものとな
る。給水温度は通常、季節・気温によりほぼ一定なの
で、出湯温度は水流量により変化する。つまり、少ない
水量を供給すれば出湯温度が上昇し、水量を増やせば出
湯温度は低下する。このように出湯温度の調節は、流量
調節弁もしくは可変流量ポンプの調節により、給水流量
を調節することにより可能となる。このように、気温が
決まると、圧縮機吸入ガス温度が適正過熱度になるよう
に膨張弁で冷媒供給量を調節制御できるので、ほとんど
自動的に給湯加熱能力が決まってくる。The temperature of the refrigerant at the outlet of the gas cooler can be adjusted to be 5 to 10 ° C. higher than the normal feed water temperature, depending on the feed water temperature. In this way, a high pressure that is approximately equal to the gas cooler outlet temperature of the refrigerant and the inlet pressure is determined, and the gas cooler outlet enthalpy can also be determined. The heating capacity is the difference between the inlet and outlet enthalpies of the gas cooler multiplied by the refrigerant circulation amount. Therefore, the larger the refrigerant circulation amount and the larger the enthalpy difference, the larger the heating capacity. The amount of heat of water heated by exchanging heat with the refrigerant in the gas cooler is almost equal to this heating capacity. Since the water supply temperature is usually almost constant depending on the season and temperature, the hot water temperature changes depending on the water flow rate. That is, if a small amount of water is supplied, the hot water temperature rises, and if the amount of water is increased, the hot water temperature decreases. In this way, the hot water outlet temperature can be adjusted by adjusting the feed water flow rate by adjusting the flow rate control valve or the variable flow rate pump. In this way, when the air temperature is determined, the expansion valve can adjust and control the refrigerant supply amount so that the compressor intake gas temperature becomes an appropriate superheat degree, so the hot water supply heating capacity is almost automatically determined.
【0024】ところで、上記の論理は、適正な高圧圧力
と低圧圧力が前提である。低圧圧力は適正な設計を行え
ば上述のとおり気温によって蒸発温度(低圧圧力)を決
めることができる。蒸発可能な冷媒量は膨張弁によって
適正な過熱度となるような自動制御が可能である。By the way, the above logic is premised on proper high pressure and low pressure. If the low pressure is properly designed, the evaporation temperature (low pressure) can be determined by the temperature as described above. The amount of refrigerant that can be evaporated can be automatically controlled by the expansion valve so as to have an appropriate degree of superheat.
【0025】高圧圧力はガスクーラの放熱能力と関係す
る。前述のとおり、この放熱能力は冷媒循環量と高圧側
エンタルピ差の積である冷媒の加熱能力とバランスする
ものである。バランスを維持するためには熱交換面を介
して冷媒側温度と水側温度との間に温度差が必要とな
る。この温度差は冷媒ガス側の伝熱性能や水側の伝熱性
能,熱交換器としての伝熱面積などにより基本的には決
まってくる。しかし、適正な冷媒量が閉サイクル内に充
填されていなければ、冷凍サイクルとして成り立たなく
なる。過大な冷媒量が高圧側に存在すると、熱交換以前
に異常高圧となるので、設計圧力以下に設定された保護
装置により運転停止することとなったり、不必要な高圧
上昇となり、成績係数低下の原因となる。冷媒量が少な
すぎると蒸発器に適正な冷媒量を膨張弁によって自動供
給できなくなり、蒸発温度(低圧圧力)が異常に低下す
ることとなり、成績係数低下の原因となる。The high pressure is related to the heat dissipation capacity of the gas cooler. As described above, this heat dissipation capacity balances with the refrigerant heating capacity, which is the product of the refrigerant circulation amount and the high-pressure side enthalpy difference. In order to maintain the balance, a temperature difference is required between the refrigerant side temperature and the water side temperature via the heat exchange surface. This temperature difference is basically determined by the heat transfer performance on the refrigerant gas side, the heat transfer performance on the water side, and the heat transfer area as a heat exchanger. However, if the proper amount of refrigerant is not filled in the closed cycle, the refrigeration cycle will not work. If there is an excessive amount of refrigerant on the high pressure side, the pressure will become abnormally high before heat exchange, so operation will be stopped due to the protective device set below the design pressure, and unnecessary high pressure increase will result in a decrease in the coefficient of performance. Cause. If the amount of refrigerant is too small, an appropriate amount of refrigerant cannot be automatically supplied to the evaporator by the expansion valve, and the evaporation temperature (low pressure) is abnormally lowered, which causes a decrease in the coefficient of performance.
【0026】前述のように、通常は蒸発器での冷媒蒸発
温度は気温より10〜15℃低くなる。つまり、気温に
より蒸発温度(低圧圧力)がほぼ決まるので、蒸発器,
冷媒熱交換器の低圧側、アキュムレータ、圧縮機内部の
低圧チャンバに存在する冷媒量は、その圧力や温度にお
ける冷媒の密度より求めることができる。高圧側のガス
クーラ、冷媒熱交換器の高圧側についても、目標とする
適正な圧力や温度における冷媒量を求めることができ
る。As described above, the refrigerant evaporation temperature in the evaporator is usually 10 to 15 ° C. lower than the atmospheric temperature. In other words, since the evaporation temperature (low pressure) is almost determined by the air temperature,
The amount of refrigerant present in the low pressure side of the refrigerant heat exchanger, the accumulator, and the low pressure chamber inside the compressor can be determined from the density of the refrigerant at the pressure and temperature. Also for the high-pressure side gas cooler and the high-pressure side of the refrigerant heat exchanger, it is possible to obtain the amount of the refrigerant at the target proper pressure and temperature.
【0027】以下の表1は、試験されたCO2ヒートポ
ンプ給湯機の冷凍サイクルの、季節(気温)変動による
低圧側と高圧側の冷媒分布量の一例である。ガスクーラ
は二重管方式の向流型熱交換器としたので、高圧側空間
は低圧側空間より遙かに少ないものとなっている。その
空間明細は次の通りである。試験機のガスクーラは、内
径が4.8mmで、長さ23mの銅管を伝熱管としてお
り、冷媒空間は約0.4リットル、圧縮機の高圧部は約
0.2リットル、冷媒熱交換器と配管は0.2リットル
未満の容積であり、合計の高圧空間は約0.8リットル
となっている。一方、圧縮機の低圧部は5リットル、蒸
発器となる空気熱交換器は1.1リットル、アキュムレ
ータは1.9リットルであり、合計の低圧空間は約8リ
ットルとなっている。Table 1 below shows an example of the refrigerant distribution amount on the low pressure side and the high pressure side according to the seasonal (air temperature) fluctuation of the refrigeration cycle of the tested CO 2 heat pump water heater. Since the gas cooler was a double-tube countercurrent heat exchanger, the space on the high-pressure side was much smaller than that on the low-pressure side. The space specifications are as follows. The gas cooler of the tester has a copper pipe with an inner diameter of 4.8 mm and a length of 23 m as the heat transfer tube, the refrigerant space is about 0.4 liters, the high pressure part of the compressor is about 0.2 liters, the refrigerant heat exchanger. And the pipe have a volume of less than 0.2 liters, and the total high-pressure space is about 0.8 liters. On the other hand, the low pressure part of the compressor is 5 liters, the air heat exchanger serving as an evaporator is 1.1 liters, the accumulator is 1.9 liters, and the total low pressure space is about 8 liters.
【0028】[0028]
【表1】 [Table 1]
【0029】これらの気温で運転する場合の最適冷媒量
は、この表の通りと考えられる。冬季(気温−8℃)と
夏季(気温+35℃)とでは、最適冷媒量が異なってお
り、表より1.568kg−1.110kg=0.45
8kgの差がある。また、表1のとおり、試験のCO2
ヒートポンプ給湯機では、高圧側の空間は全体空間の9
%であり、残りの91%が低圧空間となっているので、
高圧空間としては無視できるほど小さいと云える。ま
た、高圧側の冷媒量は低圧側の冷媒量より少ないものと
成っている。このようなヒートポンプ給湯システムは、
高圧による爆発などの破壊エネルギーも少なくすること
ができる。The optimum amount of refrigerant when operating at these temperatures is considered to be as shown in this table. The optimum amount of refrigerant is different between winter (temperature -8 ° C) and summer (temperature + 35 ° C). From the table, 1.568kg-1.110kg = 0.45
There is a difference of 8 kg. In addition, as shown in Table 1, CO 2 of the test
In the heat pump water heater, the space on the high pressure side is 9
%, And the remaining 91% is the low pressure space,
It can be said that it is negligibly small as a high-pressure space. The amount of refrigerant on the high pressure side is smaller than the amount of refrigerant on the low pressure side. Such a heat pump hot water supply system
Destructive energy such as explosion due to high pressure can also be reduced.
【0030】しかし、上記の如く高圧空間が少ない場
合、夏季のヒートポンプ運転中の冷媒分布は、気温が高
く蒸発温度(低圧圧力)が上昇するために低圧空間の冷
媒密度が上がり、低圧空間に存在する冷媒重量比率が上
がるために、その分、高圧側の冷媒量が不足してくるた
めに、高圧が低めとなりやすい。However, when the high-pressure space is small as described above, the distribution of the refrigerant during the heat pump operation in summer is high in the low-temperature space because the temperature is high and the evaporation temperature (low-pressure pressure) rises. Since the weight ratio of the refrigerant to be used is increased, the amount of the refrigerant on the high pressure side is correspondingly insufficient, so that the high pressure is likely to be low.
【0031】また、膨張弁は高圧と低圧との差圧により
冷媒を流す能力が変化するので、夏季は差圧も少なくな
り、全開になっても冷媒流量が不足する場合がある。つ
まり、蒸発器に適正な冷媒量を膨張弁によって自動供給
できなくなり、蒸発温度(低圧圧力)が異常に低下する
こととなり、やはり、成績係数低下の原因となる。この
場合は圧縮機の吸入ガスも吐出ガス温度も大きすぎるこ
ととなり、圧縮機や冷凍機油の寿命を損なうこともあ
る。このような不都合が発生する。Further, since the expansion valve changes its ability to flow the refrigerant due to the differential pressure between the high pressure and the low pressure, the differential pressure also decreases in summer, and the refrigerant flow rate may be insufficient even when fully opened. In other words, it becomes impossible to automatically supply a proper amount of refrigerant to the evaporator by the expansion valve, and the evaporation temperature (low pressure) is abnormally lowered, which also causes a decrease in the coefficient of performance. In this case, the temperature of the gas sucked into the compressor and the temperature of the gas discharged from the compressor are too high, which may impair the life of the compressor or the refrigerating machine oil. Such inconvenience occurs.
【0032】一方、夏季の運転のために最適な冷媒量を
閉サイクル内に充填すれば、冬季に高圧が上昇しすぎて
冷凍サイクルとして成立しなくなる場合がある。つま
り、過大な冷媒量が高圧側に存在することとなり、熱交
換以前に異常高圧となるので、設計圧力以下に設定され
た保護装置により運転停止することとなったり、不必要
な高圧上昇となり、成績係数低下の原因となる。給湯負
荷は冬季の方が大きく、運転時間も長い。貯湯する場合
でも高温貯湯が要求されるのが普通であり、高圧は自然
と高くなりやすいので、消費電力も大きくなる。年間を
通じた成績係数を考えると、冬季主体の冷媒充填量とす
ることが好ましく、やむなく夏季の運転効率(成績係数
COP)が低下してしまう。On the other hand, if the closed cycle is filled with the optimum amount of the refrigerant for the summer operation, the high pressure may rise too much in the winter and the refrigeration cycle may not work. In other words, an excessive amount of refrigerant will be present on the high pressure side, and since it will be an abnormally high pressure before heat exchange, it will be shut down by a protection device set below the design pressure, or an unnecessary high pressure rise will occur. It causes a decrease in the coefficient of performance. The hot water supply load is higher in winter and the operation time is longer. Even when hot water is stored, high-temperature hot water is usually required, and high pressure tends to naturally increase, resulting in high power consumption. Considering the coefficient of performance throughout the year, it is preferable to set the refrigerant charge amount mainly in winter, and the operating efficiency (coefficient of performance COP) in summer is unavoidably reduced.
【0033】試験機としたCO2ヒートポンプ給湯機の
場合、前記表1のとおり使用最低気温と最高気温での最
適冷媒量の差を制御すれば、目標とする高圧や低圧が得
られ、年間を通じて安定した運転ができる。この試験機
の例のように、高圧側空間の少ないCO2ヒートポンプ
給湯機 の場合は、一般的に、同様の設計が可能であ
る。試験機の場合は冷媒充填量を夏季の最適量1.58
6kg(100%)として、冬季の最適量である1.1
10kg(71%)との差である0.458kg(29
%)を高圧側空間のガスクーラ出口部から、膨張弁の間
の空間のどこかで吸収できれば良いこととなる。In the case of the CO 2 heat pump water heater used as the tester, if the difference between the optimum refrigerant amount at the minimum and maximum operating temperatures is controlled as shown in Table 1 above, the target high pressure and low pressure can be obtained, and throughout the year. Stable operation is possible. In the case of a CO 2 heat pump water heater with a small space on the high pressure side, as in the example of this test machine, generally, the same design is possible. In the case of the tester, the refrigerant filling amount is the optimum amount in summer of 1.58
6 kg (100%), the optimum amount in winter is 1.1
0.458 kg (29%), which is the difference from 10 kg (71%)
%) From the gas cooler outlet of the high pressure side space somewhere in the space between the expansion valves.
【0034】通常CO2ヒートポンプ給湯機の場合、ガ
スクーラ出口部の冷媒ガス温度を液体となる約31℃以
下となるまで冷却し、給水温度に接近させるとガスクー
ラ出入口エンタルピ差が大きくなるので冷媒加熱能力も
大きくなる。同一の高圧圧力で運転すれば圧縮機動力は
変化しないので成績係数COPが大きくなり好ましい
し、実際にそのように制御され運転できる。冷媒ガスの
密度としては液が最大であり、圧縮機吐出チャンバに近
い高温吐出ガスであるほど冷媒ガスの密度が低い。従っ
て吸収効率としては、液となるガスクーラ出口部を含
み、冷媒熱交換器高圧側を経由して膨張弁に至る空間で
吸収するのが好ましい。これを例えば図で説明すると、
冷媒熱交換器3の高圧側がガスクーラ2出口側に配置さ
れると冷媒熱交換器3の低圧側は蒸発器5である空気熱
交換器の出口低温冷媒により冷却が可能となる。In the case of a normal CO 2 heat pump water heater, when the temperature of the refrigerant gas at the outlet of the gas cooler is cooled to about 31 ° C. or lower at which it becomes a liquid, and when the temperature approaches the water supply temperature, the enthalpy difference between the inlet and outlet of the gas cooler increases, so the refrigerant heating capacity is increased. Also grows. If the compressor is operated at the same high pressure, the compressor power does not change, and the coefficient of performance COP becomes large, which is preferable. Liquid has the highest density of the refrigerant gas, and the higher the temperature of the discharge gas near the compressor discharge chamber, the lower the density of the refrigerant gas. Therefore, as the absorption efficiency, it is preferable to absorb the gas in the space including the gas cooler outlet that becomes liquid and reaching the expansion valve via the high pressure side of the refrigerant heat exchanger. For example, in the figure,
When the high pressure side of the refrigerant heat exchanger 3 is arranged on the outlet side of the gas cooler 2, the low pressure side of the refrigerant heat exchanger 3 can be cooled by the outlet low temperature refrigerant of the air heat exchanger which is the evaporator 5.
【0035】蒸発温度は夏季の最高気温でも通常15℃
以下であるし、冬季は0℃以下で運転されるので、高圧
側の冷媒は冷媒熱交換器出口において最低温度となる。
従って31℃より充分に低い温度とすることができるの
で高圧における低温液冷媒として高密度で効率よく、最
も少ない空間(レシーバ)での吸収が可能となる。この
ように、冬季と夏季の高圧側冷媒量の差に相当する空間
に等しいレシーバを設置すれば、年間を通じてレシーバ
下流の膨張弁に低温液冷媒として供給できる。この場
合、ガスクーラ内部に存在する冷媒量は、レシーバで吸
収されうる冷媒量を含む必要がなくなるので、高圧異常
となったり、不必要に大きな高圧圧力となることなく、
安定した運転を年間を通じて行うことができる。Evaporation temperature is usually 15 ° C even in the highest temperature in summer
Since it is below, and the operation is performed at 0 ° C. or less in winter, the refrigerant on the high pressure side has the lowest temperature at the outlet of the refrigerant heat exchanger.
Therefore, since the temperature can be sufficiently lower than 31 ° C., it is possible to efficiently and efficiently absorb it in the smallest space (receiver) as a low temperature liquid refrigerant at high pressure. In this way, if a receiver equal to the space corresponding to the difference in the amount of high-pressure side refrigerant in winter and summer is installed, it can be supplied as a low temperature liquid refrigerant to the expansion valve downstream of the receiver throughout the year. In this case, the amount of refrigerant present inside the gas cooler does not need to include the amount of refrigerant that can be absorbed by the receiver, so there is no high-pressure abnormality or an unnecessarily high high-pressure.
Stable operation can be performed throughout the year.
【0036】本発明における図1の冷凍サイクルでは上
記冷媒を吸収するレシーバとしてバッファ10を設け、
配管T4と該バッファ10を含む各配管T5,T6,T
7によって制御回路を形成して、第2のバッファ電磁弁
11を開くことにより合流部Aより分岐部Cを通じ冷媒
レシーバであるバッファ10に低圧冷媒液を回収するこ
とができ、また、高圧側のB点より前記分岐部Cを通じ
バッファ10に高圧冷媒を回収することができる。In the refrigeration cycle of FIG. 1 according to the present invention, a buffer 10 is provided as a receiver for absorbing the above refrigerant,
Each pipe T 5 , T 6 , T including the pipe T 4 and the buffer 10
By forming a control circuit by 7 , and opening the second buffer solenoid valve 11, the low-pressure refrigerant liquid can be recovered from the confluence portion A through the branch portion C to the buffer 10 which is the refrigerant receiver, and the high-pressure side From the point B, the high pressure refrigerant can be collected in the buffer 10 through the branch portion C.
【0037】また、第1のバッファ電磁弁9を開けば冷
凍サイクルの最高圧力である圧縮機1の吐出圧力をバッ
ファ10内部にかけることになり、内部の冷媒液を前記
合流部Aや冷媒膨張弁4下流のB点に向けて放出するこ
とができ、冷媒量制御が可能となっている。When the first buffer solenoid valve 9 is opened, the discharge pressure of the compressor 1, which is the maximum pressure of the refrigeration cycle, is applied to the inside of the buffer 10, so that the refrigerant liquid inside the confluence A or the refrigerant expansion. It can be discharged toward point B downstream of the valve 4, and the amount of refrigerant can be controlled.
【0038】かくして、給湯加熱のための目標とする冷
凍サイクル上の高圧側ガスクーラ出入口の状態(圧力・
温度)も最適となるように調整することが可能となり、
課題とした季節(気温)変動による低圧側冷媒量の変動
により目標とする高圧が変動することが防止される。Thus, the state (pressure / pressure) of the high-pressure side gas cooler inlet / outlet on the refrigerating cycle for heating the hot water supply is the target.
Temperature) can be adjusted to be optimal,
It is possible to prevent the target high pressure from fluctuating due to the fluctuation of the low-pressure side refrigerant amount due to the seasonal (temperature) fluctuation which is the subject.
【0039】図2は本発明ヒートポンプ給湯機の第2の
冷凍サイクルに係るものであり、図1の場合が前記の如
く圧縮機吐出側よりデフロスト電磁弁8を介して冷媒膨
張弁下流の合流部Aに至る配管T4の途中より分岐して
バッファ10に至る配管T5を有しているのに対し、配
管T5をなくし、バッファ10にヒータ17を付設し、
通電加熱可能となっている点が相違するだけで、その他
は図1における冷凍サイクルと同じ構成となっている。
この場合も、冷媒量を吸収するレシーバとして、バッフ
ァ10を有し、冷媒量の差を制御することにより目標と
する高圧や低圧を得ることは図1におけると同様であ
る。即ち、この冷凍サイクルでは図1と同様にバッファ
電磁弁11を開くことにより合流部Aより配管T6及び
配管T7の合流部Cを通じバッファ10に低圧冷媒液を
回収することができるか、もしくは高圧側のB点より前
記合流部Cを通じ、バッファ10に高圧冷媒液を回収す
ることができる。FIG. 2 relates to the second refrigerating cycle of the heat pump water heater of the present invention. In the case of FIG. 1, as described above, the merging portion downstream of the refrigerant expansion valve via the defrost electromagnetic valve 8 from the compressor discharge side. While the pipe T 5 that branches from the middle of the pipe T 4 that reaches A to the buffer 10 is provided, the pipe T 5 is eliminated and the heater 17 is attached to the buffer 10.
Other than that, the configuration is the same as that of the refrigeration cycle in FIG. 1 except that it can be electrically heated.
Also in this case, the buffer 10 is provided as a receiver that absorbs the refrigerant amount, and the target high pressure or low pressure is obtained by controlling the difference in the refrigerant amounts, as in FIG. That is, in this refrigeration cycle, the buffer solenoid valve 11 can be opened as in FIG. 1 to recover the low-pressure refrigerant liquid from the merging portion A to the buffer 10 through the merging portion C of the pipes T 6 and T 7 , or The high-pressure refrigerant liquid can be collected in the buffer 10 from the point B on the high-pressure side through the merging portion C.
【0040】一方、バッファ10はヒータ17を具備す
るためバッファ電磁弁11を開き、ヒータ17に通電加
熱すると、バッファ10内部の冷媒液が蒸発し、内圧上
昇して内部の冷媒液をA点ならびにB点における配管に
向け放出することができる。On the other hand, since the buffer 10 is provided with the heater 17, when the buffer solenoid valve 11 is opened and the heater 17 is energized and heated, the refrigerant liquid inside the buffer 10 evaporates, the internal pressure rises, and the refrigerant liquid inside becomes the point A. It can be discharged toward the pipe at point B.
【0041】かくして、以上のようにして、本発明ヒー
トポンプ給湯機においては、給湯加熱のための目標とす
る冷凍サイクル上の高圧側ガスクーラ出入口の状態(圧
力・温度)が最適となるように調整することが可能とな
り、課題とした季節(気温)変動による低圧側冷媒量の
変動により目標とする高圧が変動することを防止して、
年間を通じて効率よく安定した給湯を可能ならしめる。
なお、以上の説明においては、CO2を冷媒に用いたC
O2ヒートポンプ給湯機について説明したが、本発明は
特にCO2冷媒に適応し、好結果をもたらすが、同効な
地球環境にやさしい冷媒の使用を妨げるものではない。Thus, as described above, in the heat pump water heater of the present invention, the target state (pressure / temperature) of the high-pressure side gas cooler inlet / outlet on the refrigerating cycle for heating the hot water is adjusted to be optimum. This makes it possible to prevent the target high pressure from fluctuating due to fluctuations in the refrigerant amount on the low pressure side due to seasonal (temperature) fluctuations,
If possible, provide efficient and stable hot water supply throughout the year.
In the above description, C using CO 2 as the refrigerant is used.
Although an O 2 heat pump water heater has been described, the present invention is particularly adapted to CO 2 refrigerants with good results, but it does not preclude the use of the same global environment friendly refrigerants.
【0042】[0042]
【発明の効果】本発明は以上のように圧縮機,ガスクー
ラ,冷媒熱交換器,冷媒膨張弁,蒸発器を冷媒配管によ
り順次接続し、圧縮機吸入側にアキュムレータを配し、
水を向流型ガスクーラへ循環させて昇温させるヒートポ
ンプ給湯機において、圧縮機吐出側よりガスクーラに至
る配管途中より分岐してデフロスト電磁弁と、更に分岐
して第1のバッファ電磁弁を介してバッファを経由する
か、することなしにバッファより第2のバッファ電磁弁
のC点より冷媒膨張弁下流のA点もしくは上流のB点に
至る冷媒制御回路を設け、該制御回路の第1,第2のバ
ッファ電磁弁の何れか、もしくは何れもの電磁弁を操作
して冷媒バッファに冷凍サイクルの冷媒を回収するか冷
凍サイクルに充填し、又はバッファにヒータを付設し
て、ヒータ操作を加えて冷凍サイクルに充填して必要冷
媒量の調整を可能とするものであり、高圧側冷媒空間を
少なくして異常高圧による爆発などの破壊エネルギーを
少なくし、安全性を高めると共に、季節(気温)変動に
よる低圧側冷媒量の変動により高圧が変動することを防
止し、季節変動に応じ目標とする最適な冷媒量調整と、
最適な出湯温度とが簡単な構成で実現でき、成績係数も
高く、極めて経済性に富み、年間を通じ効率よく安定し
た給湯を可能ならしめる顕著な効果を有する。As described above, according to the present invention, the compressor, the gas cooler, the refrigerant heat exchanger, the refrigerant expansion valve, and the evaporator are sequentially connected by the refrigerant pipe, and the accumulator is arranged on the compressor suction side.
In a heat pump water heater that circulates water to a countercurrent type gas cooler to raise the temperature, branches from the middle of the pipe from the discharge side of the compressor to the gas cooler and branches to a defrost solenoid valve, and further branches to the first buffer solenoid valve. A refrigerant control circuit is provided from the buffer point C to the point A downstream of the refrigerant expansion valve or point B upstream of the refrigerant expansion valve without passing through the buffer. One of the two buffer solenoid valves, or any solenoid valve is operated to collect the refrigerant in the refrigeration cycle in the refrigerant buffer or to fill the refrigeration cycle, or to attach a heater to the buffer and add a heater operation to freeze the refrigerant. By filling the cycle, it is possible to adjust the required amount of refrigerant, reducing the high pressure side refrigerant space to reduce the destruction energy such as explosion due to abnormal high pressure, and improve safety. With Mel, a high pressure is prevented from varying, optimal refrigerant amount adjustment for the target according to the season variation due to variations of the low-pressure refrigerant quantity seasonal (temperature) fluctuates,
The optimum hot water temperature can be realized with a simple structure, the coefficient of performance is high, the economy is extremely rich, and it has the remarkable effect of enabling efficient and stable hot water supply throughout the year.
【図1】本発明に係るヒートポンプ給湯機の冷凍サイク
ルの1例を示す図である。FIG. 1 is a diagram showing an example of a refrigeration cycle of a heat pump water heater according to the present invention.
【図2】本発明の係るヒートポンプ給湯機の冷凍サイク
ルのもう1つの例を示す図である。FIG. 2 is a diagram showing another example of the refrigeration cycle of the heat pump water heater according to the present invention.
1 圧縮機 2 ガスクーラ 3 冷媒熱交換器 4 冷媒膨張弁 5 蒸発器(空気熱交換器) 7 アキュムレータ 8 デフロスト電磁弁 9 第1のバッファ電磁弁 10 バッファ 11 第2のバッファ電磁弁 13 水入口 14 給湯水出口 1 compressor 2 gas cooler 3 Refrigerant heat exchanger 4 Refrigerant expansion valve 5 Evaporator (air heat exchanger) 7 Accumulator 8 defrost solenoid valve 9 First buffer solenoid valve 10 buffers 11 Second buffer solenoid valve 13 water inlet 14 Hot water outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒本 英智 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 熊谷 雅彦 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 舘山 陵太郎 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (56)参考文献 特開 平10−47799(JP,A) 特開2001−65888(JP,A) 特開 昭56−146961(JP,A) 実開 平4−61271(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 395 F25B 1/00 385 F24H 1/00 611 F25B 47/02 530 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidetomo Kuromoto 4-1, Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Electric Power Technology Laboratory (72) Inventor Masahiko Kumagai Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa No. 4-1 Electric Power Research Laboratory, TEPCO (72) Inventor Ryotaro Tateyama No. 4 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Inside Electric Power Research Laboratory, TEPCO (56) Reference JP 10- 47799 (JP, A) JP 2001-65888 (JP, A) JP 56-146961 (JP, A) Actual Kaihei 4-61271 (JP, U) (58) Fields investigated (Int.Cl. 7) , DB name) F25B 1/00 395 F25B 1/00 385 F24H 1/00 611 F25B 47/02 530
Claims (5)
膨張弁,蒸発器を冷媒配管により順次、接続し、圧縮機
吸入側にアキュムレータを配し、水を向流型ガスクーラ
へ通水せしめて昇温させるヒートポンプ給湯機におい
て、圧縮機吐出側よりガスクーラに至る配管途中より分
岐してデフロスト電磁弁より冷媒膨張弁下流に至る冷媒
制御回路と、デフロスト電磁弁以前で更に分岐して第1
のバッファ電磁弁,冷媒バッファを経由して第2のバッ
ファ電磁弁より前記冷媒膨張弁下流の前記冷媒制御回路
合流部に至る制御回路及び該制御回路途中より冷媒膨張
弁上流に至る冷媒制御回路を夫々設け、第1,第2のバ
ッファ電磁弁の何れか又は双方を操作することにより冷
媒バッファに冷凍サイクルの冷媒を回収するか、もしく
は冷凍サイクルに充填して必要冷媒量の調整を可能なら
しめることを特徴とするヒートポンプ給湯機。1. A compressor, a gas cooler, a refrigerant heat exchanger, a refrigerant expansion valve, and an evaporator are sequentially connected by a refrigerant pipe, and an accumulator is arranged on the suction side of the compressor to allow water to flow to a countercurrent gas cooler. In a heat pump water heater that raises the temperature by means of a refrigerant control circuit that branches from the middle of the pipe from the compressor discharge side to the gas cooler and reaches the refrigerant expansion valve downstream from the defrost electromagnetic valve, and further branches before the defrost electromagnetic valve.
A control circuit leading from the second buffer solenoid valve to the refrigerant control circuit merging portion downstream from the second buffer solenoid valve via the buffer solenoid valve and the refrigerant buffer, and a refrigerant control circuit extending midway from the control circuit to the refrigerant expansion valve upstream. The refrigerant of the refrigeration cycle is recovered in the refrigerant buffer by operating either or both of the first and second buffer solenoid valves, respectively, or the refrigeration cycle is filled with the refrigerant to adjust the required amount of refrigerant. A heat pump water heater characterized by that.
膨張弁,蒸発器を冷媒配管により順次、接続し、圧縮機
吸入側にアキュムレータを配し、水を向流型ガスクーラ
へ通水せしめて昇温させるヒートポンプ給湯機におい
て、圧縮機吐出側よりガスクーラに至る配管途中より分
岐してデフロスト電磁弁より冷媒膨張弁下流に至る冷媒
制御回路と、ヒータが付設された冷媒バッファよりバッ
ファ電磁弁を経由して前記冷媒膨張弁下流の前記冷媒制
御回路合流部に至る制御回路及び該制御回路途中より冷
媒膨張弁上流に至る冷媒制御回路を夫々設け、該制御回
路のバッファ電磁弁を操作することにより冷媒バッファ
に冷凍サイクルの冷媒を回収するか、もしくはヒータ操
作を加え、冷凍サイクルに充填して必要冷媒量の調整を
可能ならしめることを特徴とするヒートポンプ給湯機。2. A compressor, a gas cooler, a refrigerant heat exchanger, a refrigerant expansion valve, and an evaporator are sequentially connected by a refrigerant pipe, and an accumulator is arranged on the suction side of the compressor to let water flow to a countercurrent gas cooler. In the heat pump water heater that raises the temperature by means of a refrigerant control circuit that branches from the middle of the pipe from the compressor discharge side to the gas cooler and reaches the refrigerant expansion valve downstream from the defrost electromagnetic valve, and a buffer electromagnetic valve from the refrigerant buffer equipped with a heater. By providing a control circuit to the refrigerant control circuit merging portion downstream of the refrigerant expansion valve and a refrigerant control circuit from the middle of the control circuit to the refrigerant expansion valve upstream, respectively, by operating the buffer solenoid valve of the control circuit Refrigerant cycle refrigerant should be collected in the refrigerant buffer or a heater operation should be performed to fill the refrigeration cycle and adjust the required amount of refrigerant. Heat pump water heater, characterized.
熱交換器の高圧側がガスクーラ出口に、低圧側が空気熱
交換器とアキュムレータの間となるように設置された請
求項1又は2記載のヒートポンプ給湯機。3. The heat pump according to claim 1, wherein an accumulator is arranged on the suction side of the compressor, and the high pressure side of the refrigerant heat exchanger is installed at the gas cooler outlet and the low pressure side is located between the air heat exchanger and the accumulator. Water heater.
側冷媒量が少なくなる熱交換器である請求項1,2又は
3記載のヒートポンプ給湯機。4. The heat pump water heater according to claim 1, wherein the countercurrent gas cooler is a heat exchanger such as a double pipe system in which the amount of high pressure side refrigerant is small.
により行う請求項1,2,3又は4記載のヒートポンプ
給湯機。5. The heat pump water heater according to claim 1, 2, 3 or 4, wherein the hot water temperature is adjusted by adjusting the flow rate of the hot water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001112227A JP3443702B2 (en) | 2001-04-11 | 2001-04-11 | Heat pump water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001112227A JP3443702B2 (en) | 2001-04-11 | 2001-04-11 | Heat pump water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002310519A JP2002310519A (en) | 2002-10-23 |
JP3443702B2 true JP3443702B2 (en) | 2003-09-08 |
Family
ID=18963681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001112227A Expired - Lifetime JP3443702B2 (en) | 2001-04-11 | 2001-04-11 | Heat pump water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3443702B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109028628A (en) * | 2017-06-12 | 2018-12-18 | 浙江盾安机电科技有限公司 | A kind of carbon dioxide heat pump device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004177045A (en) * | 2002-11-28 | 2004-06-24 | Sanyo Electric Co Ltd | Binary refrigerating plant |
US7028494B2 (en) | 2003-08-22 | 2006-04-18 | Carrier Corporation | Defrosting methodology for heat pump water heating system |
US7051542B2 (en) | 2003-12-17 | 2006-05-30 | Carrier Corporation | Transcritical vapor compression optimization through maximization of heating capacity |
JP2005201563A (en) * | 2004-01-16 | 2005-07-28 | Denso Corp | Heat pump system |
US7228692B2 (en) | 2004-02-11 | 2007-06-12 | Carrier Corporation | Defrost mode for HVAC heat pump systems |
JP4670329B2 (en) | 2004-11-29 | 2011-04-13 | 三菱電機株式会社 | Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner |
JP4862198B2 (en) * | 2006-04-11 | 2012-01-25 | 株式会社前川製作所 | Hot water supply apparatus using CO2 refrigerant and its operating method |
KR101198457B1 (en) | 2006-09-01 | 2012-11-06 | 엘지전자 주식회사 | Water cooling type air conditioner |
JP5904628B2 (en) * | 2010-05-26 | 2016-04-13 | サイエンス株式会社 | Refrigeration cycle with refrigerant pipe for defrost operation |
JP2020079650A (en) * | 2017-02-21 | 2020-05-28 | 株式会社前川製作所 | Control method of heat pump device and heat pump device |
CN107933594A (en) * | 2017-12-18 | 2018-04-20 | 中车大连机车研究所有限公司 | One kind is based on CO2The trans critical cycle railway vehicle air conditioner system of refrigerant |
CN108362038A (en) * | 2018-04-20 | 2018-08-03 | 湖南省浏阳市择明热工器材有限公司 | A kind of air source heat pump with winter in summer two-way regulating function |
CN109827355A (en) * | 2019-03-15 | 2019-05-31 | 上海康帅冷链科技股份有限公司 | Freezer is freezed with hot fluorine defrosting type air injection enthalpy-increasing and two alliance machine set system of hot water |
CN112097412A (en) * | 2020-10-21 | 2020-12-18 | 江苏苏净集团有限公司 | Carbon dioxide heat pump evaporator |
US20220128195A1 (en) * | 2020-10-28 | 2022-04-28 | Air Products And Chemicals, Inc. | Method and System for Forming and Dispensing a Compressed Gas |
CN114576746A (en) * | 2022-02-18 | 2022-06-03 | 中山市爱美泰电器有限公司 | Heat pump air conditioner of coupling heat pump water heater |
CN115493295B (en) * | 2022-09-26 | 2024-07-12 | 珠海格力电器股份有限公司 | Control method and system of hot water unit and computer readable storage medium |
-
2001
- 2001-04-11 JP JP2001112227A patent/JP3443702B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109028628A (en) * | 2017-06-12 | 2018-12-18 | 浙江盾安机电科技有限公司 | A kind of carbon dioxide heat pump device |
Also Published As
Publication number | Publication date |
---|---|
JP2002310519A (en) | 2002-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3443702B2 (en) | Heat pump water heater | |
JP3801006B2 (en) | Refrigerant circuit | |
US6931880B2 (en) | Method and arrangement for defrosting a vapor compression system | |
EP2224191B1 (en) | Air conditioner and method of controlling the same | |
US6460358B1 (en) | Flash gas and superheat eliminator for evaporators and method therefor | |
JP5121922B2 (en) | Air conditioning and hot water supply complex system | |
US7210303B2 (en) | Transcritical heat pump water heating system using auxiliary electric heater | |
US7028494B2 (en) | Defrosting methodology for heat pump water heating system | |
EP2924375B1 (en) | Refrigeration cycle device and hot water generation device provided therewith | |
US20040255603A1 (en) | Refrigeration system having variable speed fan | |
CN102734969B (en) | The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit | |
JP3983520B2 (en) | Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system | |
JP2002168532A (en) | Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein | |
US7024883B2 (en) | Vapor compression systems using an accumulator to prevent over-pressurization | |
JP3956674B2 (en) | Refrigerant circuit | |
JP6057871B2 (en) | Heat pump system and heat pump type water heater | |
JPS5984065A (en) | Reversible refrigeration circuit and its operating method | |
JP3475293B2 (en) | Heat pump water heater | |
JP4334818B2 (en) | Cooling system | |
JP2002310497A (en) | Heat pump hot-water supplier | |
JP4084915B2 (en) | Refrigeration system | |
JP3602116B2 (en) | Heat pump water heater | |
JP7375167B2 (en) | heat pump | |
JP3963134B2 (en) | Refrigeration cycle | |
JP4519825B2 (en) | Refrigeration cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3443702 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |