JP3426465B2 - 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same - Google Patents
400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the sameInfo
- Publication number
- JP3426465B2 JP3426465B2 JP11179397A JP11179397A JP3426465B2 JP 3426465 B2 JP3426465 B2 JP 3426465B2 JP 11179397 A JP11179397 A JP 11179397A JP 11179397 A JP11179397 A JP 11179397A JP 3426465 B2 JP3426465 B2 JP 3426465B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- workability
- toughness
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、靱性と加工性に優
れた400〜800N/mm2級高強度鋼板及びその製
造方法に関わり、その用途は、自動車、家電、建材等で
ある。TECHNICAL FIELD The present invention relates to a 400 to 800 N / mm 2 class high strength steel sheet excellent in toughness and workability and a method for producing the same, and its applications are automobiles, home appliances, building materials and the like.
【0002】[0002]
【従来の技術】近年自動車、建築等多くの産業分野で部
材の軽量化の要望が高まっておりそれに対応するため、
高強度鋼板が用いられる場合が増えている。そして、こ
れらの鋼板が用いられる用途においてはしばしば高い加
工性、特に穴拡げ性が要求される。また、高強度鋼板に
要求される別の特性としては靱性も挙げられる。加えて
一つの鋼種でこれらの特性を保ちつつ広い強度範囲を作
り分けることが鋼種集約によるコスト削減にも繋がるこ
とは明らかである。2. Description of the Related Art In recent years, in many industrial fields such as automobiles and construction, there has been an increasing demand for weight reduction of members.
High-strength steel sheets are increasingly used. In applications where these steel sheets are used, high workability, particularly hole expandability, is often required. Further, toughness is another property required for the high strength steel sheet. In addition, it is clear that the production of a wide range of strength while maintaining these characteristics with one steel type will lead to cost reduction by consolidating steel types.
【0003】従来、穴拡げ性に優れた高強度熱延鋼板と
しては、フェライト(F)+マルテンサイト(M)また
は、フェライト(F)+ベイナイト(B)の複合組織に
よる組織強化型の鋼板が多く使われている。しかし、F
+Mの複合組織では高い強度は得られるが穴拡げ性が劣
る。また、F+B鋼は、特開昭57−101649号公
報に示されているように、穴拡げ性には優れているが、
穴拡げ性を確保したまま700N/mm2以上を得るの
は難しい。組織の大部分をフェライトにし、かつTiC
析出強化を利用することで700N/mm2以上の強度
を出し、同時に穴拡げ性を確保したものとしては、特開
平6−200351号公報で開示された発明があるが、
0.5%以上のMnによる固溶強化が必須であり、ま
た、本発明のように広い強度範囲を作り分ける技術では
ない。特公昭56−9223号公報で開示された発明で
は低Mnでも高強度が得られるが、これはTimBnに
よる析出強化を活用するためB添加が必須であり、ま
た、本発明のように広い強度範囲を作り分ける技術でも
ない。600〜800N/mm2級の強度範囲において
穴拡げ性を確保する技術としては、特開平6−1729
24号公報の発明があるが、これはベイネティックフェ
ライトによる組織強化鋼であり、フェライト中のTiC
析出による強化が主である本発明鋼とはその強化機構が
全く異なる。また、低Mn化による効果を狙ったもので
もない。Conventionally, as a high-strength hot-rolled steel sheet excellent in hole expandability, a structure-strengthened steel sheet having a composite structure of ferrite (F) + martensite (M) or ferrite (F) + bainite (B) is used. Many are used. But F
With the + M composite structure, high strength is obtained, but the hole expandability is poor. Further, the F + B steel is excellent in hole expandability as shown in JP-A-57-101649.
It is difficult to obtain 700 N / mm 2 or more while ensuring hole expandability. Most of the structure is ferrite and TiC
There is an invention disclosed in Japanese Patent Application Laid-Open No. 6-200351, in which the strength of 700 N / mm 2 or more is obtained by utilizing precipitation strengthening and at the same time the hole expandability is secured.
Solid solution strengthening with 0.5% or more of Mn is indispensable, and it is not a technique for producing a wide strength range as in the present invention. In the invention disclosed in Japanese Examined Patent Publication No. 56-9223, high strength can be obtained even with low Mn, but this requires the addition of B in order to utilize precipitation strengthening by TimBn, and has a wide strength range as in the present invention. It's not a technology to make different things. As a technique for ensuring the hole expansibility in the strength range of 600 to 800 N / mm 2 class, Japanese Patent Application Laid-Open No. 6-1729
There is an invention of Japanese Patent No. 24, which is a structure-strengthened steel by vaneitic ferrite, and TiC in the ferrite.
The strengthening mechanism is completely different from the steel of the present invention, which is mainly strengthened by precipitation. Nor is it aimed at the effect of lowering Mn.
【0004】靱性に優れた高強度熱延鋼板を製造する技
術としては、特開昭63−134628号公報や特開昭
63−235432号公報などがあるが、いずれも穴拡
げ性との両立を図る技術ではなく、また広い強度範囲を
作り分ける技術でもない。Techniques for producing a high-strength hot-rolled steel sheet having excellent toughness include JP-A-63-134628 and JP-A-63-235432, both of which are compatible with hole expandability. It's not a technology to aim for, nor is it a technology to create a wide strength range.
【0005】穴拡げ性と靱性の両立を図る技術としては
特開平7−150294号公報や、特開平7−2525
91号公報があげられるが、F+Mの複合組織鋼板であ
り本発明で定めたMn量の上限を越えたMnの添加が必
須である。また、本発明のように広い強度範囲を作り分
ける技術でもない。Techniques for achieving both hole expandability and toughness are disclosed in JP-A-7-150294 and JP-A-7-2525.
No. 91 publication is cited, and it is an F + M composite structure steel sheet, and the addition of Mn exceeding the upper limit of the Mn amount defined in the present invention is essential. Further, it is not a technique for creating a wide strength range as in the present invention.
【0006】[0006]
【発明が解決しようとする課題】そこで、本発明は、高
価な固溶強化元素を用いることなく靱性と加工性、特に
穴拡げ性に優れた高強度鋼板を広い強度範囲にわたって
提供することを目的とするものである。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a high-strength steel sheet excellent in toughness and workability, particularly hole expandability, over a wide strength range without using an expensive solid solution strengthening element. It is what
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、本発明者等は鋭意検討を行った。その結果、オース
テナイトフォーマーであるMnを低減しα域を広げるこ
とによって、熱延終了から巻取前までの冷却中の炭化物
の析出が促進され、析出強化が図られ、かつ、セメンタ
イトの生成量が減少することから穴拡げ性が著しく向上
することを見出した。また、熱延終了から巻取前までの
冷却速度が大きくなるにつれて、炭化物の微細化が促進
され強化への寄与が極めて大きくなることを見出した。
さらに、粗圧延後に曲げ曲げ戻し加工をくわえることに
よって、材質の長手、幅方向の均質化が促進され、コイ
ル内の材質のばらつきが低減されることを見いだした。
そして、この析出強化を活用することによって、低コス
トでかつ靱性と加工性に優れた高強度鋼板を広い強度範
囲において容易に作り分ける技術を確立した。加えてN
bを微量添加する事によって熱延板の細粒化が図られ穴
拡げ性を確保したまま靱性が向上することも見出した。[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have made extensive studies. As a result, by reducing Mn, which is an austenite former, and widening the α region, precipitation of carbides during cooling from the end of hot rolling to before winding is promoted, precipitation strengthening is achieved, and the amount of cementite produced is increased. It was found that the hole expandability is remarkably improved due to the decrease in It was also found that as the cooling rate from the end of hot rolling to the time of winding increases, the refining of carbides is promoted and the contribution to strengthening becomes extremely large.
Furthermore, it was found that by adding bending and bending back after rough rolling, homogenization of the material in the longitudinal and width directions is promoted and variation in the material in the coil is reduced.
Then, by utilizing this precipitation strengthening, a technology was established to easily produce a high-strength steel sheet at low cost and excellent in toughness and workability in a wide strength range. In addition N
It has also been found that by adding a small amount of b, the hot-rolled sheet is made finer and the toughness is improved while ensuring the hole expandability.
【0008】すなわち本発明の要旨とするところは下記
の通りである。That is, the gist of the present invention is as follows.
【0009】(1) 重量%で、
C:0.05〜0.2%、
Si:0.01〜0.5%、
Mn:0.01〜0.5%未満、
P:0.05%以下、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.007%以下、
Ti:0.05〜0.3%、
Nb:0.005〜0.02%
を含有し、残部は鉄および不可避的不純物よりなり、さ
らに全C量のうちセメンタイトとして析出するCの割合
M=(C% as セメンタイト)/(全C%)がM≦
0.03であり、脆性遷移温度が−30℃以下であるこ
とを特徴とする靱性と加工性に優れた400〜800N
/mm2級高強度熱延鋼板。(1) C: 0.05 to 0.2%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 0.5%, P: 0.05% by weight Below, S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.007% or less, Ti: 0.05 to 0.3%, Nb: 0.005 to 0.02% And the balance consists of iron and inevitable impurities, and the proportion of C precipitated as cementite in the total amount of C M = (C% as cementite) / (total C%) is M ≦
0.03 der Ri, 400~800N to brittle transition temperature and excellent toughness and workability, characterized in der Rukoto -30 ° C. or less
/ Mm 2 class high strength hot rolled steel sheet.
【0010】(2) 重量%で、
C :0.05〜0.2%、
Si:0.01〜0.5%、
Mn:0.01〜0.5%未満、
P :0.05%以下、
S :0.01%以下、
Al:0.005〜0.1%、
N :0.007%以下、
Ti:0.05〜0.3%、
Nb:0.005〜0.02%
を含有し、残部は鉄および不可避的不純物よりなる鋼
を、加熱温度=1200〜1350℃、仕上げ温度≧
(Ar3−100)℃の熱間圧延を施し、引き続き60
0〜750℃まで1〜60℃/sの範囲でかつ所望の引
張強さTS(N/mm2 )に応じて式から求まる冷却速
度CR(℃/s)に対して±5℃/sの範囲内の冷却速
度で冷却し、室温〜750℃で巻き取ることを特徴とす
る脆性遷移温度が−30℃以下である靱性と加工性に優
れた400〜800N/mm2級高強度熱延鋼板の製造
方法。(2) In% by weight, C: 0.05 to 0.2%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 0.5%, P: 0.05% Hereinafter, S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.007% or less, Ti: 0.05 to 0.3%, Nb: 0.005 to 0.02% Of which the balance is iron and inevitable impurities, the heating temperature is 1200 to 1350 ° C., and the finishing temperature is ≧
Hot rolling at (Ar 3 -100) ° C. is performed, and then 60
Within a range of 1 to 60 ° C / s from 0 to 750 ° C and ± 5 ° C / s with respect to the cooling rate CR (° C / s) obtained from the formula according to the desired tensile strength TS (N / mm 2 ). 400 to 800 N / mm 2 class high strength hot rolled steel sheet excellent in toughness and workability with a brittle transition temperature of −30 ° C. or less, characterized by being cooled at a cooling rate within a range and being wound at room temperature to 750 ° C. Manufacturing method.
【0011】
CR=−200(0.5C%+2.5Ti%+Nb%)+TS/3−90
・・・・・
(3) 前記熱間圧延に際し、粗圧延後の粗バーをコイ
ル状に巻き取り、巻き戻し、その後、仕上圧延に供する
ことを特徴とする上記(2)に記載の靱性と加工性に優
れた400〜800N/mm2級高強度熱延鋼板の製造
方法。CR = -200 (0.5C% + 2.5Ti% + Nb%) + TS / 3-90 (3) During the hot rolling, the rough bar after rough rolling is wound into a coil shape. The method for producing a 400-800 N / mm 2 class high-strength hot-rolled steel sheet excellent in toughness and workability as described in (2) above, which comprises rewinding, and then subjecting to finish rolling.
【0012】(4) 巻き戻された前記粗バーの先端
を、先行材の後端に接合して、仕上圧延に供することを
特徴とする上記(3)に記載の靱性と加工性に優れた4
00〜800N/mm2級高強度熱延鋼板の製造方法。(4) The toughness and workability described in (3) above are excellent in that the tip of the rewound rough bar is joined to the trailing end of the preceding material and subjected to finish rolling. Four
Method for producing high strength hot rolled steel sheet of 0 to 800 N / mm 2 grade.
【0013】[0013]
【発明の実施の形態】本発明における鋼板およびその製
造方法は、C、Ti量、熱延条件を限定すること、Nb
を微量添加することによって、Mnなどの高価な固溶強
化元素を添加することなく、靱性と加工性に極めて優
れ、かつ靱性にも優れた高強度鋼板を広い強度範囲にお
いて提供するものである。以下にその限定理由を述べ
る。BEST MODE FOR CARRYING OUT THE INVENTION The steel sheet and the method for producing the same according to the present invention are such that the amounts of C, Ti, and hot rolling conditions are limited.
By adding a small amount of Mn, it is possible to provide a high-strength steel sheet having extremely excellent toughness and workability and excellent toughness in a wide strength range without adding an expensive solid solution strengthening element such as Mn. The reasons for the limitation will be described below.
【0014】まず化学成分について、その限定理由を述
べる。First, the reasons for limiting the chemical components will be described.
【0015】Cは本発明において最も重要な元素のひと
つである。その量が0.05%以上の範囲ではC量が増
加するのに伴いTiC析出量が増加し強度が高くなる。
しかし、その量が0.2%を超えるとその効果は飽和
し、成形性も低下する。したがって、C添加量の範囲と
しては、0.05〜0.2%とする。この観点から好ま
しくは0.1〜0.15%とする。C is one of the most important elements in the present invention. When the amount is 0.05% or more, the TiC precipitation amount increases and the strength increases as the C amount increases.
However, if the amount exceeds 0.2%, the effect is saturated and the formability is also reduced. Therefore, the range of the amount of C added is 0.05 to 0.2%. From this viewpoint, it is preferably 0.1 to 0.15%.
【0016】Siは、脱酸のために0.01%以上含有
する。しかし、その含有量が0.5%を越えると溶接性
が劣化する。したがって、Si添加量は0.01〜0.
5%とする。この観点から更に好ましくは0.1〜0.
3%とする。Si is contained in an amount of 0.01% or more for deoxidation. However, if the content exceeds 0.5%, the weldability deteriorates. Therefore, the Si addition amount is 0.01 to 0.
5%. From this viewpoint, it is more preferably 0.1 to 0.
3%.
【0017】Mnは、MnSを生成し固溶Sによる熱間
割れを防止するため0.01%以上添加する。しかし、
0.5%以上添加するとα域が狭くなりTiCの析出が
抑制される。また、粗大なMnSによって穴拡げ性は低
下する。したがって、Mn添加量の範囲としては0.0
1〜0.5%未満とする。この観点から好ましくは0.
01〜0.3%とする。Mn is added in an amount of 0.01% or more in order to form MnS and prevent hot cracking due to solid solution S. But,
If 0.5% or more is added, the α region becomes narrow and the precipitation of TiC is suppressed. Also, the coarse MnS reduces the hole expansibility. Therefore, the range of Mn addition is 0.0
1 to less than 0.5%. From this viewpoint, it is preferably 0.
It is set to 01 to 0.3%.
【0018】Pは、安価な固溶強化元素であるが、0.
05%超では熱間あるいは冷間加工時の割れの原因とな
る。そこで、Pの含有量は0.05%以下とする。ま
た、この観点からより好ましくは0.03%以下とす
る。Although P is an inexpensive solid solution strengthening element, P.
If it exceeds 05%, it may cause cracking during hot or cold working. Therefore, the P content is set to 0.05% or less. From this viewpoint, the content is more preferably 0.03% or less.
【0019】S量は、0.01%超では、γ域でのTi
4C 2S2の析出量が増加するためTiCの析出量が低下
する。また、固溶Sとして残存した場合は熱間割れの原
因となる。このためSは0.01%以下とする。特にT
i 4C 2S2の生成抑制の観点からはSは0.005%以
下が望ましい。この観点からは0.003%以下が更に
望ましい。If the amount of S exceeds 0.01%, Ti in the γ region
FourC 2S2Precipitation amount increases, so the precipitation amount of TiC decreases
To do. In addition, if it remains as solid solution S, it may cause hot cracking.
Cause Therefore, S is set to 0.01% or less. Especially T
i FourC 2S2From the viewpoint of suppressing the generation of S, S is 0.005% or less.
The bottom is desirable. From this viewpoint, 0.003% or less is further
desirable.
【0020】Alは、脱酸剤として少なくとも0.00
5%を添加することが必要である。しかし、0.1%を
超えるとコストアップとなるばかりか介在物の増加を招
き、加工性を劣化させる。そこで、Al添加量の範囲と
しては0.005〜0.1%とする。Al is at least 0.00 as a deoxidizer.
It is necessary to add 5%. However, if it exceeds 0.1%, not only the cost is increased, but also inclusions are increased and the workability is deteriorated. Therefore, the range of the amount of Al added is 0.005 to 0.1%.
【0021】Nは、窒化物の増加にともない延性の劣化
を招くので少ないほど望ましい。したがって、0.00
7%以下とする。この観点から好ましくは0.003%
以下とする。The N content is desirable because it causes deterioration of ductility as the nitride content increases. Therefore, 0.00
7% or less. From this viewpoint, preferably 0.003%
Below.
【0022】Tiは、本発明において最も重要な元素で
ある。その量が0.05%以上では、Tiの増加に伴い
TiCの析出量が増加し、かつROT冷却速度の上昇に
伴い析出するTiCが微細になり、強度が高くなる。そ
こで、強度レベルに応じて添加する。ただし、その量が
0.3%を越えるとこれらの効果は飽和する。したがっ
て、Ti添加量の範囲は0.05〜0.3%とする。Ti is the most important element in the present invention. When the amount is 0.05% or more, the amount of TiC precipitated increases with the increase of Ti, and the TiC precipitated with the increase of the ROT cooling rate becomes finer and the strength increases. Therefore, it is added according to the strength level. However, if the amount exceeds 0.3%, these effects are saturated. Therefore, the range of the Ti addition amount is set to 0.05 to 0.3%.
【0023】また、加工性、特に穴拡げ性を確保するた
めには、全C量のうちセメンタイトとして析出するC量
の割合M=(C% as セメンタイト)/(全C%)
がM≦0.03でなければならない。この観点から好ま
しくはM≦0.01とする。この(C% as セメン
タイト)は以下のようにして求められる。すなわち、非
水溶媒によって抽出した残差を化学分析に供し、Fe量
(=F(g)とする)を測定する。このときサンプル全
体の抽出量をZ(g)とすると、(C% asセメンタ
イト)=F/Z×12/168×100(%)となる。Further, in order to secure workability, particularly hole expandability, the ratio of the amount of C precipitated as cementite in the total amount of C, M = (C% as cementite) / (total C%)
Must be M ≦ 0.03. From this viewpoint, M ≦ 0.01 is preferable. This (C% as cementite) is determined as follows. That is, the residual extracted with the non-aqueous solvent is subjected to chemical analysis to measure the amount of Fe (= F (g)). At this time, if the extraction amount of the entire sample is Z (g), then (C% as cementite) = F / Z × 12/168 × 100 (%).
【0024】Nbは、その量が0.005未満では熱延
板細粒化効果が得られないことから0.005%以上と
する。ただし、その量が0.02%を越えると(1)式
で示した強度と冷却速度の関係から外れてしまうことか
ら0.02%以下とする。If the amount of Nb is less than 0.005, the effect of refining the hot-rolled sheet cannot be obtained, so Nb is set to 0.005% or more. However, if the amount exceeds 0.02%, it will be out of the relationship between the strength and the cooling rate shown in the formula (1), so the content is made 0.02% or less.
【0025】上記成分を得るための原料は特に限定しな
いが、鉄鉱石を原料として、高炉転炉により成分を調製
する方法以外にスクラップを原料としてもよいし、これ
を電炉で溶製してもよい。スクラップを原料の全部また
は一部として使用する際には、Cu、Cr、Ni、S
n、Sb、Zn、Pb、Mo等の元素を合計で1%未満
含有してもよい。The raw materials for obtaining the above components are not particularly limited, but scraps may be used as raw materials other than the method of preparing the components by a blast furnace converter by using iron ore as a raw material, or by melting this in an electric furnace. Good. When scrap is used as all or part of the raw material, Cu, Cr, Ni, S
The total amount of elements such as n, Sb, Zn, Pb, and Mo may be less than 1%.
【0026】つぎに製造プロセスに関する限定理由を述
べる。Next, the reasons for limitation regarding the manufacturing process will be described.
【0027】熱間圧延に供するスラブは、とくに限定す
るものではない。すなわち、連続鋳造スラブや薄スラブ
キャスターで製造したものなどであればよい。また、鋳
造後に直ちに熱間圧延を行う、連続鋳造−直接圧延(C
C−DR)のようなプロセスにも適合する。粗圧延の後
にコイルボックスでの巻取、巻戻し処理を行ったり、更
にその後粗圧延板同士を接合し仕上圧延を行う連続熱延
のようなプロセスを行うと材質が均一化し歩留まりも向
上する。The slab used for hot rolling is not particularly limited. That is, it may be a continuous cast slab or a thin slab caster. Further, continuous casting-direct rolling (C
It is also suitable for processes such as C-DR). If a process such as continuous hot rolling is performed after rough rolling after winding and unwinding in a coil box, and then rough rolling plates are joined together and finish rolling is performed, the material becomes uniform and the yield is improved.
【0028】熱間圧延における加熱温度は、熱延前に生
成されているTiCを再固溶させ、過飽和Tiをできる
だけ多くするために1200℃以上とすることが必須で
ある。しかし、1350℃を超えるとその効果は飽和す
るだけでコストがかかるので、加熱温度は1350℃以
下とする。この観点で好ましくは1300℃未満とす
る。It is essential that the heating temperature in hot rolling is 1200 ° C. or higher in order to re-dissolve TiC formed before hot rolling and to maximize supersaturated Ti. However, if the temperature exceeds 1350 ° C, the effect is saturated and the cost is high. Therefore, the heating temperature is set to 1350 ° C or lower. From this viewpoint, the temperature is preferably lower than 1300 ° C.
【0029】仕上圧延における熱延終了温度は、プレス
成形性を確保するために(Ar 3−100)℃以上とす
る必要がある。The hot rolling end temperature in the finish rolling is the press
To ensure formability (Ar 3-100) ° C or higher
Need to
【0030】粗圧延終了後には粗バーを一旦コイル状に
巻取ってもよい。このとき、1000℃以下での加熱保
持を行っても良いし、コイルボックスのような物の中で
恒温保持しても良い。大気中での保持でも良い。表面性
状の観点から不活性ガス雰囲気での保持を行っても良
い。このコイルを巻戻した後に、そのまま(Ar 3−1
00)℃以上の仕上げ温度で仕上げ圧延を行っても良い
し、粗バーを接合して連続的に仕上げ熱延を行っても構
わない。このような工程によって材質が均一化し、端部
切り落としの必要が無くなり歩留まりが向上する。また
熱延板の板厚精度も著しく向上する。After the rough rolling is finished, the rough bar is once coiled.
You may wind it up. At this time, keep heating at 1000 ° C or less.
You can carry it with you, or in something like a coil box
You may keep constant temperature. It may be kept in the atmosphere. Surface property
From the standpoint of shape, it may be held in an inert gas atmosphere.
Yes. After unwinding this coil, 3-1
Finish rolling may be performed at a finishing temperature of 00) ° C or higher.
However, it is also possible to join the rough bars and continuously finish hot rolling.
I don't know. This process makes the material uniform,
The need for cutting off is eliminated and the yield is improved. Also
The plate thickness accuracy of the hot rolled plate is also significantly improved.
【0031】仕上げ圧延後の冷却速度は、1〜60℃/
sの範囲でかつ、所望の引張強さに応じて引張強さと化
学成分とから(1)式で求まる平均冷却速度に対して±
5℃の範囲とする。冷却速度を1℃/s未満する事は設
備上困難でありかつ、格段の効果も得られないことか
ら、冷却速度は1℃/s以上とする。一方60℃/s超
の冷却速度を安定に確保することは難しく、強度のばら
つきの原因となることから冷却速度の上限は60℃/s
とする。The cooling rate after finish rolling is 1 to 60 ° C. /
± in relation to the average cooling rate obtained by the formula (1) from the tensile strength and the chemical components in the range of s and according to the desired tensile strength.
The range is 5 ° C. A cooling rate of less than 1 ° C./s is difficult in terms of equipment and no significant effect can be obtained. Therefore, the cooling rate is set to 1 ° C./s or more. On the other hand, it is difficult to secure a stable cooling rate of over 60 ° C / s, and this causes variations in strength, so the upper limit of the cooling rate is 60 ° C / s.
And
【0032】強度に寄与するTi、C量、引張強度と冷
却速度の関係は以下のようにして調べた。0.09%C
−0.35%Mn−0.002%N−0.009%Nb
鋼をベースにTi含有量を変化させた鋼片を、1250
℃に加熱後仕上げ温度908℃で板厚4mmに仕上げ、
その後種々の冷却速度で冷却した時の冷却速度と組成の
関係を図1に示す。同じ熱延条件で0.3%Mn−0.
0.14%Ti−0.002%N−0.011%Nb鋼
をベースにC含有量を変化させた鋼片について同様の調
査を行った結果を図2に示す。これより、Ti、C量の
増加に比例してTSは上昇することが分かる。また図3
には図1と図2に示した結果を冷却速度CRとTSの関
係にプロットし直した結果を示す。これよりROT冷却
速度に比例してTSは上昇していることが分かる。以上
の関係を式にまとめると下記の様になる。
CR=−200×(0.5×C%+2.5×Ti%)+TS/3−90
・・・・・(1)
冷却停止温度は、600〜750℃とする。冷却停止温
度を600℃未満とすることは、特段の効果が期待でき
ない上に強度のばらつきの原因となることから、冷却停
止温度の下限は600℃とする。一方、冷却停止温度を
750℃超にすると、冷却中に析出するTiCの量が減
少し強度が低下するため、冷却停止温度の上限は750
℃とする。The relationship between the amount of Ti and C contributing to the strength, the tensile strength and the cooling rate was examined as follows. 0.09% C
-0.35% Mn-0.002% N-0.009% Nb
A steel slab with a Ti content changed to 1250
After heating to ℃, finish at a finishing temperature of 908 ℃ to finish plate thickness 4 mm,
FIG. 1 shows the relationship between the cooling rate and the composition when cooled at various cooling rates thereafter. Under the same hot rolling conditions, 0.3% Mn-0.
FIG. 2 shows the results of a similar investigation conducted on a steel slab having a C content varied based on a 0.14% Ti-0.002% N-0.011% Nb steel. From this, it is understood that the TS increases in proportion to the increase in the Ti and C amounts. See also FIG.
1 shows the results of plotting the results shown in FIGS. 1 and 2 again in the relationship between the cooling rates CR and TS. From this, it can be seen that TS increases in proportion to the ROT cooling rate. The above relationship is summarized in the equation below. CR = −200 × (0.5 × C% + 2.5 × Ti%) + TS / 3-90 (1) The cooling stop temperature is 600 to 750 ° C. If the cooling stop temperature is less than 600 ° C., no particular effect can be expected, and it causes variations in strength. Therefore, the lower limit of the cooling stop temperature is 600 ° C. On the other hand, if the cooling stop temperature exceeds 750 ° C., the amount of TiC precipitated during cooling decreases and the strength decreases, so the upper limit of the cooling stop temperature is 750.
℃.
【0033】巻取温度は、室温〜750℃の範囲とす
る。巻取温度を750℃超にすることは、強化に寄与し
ている微細炭化物の粗大化を促し強度の低下の原因とな
る。また、設備とコストの観点からも望ましくない。そ
こで、巻取温度の上限は750℃とする。この観点か
ら、巻取温度は、700℃以下にすることが好ましい。
この観点から更に好ましくは600℃以下とする。本発
明においては、強化に寄与している炭化物が粗大化し
て、強度が低下してしまう温度領域未満の温度であれば
基本的にはどの温度で巻き取っても良い。しかし、室温
未満で巻取る事は、過剰な設備が必要となるばかりでな
く特段の効果もない。したがって、巻取温度の下限は室
温とする。The coiling temperature is in the range of room temperature to 750 ° C. When the winding temperature exceeds 750 ° C., the coarsening of the fine carbides that contribute to strengthening is promoted, which causes a decrease in strength. Also, it is not desirable from the viewpoint of equipment and cost. Therefore, the upper limit of the winding temperature is 750 ° C. From this viewpoint, the winding temperature is preferably 700 ° C. or lower.
From this viewpoint, it is more preferably 600 ° C. or lower. In the present invention, basically any temperature may be used as long as the temperature is below the temperature range where the carbide contributing to strengthening becomes coarse and strength decreases. However, winding at less than room temperature not only requires excessive equipment, but also has no particular effect. Therefore, the lower limit of the winding temperature is room temperature.
【0034】[0034]
【実施例】以下、実施例により本発明をさらに詳細に説
明する。The present invention will be described in more detail with reference to the following examples.
【0035】(実施例1)表1に示す化学成分を有する
低炭素鋼を転炉にて出鋼し、連続鋳造機にてスラブとし
た後、1230℃に加熱し、仕上げ温度912℃、板厚
2mmとなるような熱間圧延を行った。表2に示した様
な種々のROT冷却速度(ランアウトテーブル(run
out table)での平均冷却速度)で670℃
まで冷却した後、640℃でコイルに巻き取った。この
ようにして得られた熱延鋼板についてJIS5号による
圧延方向の引張試験、穴広げ試験を行った。穴広げ試験
は、径10mmの打ち抜き穴を60゜円錐ポンチにて押
し広げ、割れが鋼板を貫通した時点での穴径dを測定
し、穴広げ率λを次式にて計算した。(Example 1) A low carbon steel having the chemical composition shown in Table 1 was tapped in a converter, made into a slab by a continuous casting machine, heated to 1230 ° C, and finished at a temperature of 912 ° C. Hot rolling was performed so that the thickness was 2 mm. Various ROT cooling rates as shown in Table 2 (runout table (run
670 ° C. in average cooling rate (in out table)
After being cooled to 640 ° C., it was wound into a coil. The hot rolled steel sheet thus obtained was subjected to a tensile test and a hole expansion test in the rolling direction according to JIS5. In the hole expanding test, a punched hole having a diameter of 10 mm was expanded by a 60 ° conical punch, the hole diameter d when the crack penetrated the steel plate was measured, and the hole expanding ratio λ was calculated by the following formula.
【0036】
λ={(d−10)/10}×100(%)
脆性遷移温度はシャルピー試験によって脆性破面率50
%となる温度とした。Λ = {(d−10) / 10 × 100 (%) The brittle transition temperature is 50 by the Charpy test.
The temperature was set to be%.
【0037】結果を表2に示す。これから明らかなよう
にMn量が低くC、Ti量が適正な鋼は冷却速度と引張
強度の間にCR=−200×(0.5×C%+2.5×
Ti%)+TS/3−100なる関係を満足し、かつ、
セメンタイトの生成量も少ないため穴拡げ性にも優れて
いる事が分かる。また、本発明の範囲を満足する鋼はい
ずれも脆性遷移温度が−30℃以下と低いのに対して比
較例、特にNbを添加していない鋼L、P、Qでは脆性
遷移温度が高くなっていることがわかる。The results are shown in Table 2. As is clear from this, steel having a low Mn content and an appropriate C content and Ti content is CR = -200 × (0.5 × C% + 2.5 ×) between the cooling rate and the tensile strength.
Ti%) + TS / 3−100, and
It can be seen that since the amount of cementite produced is small, the hole expandability is also excellent. Further, all of the steels satisfying the range of the present invention have a low brittle transition temperature of −30 ° C. or lower, whereas the comparative examples, in particular, steels L, P, and Q to which Nb is not added have a high brittle transition temperature. You can see that
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 (実施例2)
表1に示した鋼種CとHについて連続鋳造によって製造
したスラブを表中に示した種々の温度で1時間加熱し、
仕上温度915℃、板厚6mmとなるような熱間圧延を
行った後、鋼Cは12±2℃/s(希望強度450N/
mm2)、鋼Hは45±3℃/s(希望強度700N/
mm2)のROT冷却速度で640℃まで冷却した後
に、600℃でコイルに巻き取った。このようにして得
られた熱延鋼板について、実施例1と同様にJIS5号
による圧延方向の引張試験、穴広げ試験を行った結果を
表3に示す。これより、加熱温度が1200〜1350
℃の範囲内では狙いの強度±20N/mm2以内の強度
が得られているが、加熱温度が1200℃未満になると
強度が狙いの強度に比べて著しく低下し、穴広げ性にも
劣ることが分かる。 [Table 2] (Example 2) Slabs produced by continuous casting of steel types C and H shown in Table 1 were heated at various temperatures shown in the table for 1 hour,
After hot rolling such that the finishing temperature was 915 ° C. and the plate thickness was 6 mm, Steel C was 12 ± 2 ° C./s (desired strength 450 N /
mm 2 ), steel H is 45 ± 3 ° C./s (desired strength 700 N /
After cooling to 640 ° C. at a ROT cooling rate of mm 2 ), the coil was wound at 600 ° C. The hot-rolled steel sheet thus obtained was subjected to a tensile test in the rolling direction and a hole expansion test according to JIS No. 5 as in Example 1, and the results are shown in Table 3. From this, the heating temperature is 1200-1350
In the range of ℃, the target strength is within ± 20N / mm 2, but when the heating temperature is less than 1200 ℃, the strength is significantly lower than the target strength and the hole expansibility is poor. I understand.
【0040】[0040]
【表3】 (実施例3)
表4には表1に示した鋼種A、C、D、J、Pについて
スラブを1250℃で加熱し、粗圧延終了後コイル状に
巻き取り直ちに巻き戻した後に仕上げ温度890℃、板
厚4mmとなるような仕上げ圧延を行い、表中に示した
ROT冷却速度で700℃まで冷却した後コイルに巻き
取った場合と、1250度で加熱し、仕上温度903
℃、板厚4mmとなるような熱間圧延を行った後、表中
に示したROT冷却速度で620℃まで冷却した後55
0℃でコイルに巻き取った場合について、熱延板の長手
方向先端部から10m、中央部、末端部から10mの各
位置から試験片を採取し、実施例1と同じ試験を行った
結果を示す(シャルピー試験は中央部のみ)。これよ
り、発明例では巻き取り巻き戻しの有無に関わらずコイ
ル全長で狙いの強度±20N/mm2は確保されている
が、巻き取り巻き戻し加工を加えた場合の方が、コイル
材質の均一性により優れているのが分かる。 [Table 3] (Example 3) In Table 4, for the steel types A, C, D, J, and P shown in Table 1, slabs were heated at 1250 ° C, wound into a coil after completion of rough rolling, and immediately rewound, followed by finishing temperature 890. ℃, finish rolling to obtain a plate thickness of 4 mm, when cooled to 700 ° C. at the ROT cooling rate shown in the table and then wound on a coil, and when heated at 1250 ° C., a finishing temperature of 903
After carrying out hot rolling so as to obtain a sheet thickness of 4 mm and a plate thickness of 4 mm, after cooling to 620 ° C. at the ROT cooling rate shown in the table, 55
In the case where the hot rolled sheet was wound around a coil at 0 ° C., the test piece was sampled from each position of 10 m from the front end, 10 m from the center and 10 m from the end of the hot rolled plate, and the same test as in Example 1 was performed. Shown (Charpy test only in the center). As a result, in the invention example, the target strength of ± 20 N / mm 2 is ensured over the entire coil length regardless of the presence / absence of winding / rewinding. You can see that it is excellent.
【0041】[0041]
【表4】 [Table 4]
【0042】[0042]
【発明の効果】以上詳述したように、本発明によれば、
C、Ti、Nb量、熱延条件を限定することによってM
nなどの高価な固溶強化元素を添加することなく靱性と
加工性に優れた高強度鋼板を広い強度範囲において容易
に提供することができるため、本発明は工業的に価値の
高い発明であると言える。As described in detail above, according to the present invention,
By limiting the amounts of C, Ti, Nb, and hot rolling conditions, M
Since it is possible to easily provide a high-strength steel sheet excellent in toughness and workability in a wide strength range without adding an expensive solid solution strengthening element such as n, the present invention is an industrially valuable invention. Can be said.
【図1】引張強度TSとTi添加量、ROT冷却速度の
関係を示す図である。FIG. 1 is a diagram showing the relationship between tensile strength TS, Ti addition amount, and ROT cooling rate.
【図2】引張強度TSとC添加量、ROT冷却速度の関
係を示す図である。FIG. 2 is a diagram showing a relationship between a tensile strength TS, an amount of C added, and a ROT cooling rate.
【図3】引張強度TSとROT冷却速度の関係を示す図
である。FIG. 3 is a diagram showing a relationship between tensile strength TS and ROT cooling rate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸田 宏司 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (56)参考文献 特開 平2−8349(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/46 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Kishida Koji Kishida 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Technology Development Division (56) References JP-A-2-8349 (JP, A) (58) Survey Areas (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 9/46
Claims (4)
らに全C量のうちセメンタイトとして析出するCの割合
M=(C% as セメンタイト)/(全C%)がM≦
0.03であり、脆性遷移温度が−30℃以下であるこ
とを特徴とする靱性と加工性に優れた400〜800N
/mm2級高強度熱延鋼板。1. By weight%, C: 0.05 to 0.2%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 0.5%, P: 0.05% or less. , S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.007% or less, Ti: 0.05 to 0.3%, Nb: 0.005 to 0.02% The content is C and the balance consists of iron and unavoidable impurities, and the ratio of C precipitated as cementite in the total amount of C M = (C% as cementite) / (total C%) is M ≦
0.03 der Ri, 400~800N to brittle transition temperature and excellent toughness and workability, characterized in der Rukoto -30 ° C. or less
/ Mm 2 class high strength hot rolled steel sheet.
を、加熱温度=1200〜1350℃、仕上げ温度≧
(Ar3−100)℃の熱間圧延を施し、引き続き60
0〜750℃まで1〜60℃/sの範囲でかつ所望の引
張強さTS(N/mm2)に応じて(1)式から求まる
冷却速度CR(℃/s)に対して±5℃/sの範囲内の
冷却速度で冷却し、室温〜750℃で巻き取ることを特
徴とする脆性遷移温度が−30℃以下である靱性と加工
性に優れた400〜800N/mm2級高強度熱延鋼板
の製造方法。 CR=−200(0.5C%+2.5Ti%+Nb%)+TS/3−90 ・ ・ ・(1)2. By weight%, C: 0.05 to 0.2%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 0.5%, P: 0.05% or less. , S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.007% or less, Ti: 0.05 to 0.3%, Nb: 0.005 to 0.02% Steel containing iron and inevitable impurities in the balance, heating temperature = 1200 to 1350 ° C, finishing temperature ≥
Hot rolling at (Ar 3 -100) ° C. is performed, and then 60
Within a range of 1 to 60 ° C / s from 0 to 750 ° C and ± 5 ° C with respect to the cooling rate CR (° C / s) obtained from the equation (1) according to the desired tensile strength TS (N / mm 2 ). 400-800 N / mm 2 high strength excellent in toughness and workability with brittle transition temperature of -30 ° C or less, characterized by cooling at a cooling rate in the range of / s and winding at room temperature to 750 ° C. Method of manufacturing hot rolled steel sheet. CR = -200 (0.5C% + 2.5Ti% + Nb%) + TS / 3-90 ・ ・ (1)
をコイル状に巻き取り、巻き戻し、その後、仕上圧延に
供することを特徴とする請求項2に記載の靱性と加工性
に優れた400〜800N/mm2級高強度熱延鋼板の
製造方法。3. The toughness and workability according to claim 2, wherein during the hot rolling, the rough bar after rough rolling is wound into a coil shape, rewound, and then subjected to finish rolling. 400-800 N / mm 2 class high-strength hot-rolled steel sheet manufacturing method.
材の後端に接合して、仕上圧延に供することを特徴とす
る請求項3に記載の靱性と加工性に優れた400〜80
0N/mm2級高強度熱延鋼板の製造方法。4. The excellent toughness and workability of 400 to 400 according to claim 3, wherein the rewound rough bar tip is joined to the trailing edge of the preceding material for finish rolling. 80
Method for producing 0 N / mm 2 class high strength hot rolled steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11179397A JP3426465B2 (en) | 1997-04-15 | 1997-04-15 | 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11179397A JP3426465B2 (en) | 1997-04-15 | 1997-04-15 | 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10287949A JPH10287949A (en) | 1998-10-27 |
JP3426465B2 true JP3426465B2 (en) | 2003-07-14 |
Family
ID=14570304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11179397A Expired - Fee Related JP3426465B2 (en) | 1997-04-15 | 1997-04-15 | 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3426465B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5326709B2 (en) * | 2008-04-03 | 2013-10-30 | 新日鐵住金株式会社 | Low yield ratio type high burring high strength hot rolled steel sheet and method for producing the same |
JP5338525B2 (en) * | 2009-07-02 | 2013-11-13 | 新日鐵住金株式会社 | High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same |
JP6485549B2 (en) | 2015-07-31 | 2019-03-20 | 新日鐵住金株式会社 | High strength hot rolled steel sheet |
-
1997
- 1997-04-15 JP JP11179397A patent/JP3426465B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10287949A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4470701B2 (en) | High-strength thin steel sheet with excellent workability and surface properties and method for producing the same | |
JP3704306B2 (en) | Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same | |
JP3143054B2 (en) | High-strength hot-rolled steel sheet with low yield strength after forming, pipe formed using the same, and method for producing the high-strength hot-rolled steel sheet | |
JP4167587B2 (en) | High-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same | |
JP5037744B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4085826B2 (en) | Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
JP5304435B2 (en) | Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof | |
JP4924052B2 (en) | High yield ratio high tensile cold-rolled steel sheet and method for producing the same | |
JP3895986B2 (en) | High-strength steel plate excellent in weldability and hole expansibility and method for producing the same | |
JPH09118952A (en) | Member made of high-strength hot rolled steel sheet having lower yield ratio | |
JP4506985B2 (en) | Extra heavy steel material and method for manufacturing the same | |
JP3290595B2 (en) | Method for manufacturing high-tensile steel plate with excellent toughness and weldability | |
JP3426465B2 (en) | 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same | |
JP3812488B2 (en) | High-strength steel with excellent workability and material uniformity and method for producing the same | |
JP3546287B2 (en) | High-strength hot-rolled steel sheet excellent in workability and method for producing the same | |
JP3425288B2 (en) | 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same | |
JP7088235B2 (en) | Wear-resistant steel sheet and its manufacturing method | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP3559455B2 (en) | Low-yield-ratio type refractory steel, steel pipe, and method for producing the same | |
KR20040004137A (en) | STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL | |
KR100368553B1 (en) | Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength | |
JP3616472B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet with excellent workability | |
JP4026443B2 (en) | High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof | |
JP4517629B2 (en) | Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof | |
JP2003113443A (en) | High strength hot-rolled steel sheet with high workability due to little directional surface roughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030415 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090509 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100509 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100509 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140509 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |