JP3428626B2 - Apparatus and method for pulling silicon single crystal - Google Patents
Apparatus and method for pulling silicon single crystalInfo
- Publication number
- JP3428626B2 JP3428626B2 JP17893698A JP17893698A JP3428626B2 JP 3428626 B2 JP3428626 B2 JP 3428626B2 JP 17893698 A JP17893698 A JP 17893698A JP 17893698 A JP17893698 A JP 17893698A JP 3428626 B2 JP3428626 B2 JP 3428626B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- heat
- silicon single
- heat radiation
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコン単結晶棒
を引上げて育成するシリコン単結晶の引上げ装置及びそ
の引上げ方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal pulling apparatus for pulling and growing a silicon single crystal rod and a pulling method thereof.
【0002】[0002]
【従来の技術】シリコン単結晶棒を育成する方法として
るつぼ内のシリコン融液から半導体用の高純度シリコン
単結晶棒を成長させるチョクラルスキー法(以下、CZ
法という)が知られている。このCZ方法では、石英る
つぼの周囲に設けられたカーボンヒータにより石英るつ
ぼ内のシリコン融液を加熱して所定温度に維持し、ミラ
ーエッチングされた種結晶をシリコン融液に接触させ、
種結晶を引上げてシリコン単結晶棒を育成するものであ
る。このシリコン単結晶棒の育成方法では、種結晶を引
上げてシリコン融液から種絞り部を作製した後、目的と
するシリコン単結晶棒の直径まで結晶を徐々に太らせて
肩部を形成し、その後更に引上げてシリコン単結晶棒の
直胴部を形成するようになっている。2. Description of the Related Art As a method for growing a silicon single crystal ingot, the Czochralski method (hereinafter referred to as CZ) for growing a high purity silicon single crystal ingot for a semiconductor from a silicon melt in a crucible.
The law) is known. In this CZ method, the silicon melt in the quartz crucible is heated by a carbon heater provided around the quartz crucible and maintained at a predetermined temperature, and the mirror-etched seed crystal is brought into contact with the silicon melt.
The seed crystal is pulled up to grow a silicon single crystal ingot. In this silicon single crystal ingot growing method, after pulling up the seed crystal to produce a seed throttle from the silicon melt, the shoulder is formed by gradually thickening the crystal to the diameter of the target silicon single crystal ingot. Then, it is further pulled up to form the straight body portion of the silicon single crystal ingot.
【0003】このCZ方法におけるシリコン単結晶棒の
品質及び生産性を向上させるために、従来この種の装置
には、チャンバ内に設けられたシリコン融液を貯留する
石英るつぼを上昇又は下降させるるつぼ昇降手段と、シ
リコン融液から成長するシリコン単結晶棒を包囲する筒
状の熱遮蔽部材とを備えたものが知られている。るつぼ
昇降手段は、石英るつぼを上昇させることによりシリコ
ン単結晶棒の引上げに伴うシリコン融液表面の低下を防
止し、シリコン融液の表面を所定位置に維持して均一な
シリコン単結晶棒を得るようにするとともに、熱遮蔽部
材がシリコン単結晶棒を包囲して、シリコン融液の熱が
成長したシリコン単結晶棒に到達しないように遮蔽し、
シリコン単結晶棒の冷却速度を向上させて引上げ速度を
増大し、シリコン単結晶棒の生産性を向上するようにな
っている。In order to improve the quality and productivity of silicon single crystal rods in the CZ method, conventionally, in this type of apparatus, a crucible for raising or lowering a quartz crucible for storing a silicon melt is provided in a chamber. There is known one provided with an elevating means and a cylindrical heat shield member surrounding a silicon single crystal ingot grown from a silicon melt. The crucible lifting means prevents the surface of the silicon melt from being lowered due to the pulling of the silicon single crystal rod by raising the quartz crucible, and maintains the surface of the silicon melt at a predetermined position to obtain a uniform silicon single crystal rod. In addition, the heat shielding member surrounds the silicon single crystal rod to shield the heat of the silicon melt from reaching the grown silicon single crystal rod,
The cooling rate of the silicon single crystal ingot is increased to increase the pulling rate and the productivity of the silicon single crystal ingot is improved.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来のシリコ
ン単結晶の引上げでは、熱遮蔽部材によるシリコン融液
の熱の遮蔽効果が乏しく、特にシリコン融液近傍におけ
るシリコン単結晶棒の冷却が十分でなかった。このた
め、シリコン単結晶棒の中心部の軸方向の固液界面近傍
における温度勾配が変動する不具合がある。一方、シリ
コン単結晶棒の大口径化が進むと、上記シリコン単結晶
棒の中心部の軸方向の温度勾配の変動は更に大きくなる
ことが予想される。このため、シリコン単結晶棒中に上
記温度勾配の変動に基づく熱的ストレスが発生する恐れ
があった。本発明の目的は、シリコン融液から引上げ中
のシリコン単結晶棒の中心部の軸方向の固液界面近傍に
おける温度勾配を均一にすることにより、シリコン単結
晶棒中の熱的ストレスの発生を抑制できるシリコン単結
晶の引上げ装置及びその引上げ方法を提供することにあ
る。However, in the conventional pulling of a silicon single crystal, the heat shielding effect of the heat of the silicon melt by the heat shielding member is poor, and particularly the cooling of the silicon single crystal rod in the vicinity of the silicon melt is insufficient. There wasn't. Therefore, there is a problem that the temperature gradient in the vicinity of the solid-liquid interface in the axial direction at the center of the silicon single crystal ingot varies. On the other hand, if the diameter of the silicon single crystal ingot increases, it is expected that the fluctuation of the temperature gradient in the axial direction of the central portion of the silicon single crystal ingot will further increase. Therefore, there is a possibility that thermal stress may occur in the silicon single crystal ingot due to the fluctuation of the temperature gradient. An object of the present invention is to uniformize the temperature gradient in the vicinity of the solid-liquid interface in the axial direction of the central portion of the silicon single crystal rod being pulled from the silicon melt, thereby suppressing the occurrence of thermal stress in the silicon single crystal rod. An object of the present invention is to provide a silicon single crystal pulling apparatus and a pulling method thereof that can suppress the pulling.
【0005】[0005]
【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、チャンバ11内に設けられシリコン
融液12が貯留された石英るつぼ13と、石英るつぼ1
3の外周面を包囲しシリコン融液12を加熱するヒータ
18と、シリコン融液12から引上げられるシリコン単
結晶棒25の外周面を包囲しかつ下端がシリコン融液1
2表面から間隔をあけて上方に位置するように構成され
ヒータ18からの輻射熱を遮る熱遮蔽部材26とを備え
たシリコン単結晶引上げ装置の改良である。その特徴あ
る構成は、下方に向うに従って開口径が小さくなるよう
に下向きに傾斜したコーン状の放熱抑制部26cが熱遮
蔽部材26の下部に形成され、複数の熱輻射板27がシ
リコン単結晶棒25を包囲するように放熱抑制部26c
上に配置され、配置された複数の熱輻射板27の外周部
が熱遮蔽部材26にそれぞれ枢支され、複数の熱輻射板
27をそれぞれ回転して複数の熱輻射板27の放熱抑制
部26cに対する角度θを変更する熱輻射板回転手段4
1を備えたところにある。The invention according to claim 1 is
As shown in FIG. 1, a quartz crucible 13 provided in a chamber 11 in which a silicon melt 12 is stored, and a quartz crucible 1
The heater 18 that surrounds the outer peripheral surface of the silicon melt 3 and heats the silicon melt 12, and the outer peripheral surface of the silicon single crystal rod 25 pulled up from the silicon melt 12 and the lower end of the silicon melt 1
The present invention is an improvement of a silicon single crystal pulling apparatus provided with a heat shield member 26 which is configured to be positioned above and spaced apart from two surfaces and which shields radiant heat from the heater 18. Its characteristic configuration is that a cone-shaped heat radiation suppressing portion 26c inclined downward so that the opening diameter becomes smaller as it goes downward is formed below the heat shielding member 26, and the plurality of heat radiation plates 27 are made of silicon single crystal rods. The heat radiation suppressing portion 26c so as to surround 25
The outer peripheral portions of the plurality of heat radiating plates 27 arranged above are pivotally supported by the heat shield member 26, respectively, and the plurality of heat radiating plates 27 are respectively rotated to dissipate heat of the plurality of heat radiating plates 27c. Heat radiation plate rotating means 4 for changing the angle θ with respect to
It is equipped with 1.
【0006】この請求項1に記載されたシリコン単結晶
の引上げ装置では、放熱抑制部26c上に配置された複
数の熱輻射板27はシリコン融液12からの輻射熱若し
くはシリコン単結晶棒25からの放熱を反射する。熱輻
射板27は放熱抑制部26c上に倒伏するように回転す
ることにより、シリコン融液12の熱がチャンバ11内
に放散するのを防ぎ、放熱抑制部26cとともに成長し
たシリコン単結晶棒25の冷却を促進してシリコン単結
晶棒25の軸方向の温度勾配を高く維持する。In the apparatus for pulling a silicon single crystal according to the present invention, the plurality of heat radiation plates 27 arranged on the heat radiation suppressing portion 26c are radiant heat from the silicon melt 12 or from the silicon single crystal rod 25. Reflects heat dissipation. The heat radiation plate 27 is rotated so as to fall on the heat radiation suppressing portion 26c, thereby preventing the heat of the silicon melt 12 from being dissipated into the chamber 11, and the heat of the silicon single crystal rod 25 grown together with the heat radiation suppressing portion 26c is prevented. Cooling is promoted to maintain a high temperature gradient in the axial direction of the silicon single crystal ingot 25.
【0007】請求項2に係る発明は、請求項1に係る発
明であって、熱輻射板回転手段41が、チャンバ11の
上部に設けられた駆動ギヤと、チャンバ11の上部に設
けられ駆動ギヤを駆動する駆動モータ46と、チャンバ
11の上部からチャンバ11内に吊り下げられ駆動ギヤ
に歯合するラックギヤが周囲に形成された支持棒42
と、支持棒42の下端と熱輻射板27を連結する連結ワ
イヤ44とを有するシリコン単結晶の引上げ装置であ
る。この請求項2に記載されたシリコン単結晶の引上げ
装置では、ラックギヤに歯合する駆動ギヤの回転により
支持棒42が昇降するため、容易に熱輻射板27を回転
できる。The invention according to claim 2 is the invention according to claim 1, wherein the heat radiation plate rotating means 41 is a drive gear provided on the upper part of the chamber 11 and a drive gear provided on the upper part of the chamber 11. A drive motor 46 for driving the motor, and a support rod 42 around which a rack gear that is suspended from the upper portion of the chamber 11 and meshes with the drive gear is formed.
And a connecting wire 44 that connects the lower end of the support rod 42 and the heat radiation plate 27 to each other. In the apparatus for pulling a silicon single crystal according to the second aspect of the invention, the support rod 42 moves up and down by the rotation of the drive gear that meshes with the rack gear, so that the heat radiation plate 27 can be easily rotated.
【0008】請求項3に係る発明は、石英るつぼ13に
貯留されたシリコン融液12から成長するシリコン単結
晶棒25を筒状の熱遮蔽部材26と熱遮蔽部材26の下
部に形成された下向きに傾斜したコーン状の放熱抑制部
26cにより包囲し、シリコン単結晶棒25を包囲する
ように複数の熱輻射板27を放熱抑制部26c上に配置
し、複数の熱輻射板27の外周部を熱遮蔽部材26にそ
れぞれ枢支してシリコン単結晶棒25を引上げる方法で
ある。その特徴ある点は、シリコン単結晶棒25の肩部
25b形成時に複数の熱輻射板27を肩部25bから離
した位置に起立させ、シリコン単結晶棒25の直胴部2
5c形成時に複数の熱輻射板27を起立した位置から回
転させて放熱抑制部26c上に倒伏させるところにあ
る。According to a third aspect of the present invention, a silicon single crystal rod 25 grown from the silicon melt 12 stored in the quartz crucible 13 is formed into a cylindrical heat shield member 26 and a downward face formed below the heat shield member 26. It is surrounded by a cone-shaped heat radiation suppressing portion 26c inclined to a plurality, and a plurality of heat radiation plates 27 are arranged on the heat radiation suppressing portion 26c so as to surround the silicon single crystal rod 25, and the outer peripheral portions of the plurality of heat radiation plates 27 are surrounded. In this method, the silicon single crystal ingots 25 are pulled up by being pivotally supported by the heat shield members 26, respectively. The characteristic point is that when the shoulder portion 25b of the silicon single crystal rod 25 is formed, a plurality of heat radiation plates 27 are erected at positions separated from the shoulder portion 25b, and the straight body portion 2 of the silicon single crystal rod 25 is formed.
When the 5c is formed, the plurality of heat radiation plates 27 are rotated from the standing position.
It is about to be rolled over and laid down on the heat radiation suppressing portion 26c .
【0009】この請求項3に記載されたシリコン単結晶
の引上げ方法では、肩部25b形成時に複数の熱輻射板
27を肩部25bから離した位置に起立させることによ
り、シリコン融液12の熱を形成途中の肩部25bに積
極的に放散して速やかに肩部25bの形成を行う。一
方、直胴部25c形成時には複数の熱輻射板27を起立
した位置から回転させて放熱抑制部26c上に倒伏さ
せ、シリコン融液12の熱が直胴部25cに直接放散す
るのを防ぎ、熱遮蔽部材26とともに成長したシリコン
単結晶棒25の冷却を促進して、直胴部25c形成時の
シリコン単結晶棒25の中心部の軸方向の温度勾配を肩
部25bの形成時と同等に高く維持する。In the method of pulling up the silicon single crystal according to the present invention, the heat of the silicon melt 12 is raised by raising the plurality of heat radiation plates 27 at positions separated from the shoulder portions 25b when forming the shoulder portions 25b. Is actively dissipated to the shoulder portion 25b in the process of forming, and the shoulder portion 25b is quickly formed. On the other hand, when forming the straight body portion 25c, a plurality of heat radiation plates 27 are erected.
The silicon single crystal rod grown together with the heat shield member 26 is rotated from the above position and laid down on the heat dissipation suppressing portion 26c to prevent the heat of the silicon melt 12 from being directly dissipated to the straight body portion 25c. By cooling 25, the temperature gradient in the axial direction of the central portion of the silicon single crystal ingot 25 at the time of forming the straight body portion 25c is maintained as high as that at the time of forming the shoulder portion 25b.
