[go: up one dir, main page]

JP3427577B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3427577B2
JP3427577B2 JP16414695A JP16414695A JP3427577B2 JP 3427577 B2 JP3427577 B2 JP 3427577B2 JP 16414695 A JP16414695 A JP 16414695A JP 16414695 A JP16414695 A JP 16414695A JP 3427577 B2 JP3427577 B2 JP 3427577B2
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
carbonaceous
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16414695A
Other languages
Japanese (ja)
Other versions
JPH08222273A (en
Inventor
隆幸 山平
由明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16414695A priority Critical patent/JP3427577B2/en
Publication of JPH08222273A publication Critical patent/JPH08222273A/en
Application granted granted Critical
Publication of JP3427577B2 publication Critical patent/JP3427577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質材料を用いた非
水電解質二次電池に関するものである。
FIELD OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery using a carbonaceous material.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジオカセットレ
コーダ等のポータブル機器の普及に伴い、使い捨てであ
る一次電池に代わって、繰り返し使用できる二次電池に
対する需要が高まっている。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and radio cassette recorders, there is an increasing demand for rechargeable secondary batteries instead of disposable primary batteries.

【0003】ところで、これまで使用されている二次電
池の殆どはアルカリ電解液を用いたニッケルカドミウム
電池である。
By the way, most of the secondary batteries used so far are nickel-cadmium batteries using an alkaline electrolyte.

【0004】しかしながら、このニッケルカドミウム電
池は、電池電圧が約1.2Vであるので、電池のエネル
ギー密度を向上させることが困難である。また、常温で
の自己放電率が1ヶ月で20%以上と極めて高いという
欠点も有している。
However, since the battery voltage of this nickel-cadmium battery is about 1.2 V, it is difficult to improve the energy density of the battery. It also has a drawback that the self-discharge rate at room temperature is as high as 20% or more per month.

【0005】そこで、電解液に非水溶媒を使用し、負極
にリチウム等の軽金属を使用した、いわゆる非水電解質
二次電池が開発され、検討されている。この非水電解質
二次電池は、電池電圧が3V以上と高く、高エネルギー
密度を有し、しかも自己放電率も低い。
Therefore, a so-called non-aqueous electrolyte secondary battery using a non-aqueous solvent as an electrolytic solution and a light metal such as lithium for a negative electrode has been developed and studied. This non-aqueous electrolyte secondary battery has a high battery voltage of 3 V or higher, a high energy density, and a low self-discharge rate.

【0006】しかし、負極に金属リチウムを使用した非
水電解質二次電池では、充放電の繰り返しにより負極に
使用した金属リチウム等がデンドライト状に成長して正
極と接触し、この結果、電池内部において短絡が生じ易
いという問題があり、短寿命で実用化が難しい。
However, in a non-aqueous electrolyte secondary battery in which metallic lithium is used for the negative electrode, metallic lithium and the like used for the negative electrode grows in a dendrite form due to repeated charging and discharging and contacts the positive electrode. As a result, inside the battery. There is a problem that a short circuit is likely to occur, and it has a short life and is difficult to put into practical use.

【0007】これを解決するために、負極リチウムを他
の金属と合金化することも試みられているが、この場合
には、充放電を繰り返すことにより、合金が微細粒子と
なり、短寿命となるという欠点がある。
In order to solve this, it has been attempted to alloy the negative electrode lithium with another metal, but in this case, by repeating charging and discharging, the alloy becomes fine particles and the life becomes short. There is a drawback that.

【0008】このような状況から、例えば特開昭62−
90863号公報等に開示されるように、コークス等の
炭素質材料を負極活物質として使用する新規な非水電解
質二次電池が提案されている。
Under such circumstances, for example, Japanese Patent Laid-Open No. 62-
As disclosed in Japanese Patent No. 90863, etc., a novel non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed.

【0009】炭素質材料を負極とする非水電解質二次電
池は、負極における上述のような欠点を有していないた
め、サイクル寿命特性に優れており、しかも安全性の点
でも金属リチウムを用いたものに比べて格段に優れてい
る。そして、正極活物質としてリチウム複合酸化物を用
いることにより、電池寿命が向上し、ある程度高エネル
ギー密度の非水電解質二次電池を得ることができる。
The non-aqueous electrolyte secondary battery using a carbonaceous material as the negative electrode does not have the above-mentioned drawbacks in the negative electrode, and therefore has excellent cycle life characteristics and uses lithium metal in terms of safety. It is much better than what it was. Then, by using the lithium composite oxide as the positive electrode active material, the battery life is improved, and a non-aqueous electrolyte secondary battery having a somewhat high energy density can be obtained.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、この炭
素質材料を負極活物質として用いた非水電解質二次電池
は、エネルギー密度が高いといっても、金属リチウム等
を負極活物質として用いた電池に比べると、かなり劣る
と言わざるを得ない。
However, a non-aqueous electrolyte secondary battery using this carbonaceous material as a negative electrode active material has a high energy density, but a battery using metallic lithium or the like as a negative electrode active material. I have to say that it is considerably inferior to.

【0011】炭素質材料を負極活物質として用いた電池
において、このような欠点を解消するための手法として
は、炭素質材料の充填密度を向上させる等の対策が考え
られるが、これにも限界がある。
In a battery using a carbonaceous material as a negative electrode active material, as a method for eliminating such a defect, measures such as improving the packing density of the carbonaceous material can be considered, but this is also the limit. There is.

【0012】そこで本発明は、リチウムイオンのドープ
・脱ドープ性能に優れた炭素質材料を用いることによっ
てサイクル寿命、安全性に優れ、高エネルギー密度を有
する非水電解質二次電池を提供することを目的とする。
Therefore, the present invention provides a non-aqueous electrolyte secondary battery having excellent cycle life and safety and high energy density by using a carbonaceous material excellent in lithium ion doping / dedoping performance. To aim.

【0013】[0013]

【課題を解決するための手段】本発明者等は、鋭意検討
の結果、ある種の炭素質原料を用い、これを熱処理(焼
成)することで、非常に高容量の炭素質材料を開発する
に至った。
As a result of earnest studies, the present inventors have developed a very high capacity carbonaceous material by using a certain carbonaceous raw material and heat-treating (calcining) it. Came to.

【0014】本発明の非水電解質二次電池は、炭素含有
量が90%以上、軟化開始温度が300℃以上、熱膨張
試験における全膨張率が10%以下である低膨張性炭素
粘結材を炭素質原料とし、当該炭素質原料が不活性ガス
雰囲気中、または10−1torr以下の減圧下におい
て、700℃〜1300℃で焼成され、真比重が1.5
5g/ml〜1.95g/mlであり、002面の格子
面間隔が3.58オングストローム〜3.74オングス
トロームである炭素質材料を負極活物質とするととも
に、リチウム複合酸化物を正極活物質とし、さらに有機
電解質を含有することを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention is a low expansion carbon binder having a carbon content of 90% or more, a softening start temperature of 300 ° C. or more, and a total expansion coefficient of 10% or less in a thermal expansion test. As a carbonaceous raw material, the carbonaceous raw material is fired at 700 ° C. to 1300 ° C. in an inert gas atmosphere or under a reduced pressure of 10 −1 torr or less, and has a true specific gravity of 1.5.
5 g / ml to 1.95 g / ml and a carbonaceous material having a lattice spacing of 002 planes of 3.58 angstroms to 3.74 angstroms as a negative electrode active material, and a lithium composite oxide as a positive electrode active material. , And further contains an organic electrolyte.

【0015】本発明において、原料となる低膨張性炭素
粘結材としては、具体的には商品名LEC−1(大阪化
成社製)、商品名LEC−2(大阪化成社製)等が挙げ
られ、これらを用いることで非常に優れた炭素質材料を
簡単に得ることができる。
In the present invention, specific examples of the low-expansion carbon binder as a raw material include trade name LEC-1 (manufactured by Osaka Kasei Co.) and trade name LEC-2 (manufactured by Osaka Kasei Co.). It is possible to easily obtain a very excellent carbonaceous material by using these materials.

【0016】前記炭素質原料の焼成に際しては、温度や
雰囲気が重要で、例えば焼成雰囲気は、窒素、アルゴン
等の不活性ガス雰囲気とするか、あるいは10−1to
rr以下の減圧下とすることが好ましい。特に、後者
は、充放電容量の観点から好適である。また、焼成温度
については、700℃〜1300℃とすることが好まし
く、900℃〜1200℃とすることがより好ましい。
When firing the carbonaceous raw material, the temperature and the atmosphere are important. For example, the firing atmosphere is an inert gas atmosphere such as nitrogen or argon, or 10 -1 ton.
It is preferable that the pressure is reduced to rr or less. The latter is particularly preferable from the viewpoint of charge / discharge capacity. The firing temperature is preferably 700 ° C to 1300 ° C, more preferably 900 ° C to 1200 ° C.

【0017】以上により得られる炭素質材料は、真比重
が1.55g/ml以上、1.95g/ml以下、00
2面の格子面間隔が3.58オングストローム〜3.7
4オングストロームであることが望ましい。さらに望ま
しくは、真比重が1.80g/ml以上、1.89g/
ml以下、002面の格子面間隔が3.60オングスト
ローム〜3.68オングストロームである。
The carbonaceous material obtained as described above has a true specific gravity of 1.55 g / ml or more and 1.95 g / ml or less, 00
The lattice spacing between the two surfaces is 3.58 angstroms to 3.7.
It is preferably 4 Å. More preferably, the true specific gravity is 1.80 g / ml or more and 1.89 g / ml.
The 002 plane has a lattice spacing of 3.60 angstroms to 3.68 angstroms.

【0018】上記の炭素質材料は、例えば集電体と共に
焼結することにより、非水電解質二次電池の負極とされ
る。
The above-mentioned carbonaceous material is made into a negative electrode of a non-aqueous electrolyte secondary battery by, for example, being sintered together with a current collector.

【0019】このとき、正極には、一般式LiMO
(但し、Mは1種類以上の遷移金属、好ましくはCo、
Ni、Feの少なくとも1種を表し、0.05≦x≦
1.10である。)で表されるリチウム複合酸化物を含
んだ活物質が使用される。かかる活物質としては、具体
的にはLiCoO、LiNiO、LiNiCo
(1−y)(但し、0<y<1)で表される複合酸
化物が挙げられる。さらには、LiMnを用いる
ことも可能である。
At this time, the positive electrode has a general formula of Li x MO 2
(However, M is one or more kinds of transition metals, preferably Co,
Represents at least one of Ni and Fe, and 0.05 ≦ x ≦
It is 1.10. ) The active material containing the lithium composite oxide represented by Specific examples of such active material include LiCoO 2 , LiNiO 2 , and LiNi y Co.
(1-y) O 2 (where, 0 <y <1) composite oxide expressed by the like. Further, it is also possible to use LiMn 2 O 4 .

【0020】上記複合酸化物は、例えばリチウム、コバ
ルト、ニッケル等の炭酸塩を組成に応じて混合し、酸素
存在雰囲気下、600℃〜1000℃の温度範囲で焼成
することにより得られる。なお、このときの出発原料
は、前記炭酸塩に限定されず、水酸化物、酸化物からも
同様に合成可能である。
The above-mentioned composite oxide is obtained by mixing carbonates such as lithium, cobalt and nickel according to the composition and firing in a temperature range of 600 ° C. to 1000 ° C. in an oxygen atmosphere. The starting material at this time is not limited to the above-mentioned carbonate, and can be similarly synthesized from hydroxide or oxide.

【0021】さらに、電池の構成要素としては、電解液
が挙げられるが、この電解液としても、有機溶剤に電解
質を溶解したものであれば、公知のものがいずれも使用
可能である。したがって、有機溶剤としては、プロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン等のエステル類や、ジエチルエーテル、テトラヒ
ドロフラン、置換テトラヒドロフラン、ジオキソラン、
ピラン及びその誘導体、ジメトキシエタン、ジエトキシ
エタン等のエーテル類、3−メチル−2−オキサゾリジ
ノン等の3−置換−2−オキサゾリジノン類、スルホラ
ン、メチルスルホラン、アセトニトリル、プロピオニト
リル等が挙げられ、これらを単独もしくは2種類以上混
合して使用される。また、電解質としては、過塩素酸リ
チウム、ホウフッ化リチウム、リンフッ化リチウム、塩
化アルミン酸リチウム、ハロゲン化リチウム、トリフル
オロメタンスルホン酸リチウム等が使用できる。
Further, an electrolytic solution can be mentioned as a constituent element of the battery, and any known electrolytic solution can be used as long as it has an electrolyte dissolved in an organic solvent. Therefore, as the organic solvent, propylene carbonate, ethylene carbonate, esters such as γ-butyrolactone, diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolane,
Pyran and its derivatives, ethers such as dimethoxyethane and diethoxyethane, 3-substituted-2-oxazolidinones such as 3-methyl-2-oxazolidinone, sulfolane, methylsulfolane, acetonitrile, propionitrile, and the like. Are used alone or in combination of two or more. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate, or the like can be used.

【0022】[0022]

【作用】炭素含有量が90%以上、軟化開始温度が30
0℃以上、熱膨張試験における全膨張率が10%以下で
ある低膨張性炭素粘結材は、焼成するだけで簡単に特性
に優れた炭素質材料となる。
Operation: Carbon content is 90% or more, softening start temperature is 30
The low expansion carbon binder having a total expansion coefficient of 10% or less in a thermal expansion test at 0 ° C. or higher easily becomes a carbonaceous material having excellent properties simply by firing.

【0023】得られる炭素質材料は、リチウムのドープ
・脱ドープ性能に優れ、したがってこれを非水電解質二
次電池の負極活物質とすることで、高エネルギー密度化
が達成される。
The resulting carbonaceous material is excellent in lithium doping / dedoping performance. Therefore, by using this as a negative electrode active material for a non-aqueous electrolyte secondary battery, high energy density can be achieved.

【0024】[0024]

【実施例】以下、本発明を適用した実施例について、具
体的な実験結果に基づいて詳細に説明する。
EXAMPLES Examples to which the present invention is applied will be described in detail below based on concrete experimental results.

【0025】(比較例1) 先ず、正極ペレットを以下の手順で作成した。(Comparative Example 1) First, a positive electrode pellet was prepared by the following procedure.

【0026】正極化合物としては、炭酸リチウム0.5
モルと炭酸コバルト1モルとを混合し、空気中で900
℃、5時間焼成することにより、LiCoOを得た。
このLiCoOをボウルミルで粉砕することによっ
て、平均粒径10μmの粉体を得た。次いで、このLi
CoO91重量部と導電材としてのグラファイト6重
量部と結着材としてのポリフッ化ビニリデン3重量部と
を混合し、これにN−メチルピロリドンを分散剤として
加えてペーストを作成した。そして、このペーストを乾
燥し、5トンの圧力下、直径15.5mmの円形に成形
し、正極ペレットを得た。この正極ペレットの体積密度
は3.5g/mlであった。
As the positive electrode compound, lithium carbonate 0.5
900 mol in air by mixing 1 mol of cobalt carbonate with 1 mol of cobalt carbonate
LiCoO 2 was obtained by baking at 5 ° C. for 5 hours.
The LiCoO 2 was pulverized with a bowl mill to obtain a powder having an average particle size of 10 μm. Then, this Li
91 parts by weight of CoO 2, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added to this as a dispersant to prepare a paste. Then, this paste was dried and molded into a circular shape having a diameter of 15.5 mm under a pressure of 5 tons to obtain a positive electrode pellet. The volume density of this positive electrode pellet was 3.5 g / ml.

【0027】次に、負極ペレットを以下の手順で作成し
た。
Next, a negative electrode pellet was prepared by the following procedure.

【0028】炭素材料は、ピッチコークスを振動ミル中
で直径12.7mmのステンレス鋼製の球と共に15分
間粉砕することによって得た。平均粒径は33μmであ
った。なお、このとき用いたピッチコークスの真密度は
2.03g/ml、X線回折により日本学術振興会法に
準じて求めた002面の面間隔は3.46オングストロ
ーム、C軸方向の結晶厚みLcは40オングストローム
であった。次に、この粒状のピッチコークス90重量部
と結着材としてのポリフッ化ビニリデン10重量部とを
混合し、これにN−メチルピロリドンを分散剤として加
えてペーストを作成した。そして、このペーストを乾燥
し、直径16mmの円形に成形し、集電体となる銅エキ
スパンドメタルに圧着することで負極ペレットを得た。
The carbonaceous material was obtained by milling pitch coke in a vibrating mill with stainless steel balls of diameter 12.7 mm for 15 minutes. The average particle size was 33 μm. The true density of the pitch coke used at this time was 2.03 g / ml, the spacing of 002 planes determined by X-ray diffraction according to the Japan Society for the Promotion of Science was 3.46 angstroms, and the crystal thickness Lc in the C-axis direction was Lc. Was 40 Å. Next, 90 parts by weight of this granular pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added to this as a dispersant to prepare a paste. Then, this paste was dried, formed into a circular shape having a diameter of 16 mm, and pressed onto a copper expanded metal serving as a current collector to obtain a negative electrode pellet.

【0029】また、電解液としては、炭酸エチレンとジ
エチルカーボネートの混合液に、リンフッ化リチウムL
iPFを1モル/リットルの割合で溶解したものを用
いた。
As the electrolytic solution, a mixed solution of ethylene carbonate and diethyl carbonate is used, and lithium phosphorus fluoride L is added.
iPF 6 was used after dissolved in a proportion of 1 mole / liter.

【0030】上記炭素材料負極ペレットと、正極ペレッ
ト、ポリプロピレン製の薄膜セパレータ、電解液、負極
カップ、正極缶、ガスケットを用い、正極ペレット、セ
パレータ、負極ペレットの順で積層し、電解液を注入し
た後、かしめて直径20mm、厚さ2.5mmのリチウ
ムイオンコイン型電池を作成した。この二次電池を比較
例1とする。
Using the above-mentioned carbon material negative electrode pellet, positive electrode pellet, polypropylene thin film separator, electrolytic solution, negative electrode cup, positive electrode can and gasket, the positive electrode pellet, separator and negative electrode pellet were laminated in this order and the electrolytic solution was injected. After that, they were caulked to prepare a lithium ion coin type battery having a diameter of 20 mm and a thickness of 2.5 mm. This secondary battery is referred to as Comparative Example 1.

【0031】(実施例1) 以下のようにして作成される焼結複合体を負極に用いる
こと以外は、先の比較例1と同様にしてコイン型電池を
作成した。
Example 1 A coin-type battery was prepared in the same manner as in Comparative Example 1 except that the sintered composite material prepared as follows was used for the negative electrode.

【0032】焼結複合体の作成大阪化成社製の低膨張性
炭素粘結材(商品名LEC−1)(物性は表1及び表2
に示す。)を不活性ガス中、温度900℃で1時間仮焼
成し、得られた仮焼成体を250メッシュ以下となるよ
うに粉砕した。
Preparation of Sintered Composite Low expansion carbon binder (trade name LEC-1) manufactured by Osaka Kasei Co., Ltd. (Physical properties are shown in Tables 1 and 2).
Shown in. ) Was calcinated in an inert gas at a temperature of 900 ° C. for 1 hour, and the calcinated body obtained was pulverized to 250 mesh or less.

【0033】この仮焼成体と未焼成の低膨張性炭素粘結
材LEC−1とを1:1なる割合で混合し、この混合粉
体をペレット状に仮成型した。
This calcinated body and the uncalcined low expansion carbon binder LEC-1 were mixed at a ratio of 1: 1 and the mixed powder was tentatively molded into pellets.

【0034】次に、この混合粉体の中央部に集電体とし
て銅エキスパンドメタルを挿入し、直径16.5mmの
ペレット状に3トンにて圧縮成型した。なお、ここで用
いた銅エキスパンドメタルは、厚みが0.1mm、開口
部形状が1×2mmである。
Next, a copper expanded metal was inserted as a current collector into the center of this mixed powder, and the mixture was compression-molded into pellets having a diameter of 16.5 mm at 3 tons. The copper expanded metal used here has a thickness of 0.1 mm and an opening shape of 1 × 2 mm.

【0035】そして、この成型体を不活性ガス中、温度
1000℃で3時間焼成し、直径16.0mmの炭素焼
結体と集電体の焼結複合体を得た。この焼結複合体の集
電体部分を除いた炭素質部分の体積密度は1.2g/m
lであった。
Then, this molded body was fired in an inert gas at a temperature of 1000 ° C. for 3 hours to obtain a sintered composite body of a carbon sintered body having a diameter of 16.0 mm and a current collector. The volume density of the carbonaceous portion of the sintered composite excluding the collector portion is 1.2 g / m.
It was l.

【0036】また、炭素質部分の真比重は1.81g/
mlであり、粉末X線回折による002面の面間隔d0
02は、3.66オングストロームであった。なお、真
比重は、得られた焼結体または粉体をめのう乳鉢にて微
粉砕し、測定用ガラス瓶に約5g充填し、セイシン社
製、商品名 AUTO TRUE DENSER MA
T−5000 を使用し、ブタノールにて測定を行っ
た。粉末X線回折は、得られた焼結体または粉体をめの
う乳鉢にて微粉砕し、測定用ガラス板上に約1mm程度
の厚みに装填し、理学ガイガーフレックス社製、商品名
RAD−IICを使用してCuターゲットにて測定し
た。格子面間隔は、測定したまま補正を行わず、チャー
ト上のカーブにベースラインを引き、作図によりピーク
トップを決定し算出した。
The true specific gravity of the carbonaceous portion is 1.81 g /
ml, and the interplanar spacing d0 of the 002 plane by powder X-ray diffraction
02 was 3.66 Angstroms. The true specific gravity was obtained by finely pulverizing the obtained sintered body or powder in an agate mortar and filling about 5 g in a glass bottle for measurement, manufactured by Seishin Co., Ltd. under the trade name AUTO TRUE DENSER MA.
The measurement was performed using butanol using T-5000. For powder X-ray diffraction, the obtained sintered body or powder is finely pulverized in an agate mortar and loaded on a glass plate for measurement to a thickness of about 1 mm, and manufactured by Rigaku Geiger Flex Co., Ltd. under the product name RAD-IIC. Was measured using a Cu target. The lattice plane spacing was calculated without correction as it was measured, by drawing a baseline on the curve on the chart and determining the peak top by drawing.

【0037】(実施例2) 以下のようにして作成される焼結複合体を負極に用いる
こと以外は、先の比較例1と同様にしてコイン型電池を
作成した。
Example 2 A coin-type battery was prepared in the same manner as in Comparative Example 1 except that the sintered composite material prepared as described below was used for the negative electrode.

【0038】焼結複合体の作成大阪化成社製の低膨張性
炭素粘結材(商品名LEC−2)(物性は表1及び表2
に示す。)を不活性ガス中、温度900℃で1時間仮焼
成し、得られた仮焼成体を250メッシュ以下となるよ
うに粉砕した。
Preparation of Sintered Composites Low expansion carbon binder (trade name LEC-2) manufactured by Osaka Kasei Co., Ltd. (Physical properties are shown in Tables 1 and 2).
Shown in. ) Was calcinated in an inert gas at a temperature of 900 ° C. for 1 hour, and the calcinated body obtained was pulverized to 250 mesh or less.

【0039】この仮焼成体と未焼成の低膨張性炭素粘結
材LEC−2とを1:1なる割合で混合し、この混合粉
体をペレット状に仮成型した。
The calcinated body and the uncalcined low expansion carbon binder LEC-2 were mixed at a ratio of 1: 1 and the mixed powder was tentatively molded into pellets.

【0040】次に、この混合粉体の中央部に集電体とし
て銅エキスパンドメタルを挿入し、直径16.5mmの
ペレット状に3トンにて圧縮成型した。なお、ここで用
いた銅エキスパンドメタルは、厚みが0.1mm、開口
部形状が1×2mmである。
Next, a copper expanded metal was inserted as a current collector into the center of the mixed powder, and the mixture was compression-molded into a pellet having a diameter of 16.5 mm at 3 tons. The copper expanded metal used here has a thickness of 0.1 mm and an opening shape of 1 × 2 mm.

【0041】そして、この成型体を不活性ガス中、温度
1000℃で3時間焼成し、直径16.0mmの炭素焼
結体と集電体の焼結複合体を得た。この焼結複合体の集
電体部分を除いた炭素質部分の体積密度は1.2g/m
lであった。
Then, this molded body was fired in an inert gas at a temperature of 1000 ° C. for 3 hours to obtain a sintered composite body of a carbon sintered body having a diameter of 16.0 mm and a current collector. The volume density of the carbonaceous portion of the sintered composite excluding the collector portion is 1.2 g / m.
It was l.

【0042】また、炭素質部分の真比重は1.82g/
mlであり、粉末X線回折による002面の面間隔d0
02は、3.67オングストロームであった。
The true specific gravity of the carbonaceous portion is 1.82 g /
ml and the interplanar spacing d0 of the 002 plane by powder X-ray diffraction
02 was 3.67 Angstroms.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】(実施例3〜9,比較例2) 実施例1と同様な構成、手順にて、最終焼成温度のみを
変化させ、各種二次電池を作成した。なお、最終焼成温
度は、600℃から1200℃まで変化させた。
(Examples 3 to 9 and Comparative Example 2) With the same structure and procedure as in Example 1, only the final firing temperature was changed to prepare various secondary batteries. The final firing temperature was changed from 600 ° C to 1200 ° C.

【0046】以上の各実施例電池及び比較例電池につい
て、負極の炭素質材料の物性値を測定し、さらに下記の
条件で充放電し電池特性を調査した。結果を表3及び表
4に示す。
With respect to each of the batteries of Examples and Comparative Examples described above, the physical properties of the carbonaceous material of the negative electrode were measured, and the battery characteristics were investigated by charging and discharging under the following conditions. The results are shown in Tables 3 and 4.

【0047】充電条件充電電圧4.2Vmax、充電電
流1mA放電条件放電カットオフ3.0V、放電電流5
mA
Charging conditions Charging voltage 4.2 Vmax, charging current 1 mA Discharging conditions Discharge cutoff 3.0 V, discharging current 5
mA

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】この結果より、各実施例電池は、比較例電
池に比べて優れた放電容量、低い内部抵抗を示すことが
明らかである。これは、焼結体とすることで導電率が向
上し、且つバインダーを添加していないことにより、反
応効率が向上したためと考えられる。
From these results, it is clear that each of the batteries of Examples has excellent discharge capacity and low internal resistance as compared with the batteries of Comparative Example. It is considered that this is because the conductivity was improved by using the sintered body, and the reaction efficiency was improved by adding no binder.

【0051】(実施例10) 次に、焼結体を粉砕して粉体を作成し、その評価を行っ
た。
(Example 10) Next, the sintered body was pulverized to prepare a powder, and the powder was evaluated.

【0052】すなわち、実施例1において作成した焼結
複合体の炭素質部分を集電体から分離させ、250メッ
シュ以下となるように粉砕した。
That is, the carbonaceous portion of the sintered composite body prepared in Example 1 was separated from the current collector and pulverized to 250 mesh or less.

【0053】この炭素粉末に比較例1と同様にバインダ
ーを添加し、再度集電体を圧着したペレットを作成し、
比較例1と同様に電池化した。
A binder was added to this carbon powder in the same manner as in Comparative Example 1, and a current collector was pressed again to prepare pellets.
A battery was formed in the same manner as in Comparative Example 1.

【0054】得られた電池の電池特性を同様の条件によ
り評価したところ、表5に示すような結果が得られた。
When the battery characteristics of the obtained battery were evaluated under the same conditions, the results shown in Table 5 were obtained.

【0055】[0055]

【表5】 [Table 5]

【0056】この結果より、実施例1(焼結体を用いた
もの)に比べると特性に劣るものの、比較例1(ピッチ
コークスを用いたもの)よりは優れていると判断でき
る。したがって、本発明の効果は、焼結体にすることに
おいて最大限発揮されるが、粉砕した状態においてもあ
る程度認められ、低膨張性炭素粘結材LEC−1,LE
C−2を焼成したものが、負極活物質として非常に優れ
たものであることが確認された。
From these results, it can be judged that the characteristics are inferior to those of Example 1 (using the sintered body), but are superior to Comparative Example 1 (using the pitch coke). Therefore, the effect of the present invention is maximized when it is made into a sintered body, but it is recognized to some extent even in a pulverized state, and the low expansion carbon binders LEC-1 and LE
It was confirmed that the product obtained by firing C-2 was a very excellent negative electrode active material.

【0057】(実施例11、実施例12) 次に、不活性ガスではなく、減圧下にて実施例1の原料
(LEC−1)を焼成処理した。
(Examples 11 and 12) Next, the raw material (LEC-1) of Example 1 was calcined under a reduced pressure instead of an inert gas.

【0058】すなわち、実施例1におけるペレット(集
電体とともに圧縮成型したもの)を1000℃にて3時
間、10−1torr以下及び10−2torr以下の
減圧下で焼成した。
That is, the pellets (compression molded together with the current collector) in Example 1 were fired at 1000 ° C. for 3 hours under reduced pressure of 10 −1 torr or less and 10 −2 torr or less.

【0059】得られた電池の電池特性を同様の条件によ
り評価したところ、表6に示すような結果が得られた。
When the battery characteristics of the obtained battery were evaluated under the same conditions, the results shown in Table 6 were obtained.

【0060】[0060]

【表6】 [Table 6]

【0061】結果として、実施例1と物性値は同等であ
るものの、充放電容量は増加した。特性が向上した理由
としては、不活性ガスである窒素やアルゴン気流中より
も、減圧下の方が揮発成分が揮発したためと推定され
る。
As a result, although the physical properties were the same as in Example 1, the charge / discharge capacity increased. It is presumed that the reason for the improved characteristics is that the volatile components were volatilized under reduced pressure rather than under an inert gas flow of nitrogen or argon.

【0062】以上、本発明を適用した具体的な実施例に
ついて説明してきたが、本発明がこれらの実施例に限定
解釈されるものでないことは言うまでもない。例えば、
上述の実施例では、炭素質原料に低膨張性炭素粘結材L
EC−1、LEC−2を用いているが、これらと同等な
物性値を示す炭素質原料であればいずれも使用可能であ
る。
The specific embodiments to which the present invention is applied have been described above, but it goes without saying that the present invention should not be construed as being limited to these embodiments. For example,
In the above-mentioned embodiment, the low expansion carbon binder L is used as the carbonaceous raw material.
Although EC-1 and LEC-2 are used, any carbonaceous raw material can be used as long as it has physical properties equivalent to these.

【0063】[0063]

【発明の効果】以上の説明からも明らかなように、本発
明の炭素質材料は、リチウムのドープ・脱ドープ性能に
非常に優れたものであり、したがってこの炭素質材料を
非水電解質電池の負極活物質として用いることで、サイ
クル寿命、安全性に優れ、高エネルギー密度を有する非
水電解質二次電池を提供することが可能である。
As is clear from the above description, the carbonaceous material of the present invention is very excellent in lithium doping / dedoping performance. Therefore, this carbonaceous material is used in a non-aqueous electrolyte battery. By using it as a negative electrode active material, it is possible to provide a non-aqueous electrolyte secondary battery having excellent cycle life, safety, and high energy density.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−145669(JP,A) 特開 平5−101818(JP,A) 特開 平5−174820(JP,A) 特開 平5−325948(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 C01B 31/02 C04B 35/52 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-145669 (JP, A) JP-A-5-101818 (JP, A) JP-A-5-174820 (JP, A) JP-A-5- 325948 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62 C01B 31/02 C04B 35/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素含有量が90%以上、軟化開始温度
が300℃以上、熱膨張試験における全膨張率が10%
以下である低膨張性炭素粘結材を炭素質原料とし、当該
炭素質原料が不活性ガス雰囲気中、または10 −1 to
rr以下の減圧下において、700℃〜1300℃で焼
成され、真比重が1.55g/ml〜1.95g/ml
であり、002面の格子面間隔が3.58オングストロ
ーム〜3.74オングストロームである炭素質材料を負
極活物質とするとともに、リチウム複合酸化物を正極活
物質とし、さらに有機電解質を含有することを特徴とす
る非水電解質二次電池。
1. A carbon content of 90% or more, a softening start temperature of 300 ° C. or more, and a total expansion coefficient in a thermal expansion test of 10%.
The low expansion carbon caking and carbonaceous material is less, the
The carbonaceous raw material is in an inert gas atmosphere, or 10 −1 to
Baked at 700 ° C to 1300 ° C under reduced pressure of rr or less
The true specific gravity is 1.55g / ml-1.95g / ml
And the lattice spacing of the 002 plane is 3.58 angstroms.
Negative carbonaceous material that is ~ 3.74 angstroms
In addition to using it as an active material, use lithium composite oxide as a positive electrode active material.
Characterized by containing an organic electrolyte as a substance
Non-aqueous electrolyte secondary battery.
【請求項2】 炭素質材料が集電体とともに焼結され焼
結複合体とされ、この焼結複合体が負極とされているこ
とを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material is sintered together with a current collector to form a sintered composite body, and the sintered composite body serves as a negative electrode. .
JP16414695A 1994-12-13 1995-06-29 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3427577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16414695A JP3427577B2 (en) 1994-12-13 1995-06-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30894794 1994-12-13
JP6-308947 1994-12-13
JP16414695A JP3427577B2 (en) 1994-12-13 1995-06-29 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08222273A JPH08222273A (en) 1996-08-30
JP3427577B2 true JP3427577B2 (en) 2003-07-22

Family

ID=26489355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16414695A Expired - Fee Related JP3427577B2 (en) 1994-12-13 1995-06-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3427577B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948205B1 (en) 1998-05-25 1999-09-13 花王株式会社 Method for producing negative electrode for secondary battery
CN102027626A (en) * 2008-03-25 2011-04-20 A123系统公司 High energy high power electrodes and batteries
CN106133963A (en) 2014-03-31 2016-11-16 株式会社吴羽 Non-aqueous electrolyte secondary cell negative electrode carbonaceous material, anode for nonaqueous electrolyte secondary battery electrode, rechargeable nonaqueous electrolytic battery and vehicle

Also Published As

Publication number Publication date
JPH08222273A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP5068459B2 (en) Lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US7622221B2 (en) Non-aqueous electrolyte secondary battery and positive electrode active material therefor
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2003034534A (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
EP1255311A2 (en) Cathode active material and non-aqueous electrolyte cell
JP2010257592A (en) Lithium ion secondary battery
JP4853608B2 (en) Lithium secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2005011650A (en) Negative electrode material and battery using the same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP5360870B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP3427577B2 (en) Non-aqueous electrolyte secondary battery
JP2010123339A (en) Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery
JP4747392B2 (en) Nonaqueous electrolyte secondary battery
JP3658807B2 (en) Negative electrode carbon material, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR20190081610A (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
JP3577799B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JPH11250936A (en) Lithium secondary battery
JP3644128B2 (en) Negative electrode active material, production method thereof, and nonaqueous electrolyte secondary battery using the negative electrode active material
WO2013099967A1 (en) Oxide and method for producing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees