[go: up one dir, main page]

JP3437764B2 - Refrigerator control method - Google Patents

Refrigerator control method

Info

Publication number
JP3437764B2
JP3437764B2 JP18266498A JP18266498A JP3437764B2 JP 3437764 B2 JP3437764 B2 JP 3437764B2 JP 18266498 A JP18266498 A JP 18266498A JP 18266498 A JP18266498 A JP 18266498A JP 3437764 B2 JP3437764 B2 JP 3437764B2
Authority
JP
Japan
Prior art keywords
refrigerating
evaporator
temperature
freezing
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18266498A
Other languages
Japanese (ja)
Other versions
JP2000018790A (en
Inventor
恵造 塚本
稔 天明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Digital Media Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Media Engineering Corp filed Critical Toshiba Corp
Priority to JP18266498A priority Critical patent/JP3437764B2/en
Priority to TW091203897U priority patent/TW532470U/en
Priority to KR1019990015590A priority patent/KR100332291B1/en
Priority to CN99110170A priority patent/CN1121599C/en
Priority to CNB031457649A priority patent/CN1291209C/en
Priority to CNB031457657A priority patent/CN1287126C/en
Publication of JP2000018790A publication Critical patent/JP2000018790A/en
Application granted granted Critical
Publication of JP3437764B2 publication Critical patent/JP3437764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵用蒸発器と冷
凍用蒸発器とを備えた冷蔵庫の制御方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a refrigerator having a refrigerating evaporator and a freezing evaporator.

【0002】[0002]

【従来の技術】冷蔵室や複数の庫内を冷蔵温度帯に冷却
するための冷蔵用蒸発器と、冷凍室を冷却するための冷
凍用蒸発器とを備えたこの種の冷蔵庫では、冷媒流路に
三方弁を介設して流路を切り替えるようにしている。そ
して、この三方弁の一方の出力側からは冷蔵用キャピラ
リーチューブを介して冷蔵用蒸発器に接続され、また、
別の出力側からは冷凍用キャピラリーチューブを介して
冷凍用蒸発器に接続されている。
2. Description of the Related Art In this type of refrigerator having a refrigerating evaporator for cooling a refrigerating compartment or a plurality of compartments to a refrigerating temperature zone and a freezing evaporator for cooling a freezing compartment, a refrigerant flow is A three-way valve is provided in the passage to switch the passage. And, from one output side of this three-way valve is connected to a refrigerating evaporator via a refrigerating capillary tube,
From another output side, it is connected to a freezing evaporator via a freezing capillary tube.

【0003】[0003]

【発明が解決しようとする課題】冷媒流路を切り替える
三方弁には、その構造上漏れを完全に無くすことは困難
である。そのため、三方弁を切り替えて冷凍用蒸発器に
のみ冷媒を流す場合に、三方弁の漏れにより冷蔵用蒸発
器にも流れてロスが発生するという問題があった。
In the three-way valve that switches the refrigerant flow paths, it is difficult to completely eliminate leakage due to its structure. Therefore, when the three-way valve is switched to flow the refrigerant only to the refrigerating evaporator, there is a problem that the leakage also flows to the refrigerating evaporator due to the leakage of the three-way valve, causing a loss.

【0004】また、冷蔵用蒸発器に冷媒を流す場合で
も、三方弁での漏れにより冷凍用キャピラリーチューブ
側に冷媒が流れて、冷蔵用蒸発器に全冷媒が流れず、や
はり、三方弁での漏れによりロスが発生するという問題
があった。
Further, even when the refrigerant flows through the refrigerating evaporator, the refrigerant flows to the freezing capillary tube side due to the leakage at the three-way valve, and the whole refrigerant does not flow to the refrigerating evaporator. There was a problem that loss would occur due to leakage.

【0005】そこで、本発明は上記問題点に鑑み、冷媒
流路を切り替える弁に漏れがあった場合でも冷蔵室を冷
却するときは冷蔵用蒸発器に全冷媒が流れるようにし、
また、冷凍室を冷却するときは冷凍室に全冷媒が流れる
ようにし、冷蔵・冷凍の各区画を個別に冷却できるよう
にした冷蔵庫の制御方法を提供するものである。
In view of the above problems, the present invention allows all the refrigerant to flow to the refrigerating evaporator when the refrigerating chamber is cooled even if there is a leak in the valve for switching the refrigerant flow paths.
Further, the present invention provides a method of controlling a refrigerator in which all the refrigerant flows into the freezing compartment when the freezing compartment is cooled so that the refrigerating / freezing compartments can be individually cooled.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1の冷蔵
庫の制御方法は、圧縮機と、凝縮器と、冷蔵用絞り機構
と、複数の冷蔵室に対応した冷蔵用蒸発器と、冷凍用絞
り機構と、冷凍室に対応した冷凍温度帯用の冷凍用蒸発
器とを環状に接続して冷媒流路を構成し、弁機構により
冷媒流路を切り替えて冷蔵用絞り機構を介して冷蔵用蒸
発器と冷凍用蒸発器を通して冷媒を流したり、冷凍用絞
り機構を介して冷凍用蒸発器のみに冷媒を流すようにし
た冷蔵庫において、冷凍用絞り機構を冷蔵用絞り機構に
対して流路抵抗を大きくし、冷蔵用蒸発器には冷蔵用送
風機を備え、冷蔵室冷却終了後の一定時間冷蔵用送風機
を継続運転する場合、冷蔵用送風機の運転終了後に冷蔵
蒸発器の入口部の温度が冷蔵用送風機の運転中の温度
より低下した場合または一定温度以上上昇しない場合、
弁機構を一定時間反対側に動作させ、その後弁機構を閉
じる動作を1回以上行なうようにしていることを特徴と
している。
According to a first aspect of the present invention, there is provided a method of controlling a refrigerator, comprising: a compressor, a condenser, a refrigerating throttle mechanism, a refrigerating evaporator corresponding to a plurality of refrigerating compartments, and a freezing. The cooling mechanism and the freezing evaporator for the freezing temperature zone corresponding to the freezer compartment are connected in a ring to form the refrigerant flow path, and the refrigerant mechanism switches the refrigerant flow path to perform refrigeration via the refrigeration expansion mechanism. In a refrigerator in which the refrigerant is allowed to flow through the evaporator for freezing and the evaporator for freezing, or the refrigerant is allowed to flow only to the evaporator for freezing via the throttle mechanism for freezing, Increase resistance and send to refrigerating evaporator for refrigeration.
Equipped with an air blower, a blower for refrigeration for a certain period of time after cooling in the refrigeration chamber
If you continue to operate the
Temperature Temperature of the inlet portion of the use evaporators during operation of the refrigerating fan
If the temperature drops further or does not rise above a certain temperature,
Operate the valve mechanism on the opposite side for a certain period of time, then close the valve mechanism.
It is characterized in that the twisting operation is performed once or more .

【0007】請求項2の冷蔵庫の制御方法は、圧縮機
と、凝縮器と、冷蔵用絞り機構と、複数の冷蔵室に対応
した冷蔵用蒸発器と、冷凍用絞り機構と、冷凍室に対応
した冷凍用蒸発器とを環状に接続して冷媒流路を構成
し、弁機構により冷媒流路を切り替えて冷蔵用絞り機構
を介して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流
したり、冷凍用絞り機構を介して冷凍用蒸発器のみに冷
媒を流すようにした冷蔵庫において、冷蔵用蒸発器の入
口部に温度センサを配し、冷蔵室無冷却時に温度センサ
にて冷蔵用蒸発器の入口部の温度を測定し、測定温度が
一定温度以上に上昇しない場合に、弁機構を反対側に動
作させ、その後弁機構を閉じる動作を1回以上行なうよ
うにし、冷蔵用蒸発器には冷蔵用送風機を備え、冷蔵室
冷却終了後の一定時間冷蔵用送風機を継続運転する場
合、冷蔵用送風機の運転終了後に冷蔵用蒸発器の入口部
の温度が冷蔵用送風機の運転中の温度より低下した場合
または一定温度以上上昇しない場合、弁機構を一定時間
反対側に動作させ、その後弁機構を閉じる動作を1回以
上行なうようにしていることを特徴としている。
According to a second aspect of the present invention, there is provided a control method for a refrigerator, which includes a compressor, a condenser, a refrigerating diaphragm mechanism, a refrigerating evaporator corresponding to a plurality of refrigerating compartments, a freezing diaphragm mechanism, and a freezing compartment. Refrigerating evaporator is connected to form a refrigerant flow path annularly, the refrigerant flow path is switched by the valve mechanism to flow the refrigerant through the refrigerating evaporator and the freezing evaporator via the refrigerating expansion mechanism, In a refrigerator in which the refrigerant is allowed to flow only to the freezing evaporator via the freezing throttling mechanism, a temperature sensor is arranged at the inlet of the refrigerating evaporator, and when the refrigerating room is not cooled, the temperature sensor is used to cool the refrigerating evaporator. the temperature of the inlet portion is measured, when the measured temperature does not rise above a predetermined temperature, to operate the valve mechanism to the opposite side, a closing operation subsequent valve mechanism to carry out one or more times, refrigerated in the refrigerating evaporator Equipped with a blower for the refrigerator
A place where the refrigeration blower is continuously operated for a certain period of time after the end of cooling
, The inlet of the refrigeration evaporator after the refrigeration blower has finished operating.
Temperature drops below the operating temperature of the refrigeration blower
Or, if the temperature does not rise above a certain temperature, keep the valve mechanism for a certain time.
Operate on the opposite side and then close the valve mechanism once or more.
It is characterized in that in the performed on.

【0008】請求項の冷蔵庫の制御方法は、圧縮機
と、凝縮器と、冷蔵用絞り機構と、複数の冷蔵室に対応
した冷蔵用蒸発器と、冷凍用絞り機構と、冷凍室に対応
した冷凍温度帯用の冷凍用蒸発器とを環状に接続して冷
媒流路を構成し、弁機構により冷媒流路を切り替えて冷
蔵用絞り機構を介して冷蔵用蒸発器と冷凍用蒸発器を通
して冷媒を流したり、冷凍用絞り機構を介して冷凍用蒸
発器のみに冷媒を流すようにした冷蔵庫において、冷凍
用絞り機構を冷蔵用絞り機構に対して流路抵抗を大きく
し、冷蔵室無冷却時に冷蔵用蒸発器の入口部の温度を測
定し、測定温度が一定温度以上に上昇しない場合、ま
た、冷蔵室冷却終了後に一定時間冷蔵用送風機を継続し
て運転する場合、あるいは、冷蔵用送風機の運転終了後
に入口部の温度が冷蔵用送風機の運転中の温度より低下
した場合または一定温度以上に上昇しない場合に、冷蔵
用蒸発器の温度が一定温度以上に上昇するか冷蔵室を冷
却する 必要が生じるまでヒータにて除霜を行なうことを
特徴としている。
According to a third aspect of the present invention, there is provided a control method for a refrigerator, which includes a compressor, a condenser, a refrigerating diaphragm mechanism, a refrigerating evaporator corresponding to a plurality of refrigerating compartments, a freezing diaphragm mechanism, and a freezing compartment. Refrigerating evaporator for the freezing temperature zone is connected to form a refrigerant flow path, and the refrigerant flow path is switched by the valve mechanism to pass through the refrigerating evaporator and the freezing evaporator through the refrigerating throttle mechanism. In a refrigerator in which the refrigerant is allowed to flow, or the refrigerant is allowed to flow only to the freezing evaporator through the freezing restriction mechanism, the freezing restriction mechanism has a larger flow path resistance than the refrigeration restriction mechanism, and the refrigeration chamber is not cooled. Sometimes the temperature of the refrigeration evaporator inlet is measured.
If the measured temperature does not rise above a certain temperature,
In addition, after the cooling in the refrigerating room is completed, the blower for refrigeration is
When operating with or after operation of the refrigeration blower
The inlet temperature drops below the operating temperature of the refrigeration blower
Refrigerated if it does or does not rise above a certain temperature
Does the evaporator temperature rise above a certain temperature?
It is characterized by defrosting with a heater until it becomes necessary to dispose of it .

【0009】請求項の冷蔵庫の制御方法は、圧縮機
と、凝縮器と、冷蔵用絞り機構と、複数の冷蔵室に対応
した冷蔵用蒸発器と、冷凍用絞り機構と、冷凍室に対応
した冷凍用蒸発器とを環状に接続して冷媒流路を構成
し、弁機構により冷媒流路を切り替えて冷蔵用絞り機構
を介して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流
したり、冷凍用絞り機構を介して冷凍用蒸発器のみに冷
媒を流すようにした冷蔵庫において、冷蔵用蒸発器の入
口部に温度センサを配し、冷蔵室無冷却時に温度センサ
にて冷蔵用蒸発器の入口部の温度を測定し、測定温度が
一定温度以上に上昇しない場合に、弁機構を反対側に動
作させ、その後弁機構を閉じる動作を1回以上行なうよ
うにし、冷蔵室無冷却時に冷蔵用蒸発器の入口部の温度
を測定し、測定温度が一定温度以上に上昇しない場合、
また、冷蔵室冷却終了後に一定時間冷蔵用送風機を継続
して運転する場合、あるいは、冷蔵用送風機の運転終了
後に入口部の温度が冷蔵用送風機の運転中の温度より低
下した場合または一定温度以上に上昇しない場合に、冷
蔵用蒸発器の温度が一定温度以上に上昇するか冷蔵室を
冷却する必要が生じるまでヒータにて除霜を行なうこと
を特徴としている。
According to a fourth aspect of the present invention, there is provided a control method for a refrigerator, which includes a compressor, a condenser, a refrigerating diaphragm mechanism, a refrigerating evaporator corresponding to a plurality of refrigerating compartments, a freezing diaphragm mechanism, and a freezing compartment. Refrigerating evaporator is connected to form a refrigerant flow path annularly, the refrigerant flow path is switched by the valve mechanism to flow the refrigerant through the refrigerating evaporator and the freezing evaporator via the refrigerating expansion mechanism, In a refrigerator in which the refrigerant is allowed to flow only to the freezing evaporator via the freezing throttling mechanism, a temperature sensor is arranged at the inlet of the refrigerating evaporator, and when the refrigerating room is not cooled, the temperature sensor is used to cool the refrigerating evaporator. Measure the temperature of the inlet part, and if the measured temperature does not rise above a certain temperature, operate the valve mechanism to the opposite side and then close the valve mechanism one or more times, for refrigeration when the refrigerating room is not cooled Evaporator inlet temperature
If the measured temperature does not rise above a certain temperature,
Also, continue to use the refrigeration blower for a certain period of time after cooling the refrigeration room
Operating in cold air, or when the refrigeration blower is out of operation
Later the inlet temperature is lower than the operating temperature of the refrigeration blower.
If it is lowered or does not rise above a certain temperature, cool it down.
Does the temperature of the storage evaporator rise above a certain temperature?
The heater is characterized by defrosting until it is necessary to cool it .

【0010】請求項5の冷蔵庫の制御方法は、ヒータに
て除霜を行なう場合は圧縮機を停止させることを特徴と
する請求項3または請求項4記載のものである。請求項
の冷蔵庫の制御方法は、圧縮機と、凝縮器と、冷蔵用
絞り機構と、複数の冷蔵室に対応した冷蔵温度帯用の冷
蔵用蒸発器と、冷凍用絞り機構と、冷凍室に対応した冷
凍用蒸発器とを環状に接続して冷媒流路を構成し、弁機
構により冷媒流路を切り替えて冷蔵用絞り機構を介して
冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流したり、
冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を流す
ようにした冷蔵庫において、冷蔵用蒸発器の入口部に温
度センサを配し、冷凍用蒸発器にのみ冷媒が流れる状態
の時に温度センサの検出温度が基準温度以上にならない
時には弁機構が異常と判断し、冷凍用蒸発器にのみ冷媒
が流れる状態に切り替わると同時に、冷蔵用蒸発器用の
除霜ヒータを通電するようにしていることを特徴として
いる。
The control method of the refrigerator according to claim 5 is characterized in that the compressor is stopped when defrosting is performed by the heater.
According to claim 3 or claim 4, Claim
The control method of the refrigerator of 6 corresponds to a compressor, a condenser, a refrigerating throttle mechanism, a refrigerating evaporator for refrigerating temperature zones corresponding to a plurality of refrigerating compartments, a freezing throttling mechanism, and a freezing compartment. Refrigerating evaporator is connected to form a refrigerant flow path annularly, the refrigerant flow path is switched by the valve mechanism to flow the refrigerant through the refrigerating evaporator and the freezing evaporator via the refrigerating expansion mechanism,
In a refrigerator in which the refrigerant is allowed to flow only to the freezing evaporator via the freezing throttle mechanism, a temperature sensor is arranged at the inlet of the refrigerating evaporator, and the temperature sensor is provided when the refrigerant flows only to the freezing evaporator. When the detected temperature of is not higher than the reference temperature, it is judged that the valve mechanism is abnormal, and it is switched to the state where the refrigerant flows only to the freezing evaporator, and at the same time, the defrost heater for the refrigeration evaporator is energized. It has a feature.

【0011】請求項の冷蔵庫の制御方法は、冷蔵用蒸
発器と冷凍用蒸発器に冷媒を交互に流すサイクルを数サ
イクル続けて除霜ヒータが通電された場合には圧縮機を
停止して除霜を行なうようにしていることを特徴とする
請求項6記載のものである。請求項の冷蔵庫の制御方
法は、弁機構が異常と判断した時に警報手段にて報知す
るようにしていることを特徴とする請求項または請求
記載の冷蔵庫の制御方法である。
According to a seventh aspect of the present invention, there is provided a method of controlling a refrigerator, wherein the compressor is stopped when the defrosting heater is energized by repeating a cycle in which the refrigerant is alternately flown to the refrigerating evaporator and the freezing evaporator for several cycles. characterized in that so as to perform the defrosting
It is according to claim 6. The refrigerator control method according to claim 8 is the method for controlling the refrigerator according to claim 6 or 7 , characterized in that when the valve mechanism is judged to be abnormal, an alarm means is provided.

【0012】請求項の冷蔵庫の制御方法は、数サイク
ル続けて除霜ヒータが通電された場合には、警報手段に
て報知するようにしていることを特徴とする請求項6ま
たは請求項7記載のものである。請求項10の冷蔵庫の
制御方法は、冷蔵用蒸発器と冷凍用蒸発器に冷媒を交互
に流すサイクルを数サイクル続けて除霜ヒータが通電さ
れた場合には圧縮機を停止して除霜を行ない、さらに温
度センサの検出温度が約0℃以下の場合には警報手段に
て報知するようにしていることを特徴とする請求項6記
載のものである。請求項1、3の冷蔵庫であると、冷凍
用絞り機構を冷蔵用絞り機構に対して流路抵抗を大きく
しているので、弁機構に漏れがあった場合でも冷蔵室を
冷却する時は、冷蔵用蒸発器に全冷媒を流すことがで
き、冷凍室を冷却するときは冷凍室に全冷媒を流すこと
ができる。
[0012] The method of the refrigerator according to claim 9, when the defrosting heater continues several cycles is energized, claim 6 or, characterized in that so as to notification by the warning means
Or claim 7. The control method for a refrigerator according to claim 10 , wherein when the defrost heater is energized by continuing the cycle of alternately flowing the refrigerant through the refrigerating evaporator and the freezing evaporator for several cycles, defrosting is performed. deeds, further claim 6 Symbol of if the detected temperature of the temperature sensor is about 0 ℃ below is characterized in that so as to notification by the warning means
The ones listed. When a refrigerator of claim 1, 3, since the increased flow path resistance refrigeration throttle mechanism relative refrigerating diaphragm mechanism, when cooling the refrigerating compartment even when there is a leak in the valve mechanism, It is possible to flow all the refrigerant to the refrigerating evaporator, and to cool the freezer compartment, it is possible to flow all the refrigerant to the freezer compartment.

【0013】請求項2、4の冷蔵庫の制御方法である
と、弁機構を閉じる動作を1回以上行なうようにしてい
ることで、弁機構内のゴミの除去を行ない、弁漏れを防
止することができる。
According to the refrigerator control method of claims 2 and 4 , the valve mechanism is closed at least once so that dust in the valve mechanism can be removed and valve leakage can be prevented. You can

【0014】また、温度センサの検出温度にて除霜を行
なって弁漏れによる不都合を防止したり、ヒータにて除
霜を行なう場合には圧縮機を停止させていることで、除
霜を確実に行なうようにしている。さらには、冷蔵用蒸
発器の入口部と出口部に温度センサを設置して、入口部
と出口部の両方の温度を測定することで、弁漏れの検知
や、除霜の終了の両方を検知することができる。
Further, defrosting is performed at the temperature detected by the temperature sensor to prevent inconvenience due to valve leakage, and when defrosting with the heater, the compressor is stopped to ensure defrosting. I am going to do it. Furthermore, by installing temperature sensors at the inlet and outlet of the refrigerating evaporator and measuring the temperature at both the inlet and outlet, it is possible to detect both valve leakage and the end of defrosting. can do.

【0015】請求項の冷蔵庫の制御方法であると、冷
蔵用蒸発器に冷媒が漏れている場合に氷の玉が発生し易
くなるが、冷蔵用蒸発器用の除霜ヒータを通電すること
で、氷の玉による周囲の部品等の破壊を防止し、不必要
な修理を未然に防止することができる。
According to the sixth aspect of the refrigerator control method, ice balls are easily generated when the refrigerant leaks to the refrigerating evaporator. However, by energizing the defrosting heater for the refrigerating evaporator. , It is possible to prevent the surrounding parts and the like from being broken by the ice balls and prevent unnecessary repairs.

【0016】また、所定の場合には弁機構が異常である
と警報手段にて報知するようにしているので、弁機構の
不良を早期に発見して氷結の発生成長を防止し、かつ正
常な機能を回復するためにユーザーに故障を知らせるこ
とができる。
Further, in a predetermined case, the alarm means is used to notify that the valve mechanism is abnormal, so that a defect in the valve mechanism can be detected at an early stage to prevent the occurrence and growth of icing, and to prevent a normal condition. The user can be notified of the failure to restore functionality.

【0017】[0017]

【発明の実施の形態】(第1の実施例) 以下、本発明の実施例を図1〜図10に基づいて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) An embodiment of the present invention will be described below with reference to FIGS.

【0018】先ず、本発明の冷蔵庫の全体の構成につい
て図8,9に基づいて説明する。図8は、本実施例の冷
蔵庫10の前方から見た縦断面図であり、図9は、側方
から見た縦断面図である。
First, the overall construction of the refrigerator of the present invention will be described with reference to FIGS. FIG. 8 is a vertical cross-sectional view of the refrigerator 10 according to the present embodiment as seen from the front, and FIG. 9 is a vertical cross-sectional view as seen from the side.

【0019】冷蔵庫10の本体であるキャビネット12
には、上段から冷蔵室14、野菜室16、温度切替室1
8、冷凍室22が設けられている。また、温度切替室1
8の左側には製氷室20が設けられている。そして、野
菜室16と温度切替室18、製氷室20との間には断熱
仕切体24が配されている。
The cabinet 12 which is the main body of the refrigerator 10.
From the top, the refrigerator compartment 14, vegetable compartment 16, temperature switching compartment 1
8. Freezing room 22 is provided. Also, the temperature switching chamber 1
An ice making chamber 20 is provided on the left side of 8. A heat insulating partition 24 is disposed between the vegetable compartment 16, the temperature switching compartment 18, and the ice making compartment 20.

【0020】冷蔵室14には、ヒンジによって開閉する
冷蔵室扉14aが設けられている。また、この冷蔵室1
4の下部には、約0℃付近で庫内温度を維持するチルド
室26が設けられている。
The refrigerator compartment 14 is provided with a refrigerator compartment door 14a which is opened and closed by a hinge. Also, this refrigeration room 1
A chilled chamber 26 that maintains the temperature inside the chamber at around 0 ° C. is provided in the lower part of 4.

【0021】野菜室16は、引出式の野菜室扉16aが
設けられ、この扉と共に野菜容器28が引き出し可能と
なっている。野菜容器28にはクリスパカバー29によ
って覆われている。
The vegetable compartment 16 is provided with a pull-out type vegetable compartment door 16a, and a vegetable container 28 can be pulled out together with the door. The vegetable container 28 is covered with a crisper cover 29.

【0022】温度切替室18には、引出式の温度切替室
扉18aが設けられ、この扉と共に温度切替室容器30
が引き出し可能となっている。
The temperature switching chamber 18 is provided with a drawer type temperature switching chamber door 18a, and together with this door, the temperature switching chamber container 30.
Can be withdrawn.

【0023】冷凍室22にも、引出式の冷凍室扉22a
が設けられ、この扉と共に冷凍容器32が引き出し可能
となっている。
The freezing compartment 22 also has a drawer type freezing compartment door 22a.
Is provided, and the freezing container 32 can be pulled out together with this door.

【0024】製氷室20は、図9に示すように、その天
井部付近に製氷装置34が設けられ、この下方には貯氷
容器36が設けられている。
As shown in FIG. 9, the ice making chamber 20 is provided with an ice making device 34 near its ceiling, and an ice storage container 36 is provided below the ice making device 34.

【0025】製氷装置34は、製氷皿38と、それを回
転させる駆動部40と、貯氷容器36の氷の量を検知す
る検氷レバー42とよりなる。なお、製氷皿38に水を
供給するタンク44は、チルド室26の左側に設けられ
ている。
The ice making device 34 comprises an ice tray 38, a drive unit 40 for rotating it, and an ice detection lever 42 for detecting the amount of ice in the ice storage container 36. A tank 44 that supplies water to the ice tray 38 is provided on the left side of the chilled chamber 26.

【0026】次に、冷蔵庫10の冷凍サイクルの構造及
びその配置について説明する。
Next, the structure and arrangement of the refrigeration cycle of the refrigerator 10 will be described.

【0027】まず、圧縮機46は、図9に示すように、
キャビネット12の底部、すなわち冷凍室22の後方下
部に設けられている機械室48に設けられている。
First, the compressor 46, as shown in FIG.
It is provided in the machine room 48 provided at the bottom of the cabinet 12, that is, in the lower rear part of the freezer compartment 22.

【0028】冷蔵庫10の蒸発器は冷蔵用と冷凍用の2
つ存在し、冷蔵用蒸発器50は野菜室16の後方に配さ
れ、冷凍用蒸発器52は冷凍室22の後方上部に設けら
れている。また、冷蔵用蒸発器50の上方には冷蔵用送
風機54が設けられ、冷凍用蒸発器52の上方には冷凍
用送風機56が設けられている。また、冷蔵用蒸発器5
0の下方には除霜ヒータ96が設けられている。冷凍用
蒸発器52の下方には除霜ヒータ98が設けられてい
る。
The refrigerator 10 has two evaporators for refrigeration and freezing.
The refrigerating evaporator 50 is provided behind the vegetable compartment 16 and the freezing evaporator 52 is provided at the upper rear portion of the freezing compartment 22. A refrigeration blower 54 is provided above the refrigeration evaporator 50, and a freezing blower 56 is provided above the freezing evaporator 52. Also, the refrigeration evaporator 5
A defrost heater 96 is provided below 0. A defrost heater 98 is provided below the freezing evaporator 52.

【0029】ところで、温度切替室18の左側壁と底板
は断熱構造となっている。これによって、温度切替室1
8の庫内温度を冷蔵室と同じ温度に設定しても、周囲に
存在する冷凍室22等からの温度影響を受けることがな
い。さらに、温度切替室18の背面板も断熱構造となっ
ているため、冷凍用蒸発器52からの温度影響を受ける
こともない。
By the way, the left side wall and the bottom plate of the temperature switching chamber 18 have a heat insulating structure. As a result, the temperature switching chamber 1
Even if the internal temperature of 8 is set to the same temperature as the refrigerating room, it is not affected by the temperature of the freezing room 22 and the like existing in the surroundings. Further, since the back plate of the temperature switching chamber 18 also has the heat insulating structure, it is not affected by the temperature from the freezing evaporator 52.

【0030】この冷凍サイクルの装置の配置を概説した
ものが図10であり、その冷媒流路を示したブロック図
が図1である。以下、この図10及び図1に基づいて、
冷媒の流れについて説明する。
FIG. 10 shows an outline of the arrangement of the refrigerating cycle apparatus, and FIG. 1 is a block diagram showing the refrigerant flow path. Hereinafter, based on FIG. 10 and FIG.
The flow of the refrigerant will be described.

【0031】圧縮機46から出た冷媒は、マフラー5
8、放熱パイプ60、凝縮器62、防露パイプ64、ド
ライヤー66を経て三方弁68に至る。三方弁68にお
いて冷媒流路は分岐し、一方は冷蔵用キャピラリーチュ
ーブ70に向かい、他方は冷凍用キャピラリーチューブ
72に向かう。冷蔵用キャピラリーチューブ70から前
記した冷蔵用蒸発器50に至り、冷凍用キャピラリーチ
ューブ72の出口側と1つになり、前記した冷凍用蒸発
器52に至る。その後、アキュムレータ74、サクショ
ンパイプ76を通って圧縮機46に戻る。
The refrigerant discharged from the compressor 46 is the muffler 5
8, the heat radiating pipe 60, the condenser 62, the dew proof pipe 64, and the dryer 66 to reach the three-way valve 68. In the three-way valve 68, the refrigerant flow path is branched, one heads for the refrigeration capillary tube 70, and the other heads for the freezing capillary tube 72. From the refrigerating capillary tube 70 to the refrigerating evaporator 50 described above, it becomes one with the outlet side of the freezing capillary tube 72, and reaches the refrigerating evaporator 52 described above. Then, it returns to the compressor 46 through the accumulator 74 and the suction pipe 76.

【0032】ここで、上記で説明していない各装置の冷
蔵庫10における取付位置を説明する。
Here, the mounting positions of the devices not described above in the refrigerator 10 will be described.

【0033】凝縮器62は、図10に示すように、複数
回折曲されて板状に構成され、図9に示すように、冷凍
室22の底部下方に配されている。また、アキュムレー
タ74は、冷凍用蒸発器52の右側に取付けられてい
る。
As shown in FIG. 10, the condenser 62 is bent a plurality of times to form a plate shape, and is arranged below the bottom of the freezer compartment 22 as shown in FIG. Further, the accumulator 74 is attached to the right side of the freezing evaporator 52.

【0034】次に、上記構成の冷凍サイクルにおける冷
気の流れを冷蔵庫10の図9を用いて説明する。
Next, the flow of cold air in the refrigerating cycle having the above structure will be described with reference to FIG. 9 of the refrigerator 10.

【0035】まず、冷蔵用蒸発器50によって冷却され
た冷気の流れについて説明する。
First, the flow of cold air cooled by the refrigerating evaporator 50 will be described.

【0036】冷蔵用蒸発器50によって冷却された冷気
は、冷蔵用送風機54の前側から、野菜室16の後方に
位置する冷蔵分岐空間78に送り込まれる。この冷蔵分
岐空間78の上部は、冷蔵室14の背面に設けられてい
る冷蔵ダクト80に接続され、この冷蔵ダクト80に冷
気が送られる。冷蔵ダクト80は、図8に示すように、
冷蔵室14の下部で二股に分かれ、ほぼU字状の形状を
なしている。冷蔵ダクト80の前面には所定間隔毎に冷
気の吹出口82が設けられ、これら吹出口82から冷蔵
室14に冷気が吹き込まれる。冷蔵室14を冷却した冷
気はチルド室26、タンク44の下方を通って(図9参
照)、冷蔵用送風機54及び冷蔵用蒸発器50の左右に
設けられたリターンダクト84に流れ、冷蔵用蒸発器5
0の下方に吹き出される。そして、この冷気は再び冷蔵
用蒸発器50で冷却されて、冷蔵用送風機54の位置に
至る。
The cool air cooled by the refrigerating evaporator 50 is sent from the front side of the refrigerating blower 54 to the refrigerating branch space 78 located behind the vegetable compartment 16. The upper part of the refrigerating branch space 78 is connected to a refrigerating duct 80 provided on the back surface of the refrigerating chamber 14, and cold air is sent to the refrigerating duct 80. The refrigerating duct 80, as shown in FIG.
It is divided into two at the lower part of the refrigerating chamber 14 and has a substantially U-shape. Cooling air outlets 82 are provided on the front surface of the refrigerating duct 80 at predetermined intervals, and cold air is blown into the refrigerating chamber 14 from these air outlets 82. The cold air that has cooled the refrigerating chamber 14 flows under the chilled chamber 26 and the tank 44 (see FIG. 9), and flows into the return ducts 84 provided on the left and right of the refrigerating blower 54 and the refrigerating evaporator 50 to cool and evaporate. Bowl 5
It is blown out below 0. Then, the cold air is cooled again by the refrigerating evaporator 50 and reaches the position of the refrigerating blower 54.

【0037】一方、冷蔵分岐空間78からは、野菜室1
6のクリスパカバー29に沿って吹き出され、野菜室1
6を冷却する(図9参照)。この冷気は、野菜容器28
の底部を前から後ろに向かって流れ、リターン開口部8
8に至って冷蔵用蒸発器50に循環する。
On the other hand, from the refrigerating branch space 78, the vegetable compartment 1
6 is blown out along the crisper cover 29, and the vegetable compartment 1
Cool 6 (see FIG. 9). This cold air is a vegetable container 28
Flows from the front to the back of the bottom of the return opening 8
It reaches 8 and is circulated to the refrigerating evaporator 50.

【0038】次に、冷凍用蒸発器52によって冷却され
た冷気の流れを説明する。
Next, the flow of cold air cooled by the freezing evaporator 52 will be described.

【0039】冷凍用蒸発器52によって冷却された冷気
は冷凍用送風機56により、冷凍分岐空間90に至る。
この冷凍分岐空間90の上部は製氷装置34に通じてお
り、冷気はこの上部から製氷装置34に吹き出す。ま
た、冷凍分岐空間90の下部は、冷凍室22の冷凍容器
32の背面板に開口している孔33と、冷凍容器32の
上面に通じており、冷気は、この下部から冷凍容器32
内部に向かって吹き出す。
The cold air cooled by the freezing evaporator 52 reaches the freezing branch space 90 by the freezing blower 56.
The upper part of the freezing branch space 90 communicates with the ice making device 34, and the cold air is blown from the upper part to the ice making device 34. Further, the lower part of the freezing branch space 90 communicates with the hole 33 that is opened in the back plate of the freezing container 32 of the freezing chamber 22 and the upper surface of the freezing container 32, and cold air flows from this lower part to the freezing container 32.
Blow toward the inside.

【0040】製氷室20を冷却した冷気は冷凍室22の
前面に流れ、冷凍室22の冷凍容器32の内部を冷却し
た冷気は冷凍室22の前面に流れる。そして、この冷気
は冷凍容器32の前面に沿って下方に流れ、底部を通っ
てリターンダクト92に至る。リターンダクト92に流
れ込んだ冷気は、冷凍用蒸発器52に循環する。
Cold air that has cooled the ice making chamber 20 flows to the front surface of the freezing chamber 22, and cold air that has cooled the inside of the freezing container 32 of the freezing chamber 22 flows to the front surface of the freezing chamber 22. Then, this cold air flows downward along the front surface of the freezing container 32 and reaches the return duct 92 through the bottom portion. The cold air flowing into the return duct 92 circulates in the freezing evaporator 52.

【0041】図5に示すように、冷凍分岐空間90の右
側には、温度切替室18に冷気を送るためのダンパ装置
94が設けられ、このダンパ装置94のダンパの開閉に
よって、温度切替室18に送る冷気の量を調整され、そ
の庫内温度を調整する。温度切替室18を冷却した冷気
は、温度切替室18の底部から冷凍用蒸発器52に通じ
るリターンダクト95に流れ込み冷凍用蒸発器52に循
環する。
As shown in FIG. 5, a damper device 94 for sending cold air to the temperature switching chamber 18 is provided on the right side of the freezing branch space 90, and the temperature switching chamber 18 is opened and closed by opening and closing the damper device 94. The amount of cold air to be sent to is adjusted and the temperature inside the refrigerator is adjusted. The cool air that has cooled the temperature switching chamber 18 flows from the bottom of the temperature switching chamber 18 into the return duct 95 leading to the freezing evaporator 52 and circulates in the freezing evaporator 52.

【0042】図5は三方弁68の断面図を示し、コイル
102、磁石104、プランジャー106等からなる所
謂ソレノイド構造となっている。プランジャー106の
下部にピン108が設けられており、コイル102が励
磁されることでピン108が下方に駆動され、弁体11
0をバネ112に抗して下方に駆動するようになってい
る。この状態でドライヤー側から冷媒が冷蔵用蒸発器
(Rエバ)側に流れるようになっている。また、プラン
ジャー106が復帰した場合には、弁体110が上方に
復帰して、ドライヤー側から冷媒が冷凍用蒸発器(Fエ
バ)側に流れるようになっている。なお、図中116は
冷蔵用弁座であり、118は冷凍用弁座である。
FIG. 5 is a sectional view of the three-way valve 68, which has a so-called solenoid structure including a coil 102, a magnet 104, a plunger 106 and the like. A pin 108 is provided below the plunger 106, and the coil 108 is excited to drive the pin 108 downward so that the valve body 11
0 is driven downward against the spring 112. In this state, the refrigerant flows from the dryer side to the refrigerating evaporator (R evaporator) side. Further, when the plunger 106 returns, the valve body 110 returns upward and the refrigerant flows from the dryer side to the freezing evaporator (F evaporator) side. In the figure, reference numeral 116 is a refrigeration valve seat, and 118 is a freezing valve seat.

【0043】冷媒流路を切り替えるかかる三方弁68に
はその構造上、及び冷凍サイクル中の微小なごみが弁体
110と弁座116、118の間に挟まる場合があるた
め、ある程度の漏れ量が存在することになる。
The three-way valve 68 for switching the refrigerant flow path has a certain amount of leakage due to its structure and because minute dust during the refrigeration cycle may be caught between the valve body 110 and the valve seats 116 and 118. Will be done.

【0044】そこで、本実施例では図1に示す冷媒流路
に介設している冷蔵用キャピラリーチューブ70と、冷
凍用キャピラリーチューブ72における冷媒の絞り量に
差を設けている。
Therefore, in this embodiment, there is a difference in the throttle amount of the refrigerant between the refrigerating capillary tube 70 and the freezing capillary tube 72 provided in the refrigerant flow passage shown in FIG.

【0045】すなわち、冷蔵用蒸発器50につながる冷
蔵用キャピラリーチューブ70の絞り量を、冷凍用蒸発
器52につながる冷凍用キャピラリーチューブ72の絞
り量より緩くすることにより、冷蔵室14を冷却したい
ときは冷蔵用蒸発器50に、また冷凍室22を冷却した
りときは冷凍用蒸発器52に冷媒を流すことが可能とな
る。
That is, when it is desired to cool the refrigerating chamber 14 by making the refrigeration capillary tube 70 connected to the refrigeration evaporator 50 smaller than the refrigeration capillary tube 72 connected to the freezing evaporator 52. The refrigerant can flow to the refrigerating evaporator 50 and to the freezing evaporator 52 when cooling the freezing compartment 22.

【0046】例えば、冷蔵室14を冷却したいため、冷
媒流路を冷蔵用蒸発器50につながる流路に三方弁68
により切り替えた時に、冷凍用蒸発器52につながる冷
凍用キャピラリーチューブ72側に漏れがあった場合、
冷凍用キャピラリーチューブ72の方が冷蔵用キャピラ
リーチューブ70の絞り量よりきついため、冷媒は冷凍
用キャピラリーチューブ72側には流れにくく、冷蔵用
蒸発器50側に冷媒が流れることになる。
For example, since it is desired to cool the refrigerating chamber 14, the three-way valve 68 is connected to the refrigerant passage through the passage connected to the refrigerating evaporator 50.
When there is a leak on the freezing capillary tube 72 side connected to the freezing evaporator 52 when switching by
Since the freezing capillary tube 72 is tighter than the squeezing amount of the refrigeration capillary tube 70, it is difficult for the refrigerant to flow to the freezing capillary tube 72 side, and the refrigerant flows to the refrigeration evaporator 50 side.

【0047】逆に、冷凍室22を冷却したいため、冷媒
流路を冷凍用蒸発器52につながる流路に三方弁68に
より切り替えた時に冷蔵用蒸発器50につながる冷蔵用
キャピラリーチューブ70に漏れがあった場合、冷蔵用
キャピラリーチューブ70の絞り量が冷凍用キャピラリ
ーチューブ72の絞り量より緩いために、冷媒は冷蔵用
蒸発器50に流れるが、冷蔵用送風機54は停止してい
るため、冷媒は冷蔵用蒸発器50で熱交換せず、冷凍室
22へ直接つながる冷凍用キャピラリーチューブ72を
経由した冷媒と合流し、冷凍用蒸発器52で蒸発、熱交
換を行なう。
On the contrary, since it is desired to cool the freezing compartment 22, when the refrigerant flow path is switched to the flow path connected to the freezing evaporator 52 by the three-way valve 68, leakage occurs in the refrigeration capillary tube 70 connected to the refrigeration evaporator 50. If there is, the refrigerant flows through the refrigerating evaporator 50 because the refrigeration capillary tube 70 is less throttled than the freezing capillary tube 72, but the refrigeration blower 54 is stopped, so the refrigerant is The heat is not exchanged in the refrigerating evaporator 50, but is combined with the refrigerant passing through the freezing capillary tube 72 directly connected to the freezing compartment 22, and the freezing evaporator 52 evaporates and exchanges heat.

【0048】このように本実施例では、三方弁68に漏
れがあった場合でも、冷蔵室冷却時には冷蔵用蒸発器5
0に、冷凍室冷却時には冷凍用蒸発器52にほとんどの
冷媒をそれぞれ流すことができ、冷蔵・冷凍の各区画を
個別に冷却することができ、ロスの発生を防止すること
ができる。
As described above, in this embodiment, even when the three-way valve 68 has a leak, the refrigerating evaporator 5 is cooled when the refrigerating chamber is cooled.
In addition, most of the refrigerant can be made to flow to the freezing evaporator 52 when the freezer compartment is cooled, each refrigeration / freezing section can be individually cooled, and loss can be prevented.

【0049】(第2の実施例) 先の実施例で述べたように(図1参照)、冷凍用蒸発器
52に流れる冷媒は冷蔵用キャピラリーチューブ70を
経由したものと、冷凍用キャピラリーチューブ72を経
由したものが両方流れ込む可能性がある。この時、冷凍
用蒸発器52に流れる冷媒は2つのキャピラリーチュー
ブ70、72を経由したものとなり、冷凍用キャピラリ
ーチューブ72だけを流れて冷凍用蒸発器52に流れ込
む場合に比べて、相対的に絞りがゆるくなってしまい、
その漏れ量によっては冷媒蒸発温度が高くなってしまう
可能性がある。
(Second Embodiment) As described in the previous embodiment (see FIG. 1), the refrigerant flowing in the freezing evaporator 52 passes through the refrigerating capillary tube 70 and the freezing capillary tube 72. There is a possibility that both of those that have passed through will flow in. At this time, the refrigerant flowing to the freezing evaporator 52 passes through the two capillary tubes 70 and 72, and is relatively throttled compared to the case where only the freezing capillary tube 72 flows into the freezing evaporator 52. Becomes loose,
Depending on the amount of leakage, the refrigerant evaporation temperature may become high.

【0050】このような場合、冷蔵用蒸発器50の温度
が本来冷却中は温度が約0℃以上に上がるはずが、これ
より低くなることにより検出することができる。三方弁
68に漏れが生じる可能性の一つとして、弁体110を
動かして弁座116、118に押し付けた時に、冷凍サ
イクル中のゴミがその間にはさまれ、弁体110と弁座
116、118の間に隙間が生じた場合が考えられる。
In such a case, the temperature of the refrigerating evaporator 50 should rise to about 0 ° C. or higher during the cooling, but it can be detected when the temperature is lower than this. One of the possibilities of leakage in the three-way valve 68 is that when the valve body 110 is moved and pressed against the valve seats 116 and 118, dust in the refrigeration cycle is trapped between them, and the valve body 110 and the valve seat 116, It is conceivable that there is a gap between 118.

【0051】その場合、弁体110を一定時間、例えば
10秒間開き、弁体110と弁座116、118の間に
冷媒を流し、ゴミを押し流してから再び弁体110を動
かし、弁座116、118に押し付けることにより、そ
の密着性を高めることができる。この制御は図1に示す
制御部120により行なうようになっている。なお、こ
の動作を数回(2〜3回)繰り返すようにしても良い。
In this case, the valve body 110 is opened for a certain period of time, for example, 10 seconds, the refrigerant is flown between the valve body 110 and the valve seats 116 and 118, dust is washed away, and the valve body 110 is moved again to move the valve seat 116, By pressing against 118, the adhesion can be enhanced. This control is performed by the control unit 120 shown in FIG. Note that this operation may be repeated several times (2 to 3 times).

【0052】(第3の実施例) ところで、冷蔵室冷却状態から無冷却状態に切り替えた
ときに、冷蔵用送風機54を一定時間(例えば、5分)
継続して運転する場合、冷蔵用蒸発器50は冷蔵室14
の庫内の空気により加熱され、0℃付近まで上昇する。
(Third Embodiment) By the way, when the refrigerating compartment cooling state is switched to the non-cooling state, the refrigerating blower 54 is kept for a certain time (for example, 5 minutes)
When continuously operated, the refrigerating evaporator 50 is installed in the refrigerating chamber 14.
It is heated by the air in the cabinet and rises to around 0 ° C.

【0053】しかし、冷蔵用蒸発器50につながる冷蔵
用キャピラリーチューブ70側に漏れがある場合、冷蔵
用送風機54が停止すると、冷蔵用蒸発器50の温度が
低下する。そのような場合は第1の実施例と同様に弁体
110を動かすことにより、弁漏れを解消するようにし
ている。
However, if there is a leak on the refrigerating capillary tube 70 side connected to the refrigerating evaporator 50 and the refrigerating blower 54 stops, the temperature of the refrigerating evaporator 50 decreases. In such a case, the valve leakage is eliminated by moving the valve element 110 as in the first embodiment.

【0054】(第4の実施例) 先の第2、第3の実施例と同様に冷蔵用蒸発器50に弁
漏れが検知された場合、冷蔵用蒸発器50に着いた霜が
取れない可能性がある。そのような場合は、冷蔵用蒸発
器50の除霜ヒータ96に通電し、蒸発器温度が一定温
度(例えば、12℃)に上昇するまで制御部120によ
り除霜を行なうようにしている。
(Fourth Embodiment) When valve leakage is detected in the refrigerating evaporator 50 as in the second and third embodiments, it is possible that the frost on the refrigerating evaporator 50 cannot be removed. There is a nature. In such a case, the defrost heater 96 of the refrigerating evaporator 50 is energized, and the control unit 120 performs defrosting until the evaporator temperature rises to a constant temperature (for example, 12 ° C.).

【0055】(第5の実施例) 第4の実施例において、冷蔵用蒸発器50の除霜を行な
う場合、その除霜を確実に行なうために、圧縮機46を
停止してから除霜を行なようにしている。
(Fifth Embodiment) In the fourth embodiment, when defrosting the refrigerating evaporator 50, in order to ensure defrosting, the compressor 46 is stopped before defrosting. I am going to do it.

【0056】(第6の実施例) 次に第6の実施例について説明する。一般に除霜を行な
う場合、冷蔵用蒸発器50の出口温度の上昇が遅いた
め、除霜の終了を検知するためにその温度を測定する必
要がある。そこで、温度センサ122、124を冷蔵用
蒸発器50の入口、出口パイプの両方の温度を測定でき
るように図1に示すように設置するようにしたものであ
る。この温度センサ122、124の出力により弁漏れ
の検知、除霜の重量の両方を検知することができる。
(Sixth Embodiment) Next, a sixth embodiment will be described. In general, when defrosting is performed, the outlet temperature of the refrigerating evaporator 50 slowly rises, and therefore it is necessary to measure the temperature in order to detect the end of defrosting. Therefore, the temperature sensors 122 and 124 are installed as shown in FIG. 1 so that the temperatures of both the inlet and outlet pipes of the refrigerating evaporator 50 can be measured. Both the valve leak detection and the defrost weight can be detected by the outputs of the temperature sensors 122 and 124.

【0057】(第7の実施例) 第7の実施例では、冷蔵用蒸発器50の入口パイプ、出
口パイプをつなぐ部材を取り付け、その部材に温度セン
サを取り付けることにより、入口パイプ、出口パイプの
両パイプ温度を測定するようにしたものである。
(Seventh Embodiment) In the seventh embodiment, a member for connecting the inlet pipe and the outlet pipe of the refrigerating evaporator 50 is attached, and a temperature sensor is attached to the member, whereby the inlet pipe and the outlet pipe are connected. The temperature of both pipes is measured.

【0058】(第8の実施例) ところで、弁漏れに対しては冷蔵庫内のシステムとして
は特に技術的な対応はされていないが、弁(三方弁6
8)自体の設計段階で冷蔵庫の主要部品である圧縮機4
6と同等の故障率に抑えるため、長期の信頼性試験も実
施し、製品寿命の長い冷蔵庫の主要部品として十分に耐
え得る構造となっている。
(Eighth Embodiment) By the way, the valve (three-way valve 6
8) Compressor 4 which is the main part of the refrigerator at the design stage of itself
In order to suppress the failure rate to the same as that of 6, long-term reliability tests are also conducted, and the structure is such that it can withstand as a major component of a refrigerator with a long product life.

【0059】しかしながら、三方弁68が故障して冷蔵
用蒸発器50に冷媒が流れていると、冷蔵用蒸発器50
の入口部に氷結が発生し、それが成長すると周辺の部品
等を破壊する恐れがあり、機能障害が発生するまで発見
できず、修理時に多くの部品を交換する必要がある。
However, if the three-way valve 68 fails and the refrigerant flows through the refrigerating evaporator 50, the refrigerating evaporator 50 will be described.
If ice builds up at the entrance of the product and it grows, it may destroy surrounding parts, etc., and it cannot be detected until a functional failure occurs, and many parts must be replaced at the time of repair.

【0060】そこで、以下の実施例では、弁故障の早期
発見を行なうした実施例について説明する。
Therefore, in the following embodiment, an embodiment in which a valve failure is detected early will be described.

【0061】図1に示すように、冷凍用蒸発器52に冷
媒が流れている場合、冷蔵用蒸発器50に冷媒が流れ
ず、冷蔵用送風機54を運転することで冷蔵用蒸発器5
0はプラス温度になり、自然除霜も可能となる。
As shown in FIG. 1, when the refrigerant flows through the freezing evaporator 52, the refrigerant does not flow through the refrigerating evaporator 50, and the refrigerating blower 54 is operated to operate the refrigerating evaporator 5.
Zero is a positive temperature, and natural defrosting is also possible.

【0062】しかし、何らかの原因で冷蔵用蒸発器50
に冷媒が漏れていると、冷蔵用蒸発器50の入口部が冷
やされ、周囲の水蒸気が集まり氷となり、冷蔵用蒸発器
50の入口部に氷の玉が発生する。この氷の玉は成長
し、やがて周囲の部品や内箱を破壊することになる。こ
こまでくると修理費用も時間もかなりかかる。
However, for some reason, the refrigerating evaporator 50
If the refrigerant leaks into the cold storage evaporator 50, the inlet portion of the refrigerating evaporator 50 is cooled, the surrounding water vapor collects and becomes ice, and an ice ball is generated at the inlet portion of the refrigerating evaporator 50. This ice ball will grow and eventually destroy surrounding parts and inner boxes. At this point, repair costs and time will be considerable.

【0063】そこで、冷蔵用蒸発器50の入口部に取り
付けた除霜センサとしての温度センサ122により、冷
蔵用蒸発器50の入口部の温度検知を行ない、この温度
センサ122の出力にて冷蔵用蒸発器50の除霜を行な
うようにしている。
Therefore, the temperature sensor 122 as a defrosting sensor attached to the inlet of the refrigerating evaporator 50 detects the temperature of the inlet of the refrigerating evaporator 50, and the output of the temperature sensor 122 is used for refrigerating. The evaporator 50 is defrosted.

【0064】図6及び図7は温度センサ122の取り付
け方法を示す図であり、断面を略U字状としたアルミ製
又は銅製の固定具126内に温度センサ122を密着す
るように圧入して固定するようにしている。固定具12
6の一端側には長手方向に沿って係止部128が一体に
形成されており、この係止部128に冷蔵用キャピラリ
ーチューブ70を巻き込んで固定することで、固定具1
26を介して温度センサ122が冷蔵用キャピラリーチ
ューブ70側に取り付けられることになる。
6 and 7 are views showing a method of mounting the temperature sensor 122. The temperature sensor 122 is press-fitted into a fixture 126 made of aluminum or copper having a substantially U-shaped cross section so as to be in close contact. I'm trying to fix it. Fixture 12
A locking portion 128 is integrally formed along the longitudinal direction at one end side of the fixing member 6. By fixing the capillary tube 70 for refrigeration to the locking portion 128 by winding it, the fixing member 1
The temperature sensor 122 is attached to the refrigerating capillary tube 70 side via 26.

【0065】なお、温度センサ122は、アルミテープ
で冷蔵用キャピラリーチューブ70に一緒に取り付け固
定するようにしても良い。
The temperature sensor 122 may be attached and fixed together with the refrigeration capillary tube 70 with an aluminum tape.

【0066】ここで、冷凍用蒸発器52に冷媒が流れ始
めた時点から冷蔵用蒸発器50の入口部の温度を温度セ
ンサ122にてモニターし、検出温度が例えば0℃以上
にならなければ三方弁68の故障と判断する。そして、
図1に示すように制御部120により警報ランプ130
を点灯ないし点滅させてユーザーに報知するようになっ
ている。この状態を図2に示す。図2において、A点が
警報ランプ130にて報知する時点である。
Here, the temperature of the inlet portion of the refrigerating evaporator 50 is monitored by the temperature sensor 122 from the time when the refrigerant starts flowing to the freezing evaporator 52, and if the detected temperature does not reach 0 ° C. or higher, the three sides are detected. It is determined that the valve 68 is out of order. And
As shown in FIG. 1, the alarm lamp 130 is controlled by the control unit 120.
Is turned on or flashed to notify the user. This state is shown in FIG. In FIG. 2, point A is the point of time when the alarm lamp 130 notifies.

【0067】(第9の実施例) 第9の実施例では、第8の実施例において、三方弁68
の故障と判断してから冷凍用蒸発器52に冷媒が流れる
ように切り替った時点(図2のB点)から除霜ヒータ9
6を通電し、冷蔵用蒸発器50の入口部の氷結を防止す
るようにしている。
(Ninth Embodiment) In the ninth embodiment, the three-way valve 68 is used in the eighth embodiment.
From the time point (point B in FIG. 2) at which the refrigerant is switched to flow into the freezing evaporator 52 after it is determined that the defrost heater 9 has failed.
6 is energized to prevent freezing at the inlet of the refrigerating evaporator 50.

【0068】そして、除霜ヒータ96は、冷媒の流れが
冷蔵用蒸発器50に切り替わった場合、そして圧縮機4
6の停止のいずれかの状態になった時に通電を止めるよ
うにしている。
The defrosting heater 96 is used when the flow of the refrigerant is switched to the refrigerating evaporator 50, and when the compressor 4 is used.
When any one of the stop conditions of 6 is reached, the power supply is stopped.

【0069】(第10の実施例) 先の第9の実施例において、冷蔵用蒸発器50と冷凍用
蒸発器52とに交互に冷媒を流すサイクルが、図3に示
すように3サイクル続けて除霜ヒータ96が通電された
場合、氷結が成長し融解できなかったと判断し、次の冷
蔵用蒸発器50に切り替わった時に(図3のA点)、圧
縮機(コンプ)46を強制的に停止し、除霜ヒータ96
にて除霜を行なうようにしている。
(Tenth Embodiment) In the ninth embodiment, the cycle in which the refrigerant is alternately supplied to the refrigerating evaporator 50 and the freezing evaporator 52 is three cycles in succession as shown in FIG. When the defrost heater 96 is energized, it is determined that freezing has grown and could not be melted, and the compressor (comp) 46 is forcibly forced to switch to the next refrigerating evaporator 50 (point A in FIG. 3). Stop and defrost heater 96
I try to defrost.

【0070】また、この場合にも警報ランプ130にて
報知するようにしている。
In this case also, the alarm lamp 130 is used for notification.

【0071】(第11の実施例) 第11の実施例では、第10の実施例において、圧縮機
46を停止させて除霜を行なった後、次の冷凍用蒸発器
52の冷却時に温度センサ122の検出温度が0℃以上
ならなかった場合には(図4のA点)、警報ランプ13
0にて報知を行なうようにしている。
(Eleventh Embodiment) In the eleventh embodiment, in the tenth embodiment, after the compressor 46 is stopped and defrosting is performed, the temperature sensor is cooled when the refrigerating evaporator 52 is cooled next time. When the detected temperature of 122 is not 0 ° C. or higher (point A in FIG. 4), the alarm lamp 13
The notification is made at 0.

【0072】なお、警報ランプ130は、冷蔵庫の扉前
面や庫内に設けられた温度調整ダイヤル部にLED(発
光ダイオード)を設けておき、これを点灯ないし点滅さ
せるようにしている。なお、LEDが設けられない冷蔵
庫に関しては扉を開けた時にブザー等を鳴らし、音声に
てユーザーに異常であることを報知するようにしても良
い。
As for the alarm lamp 130, an LED (light emitting diode) is provided on the temperature adjusting dial portion provided on the front surface of the refrigerator door or inside the refrigerator, and is turned on or blinked. For a refrigerator not provided with an LED, a buzzer or the like may be sounded when the door is opened to notify the user of the abnormality by voice.

【0073】[0073]

【発明の効果】以上により本発明であると、三方弁につ
ながる冷媒流路の絞りに差をつけることにより、弁漏れ
があった場合でも冷蔵室を冷却するときは冷蔵用蒸発器
に全冷媒が流れ、冷凍室を冷却するときは冷凍室に全冷
媒が流れるようになり、冷蔵室を冷却したいときに冷蔵
室をバイパスして冷凍用蒸発器に冷媒が流れるというロ
スの発生を防止できる。これにより、冷蔵室冷却時には
冷蔵用蒸発器に冷媒を流し、冷凍室冷却時には冷凍用蒸
発器に冷媒を流すことができて、冷蔵・冷凍の各区画を
個別に確実に冷却することができる。
As described above, according to the present invention , the refrigerant passages connected to the three-way valve are provided with different throttles, so that even if there is a valve leak, when the refrigerating chamber is cooled, all the refrigerant is stored in the refrigerating evaporator. When cooling the freezing compartment, all the refrigerant flows into the freezing compartment, and when the cooling compartment is desired to be cooled, it is possible to bypass the refrigerating compartment and prevent the loss of the refrigerant flowing to the freezing evaporator. This allows the refrigerant to flow into the refrigerating evaporator during cooling of the refrigerating chamber and allows the refrigerant to flow into the refrigerating evaporator during cooling of the freezing chamber, thereby individually and reliably cooling the refrigerating / freezing compartments.

【0074】また、冷蔵室無冷却時に冷蔵用蒸発器に冷
媒が流れた場合には、弁の開閉動作を行ない、着霜が生
成した場合はヒータによる除霜を行なうことで、着霜に
伴う不都合を防止することができる。
When the refrigerant flows into the refrigerating evaporator when the refrigerating chamber is not cooled, the valve is opened / closed, and when frost is formed, defrosting is performed by the heater. Inconvenience can be prevented.

【0075】また、温度センサにより三方弁の不良を早
期に発見することにより、氷結の発生成長を防止し、か
つ正常な機能を回復するためにユーザーを故障を知らせ
ることができ、したがって、従来のように機能障害が発
生するまで発見できず、修理時に多くの部品を交換する
ということもなくなった。
Further, by detecting the defect of the three-way valve at an early stage by the temperature sensor, it is possible to notify the user of the failure in order to prevent the occurrence and growth of icing and to restore the normal function. It cannot be discovered until a functional failure occurs, and many parts are no longer replaced during repairs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の冷媒流路を兼ねたブロック
図である。
FIG. 1 is a block diagram that also serves as a refrigerant channel according to an embodiment of the present invention.

【図2】制御方法を示す説明図である。FIG. 2 is an explanatory diagram showing a control method.

【図3】他の制御方法を示す説明図である。FIG. 3 is an explanatory diagram showing another control method.

【図4】更に他の制御方法を示す説明図である。FIG. 4 is an explanatory diagram showing still another control method.

【図5】三方弁の断面図である。FIG. 5 is a sectional view of a three-way valve.

【図6】冷蔵用キャピラリーチューブに温度センサを取
り付ける場合の分解斜視図である。
FIG. 6 is an exploded perspective view of a temperature sensor attached to a refrigeration capillary tube.

【図7】冷蔵用キャピラリーチューブに温度センサを取
り付ける場合の説明図である。
FIG. 7 is an explanatory diagram of a case where a temperature sensor is attached to a refrigerating capillary tube.

【図8】本実施例の冷蔵庫10の前方から見た縦断面図
である。
FIG. 8 is a longitudinal sectional view of the refrigerator 10 according to the present embodiment as seen from the front.

【図9】側方から見た縦断面図である。FIG. 9 is a vertical sectional view seen from the side.

【図10】冷凍サイクルを構成する各装置の配置図であ
る。
FIG. 10 is a layout view of each device constituting the refrigeration cycle.

【符号の説明】[Explanation of symbols]

10 冷蔵庫 14 冷蔵室 22 冷凍室 46 圧縮機 50 冷蔵用蒸発器 52 冷凍用蒸発器 54 冷蔵用送風機 62 凝縮器 68 三方弁 70 冷蔵用キャピラリーチューブ 72 冷凍用キャピラリーチューブ 122 温度センサ 124 温度センサ 130 警報ランプ 10 refrigerator 14 Refrigerator 22 Freezer 46 compressor 50 Refrigerator evaporator 52 Freezing evaporator 54 Refrigerator blower 62 condenser 68 three-way valve 70 Capillary tubes for refrigeration 72 Freezing capillary tube 122 Temperature sensor 124 Temperature sensor 130 alarm lamp

フロントページの続き (72)発明者 天明 稔 大阪府茨木市太田東芝町1番6号 株式 会社東芝大阪工場内 (56)参考文献 特開 平8−61815(JP,A) 実開 昭49−66077(JP,U) 実開 昭57−121871(JP,U) 実開 昭59−172977(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25D 11/02 F25D 21/08 Continuation of the front page (72) Minoru Tenmei Minoru No. 1-6 Ota Toshiba-cho, Ibaraki-shi, Osaka (56) References Japanese Patent Laid-Open No. 8-61815 (JP, A) Actual Development Sho-49-66077 (JP, U) Actual development 57-121871 (JP, U) Actual development 59-172977 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25D 11/02 F25D 21 / 08

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機と、凝縮器と、冷蔵用絞り機構と、
複数の冷蔵室に対応した冷蔵用蒸発器と、冷凍用絞り機
構と、冷凍室に対応した冷凍温度帯用の冷凍用蒸発器と
を環状に接続して冷媒流路を構成し、 弁機構により冷媒流路を切り替えて冷蔵用絞り機構を介
して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流した
り、冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を
流すようにした冷蔵庫において、 冷凍用絞り機構を冷蔵用絞り機構に対して流路抵抗を大
きくし、冷蔵用蒸発器には冷蔵用送風機を備え、 冷蔵室冷却終了後の一定時間冷蔵用送風機を継続運転す
る場合、 冷蔵用送風機の運転終了後に冷蔵用蒸発器の入口部の温
度が冷蔵用送風機の運転中の温度より低下した場合また
は一定温度以上上昇しない場合、 弁機構を一定時間反対側に動作させ、 その後弁機構を閉じる動作を1回以上行なうようにして
いる ことを特徴とする冷蔵庫。
1. A compressor, a condenser, a refrigeration throttle mechanism,
A refrigerating evaporator corresponding to a plurality of refrigerating compartments, a freezing throttle mechanism, and a refrigerating evaporator for a refrigerating temperature zone corresponding to a freezing compartment are annularly connected to form a refrigerant flow path. In the refrigerator in which the refrigerant flow is switched through the refrigerating evaporator and the freezing evaporator through the refrigerating throttle mechanism, or the refrigerant is allowed to flow only through the freezing evaporator through the refrigerating throttle mechanism, The freezing throttle mechanism has a larger flow path resistance than the refrigeration throttle mechanism, the refrigeration evaporator is equipped with a refrigeration blower, and the refrigeration blower is continuously operated for a certain period of time after the refrigeration chamber is cooled.
That case, the temperature of the inlet portion of the refrigerating evaporator after termination operation of the refrigerating blower
If the temperature drops below the operating temperature of the refrigeration blower
If the temperature does not rise above a certain temperature , operate the valve mechanism on the opposite side for a certain time, and then close the valve mechanism at least once.
Refrigerator and said that you are.
【請求項2】圧縮機と、凝縮器と、冷蔵用絞り機構と、
複数の冷蔵室に対応した冷蔵用蒸発器と、冷凍用絞り機
構と、冷凍室に対応した冷凍用蒸発器とを環状に接続し
て冷媒流路を構成し、 弁機構により冷媒流路を切り替えて冷蔵用絞り機構を介
して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流した
り、冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を
流すようにした冷蔵庫において、 冷蔵用蒸発器の入口部に温度センサを配し、 冷蔵室無冷却時に温度センサにて冷蔵用蒸発器の入口部
の温度を測定し、 測定温度が一定温度以上に上昇しない場合に、弁機構を
反対側に動作させ、 その後弁機構を閉じる動作を1回以上行なうようにし、冷蔵用蒸発器には冷蔵用送風機を備え、 冷蔵室冷却終了後の一定時間冷蔵用送風機を継続運転す
る場合、 冷蔵用送風機の運転終了後に冷蔵用蒸発器の入口部の温
度が冷蔵用送風機の運転中の温度より低下した場合また
は一定温度以上上昇しない場合、 弁機構を一定時間反対側に動作させ、 その後弁機構を閉じる動作を1回以上行なうようにして
いる ことを特徴とする冷蔵庫の制御方法。
2. A compressor, a condenser, a refrigeration throttle mechanism,
Refrigerating evaporators corresponding to multiple refrigerating compartments, a freezing throttle mechanism, and a freezing evaporator corresponding to freezing compartments are annularly connected to form a refrigerant passage, and a valve mechanism switches the refrigerant passages. In the refrigerator in which the refrigerant is allowed to flow through the refrigerating evaporator and the freezing evaporator via the refrigerating throttle mechanism, or the refrigerant is allowed to flow only to the freezing evaporator via the refrigerating restrictor mechanism, A temperature sensor is installed at the inlet, and the temperature sensor measures the temperature at the inlet of the refrigerating evaporator when there is no cooling in the refrigerating room.If the measured temperature does not rise above a certain temperature, the valve mechanism is operated on the opposite side. After that, the valve mechanism is closed once or more, the refrigerating evaporator is equipped with a refrigerating blower, and the refrigerating blower is continuously operated for a certain period after the cooling of the refrigerating chamber is completed.
That case, the temperature of the inlet portion of the refrigerating evaporator after termination operation of the refrigerating blower
If the temperature drops below the operating temperature of the refrigeration blower
If the temperature does not rise above a certain temperature , operate the valve mechanism on the opposite side for a certain time, and then close the valve mechanism at least once.
A method for controlling a refrigerator characterized in that
【請求項3】圧縮機と、凝縮器と、冷蔵用絞り機構と、
複数の冷蔵室に対応した冷蔵用蒸発器と、冷凍用絞り機
構と、冷凍室に対応した冷凍温度帯用の冷凍用蒸発器と
を環状に接続して冷媒流路を構成し、 弁機構により冷媒流路を切り替えて冷蔵用絞り機構を介
して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流した
り、冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を
流すようにした冷蔵庫において、 冷凍用絞り機構を冷蔵用絞り機構に対して流路抵抗を大
きくし、冷蔵室無冷却時に冷蔵用蒸発器の入口部の温度を測定
し、 測定温度が一定温度以上に上昇しない場合、 また、冷蔵室冷却終了後に一定時間冷蔵用送風機を継続
して運転する場合、 あるいは、冷蔵用送風機の運転終了後に入口部の温度が
冷蔵用送風機の運転中の温度より低下した場合または一
定温度以上に上昇しない場合に、 冷蔵用蒸発器の温度が一定温度以上に上昇するか冷蔵室
を冷却する必要が生じるまでヒータにて除霜を行なう
とを特徴とする冷蔵庫。
3. A compressor, a condenser, a refrigeration throttle mechanism,
A refrigerating evaporator corresponding to a plurality of refrigerating compartments, a freezing throttle mechanism, and a refrigerating evaporator for a refrigerating temperature zone corresponding to a freezing compartment are annularly connected to form a refrigerant flow path. In the refrigerator in which the refrigerant flow is switched through the refrigerating evaporator and the freezing evaporator through the refrigerating throttle mechanism, or the refrigerant is allowed to flow only through the freezing evaporator through the refrigerating throttle mechanism, The freezing throttle mechanism has a larger flow path resistance than the refrigeration throttle mechanism, and the temperature at the inlet of the refrigerating evaporator is measured when the refrigerating chamber is not cooled.
However , if the measured temperature does not rise above a certain temperature , the refrigeration blower is continued for a certain period of time after the cooling in the refrigeration chamber is completed.
When operated in, or the temperature of the inlet portion after completion operation refrigerating blower
If the temperature drops below the operating temperature of the refrigeration blower or
If the temperature of the refrigerating evaporator does not rise above a certain temperature , does it rise above a certain temperature?
A refrigerator characterized by performing defrosting with a heater until it is necessary to cool the refrigerator.
【請求項4】圧縮機と、凝縮器と、冷蔵用絞り機構と、
複数の冷蔵室に対応した冷蔵用蒸発器と、冷凍用絞り機
構と、冷凍室に対応した冷凍用蒸発器とを環状に接続し
て冷媒流路を構成し、 弁機構により冷媒流路を切り替えて冷蔵用絞り機構を介
して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流した
り、冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を
流すようにした冷蔵庫において、 冷蔵用蒸発器の入口部に温度センサを配し、 冷蔵室無冷却時に温度センサにて冷蔵用蒸発器の入口部
の温度を測定し、 測定温度が一定温度以上に上昇しない場合に、弁機構を
反対側に動作させ、 その後弁機構を閉じる動作を1回以上行なうようにし、冷蔵室無冷却時に冷蔵用蒸発器の入口部の温度を測定
し、 測定温度が一定温度以上に上昇しない場合、 また、冷蔵室冷却終了後に一定時間冷蔵用送風機を継続
して運転する場合、 あるいは、冷蔵用送風機の運転終了後に入口部の温度が
冷蔵用送風機の運転中の温度より低下した場合または一
定温度以上に上昇しない場合に、 冷蔵用蒸発器の温度が一定温度以上に上昇するか冷蔵室
を冷却する必要が生じるまでヒータにて除霜を行なう
とを特徴とする冷蔵庫の制御方法。
4. A compressor, a condenser, a refrigeration throttle mechanism,
Refrigerating evaporators corresponding to multiple refrigerating compartments, a freezing throttle mechanism, and a freezing evaporator corresponding to freezing compartments are annularly connected to form a refrigerant passage, and a valve mechanism switches the refrigerant passages. In the refrigerator in which the refrigerant is allowed to flow through the refrigerating evaporator and the freezing evaporator via the refrigerating throttle mechanism, or the refrigerant is allowed to flow only to the freezing evaporator via the refrigerating restrictor mechanism, A temperature sensor is installed at the inlet, and the temperature sensor measures the temperature at the inlet of the refrigerating evaporator when there is no cooling in the refrigerating room.If the measured temperature does not rise above a certain temperature, the valve mechanism is operated on the opposite side. Then, the valve mechanism is closed at least once, and the temperature at the inlet of the refrigerating evaporator is measured when the refrigerating chamber is not cooled.
However , if the measured temperature does not rise above a certain temperature , the refrigeration blower is continued for a certain period of time after the cooling in the refrigeration chamber is completed.
When operated in, or the temperature of the inlet portion after completion operation refrigerating blower
If the temperature drops below the operating temperature of the refrigeration blower or
If the temperature of the refrigerating evaporator does not rise above a certain temperature , does it rise above a certain temperature?
A method of controlling a refrigerator, characterized in that a heater is used to defrost until it becomes necessary to cool the refrigerator.
【請求項5】ヒータにて除霜を行なう場合は圧縮機を停
止させることを特徴とする請求項3または請求項4記載
の冷蔵庫の制御方法。
5. The method of controlling a refrigerator according to claim 3, wherein the compressor is stopped when the heater is used for defrosting.
【請求項6】圧縮機と、凝縮器と、冷蔵用絞り機構と、
複数の冷蔵室に対応した冷蔵温度帯用の冷蔵用蒸発器
と、冷凍用絞り機構と、冷凍室に対応した冷凍用蒸発器
とを環状に接続して冷媒流路を構成し、 弁機構により冷媒流路を切り替えて冷蔵用絞り機構を介
して冷蔵用蒸発器と冷凍用蒸発器を通して冷媒を流した
り、冷凍用絞り機構を介して冷凍用蒸発器のみに冷媒を
流すようにした冷蔵庫において、 冷蔵用蒸発器の入口部に温度センサを配し、 冷凍用蒸発器にのみ冷媒が流れる状態の時に温度センサ
の検出温度が基準温度以上にならない時には弁機構が異
常と判断し、 冷凍用蒸発器にのみ冷媒が流れる状態に切り替わると同
時に、冷蔵用蒸発器用の除霜ヒータを通電するようにし
ていることを特徴とする冷蔵庫の制御方法。
6. A compressor, a condenser, a refrigeration throttle mechanism,
A refrigerating evaporator corresponding to a plurality of refrigerating compartments for a refrigerating temperature zone, a freezing throttle mechanism, and a freezing evaporator corresponding to a freezing compartment are annularly connected to form a refrigerant flow path. In the refrigerator in which the refrigerant flow is switched through the refrigerating evaporator and the freezing evaporator through the refrigerating throttle mechanism, or the refrigerant is allowed to flow only through the freezing evaporator through the refrigerating throttle mechanism, A temperature sensor is installed at the inlet of the refrigerating evaporator, and when the temperature detected by the temperature sensor does not exceed the reference temperature when the refrigerant flows only to the freezing evaporator, the valve mechanism is judged to be abnormal, and the freezing evaporator A method of controlling a refrigerator, characterized in that the defrosting heater for the refrigerating evaporator is energized at the same time that the refrigerant is switched to a state in which the refrigerant flows.
【請求項7】冷蔵用蒸発器と冷凍用蒸発器に冷媒を交互
に流すサイクルを数サイクル続けて除霜ヒータが通電さ
れた場合には圧縮機を停止して除霜を行なうようにして
いることを特徴とする請求項記載の冷蔵庫の制御方
法。
7. The defrosting is performed by stopping the compressor when the defrost heater is energized by continuing the cycle of alternately flowing the refrigerant through the refrigerating evaporator and the freezing evaporator for several cycles. The method for controlling a refrigerator according to claim 6, wherein:
【請求項8】弁機構が異常と判断した時に警報手段にて
報知するようにしていることを特徴とする請求項また
は請求項記載の冷蔵庫の制御方法。
8. The method of controlling a refrigerator according to claim 6 or 7 , wherein when the valve mechanism is judged to be abnormal, an alarm means is provided to notify.
【請求項9】数サイクル続けて除霜ヒータが通電された
場合には、警報手段にて報知するようにしていることを
特徴とする請求項または請求項記載の冷蔵庫の制御
方法。
9. The method of controlling a refrigerator according to claim 6 or 7 , wherein when the defrost heater is energized for several consecutive cycles, the alarm means gives an alarm.
【請求項10】冷蔵用蒸発器と冷凍用蒸発器に冷媒を交
互に流すサイクルを数サイクル続けて除霜ヒータが通電
された場合には圧縮機を停止して除霜を行ない、 さらに温度センサの検出温度が約0℃以下の場合には警
報手段にて報知するようにしていることを特徴とする請
求項記載の冷蔵庫の制御方法。
10. When the defrost heater is energized after several cycles of alternately flowing the refrigerant through the refrigerating evaporator and the freezing evaporator, the compressor is stopped to defrost the temperature sensor. 7. The method of controlling a refrigerator according to claim 6 , wherein when the detected temperature is about 0.degree.
JP18266498A 1998-06-29 1998-06-29 Refrigerator control method Expired - Fee Related JP3437764B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18266498A JP3437764B2 (en) 1998-06-29 1998-06-29 Refrigerator control method
TW091203897U TW532470U (en) 1998-06-29 1999-03-12 Refrigerator
KR1019990015590A KR100332291B1 (en) 1998-06-29 1999-04-30 Refrigerator and the controlling method thereof
CN99110170A CN1121599C (en) 1998-06-29 1999-06-28 Refrigerator and method for controlling temp. in refrigerator
CNB031457649A CN1291209C (en) 1998-06-29 1999-06-28 Control method for refrigerator
CNB031457657A CN1287126C (en) 1998-06-29 1999-06-28 Control method for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18266498A JP3437764B2 (en) 1998-06-29 1998-06-29 Refrigerator control method

Publications (2)

Publication Number Publication Date
JP2000018790A JP2000018790A (en) 2000-01-18
JP3437764B2 true JP3437764B2 (en) 2003-08-18

Family

ID=16122285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18266498A Expired - Fee Related JP3437764B2 (en) 1998-06-29 1998-06-29 Refrigerator control method

Country Status (4)

Country Link
JP (1) JP3437764B2 (en)
KR (1) KR100332291B1 (en)
CN (3) CN1287126C (en)
TW (1) TW532470U (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461038B2 (en) * 2005-02-10 2010-05-12 株式会社東芝 refrigerator
KR100793785B1 (en) * 2006-11-10 2008-01-11 엘지전자 주식회사 Refrigerator Control Method
KR101666428B1 (en) * 2009-12-22 2016-10-17 삼성전자주식회사 Refrigerator and operation control method thereof
JP5931329B2 (en) * 2010-10-07 2016-06-08 株式会社東芝 refrigerator
JP2011158251A (en) * 2011-04-27 2011-08-18 Mitsubishi Electric Corp Refrigerator
CN102506557B (en) * 2011-10-26 2014-01-15 合肥美的电冰箱有限公司 Refrigeration equipment and switching unit control method in defrosting process of refrigeration equipment
CN103115475B (en) * 2013-01-31 2015-01-14 澳柯玛股份有限公司 Refrigerator multiple-temperature zone self-adaptation fuzzy control device and method
CN103471343B (en) * 2013-09-24 2015-10-28 合肥美菱股份有限公司 A kind of refrigerator does not freeze the checkout gear of fault
CN103512290B (en) * 2013-10-25 2016-06-15 合肥美的电冰箱有限公司 Refrigeration system and refrigerator for refrigerator
CN103615822A (en) * 2013-11-27 2014-03-05 合肥美的电冰箱有限公司 Refrigerating device and refrigerating system
CN106642922B (en) * 2016-12-28 2019-03-12 青岛海尔股份有限公司 Refrigeration control method and refrigerator for refrigerator
CN106642921B (en) * 2016-12-28 2019-02-15 青岛海尔股份有限公司 Refrigeration control method for refrigerator and refrigerator
KR101891993B1 (en) * 2017-01-19 2018-08-28 주식회사 신진에너텍 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber
US11578904B2 (en) 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator
EP3653967B1 (en) * 2018-11-16 2022-06-29 LG Electronics Inc. Ice maker and refrigerator
CN111473575B (en) * 2019-01-23 2022-04-26 日立环球生活方案株式会社 Refrigerator with a door
CN110160209B (en) * 2019-04-19 2021-06-29 青岛海尔空调器有限总公司 Fault detection method and device of electrochemical air conditioner and electrochemical air conditioner
CN111503994B (en) * 2020-05-11 2022-03-25 合肥美的电冰箱有限公司 Control method of air-cooled refrigerator and air-cooled refrigerator
CN113701425A (en) * 2020-05-21 2021-11-26 合肥华凌股份有限公司 Refrigerator, quick-freezing control method of refrigerator and computer readable storage medium
CN113883800B (en) * 2021-10-28 2023-03-14 澳柯玛股份有限公司 Refrigeration and defrosting control method of double-system refrigeration refrigerator

Also Published As

Publication number Publication date
CN1242501A (en) 2000-01-26
CN1291209C (en) 2006-12-20
JP2000018790A (en) 2000-01-18
CN1515858A (en) 2004-07-28
KR20000005636A (en) 2000-01-25
CN1515859A (en) 2004-07-28
CN1121599C (en) 2003-09-17
KR100332291B1 (en) 2002-04-12
TW532470U (en) 2003-05-11
CN1287126C (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP3437764B2 (en) Refrigerator control method
US4964281A (en) Low-temperature showcase
US20060144063A1 (en) Method for controlling operation of refrigerator
JPH0428988B2 (en)
US20150027148A1 (en) Heat exchanger assembly, refrigerator, and method of controlling a refrigerator
CN1332165C (en) Refrigerator
AU2015410544B2 (en) Refrigerator
KR100348068B1 (en) Controlling method of refrigerator
JP3611447B2 (en) refrigerator
US5157935A (en) Hot gas defrost system for refrigeration systems and apparatus therefor
KR102572457B1 (en) Refrigerator and Controlling method for the same
JP3049425B2 (en) Refrigerator with two evaporators
JP2004251480A (en) Refrigeration equipment
JPH09264650A (en) Refrigerator
US20230280081A1 (en) Refrigerator
KR101723284B1 (en) A refrigerator and a method for controlling the same
JPH11304333A (en) Refrigerator control method
JP3600009B2 (en) Refrigerator control method
KR20200032563A (en) Refrigerator and method for controlling defrosting of the same
JP2001263912A (en) Refrigerator
JP4103384B2 (en) refrigerator
JP2004092939A (en) Refrigerator-freezer
US20250012502A1 (en) Refrigerator operation control method
KR20080042467A (en) Refrigerator Control Method
JP2001263883A (en) Hot gas defrosting type refrigerating/cold storage unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees