[go: up one dir, main page]

JP3442112B2 - On-line correction method of pipeline flow meter - Google Patents

On-line correction method of pipeline flow meter

Info

Publication number
JP3442112B2
JP3442112B2 JP22975793A JP22975793A JP3442112B2 JP 3442112 B2 JP3442112 B2 JP 3442112B2 JP 22975793 A JP22975793 A JP 22975793A JP 22975793 A JP22975793 A JP 22975793A JP 3442112 B2 JP3442112 B2 JP 3442112B2
Authority
JP
Japan
Prior art keywords
pipeline
leakage
diffusion valve
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22975793A
Other languages
Japanese (ja)
Other versions
JPH0783736A (en
Inventor
龍彦 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP22975793A priority Critical patent/JP3442112B2/en
Publication of JPH0783736A publication Critical patent/JPH0783736A/en
Application granted granted Critical
Publication of JP3442112B2 publication Critical patent/JP3442112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は過渡応答計算法を用いて
漏洩検知を行っているパイプラインに用いられている流
量計計測値のオンライン補正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-line correction method of a flow meter measurement value used in a pipeline for leak detection using a transient response calculation method.

【0002】[0002]

【従来の技術】パイプラインの運転を停止することなく
それに使用されている流量計の値を補正する方法として
は、被輸送流体が液体の場合はパイププルーバによる通
過容積測定法、及び、正確に較正された基準流量計の直
列設置による方法が用いられている。また、被輸送流体
が気体の場合には超音速ノズル流量計を後者の方法にお
ける基準流量計として用いる方法が公知である。(Bake
r,C.R., “An Introductory Guide To Flow Measuremen
t ”., Mechanical Engineering Publications Limite
d, London, P43. ) パイププルーバによる通過容積測定法(図5)では、弁
A、弁Bを開放し弁Cを閉鎖する事によりループ部を通
過する定常流れを作り、球をスフェア制御部Eよりルー
プ部の中に送り出す。ab間の容積を、位置aを通過し
位置bに至る球の通過時間で除して正確な流量を求め、
そのときの流量を基に流量計指示値を補正する。
2. Description of the Related Art As a method of correcting the value of a flow meter used in a pipeline without stopping the operation of the pipeline, when a fluid to be transported is a liquid, a volume measuring method using a pipe prober and an accurate calibration are used. The standard flow meter is installed in series. When the fluid to be transported is gas, a method of using a supersonic nozzle flowmeter as a reference flowmeter in the latter method is known. (Bake
r, CR, “An Introductory Guide To Flow Measuremen
t ”., Mechanical Engineering Publications Limite
d, London, P43.) In the volume measuring method using a pipe prober (Fig. 5), by opening valves A and B and closing valve C, a steady flow passing through the loop part is created, and the sphere is controlled by the sphere control part E. Send it into the loop part. The volume between a and b is divided by the passage time of the sphere passing through the position a and reaching the position b to obtain an accurate flow rate,
The indicated value of the flow meter is corrected based on the flow rate at that time.

【0003】一方、正確の較正された基準流量計の直列
設置による方法(図6)では、弁A、弁Bを開放し弁C
を閉鎖することにより基準流量計Gを通過する定常流れ
を作り、基準流量計Gの指示値を正として流量計Dの指
示値を補正する。
On the other hand, in the method (FIG. 6) in which the accurately calibrated reference flowmeter is installed in series, the valves A and B are opened and the valve C is opened.
Is closed to create a steady flow passing through the reference flow meter G, and the reference value of the reference flow meter G is corrected to the positive value of the reference flow meter G.

【0004】過渡応答計算法を用いて漏洩検知を行って
いるパイプラインにおいても流量計のオンライン補正
は、これらの上述の従来の方法によっても解決され得る
が、本発明で明らかにした過渡応答計算法に基づくオン
ライン補正方法と類似な従来技術はない。
Even in a pipeline where leak detection is performed using a transient response calculation method, the online correction of the flow meter can be solved by these above-mentioned conventional methods, but the transient response calculation disclosed in the present invention is performed. There is no prior art similar to the law-based online correction method.

【0005】[0005]

【発明が解決しようとする課題】前述した通り、従来技
術では、補正対象となる流量計毎に、基準流量計または
パイププルーバを含む大がかりなループ配管系を常時設
置する必要があるため、設置空間の確保や、設置投資が
必要となり、また、基準流量系自体の較正を定期的に実
施しなければならないという問題点がある。
As described above, in the prior art, it is necessary to always install a large-scale loop piping system including a reference flow meter or a pipe prober for each flow meter to be corrected. There is a problem in that it is necessary to secure and make an investment for installation, and that the reference flow system itself must be calibrated periodically.

【0006】本発明の目的は、過渡応答計算法を用いる
パイプラインの漏洩検知法の1つの機能である漏洩位置
計算手法を利用して、基準流量計またはパイププルーバ
を含む大がかりなループ配管系を常時設置することなく
流量計のオンライン補正を実施する手段を提供すること
にある。
It is an object of the present invention to utilize a leak position calculation method, which is one of the functions of a pipeline leak detection method using a transient response calculation method, to constantly perform a large-scale loop piping system including a reference flow meter or a pipe prober. It is to provide a means for performing on-line correction of a flow meter without installing it.

【0007】[0007]

【課題を解決するための手段】上記課題は以下の本発明
による、管路両端の圧力、流量を定期的に計測し、管路
内の圧力、流量の過渡応答を実時間計算し漏洩の検知お
よび漏洩位置の計算を行うパイプラインにおいて、管路
途中の異なる位置に漏洩試験用の放散弁V1 、放散弁V
2 を設置し、(1)前記放散弁V2 を閉じ、前記放散弁
1 を開放して漏洩位置計算を行う工程1と、(2)前
記放散弁V1 を閉じ、前記放散弁V2 を開放して漏洩位
置計算を行う工程2と、(3)前記工程1の漏洩検知位
置と放散弁V1 の位置のずれと前記工程2の漏洩検知位
置と放散弁V2 の位置のずれとの比較を基に、管路両端
の流量誤差を計算する比較計算工程と、からなる管路両
端の流量計のオンライン補正方法を用いることで解決で
きる。
According to the present invention described below, the pressure and flow rate at both ends of a pipeline are periodically measured, and the transient response of the pressure and flow rate in the pipeline is calculated in real time to detect leakage. In the pipeline for calculating the leakage position and the leakage position, the diffusion valve V 1 and the diffusion valve V 1 for leakage test are provided at different positions in the pipeline.
2 is installed, (1) the diffusion valve V 2 is closed, the diffusion valve V 1 is opened to perform a leak position calculation step 1, and (2) the diffusion valve V 1 is closed, and the diffusion valve V 2 And the leakage position calculation in step 1 and (3) the deviation between the leakage detection position and the position of the diffusion valve V 1 in step 1 and the deviation between the leakage detection position and the position of the diffusion valve V 2 in step 2 It is possible to solve the problem by using the comparison calculation step of calculating the flow rate error at both ends of the pipeline based on the comparison of 1. and the online correction method of the flowmeter at both ends of the pipeline.

【0008】[0008]

【作用】途中に複数の引抜き点を持つパイプラインにお
いて、パイプラインの入口、出口におけるそれぞれの圧
力、流量及び途中の引抜き点の引抜き流量を定期的に計
測し、管路内の圧力、流量の過渡応答を実時間計算する
ことにより、漏洩の検知および漏洩位置の計算を行う漏
洩検知法(Wylie,E.B.,and Streeter,V.L., “Fluid Tr
ansients in Systems ”,Prentice-Hall, Inc., P273-
284.などにより公知)に関する改善された数学的手法
が、本発明の考案者により(木内,“パイプラインの過
渡応答計算による漏洩位置の検知”,日本機械学会論文
集57巻541号、P3000-3007.)に示されている。本
発明はこのような漏洩検知法が適用されているパイプラ
インの入口、出口流量計、更に途中の引抜き流量計をオ
ンラインで補正することを対象とする。
[Operation] In a pipeline having a plurality of withdrawal points on the way, the pressure and flow rate at the inlet and outlet of the pipeline and the withdrawal flow rate at the withdrawal point on the way are periodically measured to determine the pressure and flow rate in the pipeline. Leak detection method (Wylie, EB, and Streeter, VL, “Fluid Trd” that detects leak and calculates leak position by calculating transient response in real time.
ansients in Systems ”, Prentice-Hall, Inc., P273-
284. etc.) by an inventor of the present invention (Kiuchi, “Detection of Leakage Position by Transient Response Calculation of Pipeline”, The Japan Society of Mechanical Engineers, Vol. 57, No. 541, P3000-). 3007.). The present invention is directed to online correction of the inlet and outlet flowmeters of a pipeline to which such a leak detection method is applied, and further the withdrawal flowmeters on the way.

【0009】本発明では、先ずパイプラインの途中の異
なる2つの既知位置にそれぞれ漏洩試験用放散弁V1
漏洩試験用放散弁V2 を設置する。但し、これらの放散
量を計測する流量計は設ける必要がない。ここで、放散
弁V2 を閉鎖したまま放散弁V1 を開放すれば、放散弁
1 からの放散量が計測されていないため、放散弁V 1
からの放散は漏洩として検知され漏洩位置が計算される
(漏洩位置計算工程1)。次に、放散弁V1 を閉鎖した
まま放散弁V2 を開放すれば、放散弁V2 からの放散量
が計測されていないため、放散弁V2 からの放散は漏洩
として検知され漏洩位置が計算される(漏洩位置計算工
程2)。
In the present invention, first, the difference in the middle of the pipeline is
Emission valve V for leak test at two known positions1 ,
Emission valve for leak test V2 Set up. However, these emissions
It is not necessary to install a flow meter to measure the quantity. Where the dissipation
Valve V2 Emission valve V with the valve closed1 The release valve
V1 Since the amount of emission from the 1 
Emissions from are detected as leaks and leak locations are calculated
(Leakage position calculation step 1). Next, the diffusion valve V1 Closed
Direct release valve V2 If the valve is opened, the diffusion valve V2 Emissions from
Is not measured, the diffusion valve V2 Leakage from the
And the leak position is calculated (leak position calculator
2).

【0010】目標とする未知数は入口流量計の誤差(補
正すべき量)ε1 と出口流量計の誤差ε2 であり、これ
らが正しく与えられた場合には漏洩位置計算工程1から
求められる漏洩位置は放散弁V1 の位置と一致し、同様
に漏洩位置計算工程2から求められる漏洩位置は放散弁
2 の位置と一致しなくてはならない。このような補正
量ε1 ,ε2 を求めること(補正量の比較計算工程)
は、これらの未知数2つに対して2つの条件(漏洩位置
計算工程1及び2)が与えられていることから容易であ
り、入口流量計の補正すべき量ε1 と出口流量計の補正
すべき量ε2 が検出される。
The target unknowns are the error (the amount to be corrected) ε 1 of the inlet flow meter and the error ε 2 of the outlet flow meter. If these are given correctly, the leakage obtained from the leakage position calculation step 1 The position matches the position of the diffusion valve V 1 , and similarly, the leakage position obtained from the leakage position calculation step 2 must match the position of the diffusion valve V 2 . Obtaining such correction amounts ε 1 and ε 2 (comparison process of correction amounts)
Is easy because two conditions (leakage position calculation steps 1 and 2) are given to these two unknowns, and the amount ε 1 to be corrected by the inlet flowmeter and the correction amount of the outlet flowmeter are corrected. The power ε 2 is detected.

【0011】さらに、パイプライン途中にN個の引抜き
点がありそこでの引抜き量が計測されている場合には、
そこでの引抜き流量計の出力を順次零として漏洩試験を
行うことにより新たにN個の条件が生成され、全体では
N+2個の未知数に対し、同数の条件が与えられること
からすべての流量計について補正すべき量が求められ
る。
Further, when there are N drawing points in the middle of the pipeline and the drawing amount at the drawing points is measured,
Leakage test is performed by sequentially setting the output of the withdrawal flowmeter to zero, and N conditions are newly generated. As a whole, N + 2 unknowns are given the same number of conditions, so all flowmeters are corrected. The required amount is required.

【0012】この様に、過渡応答計算による漏洩検知方
法を実施しているパイプラインに漏洩試験用放散弁を設
け、補正すべき流量計の数に対応する回数だけ疑似の漏
洩試験を行い、漏洩位置を計算できるので、実際の漏洩
位置と計算上の漏洩位置を一致させる流量を計算し、そ
の計算された流量と流量計の計測値の差から補正量を決
定することができる。
In this way, a leak test diffusion valve is provided in a pipeline that implements a leak detection method based on transient response calculation, and a pseudo leak test is performed a number of times corresponding to the number of flowmeters to be corrected. Since the position can be calculated, the flow rate at which the actual leak position and the calculated leak position coincide with each other can be calculated, and the correction amount can be determined from the difference between the calculated flow rate and the measurement value of the flow meter.

【0013】本発明では、高々パイプラインの2カ所に
漏洩試験用放散弁を設ければ、気体・液体を被輸送流体
とするパイプライン全ての流量計のオンライン補正が可
能となる。ガスパイプラインの場合では、一般に放散塔
が設置されることが多いためこれを代用することができ
る。また、既存の引抜き弁もこれらの代用となり得る。
この放散弁において、順次、開放,閉鎖を繰り返すこと
により各流量計の持つ誤差が同定される。計算式が複雑
なものとなるので、線形計画法により最適化を行い各補
正量を求めれば良い。
According to the present invention, by providing the leakage test diffusion valves at two places in the pipeline at most, it is possible to perform online correction of all flowmeters of the pipeline in which the fluid to be transported is gas or liquid. In the case of a gas pipeline, since a diffusion tower is generally installed, this can be substituted. Also, existing withdrawal valves can be substituted for these.
In this diffusion valve, the error that each flow meter has is identified by sequentially repeating opening and closing. Since the calculation formula becomes complicated, each correction amount may be obtained by performing optimization by the linear programming method.

【0014】[0014]

【実施例】以下実施例を用いて本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0015】図1は途中に引抜き点の無い最も簡単なパ
イプラインで本発明を実施する場合の説明図である。
FIG. 1 is an explanatory diagram for carrying out the present invention with the simplest pipeline having no drawing point in the middle.

【0016】図2は途中に引抜き点が1つあるパイプラ
インで本発明を実施する場合の説明図である。
FIG. 2 is an explanatory diagram for carrying out the present invention in a pipeline having one drawing point in the middle.

【0017】図3は途中に引抜き点がN個あるパイプラ
インで本発明を実施する場合の計測システム及び計算シ
ステムの概念図である。
FIG. 3 is a conceptual diagram of a measuring system and a computing system when the present invention is implemented by a pipeline having N drawing points in the middle.

【0018】図4は線形計画法により求めた入口,出口
流量計の補正量と目的関数を示すグラフである。
FIG. 4 is a graph showing the correction amounts of the inlet and outlet flow meters and the objective function obtained by the linear programming method.

【0019】以下、図面を参照して本発明の実施例に基
づき詳細に説明する。 図1は上述した漏洩検知法を適
用される最も簡単なパイプラインの構成を示す。同図に
おいてF1,P1はパイプライン入口1の流量と圧力、F
2,P2はパイプライン出口2の流量と圧力であり、それ
らは定期的に計測され、入口,出口の圧力P1及びP2
境界条件として過渡応答計算が実施されている。また過
渡応答計算により求めた入口,出口の計算流量F1c,
2cはそれぞれの流量計の持つ精度の範囲内で計測値
1,F2と一致しているものとする。ここで、入口1か
ら任意の距離の位置Xに漏洩試験用放散弁Vが設けら
れ、その漏洩試験用放散弁Vが開放されていると仮定し
た場合、この放散弁Vからの放散流量を計測しても算入
しなければその放散は漏洩とみなされるため、入口1か
ら漏洩位置Xまでの距離は、概略次式で計算される。
An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the configuration of the simplest pipeline to which the above-mentioned leak detection method is applied. In the figure, F 1 and P 1 are the flow rate and pressure at the pipeline inlet 1, F
2 and P 2 are the flow rate and pressure at the pipeline outlet 2, they are measured periodically, and the transient response calculation is performed with the inlet and outlet pressures P 1 and P 2 as boundary conditions. In addition, the calculated flow rate F 1 c at the inlet and outlet obtained by transient response calculation,
It is assumed that F 2 c matches the measured values F 1 and F 2 within the accuracy range of each flow meter. Where is the entrance 1
A leakage test diffusion valve V is installed at a position X at an arbitrary distance from
It is assumed that the leakage test diffusion valve V is open.
If the discharge flow rate from this diffusion valve V is measured,
Otherwise, the emission will be considered as a leak, so the
The distance from the leak position X to the leak position X is roughly calculated by the following equation.

【0020】[0020]

【数1】 F :数値計算された平均流量 ΔF 1 :F 1 −F 1 ΔF 2 :F 2 c−F 2 1 c,F 2 c :入口,出口で数値計算された流量 L :L 1 +L 2 +L 3 そこで、図1中の放散弁V 2 を閉鎖し、放散弁V 1 を開放
した状態における式(1)中のFをF a と表し、以下同
様に、ΔF 1 をΔF 1a 、ΔF 2 をΔF 2a と表すと、漏洩位
置X 1 を求める次式が得られる。従って、放散弁V 2 を閉
鎖し、放散弁V 1 を開放した状態で求められる計測値お
よび計算値を次式に代入すれば、漏洩位置X 1 が計算さ
れる(漏洩位置計算工程1)。
[Equation 1] F: Numerically calculated average flow rate ΔF 1 : F 1 -F 1 c ΔF 2 : F 2 c-F 2 F 1 c, F 2 c: Numerically calculated flow rate at inlet and outlet L: L 1 + L 2 + L 3 Therefore, the diffusion valve V 2 in FIG. 1 is closed and the diffusion valve V 1 is opened.
In the above condition, F in the formula (1) is represented as F a, and
Similarly, if ΔF 1 is expressed as ΔF 1a and ΔF 2 is expressed as ΔF 2a , the leakage potential is
The following equation for obtaining the position X 1 is obtained. Therefore, the diffusion valve V 2 is closed.
The measured values that are obtained when the chain is closed and the diffusion valve V 1 is opened.
By substituting the calculated value into the following equation, the leakage position X 1 is calculated.
(Leakage position calculation step 1).

【0021】[0021]

【数2】 次に、図1中の放散弁V 1 を閉鎖し、放散弁V 2 を開放し
た状態における式(1)中のFをF b と表し、以下同様
に、ΔF 1 をΔF 1b 、ΔF 2 をΔF 2b と表すと、漏洩位置
2 を求める次式が得られる。従って、放散弁V 1 を閉鎖
し、放散弁V 2 を開放した状態で求められる計測値およ
び計算値を次式に代入すれば、漏洩位置X 2 が計算され
る(漏洩位置計算工程2)。
[Equation 2] Next, the diffusion valve V 1 in FIG. 1 is closed, and the diffusion valve V 2 is opened.
F in the formula (1) in the above state is expressed as F b, and the same applies hereinafter.
If ΔF 1 is ΔF 1b and ΔF 2 is ΔF 2b , the leakage position is
The following equation for obtaining X 2 is obtained. Therefore, the diffusion valve V 1 is closed
However, the measured value and the value obtained with the diffusion valve V 2 open
By substituting the calculated value into the following equation, the leakage position X 2 is calculated.
(Leakage position calculation step 2).

【0022】[0022]

【数3】 補正量の比較計算工程では、次の演算計算を行い流量計
の計測値誤差を補正する。先ず、入口,出口の流量
1a ,F 1b 、F 2a ,F 2b は計測値であるから誤差を含ん
でいる。そのため式(2)および式(3)で計算された
漏洩位置X1,X2は実際の漏洩位置である漏洩試験用放
散弁V1,V2の位置L1,L1+L2と一致しない。そこ
で、計測値F 1a の誤差をε 1a 、計測値F 2a の誤差をε 2a
として式(2)の流量F 1a ,F 2a の代わりに補正された
流量(F 1a +ε 1a ),(F 2a +ε 2a )を用いれば、漏洩
位置X 1 は位置L 1 に等しいとおける。また、計測値F 1b
の誤差をε 1b 、計測値F 2b の誤差をε 2b として式(3)
の流量F 1b ,F 2b の代わりに補正された流量(F 1b +ε
1b ),(F 2b +ε 2b )を用いれば、漏洩位置X2は位置
1+L2と等しいとおける。従って次式が成り立つ。
[Equation 3] In the correction amount comparison calculation step, the following calculation is performed to correct the measurement value error of the flow meter. First, the flow rate at the inlet and outlet
Since F 1a , F 1b , F 2a and F 2b are measured values, they include an error. Therefore, the leakage positions X 1 and X 2 calculated by the equations (2) and (3) do not match the actual leakage positions of the leakage test diffusion valves V 1 and V 2 at the positions L 1 and L 1 + L 2. . Therefore, the error of the measured value F 1a is ε 1a , and the error of the measured value F 2a is ε 2a.
Was corrected in place of the flow rates F 1a and F 2a in equation (2)
If the flow rates (F 1a + ε 1a ) and (F 2a + ε 2a ) are used, leakage will occur.
It can be said that the position X 1 is equal to the position L 1 . Also, the measured value F 1b
(3) where ε 1b is the error of ε 1b and ε 2b is the error of the measured value F 2b
The corrected flow rate (F 1b + ε) instead of the flow rates F 1b and F 2b of
1b ) and (F 2b + ε 2b ), it can be said that the leakage position X 2 is equal to the position L 1 + L 2 . Therefore, the following equation holds.

【0023】漏洩位置計算工程1より、From the leakage position calculation step 1,

【0024】[0024]

【数4】 1 =F 2 a −(F 2a +ε 2a 1 =2・F a −F 2 a +F 2a +ε 2a 1 =F 1a +ε 1a −F 1 a +F 2 a −F 2a −ε 2a 1 =2・F a +F 1a +ε 1a −F 1 a −F 2 a +F 2a +ε 2a 同様にして漏洩位置計算工程2より、[Equation 4] A 1 = F 2 c a - (F 2a + ε 2a) B 1 = 2 · F a -F 2 c a + F 2a + ε 2a C 1 = F 1a + ε 1a -F 1 c a + F 2 c a -F 2a - from ε 2a D 1 = 2 · F a + F 1a + ε 1a -F 1 c a -F 2 c a + F 2a + ε 2a Similarly leakage position calculation step 2,

【0025】[0025]

【数5】 2 =F 2 b −(F 2b +ε 2b 2 =2・F b −F 2 b +F 2b +ε 2b 2 =F 1b +ε 1b −F 1 b +F 2 b −F 2b −ε 2b 2 =2・F b +F 1b +ε 1b −F 1 b −F 2 b +F 2b +ε 2b そして、比較計算工程でこれら2つの式を解いて、補正
ε 1a ,ε 2a 、ε 1b ,ε 2b が求められる。
[Equation 5] A 2 = F 2 c b − (F 2b + ε 2b ) B 2 = 2 · F b −F 2 c b + F 2b + ε 2b C 2 = F 1b + ε 1b −F 1 c b + F 2 c b −F 2b − ε 2b D 2 = 2 · F b + F 1b + ε 1b −F 1 c b −F 2 c b + F 2b + ε 2b Then, these two equations are solved in the comparison calculation step to obtain the correction amounts ε 1a , ε 2a , ε. 1b and ε 2b are obtained.

【0026】次に、別の実施例として、管路途中に複数
個の引抜き点があり、そこでの流量計の計測値誤差を同
時に補正する場合を説明するが、前記の方法はこの場合
にも適用できる。最も簡単な引抜き点が1カ所の場合に
ついて図2により説明する。同図では引抜き点1が漏洩
試験用放散弁V1 ,V2 の下流に設置されそこでの引抜
き流量が計測されている。
Next, as another embodiment, a case will be described in which there are a plurality of drawing points in the middle of the pipeline, and the measurement value error of the flowmeter there is corrected at the same time. Applicable. The case where the simplest extraction point is one will be described with reference to FIG. In the figure, a drawing point 1 is installed downstream of the leakage test diffusion valves V 1 and V 2 and the drawing flow rate there is measured.

【0027】上記漏洩位置計算工程1、漏洩位置計算工
程2を実施したあと、同じ様にして放散弁V1,V2を閉
鎖し、引抜き点1の流量弁G1を開放した状態でそこで
の計測流量を零として漏洩位置の計算を実施する。この
ため引抜き点1からの放散は漏洩として検知されること
になり、漏洩位置が計算される(漏洩位置計算工程
3)。そこで、前述の漏洩位置計算式(),()と
同じような引抜き点位置X3に関する漏洩位置計算式が
得られ、これら3つの式を連立して解くことにより補正
量ε1,ε2,ε3(引抜き点流量計の補正量)が求めら
れる。
After the leakage position calculation step 1 and the leakage position calculation step 2 are carried out, in the same manner, the diffusion valves V 1 and V 2 are closed and the flow rate valve G1 at the extraction point 1 is opened, and measurement is performed there. The leakage position is calculated with the flow rate set to zero. Therefore, the radiation from the extraction point 1 is detected as a leak, and the leak position is calculated (leak position calculation step 3). Therefore, a leak position calculation formula for the extraction point position X 3 similar to the above-mentioned leak position calculation formulas ( 2 ) and ( 3 ) is obtained, and correction amounts ε 1 and ε are obtained by solving these 3 formulas simultaneously. 2 and ε 3 (correction amount of pull-out point flowmeter) are obtained.

【0028】ここで注意すべきことは、漏洩位置計算工
程1、漏洩位置計算工程2で用いられる前述の漏洩位置
計算式(1)は、引抜き点で計測される引抜き量を考慮
して決められることである。従って、漏洩位置計算式
(1)は次式のように変形された式となる。
It should be noted here that the above-mentioned leakage position used in the leakage position calculation step 1 and the leakage position calculation step 2
Equation (1) is to be determined in consideration of the pull-out amount measured by pulling vent point. Therefore, the leak position calculation formula
Equation (1) is a modified equation such as the following equation.

【0029】[0029]

【数6】 1 2 3 ,F4:数値計算された、区間(L1+L2
3)およびL4の数値計算された平均流量 なお、漏洩位置計算工程1における漏洩位置計算式
(2)、漏洩位置計算工程2における漏洩位置計算式
(3)に関する変形も同様であるので、記載は省略す
る。
[Equation 6] F 1 2 3 , F 4 : Numerically calculated interval (L 1 + L 2 +
L 3 ) and L 4 numerically calculated average flow rate Note that the leak position calculation formula in leak position calculation step 1
(2) Leakage position calculation formula in leakage position calculation step 2
Since the modification regarding (3) is the same, the description is omitted.

【0030】引抜き点が複数個(N個)有り、各引抜き
点での流量計誤差を補正する場合のシステム構成を図3
に示す。同図でT1 ,T2 は入口,出口での流体温度、
CPはシステムのためのコンピュータである。引抜き点
で計測される引抜き量を考慮して漏洩位置計算工程1、
漏洩位置計算工程2を実施したあと放散弁V1 ,放散弁
2 を閉鎖し、それぞれの引抜き点において、順次、弁
を開放した状態で計測流量を零として漏洩位置を求め
る。従って、入口,出口の流量F1 ,F2 の補正量およ
びN個の引抜き流量計の補正量の、合計N+2個の方程
式が成り立つため全ての補正量が計算により定まる。但
し、計算式は複雑なものとなるため、線形計画法により
最適化を行い各補正量を求める。この時の最小化すべき
目的関数は次式である。
FIG. 3 shows a system configuration in the case where there are a plurality of (N) extraction points and the flow meter error at each extraction point is corrected.
Shown in. In the figure, T 1 and T 2 are the fluid temperatures at the inlet and outlet,
CP is a computer for the system. Leakage position calculation step 1 in consideration of the amount of withdrawal measured at the withdrawal point,
After performing the leakage position calculation step 2, the diffusion valve V 1 and the diffusion valve V 2 are closed, and the leakage flow position is obtained at each extraction point by sequentially opening the valves and setting the measured flow rate to zero. Therefore, since a total of N + 2 equations of the correction amounts of the flow rates F 1 and F 2 at the inlet and the outlet and the correction amounts of the N drawing flowmeters are established, all the correction amounts are determined by calculation. However, since the calculation formula becomes complicated, optimization is performed by the linear programming method and each correction amount is obtained. The objective function to be minimized at this time is as follows.

【0031】[0031]

【数6】H=Σ(Xi−Li)2 Xi :引抜き点Giで漏洩を仮定して求めた漏洩位置 Li :引抜き点Giの位置 Σ :1〜Nまでの和を示す。## EQU6 ## H = Σ (Xi-Li) 2 Xi: Leakage position Li obtained by assuming leakage at the extraction point Gi: The position Σ of the extraction point Gi: the sum of 1 to N.

【0032】図4のグラフはこのようにして求めた入
口,出口流量計の補正量と目的関数の変化を示す。
The graph of FIG. 4 shows changes in the correction amounts of the inlet and outlet flow meters thus obtained and the objective function.

【0033】[0033]

【発明の効果】上記の説明の通り本発明は、過渡応答計
算による漏洩検知方法を実施しているパイプラインに漏
洩試験用放散弁を設け、補正すべき流量計の数に対応す
る回数だけ疑似の漏洩試験を行うことにより流量計の補
正量を決定できるので以下の効果がある。
As described above, according to the present invention, a leak test diffusion valve is provided in a pipeline that implements a leak detection method by transient response calculation, and a pseudo test is performed as many times as the number of flow meters to be corrected. Since the correction amount of the flow meter can be determined by performing the leak test of, there are the following effects.

【0034】(1)従来のようにそれぞれの流量計につ
いて基準流量計を用いた補正をする必要がない。
(1) It is not necessary to perform correction using a reference flow meter for each flow meter as in the conventional case.

【0035】(2)パイププルーバや基準流量計を設置
するための場所、そのための設備、管理の必要がない。
(2) There is no need for a place for installing a pipe prober or a reference flow meter, equipment therefor, and management.

【0036】(3)過渡応答計算による漏洩位置検知法
を採用しているパイプラインでは高々2つの放散弁を設
置することであるいは放散塔がある場合はそれを利用し
コンピュータの計算ソフトを修正することで実施でき
る。
(3) In a pipeline adopting the leak position detection method by transient response calculation, at most two diffusion valves are installed, or if there is a diffusion tower, it is used to modify the calculation software of the computer. It can be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】途中に引抜き点の無い最も簡単なパイプライン
で本発明を実施する場合の説明図。
FIG. 1 is an explanatory diagram for carrying out the present invention with the simplest pipeline without a drawing point in the middle.

【図2】途中に引抜き点が1つあるパイプラインで本発
明を実施する場合の説明図。
FIG. 2 is an explanatory diagram for carrying out the present invention in a pipeline having one drawing point in the middle.

【図3】途中に引抜き点がN個あるパイプラインで本発
明を実施する場合の計測システム及び計算システムの概
念図。
FIG. 3 is a conceptual diagram of a measurement system and a calculation system when the present invention is carried out in a pipeline having N drawing points on the way.

【図4】線形計画法により求めた補正量と目的関数を示
すグラフ。
FIG. 4 is a graph showing a correction amount and an objective function obtained by a linear programming method.

【図5】パイププルーバによる通過容積測定法による補
正法を示す説明図。
FIG. 5 is an explanatory diagram showing a correction method by a passage volume measuring method using a pipe prober.

【図6】基準流量計による補正法を示す説明図。FIG. 6 is an explanatory diagram showing a correction method using a reference flow meter.

【符号の説明】[Explanation of symbols]

1 入口 2 出口 X1 放散弁V1 の位置 X2 放散弁V2 の位置 X3 引抜き点1の位置1 Inlet 2 Outlet X 1 Position of diffusion valve V 1 X 2 Position of diffusion valve V 2 X 3 Position of extraction point 1

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 管路両端の圧力、流量を定期的に計測
し、管路内の圧力、流量の過渡応答を実時間計算し漏洩
の検知および漏洩位置の計算を行うパイプラインの管路
途中の異なる位置に漏洩試験用の放散弁V1 、放散弁V
2 を設置し、 前記放散弁V2 を閉じ、前記放散弁V1 を開放して漏洩
位置計算を行う工程1と、 前記放散弁V1 を閉じ、前記放散弁V2 を開放して漏洩
位置計算を行う工程2と、 前記工程1の漏洩検知位置と放散弁V1 の位置のずれと
前記工程2の漏洩検知位置と放散弁V2 の位置のずれと
の比較を基に、管路両端の流量誤差を計算する比較計算
工程と、 からなる管路両端の流量計のオンライン補正方法。
1. A pipeline in the middle of which a pressure and a flow rate at both ends of the pipeline are periodically measured, and a transient response of the pressure and the flow rate in the pipeline is calculated in real time to detect a leak and calculate a leak position. At different positions of the leakage valve V 1 and the leakage valve V 1 for leakage test
2 is installed, the diffusion valve V 2 is closed, the diffusion valve V 1 is opened to perform a leakage position calculation, and the diffusion valve V 1 is closed and the diffusion valve V 2 is opened to a leakage position. Based on the comparison between the leakage detection position and the deviation of the diffusion valve V 1 in the step 1 and the deviation of the leakage detection position and the diffusion valve V 2 in the step 2, the two ends of the pipeline are calculated. A comparison calculation process to calculate the flow rate error of, and an online correction method for the flowmeters at both ends of the line consisting of.
【請求項2】 管路両端の圧力、流量、および管路途中
に複数個設けた引抜き点での引抜き流量を定期的に計測
し、管路内の圧力、流量の過渡応答を実時間計算し漏洩
の検知および漏洩位置の計算を行うパイプラインの管路
途中の異なる位置に漏洩試験用の放散弁V1 、放散弁V
2 を設置し、 前記放散弁V2 を閉じ、前記放散弁V1 を開放して漏洩
位置計算を行う工程1と、 前記放散弁V1 を閉じ、前記放散弁V2 を開放して漏洩
位置計算を行う工程2と、 前記放散弁V1 、前記放散弁V2 を閉じ、管路途中の引
抜き流量弁の計測流量を順次零として漏洩位置計算を行
う工程3と、 前記工程1の漏洩検知位置と放散弁V1 の位置のずれ
と、前記工程2の漏洩検知位置と放散弁V2 の位置のず
れと、前記工程3の漏洩検知位置と計測流量を零とした
引抜き流量弁の位置のずれの比較を基に、管路両端の流
量計誤差、及び、管路途中の引抜き流量計誤差を計算す
る比較計算工程と、 から成る管路両端の流量計、及び、管路途中に複数個の
引抜き流量計のオンライン補正方法。
2. The pressure at both ends of the pipeline, the flow rate, and the withdrawal flow rate at a plurality of withdrawal points provided in the pipeline are periodically measured, and the transient response of the pressure and flow rate in the pipeline is calculated in real time. The diffusion valve V 1 and the diffusion valve V 1 for the leakage test are located at different positions in the pipeline of the pipeline for detecting the leakage and calculating the leakage position.
2 is installed, the diffusion valve V 2 is closed, the diffusion valve V 1 is opened to perform a leakage position calculation, and the diffusion valve V 1 is closed and the diffusion valve V 2 is opened to a leakage position. Leak detection in step 1 and step 2 in which calculation is performed, step 3 in which the diffusion valve V 1 and the diffusion valve V 2 are closed, and the leak position is calculated by sequentially setting the measured flow rate of the withdrawal flow valve in the middle of the pipeline to zero. Of the position of the diffusion valve V 1, the position of the leakage detection position of step 2 and the position of the diffusion valve V 2 , and the position of the leakage detection position of step 3 and the position of the extraction flow valve where the measured flow rate is zero. A comparison calculation process that calculates the flowmeter error at both ends of the pipeline and the drawing flowmeter error in the middle of the pipeline based on the deviation comparison. Online correction method for the withdrawal flow meter.
JP22975793A 1993-09-16 1993-09-16 On-line correction method of pipeline flow meter Expired - Fee Related JP3442112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22975793A JP3442112B2 (en) 1993-09-16 1993-09-16 On-line correction method of pipeline flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22975793A JP3442112B2 (en) 1993-09-16 1993-09-16 On-line correction method of pipeline flow meter

Publications (2)

Publication Number Publication Date
JPH0783736A JPH0783736A (en) 1995-03-31
JP3442112B2 true JP3442112B2 (en) 2003-09-02

Family

ID=16897207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22975793A Expired - Fee Related JP3442112B2 (en) 1993-09-16 1993-09-16 On-line correction method of pipeline flow meter

Country Status (1)

Country Link
JP (1) JP3442112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864773A (en) * 2019-12-03 2020-03-06 镇江市计量检定测试中心 Method and system for on-line inspection of accuracy of solid flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754843B (en) * 2022-03-31 2024-12-24 无锡尚德太阳能电力有限公司 Diffusion flowmeter consistency test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864773A (en) * 2019-12-03 2020-03-06 镇江市计量检定测试中心 Method and system for on-line inspection of accuracy of solid flowmeter

Also Published As

Publication number Publication date
JPH0783736A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
CN106015951B (en) A gas pipeline leak detection system and method adaptable to various state changes
US6352001B1 (en) Non-iterative method for obtaining mass flow rate
US8443649B2 (en) Mass flow controller verifying system, verifying method and verifying program
JP5667184B2 (en) Upstream volume mass flow verification system and method
JP6754648B2 (en) Inspection method of gas supply system, calibration method of flow controller, and calibration method of secondary reference device
CN206130547U (en) Gas transmission pipeline leak testing system under multiplex condition
KR102437772B1 (en) Apparatus and method for measuring flow rate using pressure sensor
JP3442112B2 (en) On-line correction method of pipeline flow meter
CN113899431B (en) A mobile flow online calibration system
JP2765446B2 (en) Pipeline leak detection method
JP2008506116A (en) Method and system for flow measurement and mass flow regulator validation
CN213874575U (en) Differential type standard meter method flow calibrating device
JP3155814B2 (en) Flow measurement control system
Chen et al. A new correlation to determine the Lockhart-Martinelli parameter from vertical differential pressure for horizontal venturi tube over-reading correction
JP3438955B2 (en) Gas leak detection device for common piping
CN114370915A (en) Temperature and pressure measurement system of sound velocity nozzle standard device
Johnson Natural Gas Flow Calibration Service (NGFCS)
JPH10197391A (en) Gas leak detection device and gas leak detection method used therefor
Vinogradov et al. Influence of Indirect Measurements on the Account of General Needs of Hot Water Consumption
GB2493368A (en) Validating flow measurement equipment by comparing two separately calculated descriptive statistics
KR102801243B1 (en) Nuclear power plant's facility performance assessment verification system
Meng et al. Research on Flow Calculation Method Based on BP Neural Network
RU2143669C1 (en) Process of metrological diagnostics of flowmeters
Andrews Laboratory evaluation of the Delta Q test for duct leakage
JPH04286931A (en) Apparatus for detecting leakage of pipeline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees