[go: up one dir, main page]

JP3436812B2 - Surface acoustic wave converter - Google Patents

Surface acoustic wave converter

Info

Publication number
JP3436812B2
JP3436812B2 JP32087194A JP32087194A JP3436812B2 JP 3436812 B2 JP3436812 B2 JP 3436812B2 JP 32087194 A JP32087194 A JP 32087194A JP 32087194 A JP32087194 A JP 32087194A JP 3436812 B2 JP3436812 B2 JP 3436812B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave converter
reflector
linear conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32087194A
Other languages
Japanese (ja)
Other versions
JPH08181565A (en
Inventor
務 三浦
智晴 井上
Original Assignee
マルヤス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス工業株式会社 filed Critical マルヤス工業株式会社
Priority to JP32087194A priority Critical patent/JP3436812B2/en
Publication of JPH08181565A publication Critical patent/JPH08181565A/en
Application granted granted Critical
Publication of JP3436812B2 publication Critical patent/JP3436812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、通常狭帯域フィルタと
して利用される弾性表面波変換器に係り、特に入力電極
及び出力電極の各外側に反射器を設けた弾性表面波変換
器に関する。 【0002】 【従来の技術】従来、この種の弾性表面波変換器1は、
例えば図4に示すように、櫛歯状にそれぞれ形成した入
力電極3及び出力電極4を相対向させてなる圧電基板2
上に、前記両電極3,4の各外側にて前記両電極3,4
の櫛歯部に対して平行かつ一定間隔に配置した複数の線
状導体5aを有する一対の反射器5,5を設けてなる。
そして、両反射器5,5の線状導体5aの間隔を同一に
設定して、強い反射効果が得られるようにしていた。こ
の反射器5,5の反射係数の周波数特性は共に例えば図
5に示すようになり、また弾性表面波変換器1の伝達特
性は図6に示すようになっている。 【0003】 【発明が解決しようとする課題】ところで、上記弾性表
面波変換器においては、図5に示すように、反射係数が
大きく(ほぼ「1」に等しく)かつフラットな帯域が広
く、すなわち反射器による有効な反射帯域が広くなり、
弾性表面波変換器の伝達特性において、図6の丸印A内
に示すように、不要な通過帯域内で共振によるピークが
生じる場合がある。これに対して、反射器の反射効率を
低下させることにより共振のピークを小さくすることは
できるが、このようにすると必要な通過帯域における弾
性表面波変換器の伝達損失が増大する。 【0004】本発明は、上記した問題を解決しようとす
るもので、反射器による有効な周波数領域を狭めて不必
要な帯域における共振ピークを抑制することにより伝達
特性の改善された弾性表面波変換器を提供することを目
的とする。 【0005】 【課題を解決するための手段】上記の目的を達成するた
め、本発明は、櫛歯状の交差電極にそれぞれ形成した入
力電極と出力電極を互いに平行に配置した圧電基板上
に、前記両電極の外側に各電極の櫛歯部に対して平行
置した複数の線状導体からなる一対の反射器を設けた
弾性表面波変換器において、一方の反射器の線状導体を
方の反射器の線状導体の間隔と異なる間隔にて配置し
て、両反射器の有効反射帯域が部分的に重合するように
したことを特徴とする弾性表面波変換器を提供するもの
である。 【0006】 【発明の作用・効果】上記のように構成した本発明にお
いては、反射係数の周波数特性は、反射器における複数
の線状導体の間隔に応じて周波数軸を移動するので、各
反射器による反射係数が大きく(ほぼ「1」に等しく)
かつフラットな周波数帯域部分が互いにずれる(図2の
反射帯域R1,R2を参照)。そして、両反射係数を総
合した総合反射係数が大きくかつフラットな周波数帯域
は前記両反射係数の大きな部分の重なり部分であること
から、総合反射係数の大きくかつフラットな周波数帯域
は狭められる。したがって、上記重なり部分の周波数帯
域以外の部分における共振ピークが抑制され、必要に応
じた狭い帯域幅にて伝達損失を大きくすることなく弾性
表面波変換器の周波数伝達特性を滑らかにすることがで
きる。 【0007】 【実施例】以下、本発明の一実施例を図面を用いて説明
すると、図1は同実施例に係る弾性表面波変換器を概略
的に示した模式図である。 【0008】弾性表面波変換器10は、LiNbO3,LiTaO3,
水晶等の圧電材料を直方体状に形成した圧電基板11を
有し、同基板11上には、櫛歯状の交差電極にそれぞれ
形成された入力電極12及び出力電極13が互いに平行
設けられている。入力電極12は、圧電基板11の長
手方向に平行に配置した一対の基部12a,12bと、
各基部12a,12bからそれぞれ垂直かつ交互に配置
した多数の櫛歯からなる櫛歯部12c,12dとを備え
ている。出力電極13も、入力電極12と同様に、圧電
基板11の長手方向に平行に配置した一対の基部13
a,13bと、各基部13a,13bからそれぞれ垂直
かつ互いに交差して配置した多数の櫛歯からなる櫛歯部
13c,13dとを備えている。 【0009】圧電基板11上に設けた入力電極12及び
出力電極13の各外側には、一対の反射器14,15が
相対向して設けられている。反射器14は、上記各櫛歯
部12c,12d,13a,13dに平行で同一長を有
する多数の線状導体14aと、各線状導体14aの各両
端を連結する一対の連結導体14bとにより長方形状に
形成されている。また、反射器15も、反射器14と同
様に、上記各櫛歯部12c,12d,13a,13dに
平行で同一長を有する多数の線状導体15aと、各線状
導体15aの各両端を連結する一対の連結導体15bと
により長方形状に形成されている。ただし、反射器14
における各線状導体14aの間隔d1 と反射器15にお
ける各線状導体15aの間隔d2 とを異ならせてある。 【0010】以上のように構成した弾性表面波変換器の
使用状態においては、図1に示すように、入力電極12
の基部12a,12bに高周波発信器21が接続される
とともに、出力電極13の基部13a,13b間に抵抗
22が接続されて、抵抗22の両端から出力信号を得る
ようにする。これにより、高周波発信器21からの高周
波電気信号は入力電極12にて弾性表面波に変換され、
同弾性表面波が圧電基板11上を出力電極13に伝搬し
て出力電極13にて再び電気信号に変換されて出力され
る。この場合、入力された高周波電気信号は、入力電極
12、出力電極13、反射器14,15等により、帯域
制限されかつ所定の周波数特性をもつ信号に変換されて
出力されることになる。 【0011】ここで、入力電極12によって変換された
弾性表面波は、出力電極13に向けて伝搬すると共に、
両反射器14、15によって反射される。そして、上記
のように、両反射器14、15は、各線状導体14aの
間隔d1 と各線状導体15aの間隔d2 とが異なってい
るため、両反射器14、15の反射係数が大きく(ほぼ
「1」に等しく)かつフラットな周波数帯域部分が周波
数軸上にてずれる。そして、両反射係数を総合した総合
反射係数が大きな周波数帯域は前記両反射係数の重なり
部分であることから、総合反射係数が大きな周波数帯域
は狭められる。したがって、上記重なり部分の周波数帯
域以外の部分すなわち弾性表面波変換器10の阻止帯域
における弾性表面波の共振によるピークが抑制され、必
要に応じた狭い帯域幅にて伝達損失を大きくすることな
く弾性表面波変換器10の周波数伝達特性を滑らかにす
ることができる。 【0012】このことを、下記仕様の弾性表面波変換器
10を用いたシミュレーション結果により示す。 【0013】 (仕様) 圧電基板11の材料 : 水晶 入力電極12の櫛歯の交差長 : 1700μm 櫛歯の本数 : 397本 櫛歯間距離(電極ピッチ) : 15.790μm 出力電極13の櫛歯の交差長 : 1700μm 櫛歯の本数 : 397本 櫛歯間距離(電極ピッチ) : 15.790μm 反射器14の線状導体長 : 1700μm 線状導体数 : 300本 線状導体間距離(電極ピッチ): 15.822μm 反射器15の線状導体長 : 1700μm 線状導体数 : 300本 線状導体間距離(電極ピッチ): 15.735μm このように構成した弾性表面波変換器10によれば、反
射器14の反射係数の周波数特性は図2の実線で示すよ
うにほぼ99.4〜100.2MHz の範囲にてほぼ
「1」となり、同反射器14による有効な反射帯域は図
示R1となる。一方、反射器15の反射係数の周波数特
性は図2の一点鎖線で示すようにほぼ100.0〜10
0.8MHz の範囲にてほぼ「1」となり、同反射器15
による有効な反射帯域は図示R2となる。すなわち、反
射器15による有効な反射帯域R2は反射器14による
反射帯域R1から約0.6MHz だけ高周波側に移動して
いる。その結果、両反射器14、15の反射係数が大き
な(ほぼ「1」に等しい)反射領域R3は、両反射帯域
R1,R2の重なり部分であるほぼ99.9〜100.
2MHzの狭い範囲となる。 【0014】このように反射器の有効な反射帯域R3が
狭められたことにより、弾性表面波変換器10の周波数
伝達特性は図3に示すように改良された。すなわち、図
6に示す従来の弾性表面波変換器10の周波数伝達特性
において存在した共振のピーク(丸印A内)が、図3の
丸印B内に示すように除去された。その結果、上記実施
例によれば、必要に応じた狭い帯域幅にて伝達損失を大
きくすることなく弾性表面波変換器10の周波数伝達特
性を滑らかにすることができる。 【0015】なお、上記実施例においては、反射器1
4,15の複数の線状導体14a,15aの各両端を連
結導体14b,15bによりそれぞれ接続するようにし
たが、この連結導体14b,15bは圧電基板11とし
て水晶又はLiTaO3を用いた場合における反射効率を高め
るために用いたもので、水晶又はLiTaO3を用いた圧電基
板11であっても反射効率をそれほど高める必要のない
場合には連結導体14b,15bは不要であって反射器
14,15を単に複数の線状導体14a,15aのみで
構成するようにしてもよい。また、圧電基板11として
LiNbO3を用いた場合には、線状導体14a,15aの各
両端を連結導体14b,15bにより短絡した場合の反
射効率と短絡しない場合の反射効率とは弾性表面波変換
器10の設計仕様に応じて変化するので、同仕様に応じ
て連結導体14b,15bを適宜設けたり設けなかった
りするとよい。 【0016】さらに、弾性表面波変換器10の各部の寸
法、形状等については上記実施例に限るものではなく、
目的用途等に応じて適宜変更することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave converter usually used as a narrow band filter, and in particular, a reflector is provided outside each of an input electrode and an output electrode. The present invention relates to a surface acoustic wave converter provided. 2. Description of the Related Art Conventionally, this type of surface acoustic wave converter 1 has
For example, as shown in FIG. 4, a piezoelectric substrate 2 in which an input electrode 3 and an output electrode 4 formed in a comb shape are opposed to each other.
On the outer sides of the electrodes 3 and 4, the electrodes 3 and 4
And a pair of reflectors 5 and 5 having a plurality of linear conductors 5a arranged in parallel to and at a constant interval with respect to the comb-teeth portion.
Then, the distance between the linear conductors 5a of the two reflectors 5, 5 is set to be the same so that a strong reflection effect is obtained. For example, the frequency characteristics of the reflection coefficients of the reflectors 5 and 5 are as shown in FIG. 5, and the transfer characteristics of the surface acoustic wave converter 1 are as shown in FIG. As shown in FIG. 5, the surface acoustic wave converter has a large reflection coefficient (substantially equal to "1") and a wide flat band. The effective reflection band by the reflector is widened,
In the transfer characteristic of the surface acoustic wave converter, as shown in a circle A in FIG. 6, a peak due to resonance may occur in an unnecessary pass band. On the other hand, the peak of resonance can be reduced by lowering the reflection efficiency of the reflector, but this increases transmission loss of the surface acoustic wave converter in a necessary pass band. An object of the present invention is to solve the above-mentioned problem, and to reduce the effective frequency range by a reflector to suppress a resonance peak in an unnecessary band, thereby improving the surface acoustic wave conversion with improved transfer characteristics. The purpose is to provide a vessel. [0005] In order to achieve the above object,
Because, the present invention is parallel on a piezoelectric substrate arranged input electrodes and output electrodes formed at intersections electrodes of pectinate shape in parallel to each other, the relative comb teeth of the electrodes on the outside of the electrodes To
In a pair of reflectors set only surface acoustic wave transducer comprising a plurality of linear conductors placed, the linear conductors of one of the reflectors
Place at different intervals as the linear conductors of the reflector other hand
So that the effective reflection band of both reflectors partially overlaps
To provide a surface acoustic wave converter characterized by the following.
It is. In the present invention constructed as described above, the frequency characteristic of the reflection coefficient moves on the frequency axis in accordance with the interval between a plurality of linear conductors in the reflector. Large reflection coefficient (approximately equal to "1")
In addition, the flat frequency band portions are shifted from each other (see the reflection bands R1 and R2 in FIG. 2). Since a flat frequency band having a large total reflection coefficient obtained by integrating both reflection coefficients is an overlapping portion of a large portion having the large both reflection coefficients, the flat frequency band having a large total reflection coefficient is narrowed. Therefore, the resonance peak in a portion other than the frequency band of the overlapping portion is suppressed, and the frequency transfer characteristic of the surface acoustic wave converter can be smoothed without increasing the transmission loss in a narrow bandwidth as required. . An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram schematically showing a surface acoustic wave converter according to the embodiment. The surface acoustic wave converter 10 includes LiNbO3, LiTaO3,
It has a piezoelectric substrate 11 in which a piezoelectric material such as quartz is formed in a rectangular parallelepiped shape. On the substrate 11, an input electrode 12 and an output electrode 13 respectively formed in a comb-shaped cross electrode are parallel to each other.
It is provided in. The input electrode 12 includes a pair of bases 12 a and 12 b arranged in parallel with the longitudinal direction of the piezoelectric substrate 11,
Vertically and alternately arranged from each base 12a, 12b
And a plurality of comb teeth 12c and 12d. Similarly to the input electrode 12, the output electrode 13 also has a pair of bases 13 arranged in parallel to the longitudinal direction of the piezoelectric substrate 11.
a, 13b, and comb teeth portions 13c, 13d, which are composed of a large number of comb teeth and are arranged perpendicularly from the respective base portions 13a, 13b so as to cross each other. [0009] A pair of reflectors 14 and 15 are provided opposite to each other outside the input electrode 12 and the output electrode 13 provided on the piezoelectric substrate 11. The reflector 14 has a rectangular shape composed of a number of linear conductors 14a having the same length and being parallel to the comb-tooth portions 12c, 12d, 13a, 13d, and a pair of connecting conductors 14b connecting both ends of each linear conductor 14a. It is formed in a shape. Similarly to the reflector 14, the reflector 15 is connected to a large number of linear conductors 15a having the same length and being parallel to the comb teeth 12c, 12d, 13a, 13d, and both ends of each linear conductor 15a. And a pair of connecting conductors 15b. However, the reflector 14
Is different from the distance d1 between the linear conductors 14a in the reflector 15 and the distance d2 between the linear conductors 15a in the reflector 15. In the state of use of the surface acoustic wave converter configured as described above, as shown in FIG.
A high-frequency oscillator 21 is connected to the bases 12a and 12b, and a resistor 22 is connected between the bases 13a and 13b of the output electrode 13, so that an output signal is obtained from both ends of the resistor 22. Thereby, the high-frequency electric signal from the high-frequency transmitter 21 is converted into a surface acoustic wave by the input electrode 12 ,
The surface acoustic wave propagates on the piezoelectric substrate 11 to the output electrode 13 and is converted into an electric signal again at the output electrode 13 and output. In this case, the input high-frequency electric signal is converted into a signal having a band-limited and predetermined frequency characteristic by the input electrode 12, the output electrode 13, the reflectors 14, 15, and the like, and is output. Here, the surface acoustic wave converted by the input electrode 12 propagates toward the output electrode 13 and
It is reflected by both reflectors 14,15. As described above, since the distance d1 between the linear conductors 14a and the distance d2 between the linear conductors 15a are different from each other, the reflection coefficients of the two reflectors 14 and 15 are large (almost). The frequency band portion which is equal to "1") and flat is shifted on the frequency axis. Since the frequency band having a large total reflection coefficient obtained by integrating the two reflection coefficients is an overlapping portion of the two reflection coefficients, the frequency band having a large total reflection coefficient is narrowed. Accordingly, the peak due to the resonance of the surface acoustic wave in a portion other than the frequency band of the overlapping portion, that is, in the stop band of the surface acoustic wave converter 10, is suppressed, and the elasticity can be increased without increasing the transmission loss in a narrow bandwidth as required. The frequency transfer characteristics of the surface acoustic wave converter 10 can be smoothed. This is shown by a simulation result using a surface acoustic wave converter 10 having the following specifications. (Specifications) Material of piezoelectric substrate 11: Quartz Intersection length of comb teeth of input electrode 12: 1700 μm Number of comb teeth: 397 Distance between comb teeth (electrode pitch): 15.790 μm Comb teeth of output electrode 13 Intersection length: 1700 μm Number of comb teeth: 397 Distance between comb teeth (electrode pitch): 15.790 μm Length of linear conductor of reflector 14: 1700 μm Number of linear conductors: 300 Distance between linear conductors (electrode pitch): 15.822 μm Linear conductor length of reflector 15: 1700 μm Number of linear conductors: 300 Distance between linear conductors (electrode pitch): 15.735 μm According to the surface acoustic wave converter 10 configured as described above, the reflector The frequency characteristic of the reflection coefficient 14 is substantially “1” in the range of approximately 99.4 to 100.2 MHz as shown by the solid line in FIG. 2, and the effective reflection band of the reflector 14 is The shows R1. On the other hand, the frequency characteristic of the reflection coefficient of the reflector 15 is approximately 100.0 to 10 as indicated by the dashed line in FIG.
It becomes almost “1” in the range of 0.8 MHz, and the reflector 15
Is an effective reflection band R2 shown in FIG. That is, the effective reflection band R2 of the reflector 15 is shifted to the high frequency side by about 0.6 MHz from the reflection band R1 of the reflector 14. As a result, the reflection region R3 in which the reflection coefficients of the two reflectors 14 and 15 are large (substantially equal to "1") is approximately 99.9 to 100.
This is a narrow range of 2 MHz. As described above, since the effective reflection band R3 of the reflector is narrowed, the frequency transfer characteristic of the surface acoustic wave converter 10 is improved as shown in FIG. That is, the resonance peak (in the circle A) existing in the frequency transfer characteristic of the conventional surface acoustic wave converter 10 shown in FIG. 6 has been removed as shown in the circle B in FIG. As a result, according to the above-described embodiment, the frequency transfer characteristics of the surface acoustic wave converter 10 can be made smooth without increasing the transmission loss in a narrow bandwidth as required. In the above embodiment, the reflector 1
Both ends of the plurality of linear conductors 14a and 15a are connected by connecting conductors 14b and 15b, respectively. The connecting conductors 14b and 15b reflect light when quartz or LiTaO3 is used as the piezoelectric substrate 11. The coupling conductors 14b and 15b are unnecessary when the reflection efficiency does not need to be increased so much even if the piezoelectric substrate 11 is made of quartz or LiTaO3. You may make it comprise only a plurality of linear conductors 14a and 15a only. Also, as the piezoelectric substrate 11
When LiNbO3 is used, the reflection efficiency when both ends of the linear conductors 14a and 15a are short-circuited by the connection conductors 14b and 15b and the reflection efficiency when not short-circuited depend on the design specifications of the surface acoustic wave converter 10. Therefore, the connecting conductors 14b and 15b may be appropriately provided or not provided according to the same specification. Further, the size, shape, etc. of each part of the surface acoustic wave converter 10 are not limited to those in the above embodiment.
It can be appropriately changed according to the intended use.

【図面の簡単な説明】 【図1】本発明の一実施例に係る弾性表面波変換器を概
略的に示す模式図である。 【図2】同弾性表面波変換器の反射器の反射係数の周波
数特性を示すグラフである。 【図3】同弾性表面波変換器の周波数伝達特性を示すグ
ラフである。 【図4】従来例に係る弾性表面波変換器を概略的に示す
模式図である。 【図5】同弾性表面波変換器の反射器の反射係数の周波
数特性を示すグラフである。 【図6】同弾性表面波変換器の周波数伝達特性を示すグ
ラフである。 【符号の説明】 10…弾性表面波変換器、11…圧電基板、12…入力
電極、12a,12b…基部、12c,12d…櫛歯
部、13…出力電極、13a,13b…基部、13c,
13d…櫛歯部、14…反射器、14a…線状導体、1
4b…連結導体、15…反射器、15a…線状導体、1
5b…連結導体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram schematically showing a surface acoustic wave converter according to one embodiment of the present invention. FIG. 2 is a graph showing a frequency characteristic of a reflection coefficient of a reflector of the surface acoustic wave converter. FIG. 3 is a graph showing a frequency transfer characteristic of the surface acoustic wave converter. FIG. 4 is a schematic diagram schematically showing a surface acoustic wave converter according to a conventional example. FIG. 5 is a graph showing a frequency characteristic of a reflection coefficient of a reflector of the surface acoustic wave converter. FIG. 6 is a graph showing a frequency transfer characteristic of the surface acoustic wave converter. [Description of Reference Numerals] 10: surface acoustic wave converter, 11: piezoelectric substrate, 12: input electrode, 12a, 12b: base, 12c, 12d: comb tooth, 13: output electrode, 13a, 13b: base, 13c,
13d: comb tooth portion, 14: reflector, 14a: linear conductor, 1
4b: connecting conductor, 15: reflector, 15a: linear conductor, 1
5b ... connecting conductor.

フロントページの続き (56)参考文献 特開 平4−265009(JP,A) 特開 平3−261210(JP,A) 特開 平8−181561(JP,A) 実開 昭64−23131(JP,U) (58)調査した分野(Int.Cl.7,DB名) H03H 9/25 H03H 9/145 Continuation of the front page (56) References JP-A-4-265009 (JP, A) JP-A-3-261210 (JP, A) JP-A-8-181561 (JP, A) Jpn. , U) (58) Fields surveyed (Int. Cl. 7 , DB name) H03H 9/25 H03H 9/145

Claims (1)

(57)【特許請求の範囲】 【請求項1】 櫛歯状の交差電極にそれぞれ形成した入
力電極と出力電極を互いに平行に配置した圧電基板上
に、前記両電極の外側に各電極の櫛歯部に対して平行
置した複数の線状導体からなる一対の反射器を設けた
弾性表面波変換器において、 一方の反射器の線状導体を他方の反射器の線状導体の間
と異なる間隔にて配置して、両反射器の有効反射帯域
が部分的に重合するようにしたことを特徴とする弾性表
面波変換器。
(57) to the Claims 1 piezoelectric substrate arranged in parallel with each other the output electrode and the input electrodes formed respectively on the cross electrode of pectinate shape, the electrodes on the outside of the two electrodes the parallel to the comb teeth
In a pair of reflectors set only surface acoustic wave transducer comprising a plurality of linear conductors placed at different intervals of linear conductors of one of the reflectors and the interval of the linear conductors of the reflector other hand Arrange the effective reflection band of both reflectors
A surface acoustic wave converter characterized in that the polymer is partially polymerized .
JP32087194A 1994-12-22 1994-12-22 Surface acoustic wave converter Expired - Lifetime JP3436812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32087194A JP3436812B2 (en) 1994-12-22 1994-12-22 Surface acoustic wave converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32087194A JP3436812B2 (en) 1994-12-22 1994-12-22 Surface acoustic wave converter

Publications (2)

Publication Number Publication Date
JPH08181565A JPH08181565A (en) 1996-07-12
JP3436812B2 true JP3436812B2 (en) 2003-08-18

Family

ID=18126196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32087194A Expired - Lifetime JP3436812B2 (en) 1994-12-22 1994-12-22 Surface acoustic wave converter

Country Status (1)

Country Link
JP (1) JP3436812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687462B2 (en) * 2003-11-21 2011-05-25 パナソニック株式会社 SAW filter
WO2023074373A1 (en) * 2021-10-29 2023-05-04 株式会社村田製作所 Elastic wave resonator, elastic wave filter device, and multiplexer

Also Published As

Publication number Publication date
JPH08181565A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US4081769A (en) Acoustic surface wave resonator with suppressed direct coupled response
US4144507A (en) Surface acoustic wave resonator incorporating coupling transducer into reflecting arrays
US5838217A (en) Longitudinally coupling acoustic surface wave double mode filter utilizing end-face reflecting waves
US4249146A (en) Surface acoustic wave resonators utilizing harmonic frequencies
JP2957159B2 (en) Differential input / output surface acoustic wave device with proximity coupling
JP2703891B2 (en) Surface acoustic wave filter
KR100407463B1 (en) Surface acoustic wave device
JP3436812B2 (en) Surface acoustic wave converter
JPH05347535A (en) Surface acoustic wave filter device
JP3305475B2 (en) Elastic wave element
US4255726A (en) Surface acoustic wave filter
EP0763889B1 (en) Surface acoustic wave filter
JP3154402B2 (en) SAW filter
JPH09214284A (en) Surface elastic wave device
JPH10173467A (en) Transversal saw filter
EP0255263A2 (en) Transducer
US5781083A (en) Surface wave resonator having a plurality of resonance frequencies
JPH03128519A (en) Saw resonator and saw filter
JP3166235B2 (en) Surface acoustic wave device
JP3117021B2 (en) Surface acoustic wave filter
JPH04207615A (en) Longitudinal coupling dual mode leaky saw filter
JPH10126208A (en) Surface acoustic wave device
JP3132109B2 (en) 2-port SAW resonator
JPH08186468A (en) Surface acoustic wave device
JPH03128517A (en) Surface acoustic wave resonator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150606

Year of fee payment: 12

EXPY Cancellation because of completion of term