【0010】[0010]
【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1及び図2に示すように、シリコ
ン単結晶の引上げ装置10のチャンバ11内には、シリ
コン融液12を貯留する石英るつぼ13が設けられ、こ
の石英るつぼ13の外面は黒鉛サセプタ14により被覆
される。石英るつぼ13の下面は上記黒鉛サセプタ14
を介して支軸16の上端に固定され、この支軸16の下
部はるつぼ駆動手段17に接続される。るつぼ駆動手段
17は図示しないが石英るつぼ13を回転させる第1回
転用モータと、石英るつぼ13を昇降させる昇降用モー
タとを有し、これらのモータにより石英るつぼ13が所
定の方向に回転し得るとともに、上下方向に移動可能と
なっている。石英るつぼ13の外周面は石英るつぼ13
から所定の間隔をあけてヒータ18により包囲され、こ
のヒータ18は保温筒19により包囲される。ヒータ1
8は石英るつぼ13に投入された高純度のシリコン多結
晶体を加熱・融解してシリコン融液にする。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber 11 of a silicon single crystal pulling apparatus 10, and an outer surface of the quartz crucible 13 is covered with a graphite susceptor 14. To be done. The lower surface of the quartz crucible 13 is the above graphite susceptor 14.
It is fixed to the upper end of the support shaft 16 via, and the lower part of the support shaft 16 is connected to the crucible drive means 17. Although not shown, the crucible driving means 17 has a first rotation motor for rotating the quartz crucible 13 and an elevating motor for elevating the quartz crucible 13, and these motors can rotate the quartz crucible 13 in a predetermined direction. At the same time, it can move vertically. The outer peripheral surface of the quartz crucible 13 is a quartz crucible 13.
A heater 18 surrounds the heater 18 at a predetermined distance from the heater 18. Heater 1
Numeral 8 heats and melts a high-purity silicon polycrystal material put in a quartz crucible 13 to form a silicon melt.
【0011】またチャンバ11の上端には円筒状のケー
シング21が接続される。このケーシング21には引上
げ手段22が設けられる。引上げ手段22はケーシング
21の上端部に水平状態で旋回可能に設けられた引上げ
ヘッド(図示せず)と、このヘッドを回転させる第2回
転用モータ(図示せず)と、ヘッドから石英るつぼ13
の回転中心に向って垂下されたワイヤケーブル23と、
上記ヘッド内に設けられワイヤケーブル23を巻取り又
は繰出す引上げ用モータ(図示せず)とを有する。ワイ
ヤケーブル23の下端にはシリコン融液12に浸してシ
リコン単結晶棒25を引上げるための種結晶24が取付
けられる。A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with pulling up means 22. The pulling means 22 is a pulling head (not shown) provided on the upper end of the casing 21 so as to be horizontally rotatable, a second rotation motor (not shown) for rotating the head, and a quartz crucible 13 from the head.
A wire cable 23 hanging toward the center of rotation of
A pulling motor (not shown) provided in the head for winding or unwinding the wire cable 23. A seed crystal 24 for dipping in the silicon melt 12 and pulling up the silicon single crystal ingot 25 is attached to the lower end of the wire cable 23.
【0012】またシリコン単結晶棒25の外周面と石英
るつぼ13の内周面との間にはシリコン単結晶棒25の
外周面を包囲する熱遮蔽部材26が設けられる。この熱
遮蔽部材26は円筒状に形成されヒータ18からの輻射
熱を遮る筒部26aと、この筒部26aの上縁に連設さ
れ外方に略水平方向に張り出すフランジ部26bとを有
する。上記フランジ部26bを保温筒19上に載置する
ことにより、筒部26aの下縁がシリコン融液12表面
から所定の距離だけ上方に位置するように熱遮蔽部材2
6がチャンバ11内に固定される。A heat shield member 26 surrounding the outer peripheral surface of the silicon single crystal rod 25 is provided between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 13. The heat shield member 26 has a cylindrical portion 26a which is formed in a cylindrical shape and shields the radiant heat from the heater 18, and a flange portion 26b which is connected to the upper edge of the cylindrical portion 26a and projects outward in a substantially horizontal direction. By placing the flange portion 26b on the heat insulating cylinder 19, the heat shield member 2 is arranged so that the lower edge of the cylinder portion 26a is located above the surface of the silicon melt 12 by a predetermined distance.
6 is fixed in the chamber 11.
【0013】更に、チャンバ11にはこのチャンバ11
のシリコン単結晶棒側に不活性ガスを供給しかつ上記不
活性ガスをチャンバ11のるつぼ内周面側から排出する
ガス給排手段28が接続される。ガス給排手段28は一
端がケーシング21の周壁に接続され他端が上記不活性
ガスを貯留するタンク(図示せず)に接続された供給パ
イプ29と、一端がチャンバ11の下壁に接続され他端
が真空ポンプ(図示せず)に接続された排出パイプ30
とを有する。供給パイプ29及び排出パイプ30にはこ
れらのパイプ29,30を流れる不活性ガスの流量を調
整する第1及び第2流量調整弁31,32がそれぞれ設
けられる。Further, the chamber 11 includes the chamber 11
A gas supply / discharge means 28 for supplying an inert gas to the silicon single crystal rod side and discharging the inert gas from the inner peripheral surface side of the crucible of the chamber 11 is connected. The gas supply / discharge means 28 has one end connected to the peripheral wall of the casing 21 and the other end connected to a supply pipe 29 connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. Discharge pipe 30 whose other end is connected to a vacuum pump (not shown)
Have and. The supply pipe 29 and the discharge pipe 30 are provided with first and second flow rate adjusting valves 31, 32 for adjusting the flow rates of the inert gas flowing through these pipes 29, 30, respectively.
【0014】熱遮蔽部材26である筒部26aの下部に
は下方に向うに従って開口径が小さくなるように下向き
に傾斜したコーン状の放熱抑制部26cが形成され、放
熱抑制部26cには複数の熱輻射板27がシリコン単結
晶棒25を包囲するように配置される。図3に示すよう
に、本実施の形態における放熱抑制部26cは筒部26
aに対して120゜下向きに傾斜して形成され、図4に
示すように、熱輻射板27は6枚使用される。6枚の熱
輻射板27はそれぞれカーボンにより作られ、シリコン
単結晶棒25(図1)を中心として等角度に放熱抑制部
26c上に配置される。放熱抑制部26c上に配置され
た複数の熱輻射板27の外周部は熱遮蔽部材26である
筒部26aの下部にそれぞれ枢支される。At the lower part of the tubular portion 26a which is the heat shield member 26, there is formed a cone-shaped heat radiation suppressing portion 26c inclined downward so that the opening diameter becomes smaller as it goes downward, and a plurality of heat radiation suppressing portions 26c are provided. A heat radiation plate 27 is arranged so as to surround the silicon single crystal ingot 25. As shown in FIG. 3, the heat dissipation suppressing portion 26c according to the present embodiment has a cylindrical portion 26.
It is formed to be inclined downward by 120 ° with respect to a, and six heat radiation plates 27 are used as shown in FIG. The six heat radiation plates 27 are each made of carbon, and are arranged on the heat radiation suppressing portion 26c at equal angles with the silicon single crystal rod 25 (FIG. 1) as the center. The outer peripheral portions of the plurality of heat radiation plates 27 arranged on the heat radiation suppressing portion 26c are pivotally supported at the lower portions of the tubular portion 26a which is the heat shielding member 26.
【0015】6個の熱輻射板27には後述する熱輻射板
回転手段41(図1及び図2)の連結ワイヤ44の一端
がそれぞれ接続され、このワイヤ44が引張られること
により図3の破線矢印で示すように回転し、ワイヤ44
が繰出されることにより図の実線矢印で示すように回転
して複数の熱輻射板27の放熱抑制部26cに対する角
度θを変更可能に構成される。熱輻射板27はシリコン
融液12からの放熱を反射し、熱輻射板27は放熱抑制
部26c上に倒伏するように回転することにより、シリ
コン融液12の熱がチャンバ11内に放散するのを防ぐ
とともに、放熱抑制部26cとともに成長したシリコン
単結晶棒25の冷却を促進し、とくに直胴部25cの形
成時(図1)におけるシリコン単結晶棒25の軸方向の
温度勾配を肩部25bの形成時(図2)と同等に高く維
持するようになっている。One end of a connecting wire 44 of a heat radiating plate rotating means 41 (FIGS. 1 and 2), which will be described later, is connected to each of the six heat radiating plates 27, and the wires 44 are pulled so that the broken lines in FIG. Rotate the wire 44 as indicated by the arrow
Is rotated to rotate as shown by the solid line arrow in the figure, and the angles θ of the plurality of heat radiation plates 27 with respect to the heat radiation suppressing portion 26c can be changed. The heat radiation plate 27 reflects the heat radiation from the silicon melt 12, and the heat radiation plate 27 rotates so as to fall on the heat radiation suppressing portion 26c, whereby the heat of the silicon melt 12 is dissipated into the chamber 11. And promotes cooling of the silicon single crystal rod 25 grown together with the heat dissipation suppressing portion 26c, and particularly, when forming the straight body portion 25c (FIG. 1), the temperature gradient in the axial direction of the silicon single crystal rod 25 is reduced to the shoulder portion 25b. It is designed to be kept as high as when it was formed (Fig. 2).
【0016】図1及び図2に戻って、チャンバ11の上
部にはケーシング21を挟むように一対の熱輻射板回転
手段41が設けられる。熱輻射板回転手段41はチャン
バ11の上部に設けられた駆動ギヤと、チャンバ11の
上部に設けられ駆動ギヤを駆動する駆動モータ46と、
チャンバ11の上部からチャンバ11内に吊り下げられ
駆動ギヤに歯合するラックギヤが周囲に形成された支持
棒42と、支持棒42の下端と熱輻射板27を連結する
連結ワイヤ44とを有する。駆動ギヤはチャンバ11の
上部に設けられたギヤボックス43に内蔵され、連結ワ
イヤ44は筒部26aの外側に設けられた転向ローラ2
6e(図3)によりその方向を変化させて配索される。
熱輻射板回転手段41は、駆動モータ46による回転軸
46aの回転によりギヤボックス43に内蔵された図示
しない駆動ギヤが回転し、支持棒42を上下動させるこ
とにより連結ワイヤ44を介して熱輻射板27をそれぞ
れ回転し、図3の実線で示す状態から破線で示す状態ま
での間で複数の熱輻射板27の放熱抑制部26cに対す
る角度を変更可能に構成される。Returning to FIG. 1 and FIG. 2, a pair of heat radiation plate rotating means 41 is provided above the chamber 11 so as to sandwich the casing 21. The heat radiation plate rotating means 41 includes a drive gear provided on the upper part of the chamber 11, a drive motor 46 provided on the upper part of the chamber 11 and driving the drive gear,
It has a support rod 42 around which a rack gear that is suspended from the upper portion of the chamber 11 and meshes with a drive gear is formed, and a connecting wire 44 that connects the lower end of the support rod 42 and the heat radiation plate 27. The drive gear is built in a gear box 43 provided in the upper part of the chamber 11, and the connecting wire 44 is provided in the turning roller 2 provided outside the tubular portion 26a.
6e (FIG. 3) changes the direction and is installed.
In the heat radiation plate rotating means 41, a drive gear (not shown) contained in the gear box 43 is rotated by the rotation of the rotation shaft 46a by the drive motor 46, and the support rod 42 is moved up and down to radiate heat through the connecting wire 44. Each of the plates 27 is rotated so that the angles of the plurality of heat radiation plates 27 with respect to the heat radiation suppressing portion 26c can be changed from the state shown by the solid line to the state shown by the broken line in FIG.
【0017】一方、引上げ手段22における引上げ用モ
ータの出力軸(図示せず)にはロータリエンコーダ(図
示せず)が設けられ、るつぼ昇降手段17には石英るつ
ぼ13内のシリコン融液12の重量を検出する重量セン
サ(図示せず)と、支軸16の昇降位置を検出するリニ
ヤエンコーダ(図示せず)とが設けられる。ロータリエ
ンコーダ、重量センサ及びリニヤエンコーダの各検出出
力はコントローラ(図示せず)の制御入力に接続され、
コントローラの制御出力は引上げ手段22の引上げ用モ
ータ、るつぼ昇降手段17の昇降用モータ及び熱輻射板
回転手段41の駆動モータ46にそれぞれ接続される。
またコントローラにはメモリ(図示せず)が設けられ、
このメモリにはロータリエンコーダの検出出力に対する
ワイヤケーブル23の巻取り長さ、即ちシリコン単結晶
棒25の引上げ長さが第1マップとして記憶され、重量
センサの検出出力に対する石英るつぼ13内のシリコン
融液12の液面レベルが第2マップとして記憶される。
コントローラは重量センサの検出出力に基づいて石英る
つぼ13内のシリコン融液12の液面を常に一定のレベ
ルに保つように、るつぼ昇降手段17の昇降用モータを
制御するとともに、複数の熱輻射板27を回転させため
熱輻射板回転手段41の駆動モータ46を制御するよう
に構成される。On the other hand, a rotary encoder (not shown) is provided on the output shaft (not shown) of the pulling motor in the pulling means 22, and the weight of the silicon melt 12 in the quartz crucible 13 is provided in the crucible lifting means 17. There is provided a weight sensor (not shown) for detecting the position and a linear encoder (not shown) for detecting the vertical position of the support shaft 16. Each detection output of the rotary encoder, the weight sensor and the linear encoder is connected to a control input of a controller (not shown),
The control output of the controller is connected to the pulling motor of the pulling means 22, the raising / lowering motor of the crucible raising / lowering means 17, and the drive motor 46 of the heat radiation plate rotating means 41, respectively.
In addition, the controller is provided with a memory (not shown),
In this memory, the winding length of the wire cable 23 with respect to the detection output of the rotary encoder, that is, the pulling length of the silicon single crystal rod 25 is stored as a first map, and the silicon melting inside the quartz crucible 13 with respect to the detection output of the weight sensor is stored. The liquid level of the liquid 12 is stored as the second map.
The controller controls the raising / lowering motor of the crucible raising / lowering means 17 so that the liquid level of the silicon melt 12 in the quartz crucible 13 is always kept at a constant level based on the detection output of the weight sensor, and the plurality of heat radiation plates It is configured to control the drive motor 46 of the heat radiation plate rotating means 41 to rotate 27.
【0018】このように構成された装置による本発明に
よるシリコン単結晶の引上げ方法を説明する。図2に示
すように、石英るつぼ13に高純度のシリコン多結晶体
を投入し、カーボンヒータ18によりこの高純度のシリ
コン多結晶体を加熱・融解してシリコン融液12にす
る。このシリコン多結晶体の融解に際し、熱輻射板回転
手段41は支持棒42を上方に移動させて熱輻射板27
を図3の破線矢印で示すよう回転させて破線で示すよう
に起立させる(θ=0゜)。シリコン多結晶体が融解し
て石英るつぼ13にシリコン融液12が貯留した後、第
1及び第2流量調整弁31,32を開くことにより不活
性ガスをケーシング21内に供給してシリコン融液12
の表面から蒸発したガスをこの不活性ガスとともに排出
パイプ30から排出させる。A method for pulling a silicon single crystal according to the present invention using the apparatus thus constructed will be described. As shown in FIG. 2, a high-purity silicon polycrystal is put into a quartz crucible 13, and the high-purity silicon polycrystal is heated and melted by a carbon heater 18 to form a silicon melt 12. When the silicon polycrystalline body is melted, the heat radiation plate rotating means 41 moves the support rod 42 upward to move the heat radiation plate 27.
Is rotated as shown by the broken line arrow in FIG. 3 to stand up as shown by the broken line (θ = 0 °). After the silicon polycrystal melts and the silicon melt 12 is stored in the quartz crucible 13, the inert gas is supplied into the casing 21 by opening the first and second flow rate adjusting valves 31 and 32. 12
The gas evaporated from the surface of is discharged from the discharge pipe 30 together with this inert gas.
【0019】次に、引上げ手段の図示しない引上げ用モ
ータによりワイヤ19を繰出して種結晶24を降下さ
せ、種結晶24の先端部をシリコン融液12に接触させ
る。その後種結晶24を徐々に引上げて種絞り部25a
を形成した後、更に種結晶24を引上げることにより種
絞り部25aの下部に先ず肩部25bを育成させる。こ
の肩部25bの形成時においても、熱輻射板回転手段4
1は複数の熱輻射板27を肩部25bから離した位置で
起立させる。このため、シリコン融液12の熱は形成途
中の肩部25bに積極的に放散されて、速やかに肩部2
5bの形成が行われる。Next, the wire 19 is fed out by a pulling motor (not shown) of pulling means to lower the seed crystal 24, and the tip of the seed crystal 24 is brought into contact with the silicon melt 12. After that, the seed crystal 24 is gradually pulled up and the seed diaphragm 25a
After forming, the seed crystal 24 is further pulled up to grow the shoulder portion 25b under the seed narrowing portion 25a. Even when the shoulder portion 25b is formed, the heat radiation plate rotating means 4
1 stands up the plurality of heat radiation plates 27 at a position separated from the shoulder portion 25b. For this reason, the heat of the silicon melt 12 is positively dissipated to the shoulder portion 25b in the process of formation, and the shoulder portion 2b quickly
5b is formed.
【0020】肩部25bが育成されたならば、図1に示
すように、更に種結晶24を引上げることにより肩部2
5bの下方に直胴部25cを形成する。この直胴部25
cの形成に際し、熱輻射板回転手段41は支持棒42を
下方に移動させて複数の熱輻射板27を図3の実線矢印
で示すように回転させ、図の一点鎖線で示す状態から実
線で示すようにその複数の熱輻射板27を放熱抑制部2
6c上に倒伏させる(θ=120゜)。放熱抑制部26
c上に倒伏した複数の熱輻射板27は、シリコン融液1
2の熱がチャンバ11内に放散するのを防ぐとともに、
放熱抑制部26cとともに成長したシリコン単結晶棒2
5の冷却を促進し、直胴部25cの形成時におけるシリ
コン単結晶棒25の軸方向の温度勾配を肩部25bの形
成時(図2)と同等に高く維持する。なお、直胴部25
cの育成に伴い、シリコン融液12の表面は低下し、減
少する融液12の量に応じて図示しない昇降用モータは
るつぼ13を上昇させ、種結晶24の引上げとともに低
下するシリコン融液12の表面を所定位置に維持させ
る。After the shoulder portion 25b is grown, the shoulder portion 2 is further pulled up by pulling up the seed crystal 24, as shown in FIG.
A straight body portion 25c is formed below 5b. This straight body part 25
In forming c, the heat radiating plate rotating means 41 moves the support rod 42 downward to rotate the plurality of heat radiating plates 27 as shown by the solid line arrows in FIG. 3, and from the state shown by the dashed line in FIG. As shown, the plurality of heat radiation plates 27 are connected to the heat radiation suppressing section 2
Lie on 6c (θ = 120 °). Heat dissipation suppressing section 26
The plurality of heat radiating plates 27 laid down on c are the silicon melt 1
2 heat is prevented from being dissipated in the chamber 11,
Silicon single crystal rod 2 grown together with heat dissipation suppressing portion 26c
The cooling of No. 5 is promoted, and the temperature gradient in the axial direction of the silicon single crystal ingot 25 at the time of forming the straight body portion 25c is maintained as high as that at the time of forming the shoulder portion 25b (FIG. 2). In addition, the straight body part 25
With the growth of c, the surface of the silicon melt 12 lowers, and a lifting motor (not shown) raises the crucible 13 in accordance with the amount of the melt 12 decreasing, and the silicon melt 12 lowers as the seed crystal 24 is pulled up. To keep the surface in place.
【0021】[0021]
【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。
<実施例1>図1に示すように、内径が400〜600
mmの石英るつぼ13と、筒部26aの内径が300〜
500mm、高さが300〜600mmの熱遮蔽部材2
6とを有するシリコン単結晶の引上げ装置10の、その
筒部26aの下部にコーン状の放熱抑制部31を形成し
た。この放熱抑制部31に6個の熱輻射板27を配置
し、それぞれの熱輻射板27の外周部を熱遮蔽部材26
にそれぞれ枢支した。輻射板27には連結ワイヤ44の
一端を接続して、連結ワイヤ44の他端は熱輻射板回転
手段41の支持棒42の下端に接続した。この熱輻射板
27は厚さ約50〜80mmのカーボンにより作られた
ものを使用した。このように構成された引上げ装置10
を実施例1とした。EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> As shown in FIG. 1, the inner diameter is 400 to 600.
mm quartz crucible 13 and the inner diameter of the tubular portion 26a is 300 to
Heat shield member 2 having a height of 500 mm and a height of 300 to 600 mm
In the silicon single crystal pulling apparatus 10 having the above-mentioned No. 6, a cone-shaped heat dissipation suppressing unit 31 was formed in the lower portion of the cylindrical portion 26a. Six heat radiation plates 27 are arranged in the heat radiation suppressing portion 31, and the outer peripheral portions of the respective heat radiation plates 27 are covered by the heat shielding member 26.
To each of them. One end of the connecting wire 44 was connected to the radiation plate 27, and the other end of the connecting wire 44 was connected to the lower end of the support rod 42 of the heat radiation plate rotating means 41. The heat radiation plate 27 is made of carbon and has a thickness of about 50 to 80 mm. The pulling device 10 configured as described above
Was set as Example 1.
【0022】<比較例1>図示しないが熱輻射板27を
設けないことを除いて、引上げ装置を上記実施例1と同
一に構成した。この引上げ装置を比較例1とした。<Comparative Example 1> Although not shown, the pulling device was constructed in the same manner as in Example 1 except that the heat radiation plate 27 was not provided. This pulling device is referred to as Comparative Example 1.
【0023】<比較試験及び評価>実施例1及び比較例
1の各引上げ装置にて直胴部の直径300〜350mm
のシリコン単結晶棒25を引上げ速度0.1〜1.0m
m/分で引上げたときのシリコン単結晶棒25の軸方向
の固液界面近傍における温度勾配を輻射伝熱を考慮した
熱伝導解析プログラムにてシミュレーション計算し、比
較を行った。シリコン単結晶棒25の引上げ量は固化率
により表し、固化率は、引上げられたシリコン単結晶棒
25の重量を石英るつぼ13に当初貯留されたシリコン
融液12の重量で除した値に100を乗じた値として表
した。また、実施例1では、熱輻射板27の放熱抑制部
26cに対する角度をθ(図3)としたとき、固化率と
の関係で図5に示す角度(θ)で複数の熱輻射板27を
放熱抑制部26c上に倒伏するように回転させた。この
結果を図6に示す。<Comparison Test and Evaluation> With each of the pulling devices of Example 1 and Comparative Example 1, the diameter of the straight body part is 300 to 350 mm.
Pulling speed of the silicon single crystal rod 25 of 0.1 to 1.0 m
The temperature gradient in the vicinity of the solid-liquid interface in the axial direction of the silicon single crystal ingot 25 when pulled up at m / min was simulated and calculated by a heat conduction analysis program in consideration of radiative heat transfer for comparison. The pulling amount of the silicon single crystal rod 25 is represented by a solidification rate, and the solidification rate is 100 obtained by dividing the weight of the pulled silicon single crystal rod 25 by the weight of the silicon melt 12 initially stored in the quartz crucible 13. Expressed as a multiplied value. Further, in the first embodiment, when the angle of the heat radiation plate 27 with respect to the heat radiation suppressing portion 26c is θ (FIG. 3), the plurality of heat radiation plates 27 are arranged at the angle (θ) shown in FIG. 5 in relation to the solidification rate. It was rotated so as to fall on the heat radiation suppressing portion 26c. The result is shown in FIG.
【0024】図6より明らかなように、比較例1ではシ
リコン単結晶棒25の引上げ当初、シリコン単結晶棒2
5の軸方向の固液界面近傍における温度勾配が最大値を
示し、その後固化率が43%の時点において最小値を示
し、更に引上げることによりその温度勾配が僅かに上昇
した。これに対して、実施例1ではシリコン単結晶棒2
5の引上げ当初では比較例1と同様に温度勾配が最大値
を示し、その後固化率が43%の時点において比較例1
よりも高い価で最小値を示す。その後更に引上げてもそ
の値が変化することはなくほぼ均一化していることが判
る。As is apparent from FIG. 6, in Comparative Example 1, the silicon single crystal ingot 2 was initially pulled up and then the silicon single crystal ingot 2 was pulled up.
The temperature gradient in the vicinity of the solid-liquid interface in the axial direction of 5 showed the maximum value, then showed the minimum value at the time when the solidification rate was 43%, and the temperature gradient slightly increased by further raising. On the other hand, in Example 1, the silicon single crystal rod 2
At the beginning of pulling up No. 5, the temperature gradient showed the maximum value as in Comparative Example 1, and then at the time when the solidification rate was 43%, Comparative Example 1
It shows the minimum value with a higher value. It can be seen that even if the value is further raised after that, the value does not change and is almost uniform.
【0025】これは、実施例1では熱輻射板27がシリ
コン融液12のチャンバ内への放熱を防ぎ、シリコン融
液12の熱が直胴部25cに直接放散するのを防止して
熱遮蔽部材26とともに成長したシリコン単結晶棒25
の冷却を促進したのに対し、比較例1ではシリコン融液
12からチャンバ内へ熱が放散され、この熱により直胴
部25cの中心部における軸方向の固液界面近傍におけ
る温度勾配が低下したためと考えられる。In the first embodiment, the heat radiation plate 27 prevents the heat of the silicon melt 12 from radiating into the chamber, prevents the heat of the silicon melt 12 from directly radiating to the straight body portion 25c, and shields the heat. Silicon single crystal rod 25 grown together with member 26
However, in Comparative Example 1, heat was dissipated from the silicon melt 12 into the chamber, and this heat reduced the temperature gradient near the solid-liquid interface in the axial direction at the center of the straight body portion 25c. it is conceivable that.
【0026】[0026]
【発明の効果】以上述べたように、本発明によれば、下
方に向うに従って開口径が小さくなるように下向きに傾
斜したコーン状の放熱抑制部を熱遮蔽部材の下部に形成
し、複数の熱輻射板をシリコン単結晶棒を包囲するよう
に放熱抑制部上に配置し、配置された複数の熱輻射板の
外周部を熱遮蔽部材にそれぞれ枢支し、複数の熱輻射板
をそれぞれ回転して複数の熱輻射板の放熱抑制部に対す
る角度を変更する熱輻射板回転手段を備えたので、熱輻
射板回転手段により熱輻射板を放熱抑制部上に倒伏する
ように回転させることにより、シリコン融液の熱がチャ
ンバ内に放散するのを防ぎ、熱遮蔽体とともに成長した
シリコン単結晶棒の冷却を促進し、直胴部形成時の単結
晶棒の中心部の軸方向の温度勾配を肩部形成時と同等に
高く維持することができる。また、熱輻射板回転手段
が、チャンバの上部に設けられた駆動ギヤと、チャンバ
の上部に設けられ駆動ギヤを駆動する駆動モータと、チ
ャンバの上部からチャンバ内に吊り下げられ駆動ギヤに
歯合するラックギヤが周囲に形成された支持棒と、支持
棒の下端と熱輻射板を連結する連結ワイヤとを有すれ
ば、ラックギヤに歯合する駆動ギヤの回転により支持棒
が昇降するため、容易に熱輻射板を回転できる。As described above, according to the present invention, a cone-shaped heat radiation suppressing portion inclined downward so that the opening diameter becomes smaller as it goes downward is formed in the lower portion of the heat shielding member, and a plurality of heat radiation suppressing members are formed. The heat radiation plate is arranged on the heat dissipation suppressing portion so as to surround the silicon single crystal rod, and the outer peripheral portions of the arranged heat radiation plates are pivotally supported by the heat shielding member, respectively, and the plurality of heat radiation plates are rotated respectively. Since the heat radiation plate rotating means for changing the angle of the plurality of heat radiation plates with respect to the heat radiation suppressing portion is provided, by rotating the heat radiation plate by the heat radiation plate rotating means so as to fall on the heat radiation suppressing portion, It prevents the heat of the silicon melt from radiating into the chamber, accelerates the cooling of the silicon single crystal rod grown with the heat shield, and reduces the temperature gradient in the axial direction of the central part of the single crystal rod when the straight body is formed. Keep as high as when forming the shoulder It can be. Further, the heat radiation plate rotating means includes a drive gear provided on the upper part of the chamber, a drive motor provided on the upper part of the chamber to drive the drive gear, and a drive gear that is suspended from the upper part of the chamber into the chamber and meshes with the drive gear. If there is a supporting rod around which the rack gear is formed and a connecting wire that connects the lower end of the supporting rod and the heat radiation plate, the supporting rod moves up and down by the rotation of the drive gear that meshes with the rack gear, so it is easy. The heat radiation plate can be rotated.
【0027】更に、肩部形成時に複数の熱輻射板を肩部
から離した位置に起立させれば、シリコン融液の熱を形
成途中の肩部に積極的に放散して速やかに肩部の形成を
行うことができ、直胴部形成時に複数の熱輻射板を放熱
抑制部上に倒伏するように回転させれば、シリコン融液
の熱が直胴部に直接放散するのを防ぎ、熱遮蔽部材とと
もに成長したシリコン単結晶棒の冷却を促進して、直胴
部形成時のシリコン単結晶棒の中心部の軸方向の温度勾
配を肩部の形成時と同等に高く維持することができる。
この結果、シリコン単結晶棒の中心部の軸方向の固液界
面近傍における温度勾配を均一にし、シリコン単結晶棒
中の熱的ストレスの発生を抑制することができる。Furthermore, when a plurality of heat radiation plates are erected at positions apart from the shoulders when forming the shoulders, the heat of the silicon melt is positively dissipated to the shoulders during the formation, and the heat of the shoulders is rapidly increased. Forming can be performed, and by rotating multiple heat radiation plates so as to lie down on the heat dissipation suppressing part when forming the straight body part, it is possible to prevent the heat of the silicon melt from radiating directly to the straight body part, By promoting cooling of the silicon single crystal ingot grown with the shielding member, it is possible to maintain the temperature gradient in the axial direction of the central part of the silicon single crystal ingot at the time of forming the straight body as high as that at the time of forming the shoulder. .
As a result, the temperature gradient in the vicinity of the solid-liquid interface in the axial direction at the center of the silicon single crystal rod can be made uniform, and the occurrence of thermal stress in the silicon single crystal rod can be suppressed.
【図1】シリコン単結晶棒の直胴部が引上げられた本発
明の引上げ装置を示す断面構成図。FIG. 1 is a cross-sectional configuration diagram showing a pulling device of the present invention in which a straight body portion of a silicon single crystal ingot is pulled up.
【図2】肩部が引上げられた状態を示す図1に対応する
断面構成図。FIG. 2 is a sectional configuration diagram corresponding to FIG. 1, showing a state in which a shoulder portion is pulled up.
【図3】その放熱抑制部の上に熱輻射板が配置された熱
遮蔽部材の断面図。FIG. 3 is a cross-sectional view of a heat shield member in which a heat radiation plate is arranged on the heat radiation suppressing portion.
【図4】その熱輻射板の配置状態を示す図1のA−A線
断面図。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1 showing an arrangement state of the heat radiation plate.
【図5】熱輻射板の放熱抑制部に対する角度と固化率と
の関係を示す図。FIG. 5 is a diagram showing a relationship between an angle of a heat radiation plate with respect to a heat radiation suppressing portion and a solidification rate.
【図6】シリコン単結晶棒の中心部の軸方向の固液界面
近傍における温度勾配と固化率との関係を示す図。FIG. 6 is a diagram showing the relationship between the temperature gradient and the solidification rate in the vicinity of the solid-liquid interface in the axial direction at the center of the silicon single crystal ingot.
10 引上げ装置 11 チャンバ 12 シリコン融液 13 石英るつぼ 18 ヒータ 25 シリコン単結晶棒 25b 肩部 25c 直胴部 26 熱遮蔽部材 26c 放熱抑制部 27 熱輻射板 41 熱輻射板回転手段 42 支持棒 44 連結ワイヤ 46 駆動モータ 10 Lifting device 11 chambers 12 Silicon melt 13 Quartz crucible 18 heater 25 Silicon single crystal rod 25b shoulder 25c straight body 26 Heat shield 26c Heat dissipation suppressing section 27 Heat radiation plate 41 Heat radiation plate rotating means 42 Support rod 44 connecting wire 46 Drive motor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島貫 康 東京都千代田区大手町1丁目5番1号 三菱マテリアルシリコン株式会社内 (56)参考文献 特開 平9−132496(JP,A) 特開 平1−100086(JP,A) 特開 平5−330975(JP,A) 特開 平6−256084(JP,A) 特開 平9−227272(JP,A) 特開 平9−309789(JP,A) 特開 平9−315882(JP,A) 特開 平11−157993(JP,A) 特開 平11−263692(JP,A) 国際公開93/00462(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasushi Shimanuki 1-5-1, Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd. (56) Reference JP-A-9-132496 (JP, A) JP 1-100086 (JP, A) JP 5-330975 (JP, A) JP 6-256084 (JP, A) JP 9-227272 (JP, A) JP 9-309789 (JP , A) JP-A-9-315882 (JP, A) JP-A-11-157993 (JP, A) JP-A-11-263692 (JP, A) International Publication 93/00462 (WO, A1) (58) Survey Areas (Int.Cl. 7 , DB name) C30B 1/00-35/00
Claims (3)
(12)が貯留された石英るつぼ(13)と、前記石英るつぼ(1
3)の外周面を包囲し前記シリコン融液(12)を加熱するヒ
ータ(18)と、前記シリコン融液(12)から引上げられるシ
リコン単結晶棒(25)の外周面を包囲しかつ下端が前記シ
リコン融液(12)表面から間隔をあけて上方に位置するよ
うに構成され前記ヒータ(18)からの輻射熱を遮る円筒状
の熱遮蔽部材(26)とを備えたシリコン単結晶の引上げ装
置において、 下方に向うに従って開口径が小さくなるように下向きに
傾斜したコーン状の放熱抑制部(26c)が前記熱遮蔽部材
(26)の下部に形成され、 複数の熱輻射板(27)が前記シリコン単結晶棒(25)を包囲
するように前記放熱抑制部(26c)上に配置され、 配置された前記複数の熱輻射板(27)の外周部が前記熱遮
蔽部材(26)にそれぞれ枢支され、 前記複数の熱輻射板(27)をそれぞれ回転して前記複数の
熱輻射板(27)の前記放熱抑制部(26c)に対する角度(θ)
を変更する熱輻射板回転手段(41)を備えたことを特徴と
するシリコン単結晶の引上げ装置。1. A silicon melt provided in the chamber (11).
(12) is stored in the quartz crucible (13), and the quartz crucible (1
A heater (18) that surrounds the outer peripheral surface of 3) and heats the silicon melt (12), and a lower end that surrounds the outer peripheral surface of the silicon single crystal rod (25) pulled from the silicon melt (12). A silicon single crystal pulling device provided with a cylindrical heat shield member (26) configured to be positioned above the surface of the silicon melt (12) with a space between them and shield the radiant heat from the heater (18). In the above, the cone-shaped heat dissipation suppressing portion (26c) inclined downward so that the opening diameter becomes smaller as it goes downward is the heat shielding member.
A plurality of heat radiation plates (27) formed on the lower part of (26) are arranged on the heat dissipation suppressing part (26c) so as to surround the silicon single crystal rod (25), and the plurality of heat dissipation plates arranged. The outer peripheral portion of the radiation plate (27) is pivotally supported by the heat shielding member (26), respectively, and the plurality of heat radiation plates (27) are rotated to rotate the heat radiation plates (27). Angle (θ) with respect to (26c)
A device for pulling a silicon single crystal, comprising a heat radiation plate rotating means (41) for changing the temperature.
(11)の上部に設けられた駆動ギヤと、前記チャンバ(11)
の上部に設けられ前記駆動ギヤを駆動する駆動モータ(4
6)と、チャンバ(11)の上部から前記チャンバ(11)内に吊
り下げられ前記駆動ギヤに歯合するラックギヤが周囲に
形成された支持棒(42)と、前記支持棒(42)の下端と熱輻
射板(27)を連結する連結ワイヤ(44)とを有する請求項1
記載のシリコン単結晶の引上げ装置。2. A heat radiation plate rotating means (41) is provided in the chamber.
The drive gear provided on the upper part of (11) and the chamber (11)
A drive motor (4
6), a support rod (42) around which a rack gear that is suspended from the upper part of the chamber (11) and meshes with the drive gear is formed, and the lower end of the support rod (42) And a connecting wire (44) for connecting the heat radiation plate (27).
The apparatus for pulling a silicon single crystal described.
液(12)から成長するシリコン単結晶棒(25)を筒状の熱遮
蔽部材(26)と前記熱遮蔽部材(26)の下部に形成された下
向きに傾斜したコーン状の放熱抑制部(26c)により包囲
し、前記シリコン単結晶棒(25)を包囲するように複数の
熱輻射板(27)を前記放熱抑制部(26c)上に配置し、前記
複数の熱輻射板(27)の外周部を前記熱遮蔽部材(26)にそ
れぞれ枢支して前記シリコン単結晶棒(25)を引上げる方
法であって、 前記シリコン単結晶棒(25)の肩部(25b)形成時に前記複
数の熱輻射板(27)を前記肩部(25b)から離した位置に起
立させ、 前記シリコン単結晶棒(25)の直胴部(25c)形成時に前記
複数の熱輻射板(27)を前記起立した位置から回転させて
前記放熱抑制部(26c)上に倒伏させることを特徴とする
シリコン単結晶の引上げ方法。3. A cylindrical heat shield member (26) is provided with a silicon single crystal rod (25) grown from a silicon melt (12) stored in a quartz crucible (13) and a lower portion of the heat shield member (26). Surrounded by a downwardly inclined cone-shaped heat dissipation suppressing portion (26c) formed, a plurality of heat radiation plates (27) to surround the silicon single crystal rod (25) the heat dissipation suppressing portion (26c). A method of pulling up the silicon single crystal rod (25) by arranging the silicon single crystal rods (25) on the heat shielding member (26) by pivotally supporting the outer peripheral portions of the plurality of heat radiation plates (27). When forming the shoulder portion (25b) of the crystal rod (25), the plurality of heat radiation plates (27) are erected at a position apart from the shoulder portion (25b), and the straight body portion of the silicon single crystal rod (25) ( 25c) by rotating the plurality of heat radiation plates (27) from the upright position during formation
A method for pulling a silicon single crystal, which is characterized in that the heat dissipation suppressing portion (26c) is laid down.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17893698A JP3428626B2 (en) | 1998-06-25 | 1998-06-25 | Apparatus and method for pulling silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17893698A JP3428626B2 (en) | 1998-06-25 | 1998-06-25 | Apparatus and method for pulling silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000007496A JP2000007496A (en) | 2000-01-11 |
JP3428626B2 true JP3428626B2 (en) | 2003-07-22 |
Family
ID=16057243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17893698A Expired - Fee Related JP3428626B2 (en) | 1998-06-25 | 1998-06-25 | Apparatus and method for pulling silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3428626B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111321458A (en) * | 2018-12-13 | 2020-06-23 | 上海新昇半导体科技有限公司 | Heating type guide cylinder |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336021A (en) | 2004-05-28 | 2005-12-08 | Sumco Corp | Single crystal pulling apparatus |
US7491270B2 (en) | 2004-10-26 | 2009-02-17 | Sumco Corporation | Heat shield member and single crystal pulling device |
CN103397375B (en) * | 2013-07-31 | 2016-08-10 | 杭州慧翔电液技术开发有限公司 | Sapphire furnace with rotary heat-insulating tungsten screen |
CN107779945B (en) * | 2016-08-25 | 2020-11-27 | 上海新昇半导体科技有限公司 | Special-shaped heater and thermal field structure of single crystal pulling furnace |
CN106702490B (en) * | 2016-08-30 | 2020-12-11 | 天通银厦新材料有限公司 | Sapphire crystal growth equipment |
CN111926380B (en) * | 2020-07-01 | 2021-10-19 | 中国科学院上海微系统与信息技术研究所 | A heat shield device for a single crystal production furnace, a control method and a single crystal production furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000462A1 (en) | 1991-06-24 | 1993-01-07 | Komatsu Electronic Metals Co., Ltd. | Device for pulling up single crystal |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2580197B2 (en) * | 1987-10-12 | 1997-02-12 | 三菱マテリアル株式会社 | Single crystal pulling device |
JP2940892B2 (en) * | 1992-06-03 | 1999-08-25 | 三菱マテリアル株式会社 | Single crystal pulling device |
JPH06256084A (en) * | 1993-02-26 | 1994-09-13 | Nippon Steel Corp | Apparatus for producing single crystal |
JPH09132496A (en) * | 1995-11-07 | 1997-05-20 | Mitsubishi Materials Corp | Method for adjusting oxygen concentration in silicon single crystal and apparatus therefor |
DE19546987A1 (en) * | 1995-12-15 | 1997-06-19 | Wacker Siltronic Halbleitermat | Method and device for pulling a single crystal |
JP4097729B2 (en) * | 1996-05-22 | 2008-06-11 | Sumco Techxiv株式会社 | Semiconductor single crystal manufacturing equipment |
JPH09315882A (en) * | 1996-05-29 | 1997-12-09 | Komatsu Electron Metals Co Ltd | Device for producing semiconductor single crystal and production of semiconductor single crystal therewith |
JP3642188B2 (en) * | 1997-09-22 | 2005-04-27 | 三菱住友シリコン株式会社 | Silicon single crystal pulling device |
JP3598800B2 (en) * | 1998-03-17 | 2004-12-08 | 三菱住友シリコン株式会社 | Method of pulling silicon single crystal |
-
1998
- 1998-06-25 JP JP17893698A patent/JP3428626B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000462A1 (en) | 1991-06-24 | 1993-01-07 | Komatsu Electronic Metals Co., Ltd. | Device for pulling up single crystal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111321458A (en) * | 2018-12-13 | 2020-06-23 | 上海新昇半导体科技有限公司 | Heating type guide cylinder |
Also Published As
Publication number | Publication date |
---|---|
JP2000007496A (en) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI832389B (en) | A thermal field adjustment device and method for single crystal growth | |
JP2000247776A (en) | Heat-shielding member in pulling apparatus of silicon single crystal | |
JP3428626B2 (en) | Apparatus and method for pulling silicon single crystal | |
JP5782323B2 (en) | Single crystal pulling method | |
US5788718A (en) | Apparatus and a method for growing a single crystal | |
JP5646589B2 (en) | Method of pulling silicon single crystal | |
JP3428625B2 (en) | Apparatus and method for pulling silicon single crystal | |
JP4161655B2 (en) | Crystal manufacturing heater, crystal manufacturing apparatus, and crystal manufacturing method | |
US6379460B1 (en) | Thermal shield device and crystal-pulling apparatus using the same | |
JPH09175889A (en) | Single crystal pull-up apparatus | |
JP3428624B2 (en) | Silicon single crystal pulling method | |
JP2002321997A (en) | Apparatuses for making silicon single crystal and method for making silicon single crystal using the same | |
JP3642174B2 (en) | Silicon single crystal pulling apparatus and pulling method thereof | |
JPH0524969A (en) | Crystal growth equipment | |
JP4310980B2 (en) | Pulling method of silicon single crystal | |
JP3587231B2 (en) | Silicon single crystal pulling device | |
JP2001010892A (en) | Method for melting polycrystalline silicon for silicon single crystal pulling device | |
JP3719336B2 (en) | Silicon single crystal pulling apparatus and pulling method thereof | |
JP3642175B2 (en) | Silicon single crystal pulling apparatus and pulling method thereof | |
JPH07277870A (en) | Crystal growth method and apparatus | |
JPH06345585A (en) | Method for pulling up single crystal | |
JP2000211994A (en) | Melting of polycrystalline silicon before silicon single crystal growth and apparatus for growing silicon single crystal | |
JPH09202685A (en) | Single crystal pulling device | |
JP3719329B2 (en) | Silicon single crystal pulling device | |
JP3598800B2 (en) | Method of pulling silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |